1
|
Chen T, Liu S, Yang Z, Feng S, Fang W, Lu X, Li J. Investigation roles of Adamts1 and Adamts5 in scleral fibroblasts under hypoxia and mice with form-deprived myopia. Exp Eye Res 2024; 247:110026. [PMID: 39122105 DOI: 10.1016/j.exer.2024.110026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/23/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Scleral hypoxia is considered a trigger in scleral remodeling-induced myopia. Identifying differentially expressed molecules within the sclera is essential for understanding the mechanism of myopia. We developed a scleral fibroblast hypoxia model and conducted RNA sequencing and bioinformatic analysis. RNA interference technology was then applied to knock down targeted genes with upregulated expression, followed by an analysis of COLLAGEN I protein level. Microarray data analysis showed that the expression of Adamts1 and Adamts5 were upregulated in fibroblasts under hypoxia (t-test, p < 0.05). Western blot analysis confirmed increased protein levels of ADAMTS1 and ADAMTS5, and a concurrent decrease in COLLAGEN I in hypoxic fibroblasts. The knockdown of either Adamts1 or Adamts5 in scleral fibroblasts under hypoxia resulted in an upregulation of COLLAGEN I. Moreover, a form-deprivation myopia (FDM) mouse model was established for validation. The sclera tissue from FDM mice exhibited increased levels of ADAMTS1 and ADAMTS5 protein and a decrease in COLLAGEN I, compared to controls. The study suggests that Adamts1 and Adamts5 may be involved in scleral remodeling induced by hypoxia and the development of myopia.
Collapse
Affiliation(s)
- Ting Chen
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Guangzhou, 510280, GuangDong, China
| | - Shanshan Liu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Guangzhou, 510280, GuangDong, China
| | - Zonglin Yang
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Guangzhou, 510280, GuangDong, China
| | - Songfu Feng
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Guangzhou, 510280, GuangDong, China
| | - Wanyi Fang
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Guangzhou, 510280, GuangDong, China
| | - Xiaohe Lu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Guangzhou, 510280, GuangDong, China.
| | - Jiali Li
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Guangzhou, 510280, GuangDong, China.
| |
Collapse
|
2
|
Chalise U, Hale TM. Fibroblasts under pressure: cardiac fibroblast responses to hypertension and antihypertensive therapies. Am J Physiol Heart Circ Physiol 2024; 326:H223-H237. [PMID: 37999643 PMCID: PMC11219059 DOI: 10.1152/ajpheart.00401.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Approximately 50% of Americans have hypertension, which significantly increases the risk of heart failure. In response to increased peripheral resistance in hypertension, intensified mechanical stretch in the myocardium induces cardiomyocyte hypertrophy and fibroblast activation to withstand increased pressure overload. This changes the structure and function of the heart, leading to pathological cardiac remodeling and eventual progression to heart failure. In the presence of hypertensive stimuli, cardiac fibroblasts activate and differentiate to myofibroblast phenotype capable of enhanced extracellular matrix secretion in coordination with other cell types, mainly cardiomyocytes. Both systemic and local renin-angiotensin-aldosterone system activation lead to increased angiotensin II stimulation of fibroblasts. Angiotensin II directly activates fibrotic signaling such as transforming growth factor β/SMAD and mitogen-activated protein kinase (MAPK) signaling to produce extracellular matrix comprised of collagens and matricellular proteins. With the advent of single-cell RNA sequencing techniques, heterogeneity in fibroblast populations has been identified in the left ventricle in models of hypertension and pressure overload. The various clusters of fibroblasts reveal a range of phenotypes and activation states. Select antihypertensive therapies have been shown to be effective in limiting fibrosis, with some having direct actions on cardiac fibroblasts. The present review focuses on the fibroblast-specific changes that occur in response to hypertension and pressure overload, the knowledge gained from single-cell analyses, and the effect of antihypertensive therapies. Understanding the dynamics of hypertensive fibroblast populations and their similarities and differences by sex is crucial for the advent of new targets and personalized medicine.
Collapse
Affiliation(s)
- Upendra Chalise
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, Minnesota, United States
| | - Taben M Hale
- Department of Basic Medical Sciences, University of Arizona, College of Medicine-Phoenix, Phoenix, Arizona, United States
| |
Collapse
|
3
|
Qin Y, Ye X, Luo Y, Peng L, Zhou G, Zhu Y, Pan C. hKLK alleviates myocardial fibrosis in mice with viral myocarditis. J Appl Biomed 2023; 21:15-22. [PMID: 37016776 DOI: 10.32725/jab.2023.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
Myocardial fibrosis is the most serious complication of viral myocarditis (VMC). This study aimed to investigate the therapeutic benefits and underlying mechanisms of lentivirus-mediated human tissue kallikrein gene transfer in myocardial fibrosis in VMC mice. We established VMC mouse model via intraperitoneal injection with Coxsackie B3 virus. The effect was then assessed after treatment with vehicle, the empty lentiviral vectors (EZ.null), and the vectors expressing hKLK1 (EZ.hKLK1) via tail vein injection for 30 days, respectively. The results showed that administering EZ.hKLK1 successfully induced hKLK1 overexpression in mouse heart. Compared with EZ.null treatment, EZ.hKLK1 administration significantly reduced the heart/weight ratio, improved cardiac function, and ameliorated myocardial inflammation in VMC mice, suggesting that hKLK1 overexpression alleviates VMC in mice. EZ.hKLK1 administration also significantly abrogated the increased myocardial collagen content, type I/III collagen ratio, TGF-β1 mRNA and protein expression in VMC mice, suggesting that hKLK1 overexpression reduces collagen accumulation and blunts TGF-β1 signaling in the hearts of VMC mice. In conclusion, our results suggest that hKLK1 alleviates myocardial fibrosis in VMC mice, possibly by downregulating TGF-β1 expression.
