1
|
Suominen A, Suni A, Ruohonen S, Szabó Z, Pohjolainen L, Cai M, Savontaus E, Talman V, Kerkelä R, Rinne P. Melanocortin 1 Receptor Regulates Pathological and Physiological Cardiac Remodeling. J Am Heart Assoc 2025; 14:e037961. [PMID: 39921516 DOI: 10.1161/jaha.124.037961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/22/2024] [Indexed: 02/10/2025]
Abstract
BACKGROUND The melanocortin 1 receptor (MC1R) is abundantly expressed in the skin and leukocytes, where it regulates skin pigmentation and inflammatory responses. Recently, MC1R was also found in the heart, but its functional role has remained unknown. We aimed to investigate whether MC1R is involved in the regulation of pathological or physiological cardiac remodeling. METHODS AND RESULTS Recessive yellow mice, as a model of global MC1R deficiency, and cardiomyocyte-specific MC1R knockout mice were subjected to transverse aortic constriction or voluntary wheel running to induce pathological or physiological cardiac hypertrophy, respectively. Mice were phenotyped for cardiac structure and function by echocardiography, histology, and quantitative PCR analysis. H9c2 cells and neonatal mouse ventricular cardiac myocytes were used as in vitro models to investigate the effects of pharmacological MC1R activation on hypertrophy-related responses. We found that the expression of MC1R progressively declines in the failing mouse heart. MC1R recessive yellow mice showed blunted hypertrophic response to transverse aortic constriction-induced pressure overload and exercise training. This phenotype was recapitulated in MC1R knockout mice, demonstrating that MC1R deficiency specifically in cardiomyocytes is responsible for the antihypertrophic effect. However, MC1R knockout mice subjected to pressure overload showed left ventricular dilatation that was associated with reduced ejection fraction and changes in left ventricular diastolic function. At the molecular level, the mRNA expression of myosin heavy chain β was upregulated in the hearts of MC1R knockout mice. In contrast, selective activation of MC1R promoted hypertrophic responses in cultured cardiomyocytes. CONCLUSIONS Cardiomyocyte-specific MC1R deficiency attenuates physiological and pathological cardiac hypertrophy in mice, while pharmacological activation of MC1R promotes cardiomyocyte hypertrophy.
Collapse
MESH Headings
- Animals
- Ventricular Remodeling
- Receptor, Melanocortin, Type 1/genetics
- Receptor, Melanocortin, Type 1/metabolism
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Mice, Knockout
- Disease Models, Animal
- Cardiomegaly/metabolism
- Cardiomegaly/genetics
- Cardiomegaly/physiopathology
- Cardiomegaly/pathology
- Mice
- Mice, Inbred C57BL
- Ventricular Function, Left
- Male
- Heart Failure/physiopathology
- Heart Failure/metabolism
- Heart Failure/genetics
- Heart Failure/pathology
- Hypertrophy, Left Ventricular/physiopathology
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/genetics
- Hypertrophy, Left Ventricular/pathology
- Rats
- Cells, Cultured
- Phenotype
- Cell Line
Collapse
Affiliation(s)
- Anni Suominen
- Research Centre for Integrative Physiology & Pharmacology, Institute of Biomedicine University of Turku Finland
- Drug Research Doctoral Programme (DRDP) University of Turku Finland
| | - Aino Suni
- Research Centre for Integrative Physiology & Pharmacology, Institute of Biomedicine University of Turku Finland
| | - Saku Ruohonen
- Research Centre for Integrative Physiology & Pharmacology, Institute of Biomedicine University of Turku Finland
| | - Zoltán Szabó
- Research Unit of Biomedicine and Internal Medicine, Department of Pharmacology and Toxicology University of Oulu Finland
| | - Lotta Pohjolainen
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy University of Helsinki Finland
| | - Minying Cai
- Department of Chemistry and Biochemistry University of Arizona Tucson AZ USA
| | - Eriika Savontaus
- Research Centre for Integrative Physiology & Pharmacology, Institute of Biomedicine University of Turku Finland
- Turku Center for Disease Modeling University of Turku Finland
- Unit of Clinical Pharmacology Turku University Hospital Turku Finland
| | - Virpi Talman
- Research Centre for Integrative Physiology & Pharmacology, Institute of Biomedicine University of Turku Finland
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy University of Helsinki Finland
| | - Risto Kerkelä
- Research Unit of Biomedicine and Internal Medicine, Department of Pharmacology and Toxicology University of Oulu Finland
- Medical Research Center Oulu Oulu University Hospital and University of Oulu Finland
| | - Petteri Rinne
- Research Centre for Integrative Physiology & Pharmacology, Institute of Biomedicine University of Turku Finland
- Turku Center for Disease Modeling University of Turku Finland
| |
Collapse
|
2
|
Gary S, Roy A, Bloom S. Carbocyclic setmelanotide analogs maintain biochemical potency at melanocortin 4 receptors. J Pept Sci 2025; 31:e3656. [PMID: 39394922 DOI: 10.1002/psc.3656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/14/2024]
Abstract
The melanocortin 4 receptor (MC4R) plays a critical role in satiety and energy homeostasis, and its dysregulation is implicated in numerous hyperphagic and obese disease states. Setmelanotide, a disulfide-based cyclic peptide, can rescue MC4R activity and treat obesities caused by genetic defects in MC4R signaling. But this peptide has moderate blood-brain barrier penetrance and metabolic stability, which can limit its efficacy in practice. Based on the cryo-electron microscopy structure of setmelanotide-bound MC4R, we hypothesized that replacing its lone disulfide bond with more metabolically stable and permeability-enhancing carbon-based linker groups could improve pharmacokinetic properties without abolishing activity. To test this, we used chemistry developed by our lab to prepare 11 carbocyclic (alkyl, aryl, perfluoroalkyl, and ethereal) analogs of setmelanotide and determined their biochemical potencies at MC4R in vitro. Ten analogs displayed full agonism, showing that disulfide replacement is tolerant of linkers ranging in size, rigidity, and functional groups, with heteroatom- or aryl-rich linkers displaying superior potencies.