Collapse
|
4
|
da Purificação NRC, Garcia VB, Frez FCV, Sehaber CC, Lima KRDA, de Oliveira Lima MF, de Carvalho Vasconcelos R, de Araujo AA, de Araújo Júnior RF, Lacchini S, de Oliveira F, Perles JVCM, Zanoni JN, de Sousa Lopes MLD, Clebis NK. Combined use of systemic quercetin, glutamine and alpha-tocopherol attenuates myocardial fibrosis in diabetic rats. Biomed Pharmacother 2022; 151:113131. [PMID: 35643067 DOI: 10.1016/j.biopha.2022.113131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 11/02/2022] Open
Abstract
This study aimed to analyze the effects of the quercetin (100 mg/kg), 1% glutamine and 1% α-tocopherol antioxidants in the myocardium of rats with streptozotocin-induced diabetes mellitus. Twenty male rats were subdivided into four groups (n = 5): N (normoglycemic); D (diabetic); NT (normoglycemic treated with antioxidants); and DT (diabetic treated with antioxidants) treated for 60 days. Clinical parameters, oxidative stress markers, inflammatory cytokines, myocardial collagen fibers and immunoexpression of superoxide dismutase 1 (SOD-1), glutathione peroxidase-1 (GPx-1), interleukin-1β (IL-1-β), transforming growth factor-beta (TGF-β), and fibroblast growth factor-2 (FGF-2) were evaluated. Results showed reduced body weight, hyperphagia, polydipsia and hyperglycemic state in groups D and DT. The levels of glutathione (GSH) were higher in NT and DT compared to N (p < 0.01) and D (p < 0.001) groups, respectively. Greater GSH levels were found in DT when compared to N animals (p < 0.001). In DT, there was an increase in IL-10 in relation to N, D and NT (p < 0.05), while GPx-1 expression was similar to N and lower compared to D (p < 0.001). TGF-β expression in DT was greater than N (p < 0.001) group, whereas FGF-2 in DT was higher than in the other groups (p < 0.001). A significant reduction in collagen fibers (type I) was found in DT compared to D (p < 0.05). The associated administration of quercetin, glutamine and α-tocopherol increased the levels of circulating interleukin-10 (IL-10) and GSH, and reduced the number of type I collagen fibers. Combined use of systemic quercetin, glutamine and alpha-tocopherol attenuates myocardial fibrosis in diabetic rats.
Collapse
Affiliation(s)
| | | | | | | | - Kaio Ramon De Aguiar Lima
- Postgraduate Program in Functional & Structural Biology, Departament of Morphology, UFRN, Natal, RN, Brazil
| | | | | | - Aurigena Antunes de Araujo
- Postgraduate Program in Pharmaceutical Sciences, Postgraduate Program in Dental Sciences, Department of Pharmacology and Biophysical, UFRN, Natal, RN, Brazil.
| | - Raimundo Fernandes de Araújo Júnior
- Postgraduate Program in Health Sciences, Postgraduate Program in Functional & Structural Biology, Departament of Morphology, UFRN, Natal, RN, Brazil
| | - Silvia Lacchini
- Postgraduate Program in Morphology Science, Departamento of Anatomy, São Paulo University, São Paulo, SP, Brazil
| | - Flávia de Oliveira
- Departament of Biocience, Federal University of São Paulo (UNIFESP), Santos, SP, Brazil
| | | | | | | | - Naianne Kelly Clebis
- Postgraduate Program in Functional & Structural Biology, Departament of Morphology, UFRN, Natal, RN, Brazil
| |
Collapse
|
5
|
Pan J, Cao Z, Fang C, Lei Y, Sun J, Huang X, Han D. Huangqi Shengmai Yin Ameliorates Myocardial Fibrosis by Activating Sirtuin3 and Inhibiting TGF-β/Smad Pathway. Front Pharmacol 2021; 12:722530. [PMID: 34483934 PMCID: PMC8414644 DOI: 10.3389/fphar.2021.722530] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/06/2021] [Indexed: 11/30/2022] Open
Abstract
Myocardial fibrosis (MF) is an important pathological process in which a variety of cardiovascular diseases transform into heart failure. The main manifestation of MF is the excessive deposition of collagen in the myocardium. Here, we explored whether Huangqi Shengmai Yin (HSY) can inhibit isoprenaline (ISO)-induced myocardial collagen deposition in rats, thereby reducing the cardiac dysfunction caused by MF. The results of echocardiography showed that HSY upregulated fractional shortening and ejection fraction, and reduced the left ventricular systolic dysfunction in the rats with MF. Pathological results showed that HSY protected myocardium, inhibited apoptosis, and effectively reduced collagen deposition. HSY also inhibited the expression of collagen I and III and α-smooth muscle actin (α-SMA) in the heart tissue. HSY increased the expression of Sirtuin 3 (Sirt3) and inhibited the protein levels of the components in the transforming growth factor-β (TGF-β)/Smad pathway. At the same time, it also regulated the expression of related proteins in the matrix metalloproteinases family. In summary, HSY played a therapeutic role in rats with ISO-induced MF by protecting myocardium and inhibiting collagen deposition. Therefore, HSY is a potential therapeutic agent for ameliorating MF.