Collapse
Affiliation(s)
- Samuel Gary
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas, USA
| | - Anuradha Roy
- High Throughput Screening Laboratory, University of Kansas, Lawrence, Kansas, USA
| | - Steven Bloom
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
3
|
Watanabe K, Konno N, Nakamachi T, Matsuda K. Intraperitoneal administration of α-melanocyte stimulating hormone (α-MSH) suppresses food intake and induces anxiety-like behavior via the brain MC4 receptor-signaling pathway in goldfish. J Neuroendocrinol 2024; 36:e13435. [PMID: 39092865 DOI: 10.1111/jne.13435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/24/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024]
Abstract
α-Melanocyte stimulating hormone (α-MSH) is a peptide hormone released from the intermediate lobe of the pituitary which regulates body pigmentation. In addition to the pituitary, α-MSH is also produced in the midbrain, and exerts both anorexigenic and an anxiogenic actions. Acyl ghrelin and cholecystokinin are peripheral hormones derived from the digestive tract which affect the brain to control food intake and feeding behavior in vertebrates. In the present study, hypothesizing that plasma α-MSH may also stimulate the brain and exert central effects, we examined whether peripherally administered α-MSH affects food intake and psychomotor activity using a goldfish model. Intraperitoneal (IP) administration of α-MSH at 100 pmol g-1 body weight (BW) reduced food consumption and enhanced thigmotaxis. These α-MSH-induced actions were blocked by intracerebroventricular administration of HS024, an antagonist of the melanocortin 4 receptor (MC4R), at 50 pmol g-1 BW, whereas these actions were not attenuated by pretreatment with an IP-injected excess amount of capsaicin, a neurotoxin that destroys primary sensory (vagal and splanchnic) afferents, at 160 nmol g-1 BW. Transcripts for the MC4R showed higher expression in the diencephalon in other regions of the brain. These results suggest that, in goldfish, IP administered α-MSH is taken up by the brain, and also acts as anorexigenic and anxiogenic factor via the MC4R signaling pathway.
Collapse
Affiliation(s)
- Keisuke Watanabe
- Laboratory of Regulatory Biology, Graduate School of Innovative Life Sciences, University of Toyama, Toyama, Japan
| | - Norifumi Konno
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
- Laboratory of Regulatory Biology, Faculty of Science, Academic Assembly, University of Toyama, Toyama, Japan
| | - Tomoya Nakamachi
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
- Laboratory of Regulatory Biology, Faculty of Science, Academic Assembly, University of Toyama, Toyama, Japan
| | - Kouhei Matsuda
- Laboratory of Regulatory Biology, Graduate School of Innovative Life Sciences, University of Toyama, Toyama, Japan
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
- Laboratory of Regulatory Biology, Faculty of Science, Academic Assembly, University of Toyama, Toyama, Japan
| |
Collapse
|
4
|
Weirath NA, Haskell-Luevano C. Recommended Tool Compounds for the Melanocortin Receptor (MCR) G Protein-Coupled Receptors (GPCRs). ACS Pharmacol Transl Sci 2024; 7:2706-2724. [PMID: 39296259 PMCID: PMC11406693 DOI: 10.1021/acsptsci.4c00129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 09/21/2024]
Abstract
The melanocortin receptors are a centrally and peripherally expressed family of Class A GPCRs with physiological roles, including pigmentation, steroidogenesis, energy homeostasis, and others yet to be fully characterized. There are five melanocortin receptor subtypes that, apart from the melanocortin-2 receptor (MC2R), are stimulated by a shared set of endogenous agonists. Until 2020, X-ray crystallographic and cryo-electron microscopic (cryo-EM) structures of these receptors were unavailable, and the investigation of their mechanisms of action and putative ligand-receptor interactions was driven by site-directed mutagenesis studies of the receptors and targeted structure-activity relationship (SAR) studies of the endogenous and derivative synthetic ligands. Synthetic derivatives of the endogenous agonist ligand α-MSH have evolved into a suite of powerful ligands such as NDP-MSH (melanotan I), melanotan II (MTII), and SHU9119. This suite of tool compounds now enables the study of the melanocortin receptors and serves as scaffolds for FDA-approved drugs, means of validating stably expressing melanocortin receptor cell lines, core ligands in assessing cryo-EM structures of active and inactive receptor complexes, and essential references for high-throughput discovery and mechanism of action studies. Herein, we review the history and significance of a finite set of these essential tool compounds and discuss how they are being utilized to further the field's understanding of melanocortin receptor physiology and greater druggability.
Collapse
Affiliation(s)
- Nicholas A Weirath
- Department of Medicinal Chemistry & Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Carrie Haskell-Luevano
- Department of Medicinal Chemistry & Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
5
|
Swan P, Johnson B, le Roux CW, Miras AD. Harnessing the melanocortin system in the control of food intake and glucose homeostasis. Peptides 2024; 179:171255. [PMID: 38834138 DOI: 10.1016/j.peptides.2024.171255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
The central and peripheral melanocortin system, comprising of five receptors and their endogenous ligands, is responsible for a wide array of physiological functions such as skin pigmentation, sexual function and development, and inflammation. A growing body of both clinical and pre-clinical research is demonstrating the relevance of this system in metabolic health. Disruption of hypothalamic melanocortin signalling is the most common cause of monogenic obesity in humans. Setmelanotide, an FDA-approved analogue of alpha-melanocyte stimulating hormone (α-MSH) that functions by restoring central melanocortin signalling, has proven to be a potent pharmacological tool in the treatment of syndromic obesity. As the first effective therapy targeting the melanocortin system to treat metabolic disorders, its approval has sparked research to further harness the links between these melanocortin receptors and metabolic processes. Here, we outline the structure of the central and peripheral melanocortin system, discuss its critical role in the regulation of food intake, and review promising targets that may hold potential to treat metabolic disorders in humans.
Collapse
Affiliation(s)
- Patrick Swan
- Diabetes Research Centre, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, United Kingdom; Diabetes Complications Research Centre, Conway Institute, University College Dublin, Dublin, Ireland.
| | - Brett Johnson
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, United Kingdom
| | - Carel W le Roux
- Diabetes Research Centre, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, United Kingdom; Diabetes Complications Research Centre, Conway Institute, University College Dublin, Dublin, Ireland
| | - Alexander D Miras
- Diabetes Research Centre, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, United Kingdom; Division of Diabetes, Endocrinology and Metabolism, Imperial College London, United Kingdom
| |
Collapse
|
6
|
Noera G, Bertolini A, Calzà L, Gori M, Pitino A, D'Arrigo G, Egan CG, Tripepi G. Effect of early administration of tetracosactide on mortality and host response in critically ill patients requiring rescue surgery: a sensitivity analysis of the STOPSHOCK phase 3 randomized controlled trial. Mil Med Res 2024; 11:56. [PMID: 39160574 PMCID: PMC11331742 DOI: 10.1186/s40779-024-00555-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/12/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Undifferentiated shock is recognized as a criticality state that is transitional in immune-mediated topology for casual risk of lethal microcirculatory dysfunction. This was a sensitivity analysis of a drug (tetracosactide; TCS10) targeting melanocortin receptors (MCRs) in a phase 3 randomized controlled trial to improve cardiovascular surgical rescue outcome by reversing mortality and hemostatic disorders. METHODS Sensitivity analysis was based on a randomized, two-arm, multicenter, double-blind, controlled trial. The Naïve Bayes classifier was performed by density-based sensitivity index for principal strata as proportional hazard model of 30-day surgical risk mortality according to European System for Cardiac Operative Risk Evaluation inputs-outputs in 100 consecutive cases (from August to September 2013 from Emilia Romagna region, Italy). Patients included an agent-based TCS10 group (10 mg, single intravenous bolus before surgery; n = 56) and control group (n = 44) and the association with cytokines, lactate, and bleeding-blood transfusion episodes with the prior-risk log-odds for mortality rate in time-to-event was analyzed. RESULTS Thirty-day mortality was significantly improved in the TCS10 group vs. control group (0 vs. 8 deaths, P < 0.0001). Baseline levels of interleukin (IL)-6, IL-10, and lactate were associated with bleeding episodes, independent of TCS10 treatment [odds ratio (OR) = 1.90, 95% confidence interval (CI) 1.39-2.79; OR = 1.53, 95%CI 1.17-2.12; and OR = 2.92, 95%CI 1.40-6.66, respectively], while baseline level of Fms-like tyrosine kinase 3 ligand (Flt3L) was associated with lower bleeding rates in TCS10-treated patients (OR = 0.31, 95%CI 0.11-0.90, P = 0.03). For every 8 TCS10-treated patients, 1 bleeding case was avoided. Blood transfusion episodes were significantly reduced in the TCS10 group compared to the control group (OR = 0.32, 95%CI 0.14-0.73, P = 0.01). For every 4 TCS10-treated patients, 1 transfusion case was avoided. CONCLUSIONS Sensitivity index underlines the quality target product profile of TCS10 in the runway of emergency casualty care. To introduce the technology readiness level in real-life critically ill patients, further large-scale studies are required. TRIAL REGISTRATION European Union Drug Regulating Authorities Clinical Trials Database (EudraCT Number: 2007-006445-41 ).
Collapse
Affiliation(s)
- Giorgio Noera
- Health Ricerca e Sviluppo, Global Contractor for STOPSHOCK National Plan of Military Research Ministry of Defence, Rome, 00187, Italy.
| | - Alfio Bertolini
- Department of Medicine and Division of Clinical Pharmacology, School of Medicine, UNIMORE, Policlinico, Modena, 41124, Italy
| | - Laura Calzà
- IRET Foundation, Ozzano Dell' Emilia, Bologna, 40064, Italy
| | - Mercedes Gori
- Institute of Clinical Physiology (IFC-CNR), Section of Rome, Rome, 00185, Italy
| | - Annalisa Pitino
- Institute of Clinical Physiology (IFC-CNR), Section of Rome, Rome, 00185, Italy
| | - Graziella D'Arrigo
- National Research Council-Institute of Clinical Physiology, Reggio Calabria, 89124, Italy
| | | | - Giovanni Tripepi
- National Research Council-Institute of Clinical Physiology, Reggio Calabria, 89124, Italy
| |
Collapse
|
7
|
Duan J, He XH, Li SJ, Xu HE. Cryo-electron microscopy for GPCR research and drug discovery in endocrinology and metabolism. Nat Rev Endocrinol 2024; 20:349-365. [PMID: 38424377 DOI: 10.1038/s41574-024-00957-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/29/2024] [Indexed: 03/02/2024]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors, with many GPCRs having crucial roles in endocrinology and metabolism. Cryogenic electron microscopy (cryo-EM) has revolutionized the field of structural biology, particularly regarding GPCRs, over the past decade. Since the first pair of GPCR structures resolved by cryo-EM were published in 2017, the number of GPCR structures resolved by cryo-EM has surpassed the number resolved by X-ray crystallography by 30%, reaching >650, and the number has doubled every ~0.63 years for the past 6 years. At this pace, it is predicted that the structure of 90% of all human GPCRs will be completed within the next 5-7 years. This Review highlights the general structural features and principles that guide GPCR ligand recognition, receptor activation, G protein coupling, arrestin recruitment and regulation by GPCR kinases. The Review also highlights the diversity of GPCR allosteric binding sites and how allosteric ligands could dictate biased signalling that is selective for a G protein pathway or an arrestin pathway. Finally, the authors use the examples of glycoprotein hormone receptors and glucagon-like peptide 1 receptor to illustrate the effect of cryo-EM on understanding GPCR biology in endocrinology and metabolism, as well as on GPCR-related endocrine diseases and drug discovery.
Collapse
Affiliation(s)
- Jia Duan
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China.
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Xin-Heng He
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shu-Jie Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Department of Traditional Chinese Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - H Eric Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
8
|
Kim SH, Han S, Zhao J, Wang S, Kusnetzow AK, Reinhart G, Fowler MA, Markison S, Johns M, Luo R, Struthers RS, Zhu Y, Betz SF. Discovery of CRN04894: A Novel Potent Selective MC2R Antagonist. ACS Med Chem Lett 2024; 15:478-485. [PMID: 38628803 PMCID: PMC11017392 DOI: 10.1021/acsmedchemlett.3c00514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/12/2024] [Accepted: 03/12/2024] [Indexed: 04/19/2024] Open
Abstract
A novel class of nonpeptide melanocortin type 2 receptor (MC2R) antagonists was discovered through modification of known nonpeptide MC4R ligands. Structure-activity relationship (SAR) studies led to the discovery of 17h (CRN04894), a highly potent and subtype-selective first-in-class MC2R antagonist, which demonstrated remarkable efficacy in a rat model of adrenocorticotrophic hormone (ACTH)-stimulated corticosterone secretion. Oral administration of 17h suppressed ACTH-stimulated corticosterone secretion in a dose-dependent manner at doses ≥3 mg/kg. With its satisfactory pharmaceutical properties, 17h was advanced to Phase 1 human clinical trials in healthy volunteers with the goal of moving into patient trials to evaluate CRN04894 for the treatment of ACTH-dependent diseases, including congenital adrenal hyperplasia (CAH) and Cushing's disease (CD).