Collapse
Affiliation(s)
- Jianheng Pan
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Zhanhong Cao
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Chunqiu Fang
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Yuting Lei
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Jiaming Sun
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Xiaowei Huang
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Dong Han
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
6
|
Wang Y, Xiao Y, Zheng Y, Yang L, Wang D. An anti-ADAMTS1 treatment relieved muscle dysfunction and fibrosis in dystrophic mice. Life Sci 2021; 281:119756. [PMID: 34175316 DOI: 10.1016/j.lfs.2021.119756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 11/27/2022]
Abstract
Duchenne Muscular Dystrophy (DMD) is caused by mutations in the dystrophin gene, accompanied by aberrant extracellular matrix synthesis and muscle damage. ADAMTS1 metalloproteinase was reported increased in dystrophin-deficient mdx mouse. The aim of this study was to explore the role of ADAMTS1 in muscle function, fibrosis and damage, and respiratory function of mdx mice. 102 DMD patients and their mothers were included in this study. Multiplex ligation dependent probe amplification (MLPA) assay and Next-generation sequencing (NGS) were adopted to do genetic diagnosis. Dystrophin-deficient mdx mice were treated with anti-ADAMTS1 antibody (anti-ADAMTS1) for three weeks. The results showed that ADAMTS1 was increased in gastrocnemius muscle of mdx mice and serum of DMD patients. Anti-ADAMTS1 treatment increased Versican transcription but suppressed versican protein expression. Besides, we found anti-ADAMTS1 improved muscle strength, diaphragm and extensor digitorum longus muscles functions in mdx mice. Meanwhile, muscle fibrosis and damage were attenuated in anti-ADAMTS1 treated dystrophic mice. In summary, anti-ADAMTS1 antibody relieved muscle dysfunction and fibrosis in dystrophic mice. It is suggested that ADAMTS1 is a potential target for developing new biological therapies for DMD.
Collapse
Affiliation(s)
- Yan Wang
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi 'an 710004, Shaanxi Province, China; Department of Neurology, Xi'an Children's Hospital, Xi'an 710000, Shaanxi Province, China
| | - Yanfeng Xiao
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi 'an 710004, Shaanxi Province, China.
| | - Yanyan Zheng
- Department of Neurology, Xi'an Children's Hospital, Xi'an 710000, Shaanxi Province, China
| | - Le Yang
- Department of Neurology, Xi'an Children's Hospital, Xi'an 710000, Shaanxi Province, China
| | - Dong Wang
- Department of Neurology, Xi'an Children's Hospital, Xi'an 710000, Shaanxi Province, China
| |
Collapse
|
7
|
Garvin AM, Khokhar BS, Czubryt MP, Hale TM. RAS inhibition in resident fibroblast biology. Cell Signal 2020; 80:109903. [PMID: 33370581 DOI: 10.1016/j.cellsig.2020.109903] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023]
Abstract
Angiotensin II (Ang II) is a primary mediator of profibrotic signaling in the heart and more specifically, the cardiac fibroblast. Ang II-mediated cardiomyocyte hypertrophy in combination with cardiac fibroblast proliferation, activation, and extracellular matrix production compromise cardiac function and increase mortality in humans. Profibrotic actions of Ang II are mediated by increasing production of fibrogenic mediators (e.g. transforming growth factor beta, scleraxis, osteopontin, and periostin), recruitment of immune cells, and via increased reactive oxygen species generation. Drugs that inhibit Ang II production or action, collectively referred to as renin angiotensin system (RAS) inhibitors, are first line therapeutics for heart failure. Moreover, transient RAS inhibition has been found to persistently alter hypertensive cardiac fibroblast responses to injury providing a useful tool to identify novel therapeutic targets. This review summarizes the profibrotic actions of Ang II and the known impact of RAS inhibition on cardiac fibroblast phenotype and cardiac remodeling.