Collapse
Affiliation(s)
- Sun Hee Kim
- Crinetics Pharmaceuticals,
Inc., 6055 Lusk Blvd., San Diego, California 92121, United States
| | | | - Jian Zhao
- Crinetics Pharmaceuticals,
Inc., 6055 Lusk Blvd., San Diego, California 92121, United States
| | - Shimiao Wang
- Crinetics Pharmaceuticals,
Inc., 6055 Lusk Blvd., San Diego, California 92121, United States
| | | | | | - Melissa A. Fowler
- Crinetics Pharmaceuticals,
Inc., 6055 Lusk Blvd., San Diego, California 92121, United States
| | - Stacy Markison
- Crinetics Pharmaceuticals,
Inc., 6055 Lusk Blvd., San Diego, California 92121, United States
| | - Michael Johns
- Crinetics Pharmaceuticals,
Inc., 6055 Lusk Blvd., San Diego, California 92121, United States
| | - Rosa Luo
- Crinetics Pharmaceuticals,
Inc., 6055 Lusk Blvd., San Diego, California 92121, United States
| | - R. Scott Struthers
- Crinetics Pharmaceuticals,
Inc., 6055 Lusk Blvd., San Diego, California 92121, United States
| | | | - Stephen F. Betz
- Crinetics Pharmaceuticals,
Inc., 6055 Lusk Blvd., San Diego, California 92121, United States
| |
Collapse
|
9
|
Suominen A, Saldo Rubio G, Ruohonen S, Szabó Z, Pohjolainen L, Ghimire B, Ruohonen ST, Saukkonen K, Ijas J, Skarp S, Kaikkonen L, Cai M, Wardlaw SL, Ruskoaho H, Talman V, Savontaus E, Kerkelä R, Rinne P. α-Melanocyte-stimulating hormone alleviates pathological cardiac remodeling via melanocortin 5 receptor. EMBO Rep 2024; 25:1987-2014. [PMID: 38454158 PMCID: PMC11014855 DOI: 10.1038/s44319-024-00109-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 01/23/2024] [Accepted: 02/16/2024] [Indexed: 03/09/2024] Open
Abstract
α-Melanocyte-stimulating hormone (α-MSH) regulates diverse physiological functions by activating melanocortin receptors (MC-R). However, the role of α-MSH and its possible target receptors in the heart remain completely unknown. Here we investigate whether α-MSH could be involved in pathological cardiac remodeling. We found that α-MSH was highly expressed in the mouse heart with reduced ventricular levels after transverse aortic constriction (TAC). Administration of a stable α-MSH analog protected mice against TAC-induced cardiac hypertrophy and systolic dysfunction. In vitro experiments revealed that MC5-R in cardiomyocytes mediates the anti-hypertrophic signaling of α-MSH. Silencing of MC5-R in cardiomyocytes induced hypertrophy and fibrosis markers in vitro and aggravated TAC-induced cardiac hypertrophy and fibrosis in vivo. Conversely, pharmacological activation of MC5-R improved systolic function and reduced cardiac fibrosis in TAC-operated mice. In conclusion, α-MSH is expressed in the heart and protects against pathological cardiac remodeling by activating MC5-R in cardiomyocytes. These results suggest that analogs of naturally occurring α-MSH, that have been recently approved for clinical use and have agonistic activity at MC5-R, may be of benefit in treating heart failure.
Collapse
Affiliation(s)
- Anni Suominen
- Research Centre for Integrative Physiology & Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
- Drug Research Doctoral Programme (DRDP), University of Turku, Turku, Finland
| | - Guillem Saldo Rubio
- Research Centre for Integrative Physiology & Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Saku Ruohonen
- Research Centre for Integrative Physiology & Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Zoltán Szabó
- Research Unit of Biomedicine and Internal Medicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Lotta Pohjolainen
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Bishwa Ghimire
- Institute for Molecular Medicine Finland (FIMM), HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Faculty of Medicine, University of Turku, Turku, Finland
| | - Suvi T Ruohonen
- Research Centre for Integrative Physiology & Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Karla Saukkonen
- Research Centre for Integrative Physiology & Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jani Ijas
- Research Centre for Integrative Physiology & Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Sini Skarp
- Research Unit of Biomedicine and Internal Medicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Leena Kaikkonen
- Research Unit of Biomedicine and Internal Medicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Minying Cai
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA
| | - Sharon L Wardlaw
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Heikki Ruskoaho
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Virpi Talman
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Eriika Savontaus
- Research Centre for Integrative Physiology & Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
- Turku Center for Disease Modeling, University of Turku, Turku, Finland
- Unit of Clinical Pharmacology, Turku University Hospital, Turku, Finland
| | - Risto Kerkelä
- Research Unit of Biomedicine and Internal Medicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Petteri Rinne
- Research Centre for Integrative Physiology & Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland.
- Turku Center for Disease Modeling, University of Turku, Turku, Finland.
| |
Collapse
|
10
|
Alemi H, Wang S, Blanco T, Kahale F, Singh RB, Ortiz G, Musayeva A, Yuksel E, Pang K, Deshpande N, Dohlman TH, Jurkunas UV, Yin J, Dana R. The Neuropeptide α-Melanocyte-Stimulating Hormone Prevents Persistent Corneal Edema following Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:150-164. [PMID: 37827217 PMCID: PMC10768537 DOI: 10.1016/j.ajpath.2023.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/03/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023]
Abstract
Corneal endothelial cells (CEnCs) regulate corneal hydration and maintain tissue transparency through their barrier and pump function. However, these cells exhibit limited regenerative capacity following injury. Currently, corneal transplantation is the only established therapy for restoring endothelial function, and there are no pharmacologic interventions available for restoring endothelial function. This study investigated the efficacy of the neuropeptide α-melanocyte-stimulating hormone (α-MSH) in promoting endothelial regeneration during the critical window between ocular injury and the onset of endothelial decompensation using an established murine model of injury using transcorneal freezing. Local administration of α-MSH following injury prevented corneal edema and opacity, reduced leukocyte infiltration, and limited CEnC apoptosis while promoting their proliferation. These results suggest that α-MSH has a proregenerative and cytoprotective function on CEnCs and shows promise as a therapy for the prevention and management of corneal endothelial dysfunction.
Collapse
Affiliation(s)
- Hamid Alemi
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Shudan Wang
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Tomas Blanco
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Francesca Kahale
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Rohan B Singh
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Gustavo Ortiz
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Aytan Musayeva
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Erdem Yuksel
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Kunpeng Pang
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Neha Deshpande
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Thomas H Dohlman
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Ula V Jurkunas
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Jia Yin
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Reza Dana
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
11
|
Muratspahić E, Aslanoglou D, White AM, Draxler C, Kozisek X, Farooq Z, Craik DJ, McCormick PJ, Durek T, Gruber CW. Development of Melanocortin 4 Receptor Agonists by Exploiting Animal-Derived Macrocyclic, Disulfide-Rich Peptide Scaffolds. ACS Pharmacol Transl Sci 2023; 6:1373-1381. [PMID: 37854631 PMCID: PMC10580383 DOI: 10.1021/acsptsci.3c00090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Indexed: 10/20/2023]
Abstract
G protein-coupled receptors are among the most widely studied classes of drug targets. A major challenge in this field is to develop ligands that will selectively modulate a single receptor subtype to overcome the disadvantages of undesired "off target" effects caused by lack of target and thus signaling specificity. In the current study, we explored ligand design for the melanocortin 4 receptor (MC4R) since it is an attractive target for developing antiobesity drugs. Endogenously, the receptor is activated by peptide ligands, i.e., three melanocyte-stimulating hormones (α-MSH, β-MSH, and γ-MSH) and by adrenocorticotropic hormone. Therefore, we utilized a peptide drug design approach, utilizing "molecular grafting" of pharmacophore peptide sequence motifs onto a stable nature-derived peptide scaffold. Specifically, protegrin-4-like-peptide-1 (Pr4LP1) and arenicin-1-like-peptide-1 (Ar3LP1) fully activated MC4R in a functional cAMP assay with potencies of 3.7 and 1.0 nM, respectively. In a nanoluciferase complementation assay with less signal amplification, the designed peptides fully recruited mini-Gs with subnanomolar and nanomolar potencies. Interestingly, these novel peptide MC4R ligands recruited β-arrestin-2 with ∼2-fold greater efficacies and ∼20-fold increased potencies as compared to the endogenous α-MSH. The peptides were inactive at related MC1R and MC3R in a cAMP accumulation assay. These findings highlight the applicability of animal-derived disulfide-rich scaffolds to design pathway and subtype selective MC4R pharmacological probes. In the future, this approach could be exploited to develop functionally selective ligands that could offer safer and more effective obesity drugs.
Collapse
Affiliation(s)
- Edin Muratspahić
- Center
for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
- Institute
for Molecular Bioscience, Australian Research Council Centre of Excellence
for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Despoina Aslanoglou
- Department
of Endocrinology, Queen Mary University
of London, London E1 4NS, U.K.
| | - Andrew M. White
- Institute
for Molecular Bioscience, Australian Research Council Centre of Excellence
for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Claudia Draxler
- Center
for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Xaver Kozisek
- Center
for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Zara Farooq
- Department
of Endocrinology, Queen Mary University
of London, London E1 4NS, U.K.
| | - David J. Craik
- Institute
for Molecular Bioscience, Australian Research Council Centre of Excellence
for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Peter J. McCormick
- Department
of Endocrinology, Queen Mary University
of London, London E1 4NS, U.K.
| | - Thomas Durek
- Institute
for Molecular Bioscience, Australian Research Council Centre of Excellence
for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Christian W. Gruber
- Center
for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
12
|
Gebrie A. The melanocortin receptor signaling system and its role in neuroprotection against neurodegeneration: Therapeutic insights. Ann N Y Acad Sci 2023; 1527:30-41. [PMID: 37526975 DOI: 10.1111/nyas.15048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
The melanocortin signaling system consists of the melanocortin peptides, their distinctive receptors, accessory proteins, and endogenous antagonists. Melanocortin peptides are small peptide hormones that have been studied in a variety of physiological and pathological conditions. There are five types of melanocortin receptors, and they are distributed within the central nervous system and in several tissues of the periphery. The G protein-coupled melanocortin receptors typically signal through adenylyl cyclase and other downstream signaling pathways. Depending on the ligand, surface expression of melanocortin receptor, receptor occupancy period, related proteins, the type of cell, and other parameters, the signaling pathways are complicated and pleiotropic. While it is known that all five melanocortin receptors are coupled to Gs, they can also occasionally couple to Gq or Gi. Both direct and indirect neuroprotection are induced by the melanocortin signaling system. Targeting several of the components of the melanocortin signaling system (ligands, receptors, accessory proteins, signaling effectors, and regulators) may provide therapeutic opportunities. Activation of the melanocortin system improves different functional traits in neurodegenerative diseases. There is a potential for additional melanocortin system interventions by interfering with dimerization or dissociation. This review aims to discuss the melanocortin receptor signaling system and its role in neuroprotection, as well as its therapeutic potential.
Collapse
Affiliation(s)
- Alemu Gebrie
- Department of Biomedical Sciences, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
13
|
Komleva PD, Alhalabi G, Izyurov AE, Khotskin NV, Kulikov AV. Effects of the Combination of the C1473G Mutation in the Tph2 Gene and Lethal Yellow Mutations in the Raly-Agouti Locus on Behavior, Brain 5-HT and Melanocortin Systems in Mice. Biomolecules 2023; 13:963. [PMID: 37371543 DOI: 10.3390/biom13060963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/26/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Tryptophan hydroxylase 2 (TPH2) is the key and rate-limited enzyme of serotonin (5-HT) synthesis in the brain. The C1473G mutation in the Tph2 gene results in a two-fold decrease in enzyme activity in the mouse brain. The lethal yellow (AY) mutation in the Raly-Agouti locus results in the overexpression of the Agouti gene in the brain and causes obesity and depressive-like behavior in mice. Herein, the possible influences of these mutations and their combination on body mass, behavior, brain 5-HT and melanocortin systems in mice of the B6-1473CC/aa. B6-1473CC/AYa, B6-1473GG/aa are investigated. B6-1473GG/AYa genotypes were studied. The 1473G and AY alleles increase the activity of TPH2 and the expression of the Agouti gene, respectively, but they do not alter 5-HT and 5-HIAA levels or the expression of the genes Tph2, Maoa, Slc6a4, Htr1a, Htr2a, Mc3r and Mc4r in the brain. The 1473G allele attenuates weight gain and depressive-like immobility in the forced swim test, while the AY allele increases body weight gain and depressive-like immobility. The combination of these alleles results in hind limb dystonia in the B6-1473GG/AYa mice. This is the first evidence for the interaction between the C1473G and AY mutations.