Collapse
Affiliation(s)
- Alexandra M Garvin
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - Bilal S Khokhar
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - Michael P Czubryt
- Institute of Cardiovascular Sciences, St Boniface Hospital Albrechtsen Research Centre and Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Taben M Hale
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, USA.
| |
Collapse
|
8
|
Perrucci GL, Rurali E, Pompilio G. Cardiac fibrosis in regenerative medicine: destroy to rebuild. J Thorac Dis 2018; 10:S2376-S2389. [PMID: 30123577 DOI: 10.21037/jtd.2018.03.82] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The major limitations for cardiac regeneration in patients after myocardial infarction (MI) are the wide loss of cardiomyocytes and the adverse structural alterations of extracellular matrix (ECM). Cardiac fibroblast differentiation into myofibroblasts (MFB) leads to a huge deposition of ECM and to the subsequent loss of ventricular structural integrity. All these molecular events depict the fundamental features at the basis of the post-MI fibrosis and deserve in depth cellular and molecular studies to fill the gap in the clinical practice. Indeed, to date, there are no effective therapeutic approaches to limit the post-MI massive fibrosis development. In this review we describe the involvement of integrins and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)/ADAMTS-like (ADAMTSL) proteins in cardiac reparative pro-fibrotic response after MI, proposing some of them as novel potential pharmacological tools.
Collapse
Affiliation(s)
- Gianluca Lorenzo Perrucci
- Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano, Milano, Italy.,Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino-IRCCS, Milano, Italy
| | - Erica Rurali
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino-IRCCS, Milano, Italy
| | - Giulio Pompilio
- Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano, Milano, Italy.,Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino-IRCCS, Milano, Italy.,Dipartimento di Chirurgia Cardiovascolare, Centro Cardiologico Monzino-IRCCS, Milano, Italy
| |
Collapse
|
9
|
Li-Sha G, Li L, De-Pu Z, Zhe-Wei S, Xiaohong G, Guang-Yi C, Jia L, Jia-Feng L, Maoping C, Yue-Chun L. Ivabradine Treatment Reduces Cardiomyocyte Apoptosis in a Murine Model of Chronic Viral Myocarditis. Front Pharmacol 2018; 9:182. [PMID: 29556195 PMCID: PMC5844961 DOI: 10.3389/fphar.2018.00182] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 02/19/2018] [Indexed: 11/25/2022] Open
Abstract
This study was designed to explore the effects of ivabradine on cardiomyocyte apoptosis in a murine model of chronic viral myocarditis (CVMC). Mice were inoculated intraperitoneally with Coxsackievirus B3 at days 1, 14, and 28, respectively. On day 42, the mice were gavaged with ivabradine for 30 days until the 72nd day. The heart of infected mice was dilated and a large number of interstitial fibroblasts infiltrated into the myocardium on day 42. Compared with the untreated CVMC mice, mice treated with ivabradine showed a significant reduction in heart rate and less impairment of left ventricular function on day 72. The positive apoptosis of myocardial cells in the untreated CVMC group was significantly higher than that of the normal group and was significantly reduced after treatment with ivabradine. The expression levels of Bax and Caspase-3 in the untreated CVMC group were significantly higher than those of the normal group and were apparently reduced in the ivabradine-treated group versus the untreated CVMC group. Bcl-2 showed a high expression in the normal group and low expression in the untreated CVMC group, but its expression level in the ivabradine-treated group were higher than that of the untreated CVMC group. These results indicate that ivabradine could attenuate the expression of Caspase-3 by downregulation of Bax and upregulation of Bcl-2 to prevent the deterioration of cardiac function resulting from ventricular myocyte loss by cardiomyocyte apoptosis.