Collapse
Affiliation(s)
- Polyna D Komleva
- Department of Psychoneuropharmacology, Federal Research Center Institute of Cytology and Genetic Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Ghofran Alhalabi
- Department of Genetic Collections of Neural Disorders, Federal Research Center Institute of Cytology and Genetic Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Arseniy E Izyurov
- Department of Genetics of Industrial Microorganisms, Federal Research Center Institute of Cytology and Genetic Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Nikita V Khotskin
- Department of Genetic Collections of Neural Disorders, Federal Research Center Institute of Cytology and Genetic Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Alexander V Kulikov
- Department of Genetic Collections of Neural Disorders, Federal Research Center Institute of Cytology and Genetic Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
14
|
Markov DD, Dolotov OV, Grivennikov IA. The Melanocortin System: A Promising Target for the Development of New Antidepressant Drugs. Int J Mol Sci 2023; 24:ijms24076664. [PMID: 37047638 PMCID: PMC10094937 DOI: 10.3390/ijms24076664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Major depression is one of the most prevalent mental disorders, causing significant human suffering and socioeconomic loss. Since conventional antidepressants are not sufficiently effective, there is an urgent need to develop new antidepressant medications. Despite marked advances in the neurobiology of depression, the etiology and pathophysiology of this disease remain poorly understood. Classical and newer hypotheses of depression suggest that an imbalance of brain monoamines, dysregulation of the hypothalamic-pituitary-adrenal axis (HPAA) and immune system, or impaired hippocampal neurogenesis and neurotrophic factors pathways are cause of depression. It is assumed that conventional antidepressants improve these closely related disturbances. The purpose of this review was to discuss the possibility of affecting these disturbances by targeting the melanocortin system, which includes adrenocorticotropic hormone-activated receptors and their peptide ligands (melanocortins). The melanocortin system is involved in the regulation of various processes in the brain and periphery. Melanocortins, including peripherally administered non-corticotropic agonists, regulate HPAA activity, exhibit anti-inflammatory effects, stimulate the levels of neurotrophic factors, and enhance hippocampal neurogenesis and neurotransmission. Therefore, endogenous melanocortins and their analogs are able to complexly affect the functioning of those body’s systems that are closely related to depression and the effects of antidepressants, thereby demonstrating a promising antidepressant potential.
Collapse
Affiliation(s)
- Dmitrii D. Markov
- National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia
| | - Oleg V. Dolotov
- National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, 119234 Moscow, Russia
| | - Igor A. Grivennikov
- National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia
| |
Collapse
|
15
|
Ardekani AM, Vahdat S, Hojati A, Moradi H, Tousi AZ, Ebrahimzadeh F, Farhangi MA. Evaluating the association between the Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) diet, mental health, and cardio-metabolic risk factors among individuals with obesity. BMC Endocr Disord 2023; 23:29. [PMID: 36726099 PMCID: PMC9893576 DOI: 10.1186/s12902-023-01284-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/30/2023] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Several previous investigations have examined the brain-protective role of the Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) diet. However, more knowledge is needed about the MIND diet's other favorable impacts. The purpose of this study was to examine the relationship between the MIND diet, mental health, and metabolic markers in individuals with obesity. METHODS In this cross-sectional study, we included 339 individuals with obesity (BMI ≥ 30 kg/m2) aged 20-50 years. We utilized a semi-quantitative Food Frequency Questionnaire (FFQ), we assessed dietary intake, including 168 food items, and calculated the value of MIND. Metabolic syndrome (MetS) was defined according to the National Cholesterol Education Program Adult Treatment Panel III (NCEP-ATP III) guidelines. We assessed biochemical parameters using Enzymatic methods. Blood pressure and body composition were also determined. RESULTS Higher tertiles of the MIND diet score were associated with significantly higher energy intake, macronutrients, and brain-healthy food intakes (P < 0.001). Among the brain-unhealthy foods, only the intake of sweets and pastries was significantly lower in the highest versus lowest MIND tertiles. We also observed lower odds of stress (P < 0.05) and higher insulin sensitivity (P < 0.05) in the highest versus lowest MIND diet tertiles. We witnessed no significant changes in other parameters. CONCLUSION Lower stress levels and higher insulin sensitivity independent of some confounders like age, BMI, sex, and physical activity were associated with the highest tertile of MIND diet score.
Collapse
Affiliation(s)
- Abnoos Mokhtari Ardekani
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Science & Physiology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Sahar Vahdat
- Isfahan Kidney Disease Research Center, Khorshid Hospital, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Hojati
- Department of Community Nutrition, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Moradi
- Faculty of Medicine, Belarusian State Medical University (BSMU), Minsk, Belarus
| | - Ayda Zahiri Tousi
- Razavi Cancer Research Center, Razavi Hospital, Imam Reza International University, Mashhad, Iran
| | - Farnoosh Ebrahimzadeh
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mahdieh Abbasalizad Farhangi
- Tabriz Health Services Management Research Center, Tabriz University of Medical Sciences, Attar Neyshabouri St., Daneshgah Blvd., Tabriz, Iran.
| |
Collapse
|
16
|
Daini E, Vandini E, Bodria M, Liao W, Baraldi C, Secco V, Ottani A, Zoli M, Giuliani D, Vilella A. Melanocortin receptor agonist NDP-α-MSH improves cognitive deficits and microgliosis but not amyloidosis in advanced stages of AD progression in 5XFAD and 3xTg mice. Front Immunol 2023; 13:1082036. [PMID: 36703981 PMCID: PMC9871936 DOI: 10.3389/fimmu.2022.1082036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction Alzheimer's disease (AD) is the most frequent cause of dementia and still lacks effective therapy. Clinical signs of AD include low levels of endogenous melanocortins (MCs) and previous studies have shown that treatment with MC analogs induces neuroprotection in the early stages of AD. Methods We investigated the neuroprotective role of MCs in two transgenic mouse models of severe AD using 5 and 7 month-old (mo) 5XFAD mice and 9 and 12 mo 3xTg mice. These mice were subjected to a chronic stimulation of MC receptors (MCRs) with MC analogue Nle4-D-Phe7-α-melanocyte stimulating hormone (NDP-α-MSH, 340 μg/kg, i.p.). Mouse behavior and ex-vivo histological and biochemical analyses were performed after 50 days of treatment. Results Our analysis demonstrated an improvement in cognitive abilities of AD mice at late stage of AD progression. We also showed that these protective effects are associated with decreased levels of hyperphosphorylated Tau but not with Aβ burden, that was unaffected in the hippocampus and in the cortex of AD mice. In addition, an age-dependent NDP effect on glial reactivity was observed only in 3xTg mice whereas a global downregulation of p38 mitogen-activated protein kinase was selectively observed in 7 mo 5XFAD and 14 mo 3xTg mice. Conclusion Our results suggest that MCR stimulation by NDP-α-MSH could represent a promising therapeutic strategy in managing cognitive decline also at late stage of AD, whereas the effects on neuroinflammation may be restricted to specific stages of AD progression.
Collapse
Affiliation(s)
- Eleonora Daini
- Department of Biomedical, Metabolic and Neural Sciences, Laboratory of Molecular and Cellular Neurobiology, University of Modena and Reggio Emilia, Modena, Italy
| | - Eleonora Vandini
- Department of Biomedical, Metabolic and Neural Sciences, Pharmacology Unit, University of Modena and Reggio Emilia, Modena, Italy
| | - Martina Bodria
- Department of Biomedical, Metabolic and Neural Sciences, Laboratory of Molecular and Cellular Neurobiology, University of Modena and Reggio Emilia, Modena, Italy
| | - Wenjie Liao
- Department of Biomedical, Metabolic and Neural Sciences, Laboratory of Molecular and Cellular Neurobiology, University of Modena and Reggio Emilia, Modena, Italy
| | - Carlo Baraldi
- Department of Biomedical, Metabolic and Neural Sciences, Laboratory of Molecular and Cellular Neurobiology, University of Modena and Reggio Emilia, Modena, Italy
| | - Valentina Secco
- Department of Biomedical, Metabolic and Neural Sciences, Laboratory of Molecular and Cellular Neurobiology, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandra Ottani
- Department of Biomedical, Metabolic and Neural Sciences, Pharmacology Unit, University of Modena and Reggio Emilia, Modena, Italy
| | - Michele Zoli
- Department of Biomedical, Metabolic and Neural Sciences, Laboratory of Molecular and Cellular Neurobiology, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniela Giuliani
- Department of Biomedical, Metabolic and Neural Sciences, Pharmacology Unit, University of Modena and Reggio Emilia, Modena, Italy
| | - Antonietta Vilella
- Department of Biomedical, Metabolic and Neural Sciences, Laboratory of Molecular and Cellular Neurobiology, University of Modena and Reggio Emilia, Modena, Italy,*Correspondence: Antonietta Vilella,
| |
Collapse
|
17
|
Izyurov AE, Plyusnina AV, Kulikova EA, Kulikov AV, Khotskin NV. Lethal Yellow Mutation Causes Anxiety, Obsessive-compulsive Behavior and Affects the Brain Melanocortin System in Males and Females of Mice. Curr Protein Pept Sci 2023; 24:329-338. [PMID: 36941814 DOI: 10.2174/1389203724666230320145556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 01/15/2023] [Accepted: 02/02/2023] [Indexed: 03/23/2023]
Abstract
BACKGROUND The brain melanocortin system regulates numerous physiological functions and kinds of behavior. The agouti protein inhibits melanocortin receptors in melanocytes. The lethal yellow (AY) mutation puts the Agouti gene under the control of the Raly gene promotor and causes the agouti protein expression in the brain. In the present article, we investigated the effects of the AY mutation on brain mRNA levels of Agouti, Raly, and melanocortin-related genes such as Agrp, Pomc, Mc3r, Mc4r, and their relationship to behavior. METHODS The experiment was performed on 6-month-old males and females of AY/a and a/a (control) mice. Anxiety and obsessive-compulsive behavior were studied in elevated plus-maze and marble- burying tests. The mRNA levels were quantified by qPCR. RESULTS AY mutation caused anxiety in males and obsessive-compulsive behavior in females. Positive correlation between Agouti and Raly genes mRNA levels were shown in the hypothalamus, hippocampus, and frontal cortex in AY/a mice. Reduced RNA concentrations of Mc3r and Mc4r genes were found respectively in the hypothalamus and frontal cortex in AY/a males. The Raly gene expression positively correlates with mRNA concentrations of the Mc3r gene in the hypothalamus and the Mc4r gene in the hypothalamus and frontal cortex. CONCLUSION Possible association of obsessive-compulsive behavior with reduced Raly, Mc3r, or Mc4r gene expression is suggested.
Collapse
Affiliation(s)
- Arseniy E Izyurov
- Department of Genetic Collections of Neural Disorders, Federal Research Center, Institute of Cytology and Genetic Siberian Branch of Russian Academy of Sciences, 630090, Novosibirsk, Russia
| | - Alexandra V Plyusnina
- Department of Genetic Collections of Neural Disorders, Federal Research Center, Institute of Cytology and Genetic Siberian Branch of Russian Academy of Sciences, 630090, Novosibirsk, Russia
| | - Elizabeth A Kulikova
- Department of Psychoneuropharmacology, Federal Research Center, Institute of Cytology and Genetic Siberian Branch of Russian Academy of Sciences, 630090, Novosibirsk, Russia
| | - Alexander V Kulikov
- Department of Genetic Collections of Neural Disorders, Federal Research Center, Institute of Cytology and Genetic Siberian Branch of Russian Academy of Sciences, 630090, Novosibirsk, Russia
| | - Nikita V Khotskin
- Department of Genetic Collections of Neural Disorders, Federal Research Center, Institute of Cytology and Genetic Siberian Branch of Russian Academy of Sciences, 630090, Novosibirsk, Russia
| |
Collapse
|
18
|
Li Q, Jiang B, Zhang Z, Huang Y, Xu Z, Chen X, Huang Y, Jian J, Yan Q. α-MSH is partially involved in the immunomodulation of Nile tilapia (Oreochromis niloticus) antibacterial immunity. FISH & SHELLFISH IMMUNOLOGY 2022; 131:929-938. [PMID: 36343851 DOI: 10.1016/j.fsi.2022.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
α-Melanocyte-stimulating hormone (α-MSH) is a well-studied neuropeptide controlling skin and hair color. Besides, numerous immunomodulation roles of α-MSH were recorded in humans and mice. However, the regulatory effects of α-MSH in teleost immunity haven't been well elucidated. In this study, several precursor molecules of α-MSH (POMCs) and its receptors (MCRs) in Nile tilapia (Oreochromis niloticus) were characterized, and their expression characteristics and specific functions on antibacterial immunity were determined. Overall, POMCs and MCRs were principally detected in the brain, skin, and liver, and were remarkably promoted post Streptococcus agalactiae infection. However, tiny POMCs and MCRs were observed in tilapia immune organs (head kidney and spleen) or lymphocytes, and no evident immunomodulation effect was detected in vitro. Moreover, the in vivo challenge experiments revealed that α-MSH protects tilapia from bacterial infection by regulating responses in the brain and intestine. This study lays theoretical data for a deeper comprehension of the immunomodulation mechanisms of teleost α-MSH and the evolutional process of the vertebrate melanocortin system.