Collapse
Affiliation(s)
- Ge Li-Sha
- Department of Pediatric Emergency, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liu Li
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, China
| | - Zhou De-Pu
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shi Zhe-Wei
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Gu Xiaohong
- Children's Heart Center and Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chen Guang-Yi
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Li Jia
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lin Jia-Feng
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chu Maoping
- Children's Heart Center and Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Li Yue-Chun
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
10
|
Hong-Brown LQ, Brown CR, Navaratnarajah M, Lang CH. Adamts1 mediates ethanol-induced alterations in collagen and elastin via a FoxO1-sestrin3-AMPK signaling cascade in myocytes. J Cell Biochem 2016; 116:91-101. [PMID: 25142777 DOI: 10.1002/jcb.24945] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 08/15/2014] [Indexed: 12/11/2022]
Abstract
A variety of stressors including alcohol (EtOH) are known to induce collagen production and fibrotic diseases. Matrix metalloproteinases (MMP) play an important role in regulating fibrosis, but little is known regarding the relationship between EtOH and MMPs. In addition, the signaling cascades involved in this process have not been elucidated. We have identified the MMP Adamts1 as a target of EtOH regulation. To characterize the function of Adamts1, we examined EtOH-induced alterations in collagen I and elastin protein levels in C2C12 myocytes. Incubation of myocytes with 100 mM EtOH decreased elastin and increased collagen content, respectively, and these changes were associated with increased O-GLcNAc modification of Adamts1. Conversely, silencing of Adamts1 by siRNA blocked the adverse effects of EtOH on collagen and elastin levels. Similar results were obtained after treatment with a pharmacological inhibitor of MMP. Changes in collagen were due, at least in part, to a decreased interaction of Adamts1 with its endogenous inhibitor TIMP3. The AMPK inhibitor compound C blocked the EtOH-induced stimulation of collagen and O-GLcNAc Adamts1 protein. Changes in AMPK appear linked to FoxO1, since inhibition of FoxO1 blocked the effects of EtOH on AMPK phosphorylation and O-GLcNAc levels. These FoxO-dependent modifications were associated with an upregulation of the FoxO1 transcription target sestrin 3, as well as increased binding of sestrin 3 with AMPK. Collectively, these data indicate that EtOH regulates the collagen I and elastin content in an Adamts1-dependent manner in myocytes. Furthermore, Adamts1 appears to be controlled by the FoxO1-sestrin 3-AMPK signaling cascade.
Collapse
Affiliation(s)
- Ly Q Hong-Brown
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, 17033, USA
| | | | | | | |
Collapse
|
11
|
Hale TM. Persistent phenotypic shift in cardiac fibroblasts: impact of transient renin angiotensin system inhibition. J Mol Cell Cardiol 2015; 93:125-32. [PMID: 26631495 DOI: 10.1016/j.yjmcc.2015.11.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 12/13/2022]
Abstract
Fibrotic cardiac remodeling ultimately leads to heart failure - a debilitating and costly condition. Select antihypertensive agents have been effective in reducing or slowing the development of cardiac fibrosis. Moreover, some experimental studies have shown that the reduction in fibrosis induced by these agents persists long after stopping treatment. What has not been as well investigated is whether this transient treatment results in a protection against future fibrotic cardiac remodeling. In the present review, previously published studies are re-examined to assess whether the relative percent increase in collagen deposition over an off-treatment period is attenuated, relative to control, following transient antihypertensive treatment in young or adult rats. Present findings suggest that transient inhibition of the renin angiotensin system (RAS) not only produces a sustained reduction in cardiac fibrosis, but also results in a degree of protection against future collagen deposition. In addition, prior transient RAS inhibition appears to alter the cardiac fibroblast phenotype such that these cells show a muted response to myocardial injury - namely reduced proliferation, chemokine release, and collagen deposition. This review puts forth several potential mechanisms underlying this long-term cardiac protection that is afforded by transient RAS inhibition. Specifically, fibroblast phenotypic change, cardiac fibroblast apoptosis, sustained suppression of the RAS, persistent reduction in left ventricular hypertrophy, and persistent reduction in arterial pressure are each discussed. Identifying the mechanisms ultimately responsible for this change in cardiac fibroblast response to injury, hypertension, and aging may reveal novel targets for therapy.
Collapse
Affiliation(s)
- Taben M Hale
- Department of Basic Medical Sciences, University of Arizona, College of Medicine - Phoenix, 425 N 5th St, ABC1, Rm 327, USA.
| |
Collapse
|
12
|
D'Souza KM, Biwer LA, Madhavpeddi L, Ramaiah P, Shahid W, Hale TM. Persistent change in cardiac fibroblast physiology after transient ACE inhibition. Am J Physiol Heart Circ Physiol 2015; 309:H1346-53. [PMID: 26371174 DOI: 10.1152/ajpheart.00615.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 09/06/2015] [Indexed: 11/22/2022]
Abstract
Transient angiotensin-converting enzyme (ACE) inhibition induces persistent changes that protect against future nitric oxide synthase (NOS) inhibitor-induced cardiac fibrosis and inflammation. Given the role of fibroblasts in mediating these effects, the present study investigates whether prior ACE inhibition produced persistent changes in cardiac fibroblast physiology. Adult male spontaneously hypertensive rats (SHRs) were treated with vehicle (C+L) or the ACE inhibitor, enalapril (E+L) for 2 wk followed by a 2-wk washout period and a subsequent 7-day challenge with the NOS inhibitor N(ω)-nitro-l-arginine methyl ester. A third set of untreated SHRs served as controls. At the end of the study period, cardiac fibroblasts were isolated from control, C+L, and E+L left ventricles to assess proliferation rate, collagen expression, and chemokine release in vitro. After 7 days of NOS inhibition, there were areas of myocardial injury but no significant change in collagen deposition in E+L and C+L hearts in vivo. In vitro, cardiac fibroblasts isolated from C+L but not E+L hearts were hyperproliferative, demonstrated increased collagen type I gene expression, and an elevated secretion of the macrophage-recruiting chemokines monocyte chemoattractant protein-1 and granulocyte macrophage-colony stimulating factor. These findings demonstrate that in vivo N(ω)-nitro-l-arginine methyl ester treatment produces phenotypic changes in fibroblasts that persist in vitro. Moreover, this is the first demonstration that transient ACE inhibition can produce a persistent modification of the cardiac fibroblast phenotype to one that is less inflammatory and fibrogenic. It may be that the cardioprotective effects of ACE inhibition are related in part to beneficial changes in cardiac fibroblast physiology.
Collapse
Affiliation(s)
- K M D'Souza
- Department of Basic Medical Sciences, College of Medicine, University of Arizona, Phoenix, Arizona
| | - L A Biwer
- Department of Basic Medical Sciences, College of Medicine, University of Arizona, Phoenix, Arizona
| | - L Madhavpeddi
- Department of Basic Medical Sciences, College of Medicine, University of Arizona, Phoenix, Arizona
| | - P Ramaiah
- Department of Basic Medical Sciences, College of Medicine, University of Arizona, Phoenix, Arizona
| | - W Shahid
- Department of Basic Medical Sciences, College of Medicine, University of Arizona, Phoenix, Arizona
| | - T M Hale
- Department of Basic Medical Sciences, College of Medicine, University of Arizona, Phoenix, Arizona
| |
Collapse
|
13
|
Liu P, Yan S, Chen M, Chen A, Yao D, Xu X, Cai X, Wang L, Huang X. Effects of baicalin on collagen Ι and collagen ΙΙΙ expression in pulmonary arteries of rats with hypoxic pulmonary hypertension. Int J Mol Med 2015; 35:901-8. [PMID: 25716558 PMCID: PMC4356435 DOI: 10.3892/ijmm.2015.2110] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 02/13/2015] [Indexed: 01/10/2023] Open
Abstract
The synthesis and accumulation of collagen play an important role in the formation and progression of hypoxic pulmonary hypertension. Baicalin has been reported to prevent bleomycin-induced pulmonary fibrosis. However, the role of baicalin in the treatment of pulmonary hypertension remains unknown. A disintegrin and metalloprotease with thrombospondin type-1 motif (ADAMTS-1) is a secreted enzyme that acts on a wide variety of extracellular matrix (ECM) substrates associated with vascular diseases. In this study, we aimed to investigate the effects of baicalin on the synthesis of collagen I in rats with pulmonary hypertension induced by hypoxia and the changes in ADAMTS-1 expression. A total of 24 Sprague Dawley rats were randomly assigned to 3 groups as follows: the control group (C), the hypoxia group (H) and the hypoxia + baicalin group (B). The rats in groups H and B were kept in a normobaric hypoxic chamber for 4 weeks, and the rats in group C were exposed to room air. We measured the hemodynamic indexes, including mean pulmonary artery pressure (mPAP), mean systemic (carotid) artery pressure (mSAP), and then calculated the mass ratio of right ventricle to left ventricle plus septum [RV/(LV + S)] to reflect the extent of right ventricular hypertrophy. We measured the mRNA and protein expression levels of type I collagen, type III collagen and ADAMTS-1 by hybridization in situ, and immunohistochemistry and western blot analysis, respectively. The results revealed that treatment with baicalin significantly reduced pulmonary artery pressure and attenuated the remodeling of the pulmonary artery under hypoxic conditions by increasing the expression of ADAMTS-1, so that the synthesis of type I collagen and its mRNA expression were inhibited. In conclusion, baicalin effectively inhibits the synthesis of collagen I in pulmonary arteries and this is associated with an increase in the expression of ADAMTS-1. Thus, treatment with baicalin may be an effective method for lowering pulmonary artery pressure and preventing pulmonary artery remodeling.
Collapse
Affiliation(s)
- Panpan Liu
- Intensive Care Unit, Ningbo Medical Treatment Center Lihuili Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Shuangquan Yan
- Division of Respiratory Medicine, Taizhou Enze Medical Center Luqiao Hospital, Taizhou, Zhejiang 318050, P.R. China
| | - Mayun Chen
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University and Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325035, P.R. China
| | - Ali Chen
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University and Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325035, P.R. China
| | - Dan Yao
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University and Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325035, P.R. China
| | - Xiaomei Xu
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University and Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325035, P.R. China
| | - Xueding Cai
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University and Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325035, P.R. China
| | - Liangxing Wang
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University and Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325035, P.R. China
| | - Xiaoying Huang
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University and Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325035, P.R. China
| |
Collapse
|
14
|
Akison LK, Boden MJ, Kennaway DJ, Russell DL, Robker RL. Progesterone receptor-dependent regulation of genes in the oviducts of female mice. Physiol Genomics 2014; 46:583-92. [DOI: 10.1152/physiolgenomics.00044.2014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Oviducts play a critical role in gamete and embryo transport, as well as supporting early embryo development. Progesterone receptor (PGR) is a transcription factor highly expressed in oviductal cells, while its activating ligand, progesterone, surges to peak levels as ovulation approaches. Progesterone is known to regulate oviduct cilia beating and muscular contractions in vitro, but how PGR may mediate this in vivo is poorly understood. We used PGR null mice to identify genes potentially regulated by PGR in the oviducts during the periovulatory period. Histologically, oviducts from PGR null mice showed no gross structural or morphological defects compared with normal littermates. However, microarray analysis of oviducts at 8 h posthuman chorionic gonadotropin revealed >1,000 PGR-dependent genes. Using reverse-transcription polymerase chain reaction (RT-PCR) we selected 10 genes for validation based on their potential roles in oocyte/embryo transport and support. Eight genes were confirmed to be downregulated ( Adamts1, Itga8, Edn3, Prlr, Ptgfr, Des, Myocd, and Actg2) and one upregulated ( Agtr2) in PGR null oviducts. Expression of these genes was also assessed in oviducts of naturally cycling mice during ovulation and day 1 and day 4 of pregnancy. Adamts1, Itga8, Edn3, Prlr, and Ptgfr were significantly upregulated in oviducts at ovulation/mating. However, most genes showed basal levels of expression at other times. The exceptions were Prlr and Ptgfr, which showed pulsatile increases on day 1 and/or day 4 of pregnancy. This is the first, comprehensive study to elucidate putative PGR-regulated genes in the oviduct and reveals key downstream targets potentially mediating oocyte and embryo transport.
Collapse
Affiliation(s)
- Lisa K. Akison
- The Robinson Research Institute, School of Paediatrics & Reproductive Health, University of Adelaide, Adelaide, South Australia, Australia
| | - Michael J. Boden
- The Robinson Research Institute, School of Paediatrics & Reproductive Health, University of Adelaide, Adelaide, South Australia, Australia
| | - David J. Kennaway
- The Robinson Research Institute, School of Paediatrics & Reproductive Health, University of Adelaide, Adelaide, South Australia, Australia
| | - Darryl L. Russell
- The Robinson Research Institute, School of Paediatrics & Reproductive Health, University of Adelaide, Adelaide, South Australia, Australia
| | - Rebecca L. Robker
- The Robinson Research Institute, School of Paediatrics & Reproductive Health, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
15
|
Ehnert S, Lukoschek T, Bachmann A, Martínez Sánchez JJ, Damm G, Nussler NC, Pscherer S, Stöckle U, Dooley S, Mueller S, Nussler AK. The right choice of antihypertensives protects primary human hepatocytes from ethanol- and recombinant human TGF-β1-induced cellular damage. Hepat Med 2013; 5:31-41. [PMID: 24695967 PMCID: PMC3953738 DOI: 10.2147/hmer.s38754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Background Patients with alcoholic liver disease (ALD) often suffer from high blood pressure and rely on antihypertensive treatment. Certain antihypertensives may influence progression of chronic liver disease. Therefore, the aim of this study is to investigate the impact of the commonly used antihypertensives amlodipine, captopril, furosemide, metoprolol, propranolol, and spironolactone on alcohol-induced damage toward human hepatocytes (hHeps). Methods hHeps were isolated by collagenase perfusion. Reactive oxygen species (ROS) were measured by fluorescence-based assays. Cellular damage was determined by lactate-dehydrogenase (LDH)-leakage. Expression analysis was performed by reverse-transcription polymerase chain reaction and Western blot. Transforming growth factor (TGF)-β signaling was investigated by a Smad3/4-responsive luciferase-reporter assay. Results Ethanol and TGF-β1 rapidly increased ROS in hHeps, causing a release of 40%–60% of total LDH after 72 hours. All antihypertensives dose dependently reduced ethanol-mediated oxidative stress and cellular damage. Similar results were observed for TGF-β1-dependent damage, except for furosemide, which had no effect. As a common mechanism, all antihypertensives increased heme-oxygenase-1 (HO-1) expression, and inhibition of HO-1 activity reversed the protective effect of the drugs. Interestingly, Smad3/4 signaling was reduced by all compounds except furosemide, which even enhanced this profibrotic signaling. This effect was mediated by expressional changes of Smad3 and/or Smad4. Conclusions Our results suggest that antihypertensives may both positively and negatively influence chronic liver disease progression. Therefore, we propose that in future patients with ALD and high blood pressure, they could benefit from an adjusted antihypertensive therapy with additional antifibrotic effects.
Collapse
Affiliation(s)
- Sabrina Ehnert
- Eberhard Karls Universität Tübingen, BG Trauma Center, Tübingen, Germany
| | - Teresa Lukoschek
- Mol Hepatology - Alcohol Associated Diseases, Department of Medicine II, Medical Faculty, Mannheim, Germany
| | - Anastasia Bachmann
- Mol Hepatology - Alcohol Associated Diseases, Department of Medicine II, Medical Faculty, Mannheim, Germany
| | | | - Georg Damm
- Department of General, Visceral, and Transplantation Surgery, Charité University Medicine, Berlin, Germany
| | - Natascha C Nussler
- Clinic for General, Visceral, Endocrine Surgery and Coloproctology, Clinic Neuperlach, Städtisches Klinikum München GmbH, Munich, Germany
| | - Stefan Pscherer
- Department of Diabetology, Klinikum Traunstein, Kliniken Südostbayern AG, Traunstein, Germany
| | - Ulrich Stöckle
- Eberhard Karls Universität Tübingen, BG Trauma Center, Tübingen, Germany
| | - Steven Dooley
- Mol Hepatology - Alcohol Associated Diseases, Department of Medicine II, Medical Faculty, Mannheim, Germany
| | - Sebastian Mueller
- Department of Medicine, Salem Medical Center, Ruprecht-Karls-Universität, Heidelberg, Germany
| | - Andreas K Nussler
- Eberhard Karls Universität Tübingen, BG Trauma Center, Tübingen, Germany
| |
Collapse
|
16
|
Hu L, Jonsson KB, Andersén H, Edenro A, Bohlooly-Y M, Melhus H, Lind T. Over-expression of Adamts1 in mice alters bone mineral density. J Bone Miner Metab 2012; 30:304-11. [PMID: 22002813 DOI: 10.1007/s00774-011-0322-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 09/04/2011] [Indexed: 10/17/2022]
Abstract
ADAMTS1, a secreted multifunctional metalloproteinase with disintegrin and thrombospondin motifs, is an early response gene of parathyroid hormone (PTH) in osteoblasts. Mice engineered to lack Adamts1 are smaller compared to wild-type (WT) mice and ADAMTS1 metalloproteinase activity has been shown to increase osteoblastic growth in collagen gels. However, there are no reports investigating the consequence of Adamts1 over-expression on bone tissue in vivo. Here, we analyze bones of female and male transgenic (TG) mice over-expressing mouse Adamts1 using peripheral quantitative computed tomography to evaluate its effect on bone shape and mineral density. Western blotting of protein extracts and immunohistochemistry of bone sections reveal increased presence of Adamts1 protein in TG bones compared to WT bones. Phenotypic analyses of femur show that female TG mice have reduced metaphyseal total density, trabecular bone mineral density and trabecular mineral content. In contrast, male TG mice which were without changes in the metaphysis showed increased total density and cortical density at the mid-diaphysis cortical site. Female TG mice showed no significant changes at the cortical site compared to WT mice. Furthermore, diaphyseal endosteal compartment was only affected in male TG mice. Along these lines, Adamts1 increased blood levels of PTH only in females whereas it reduced osteocalcin levels only in males. These results reveal that Adamts1 has an impact on bone mineral density and thus further confirm Adamts1 as a potent regulator of bone remodeling.
Collapse
Affiliation(s)
- Lijuan Hu
- Department of Medical Sciences, Section of Clinical Pharmacology, University Hospital, Ing 70 3tr Foa2 Lab22, 75185, Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
17
|
Zhao Q, Beck AJ, Vitale JM, Schneider JS, Gao S, Chang C, Elson G, Leibovich SJ, Park JY, Tian B, Nam HS, Fraidenraich D. Developmental ablation of Id1 and Id3 genes in the vasculature leads to postnatal cardiac phenotypes. Dev Biol 2010; 349:53-64. [PMID: 20937270 DOI: 10.1016/j.ydbio.2010.10.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 10/04/2010] [Accepted: 10/04/2010] [Indexed: 12/31/2022]
Abstract
The Id1 and Id3 genes play major roles during cardiac development, despite their expression being confined to non-myocardial layers (endocardium-endothelium-epicardium). We previously described that Id1Id3 double knockout (dKO) mouse embryos die at mid-gestation from multiple cardiac defects, but early lethality precluded the studies of the roles of Id in the postnatal heart. To elucidate postnatal roles of Id genes, we ablated the Id3 gene and conditionally ablated the Id1 gene in the endothelium to generate conditional KO (cKO) embryos. We observed cardiac phenotypes at birth and at 6 months of age. Half of the Id cKO mice died at birth. Postnatal demise was associated with cardiac enlargement and defects in the ventricular septum, trabeculation and vasculature. Surviving Id cKO mice exhibited fibrotic vasculature, cardiac enlargement and decreased cardiac function. An abnormal vascular response was also observed in the healing of excisional skin wounds of Id cKO mice. Expression patterns of vascular, fibrotic and hypertrophic markers were altered in the Id cKO hearts, but addition of Insulin-Like Growth Factor binding protein-3 (IGFbp3) reversed gene expression profiles of vascular and fibrotic, but not hypertrophic markers. Thus, ablation of Id genes in the vasculature leads to distinct postnatal cardiac phenotypes. These findings provide important insights into the role/s of the endocardial network of the endothelial lineage in the development of cardiac disease, and highlight IGFbp3 as a potential link between Id and its vascular effectors.
Collapse
Affiliation(s)
- Qingshi Zhao
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, UMDNJ, Newark, NJ 07107-1709, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|