Collapse
Affiliation(s)
- Qi Li
- Fisheries College, Jimei University, Xiamen, China; College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
| | - Baijian Jiang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
| | - Zhiqiang Zhang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
| | - Yongxiong Huang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
| | - Zhou Xu
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
| | - Xinjin Chen
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
| | - Yu Huang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China
| | - Jichang Jian
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China.
| | - Qingpi Yan
- Fisheries College, Jimei University, Xiamen, China.
| |
Collapse
|
19
|
White AM, Dellsén A, Larsson N, Kaas Q, Jansen F, Plowright AT, Knerr L, Durek T, Craik DJ. Late-Stage Functionalization with Cysteine Staples Generates Potent and Selective Melanocortin Receptor-1 Agonists. J Med Chem 2022; 65:12956-12969. [PMID: 36167503 DOI: 10.1021/acs.jmedchem.2c00793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this work, cysteine staples were used as a late-stage functionalization strategy to diversify peptides and build conjugates targeting the melanocortin G-protein-coupled receptors [melanocortin receptor-1 (MC1R) and MC3R-MC5R]. Monocyclic and bicyclic agonists based on sunflower trypsin inhibitor-1 were used to generate a selection of stapled peptides that were evaluated for binding (pKi) and functional activation (pEC50) of the melanocortin receptor subtypes. Stapled peptides generally had improved activity, with aromatic stapled peptides yielding selective MC1R agonists, including a xylene-stapled peptide (2) with an EC50 of 1.9 nM for MC1R and >150-fold selectivity for MC3R and MC4R. Selected stapled peptides were further functionalized with linkers and payloads, generating a series of conjugated peptides with potent MC1R activity, including one pyridazine-functionalized peptide (21) with picomolar activity at MC1R (Ki 58 pM; EC50 < 9 pM). This work demonstrates that staples can be used as modular synthetic tools to tune potency and selectivity in peptide-based drug design.
Collapse
Affiliation(s)
- Andrew M White
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Anita Dellsén
- Mechanistic Biology & Profiling, Discovery Sciences, R&D, AstraZeneca, Gothenburg 43183, Sweden
| | - Niklas Larsson
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg 43183, Sweden
| | - Quentin Kaas
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Frank Jansen
- Mechanistic Biology & Profiling, Discovery Sciences, R&D, AstraZeneca, Gothenburg 43183, Sweden
| | - Alleyn T Plowright
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg 43183, Sweden
| | - Laurent Knerr
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg 43183, Sweden
| | - Thomas Durek
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
20
|
Puri S, Kenyon BM, Hamrah P. Immunomodulatory Role of Neuropeptides in the Cornea. Biomedicines 2022; 10:1985. [PMID: 36009532 PMCID: PMC9406019 DOI: 10.3390/biomedicines10081985] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 12/21/2022] Open
Abstract
The transparency of the cornea along with its dense sensory innervation and resident leukocyte populations make it an ideal tissue to study interactions between the nervous and immune systems. The cornea is the most densely innervated tissue of the body and possesses both immune and vascular privilege, in part due to its unique repertoire of resident immune cells. Corneal nerves produce various neuropeptides that have a wide range of functions on immune cells. As research in this area expands, further insights are made into the role of neuropeptides and their immunomodulatory functions in the healthy and diseased cornea. Much remains to be known regarding the details of neuropeptide signaling and how it contributes to pathophysiology, which is likely due to complex interactions among neuropeptides, receptor isoform-specific signaling events, and the inflammatory microenvironment in disease. However, progress in this area has led to an increase in studies that have begun modulating neuropeptide activity for the treatment of corneal diseases with promising results, necessitating the need for a comprehensive review of the literature. This review focuses on the role of neuropeptides in maintaining the homeostasis of the ocular surface, alterations in disease settings, and the possible therapeutic potential of targeting these systems.
Collapse
Affiliation(s)
- Sudan Puri
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Brendan M. Kenyon
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
- Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Pedram Hamrah
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
- Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
- Departments of Immunology and Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
- Cornea Service, Tufts New England Eye Center, Boston, MA 02111, USA
| |
Collapse
|
21
|
Abstract
The 5 known melanocortin receptors (MCs) have established physiological roles. With the exception of MC2, these receptors can behave unpredictably, and since they are more widely expressed than their established roles would suggest, it is likely that they have other poorly characterized functions. The aim of this review is to discuss some of the less well-explored aspects of the 4 enigmatic members of this receptor family (MC1,3-5) and describe how these are multifaceted G protein-coupled receptors (GPCRs). These receptors appear to be promiscuous in that they bind several endogenous agonists (products of the proopiomelanocortin [POMC] gene) and antagonists but with inconsistent relative affinities and effects. We propose that this is a result of posttranslational modifications that determine receptor localization within nanodomains. Within each nanodomain there will be a variety of proteins, including ion channels, modifying proteins, and other GPCRs, that can interact with the MCs to alter the availability of receptor at the cell surface as well as the intracellular signaling resulting from receptor activation. Different combinations of interacting proteins and MCs may therefore give rise to the complex and inconsistent functional profiles reported for the MCs. For further progress in understanding this family, improved characterization of tissue-specific functions is required. Current evidence for interactions of these receptors with a range of partners, resulting in modulation of cell signaling, suggests that each should be studied within the full context of their interacting partners. The role of physiological status in determining this context also remains to be characterized.
Collapse
Affiliation(s)
- Linda Laiho
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Joanne Fiona Murray
- Correspondence: J. F. Murray, PhD, Centre for Discovery Brain Sciences, School of Biomedical Sciences, University of Edinburgh, Hugh Robson Building, 15 George Square, Edinburgh EH8 9DX, UK.
| |
Collapse
|
22
|
Piper NBC, Whitfield EA, Stewart GD, Xu X, Furness SGB. Targeting appetite and satiety in diabetes and obesity, via G protein-coupled receptors. Biochem Pharmacol 2022; 202:115115. [PMID: 35671790 DOI: 10.1016/j.bcp.2022.115115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022]
Abstract
Type 2 diabetes and obesity have reached pandemic proportions throughout the world, so much so that the World Health Organisation coined the term "Globesity" to help encapsulate the magnitude of the problem. G protein-coupled receptors (GPCRs) are highly tractable drug targets due to their wide involvement in all aspects of physiology and pathophysiology, indeed, GPCRs are the targets of approximately 30% of the currently approved drugs. GPCRs are also broadly involved in key physiologies that underlie type 2 diabetes and obesity including feeding reward, appetite and satiety, regulation of blood glucose levels, energy homeostasis and adipose function. Despite this, only two GPCRs are the target of approved pharmaceuticals for treatment of type 2 diabetes and obesity. In this review we discuss the role of these, and select other candidate GPCRs, involved in various facets of type 2 diabetic or obese pathophysiology, how they might be targeted and the potential reasons why pharmaceuticals against these targets have not progressed to clinical use. Finally, we provide a perspective on the current development pipeline of anti-obesity drugs that target GPCRs.
Collapse
Affiliation(s)
- Noah B C Piper
- Receptor Transducer Coupling Laboratory, School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Emily A Whitfield
- Receptor Transducer Coupling Laboratory, School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Gregory D Stewart
- Drug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences & Department of Pharmacology Monash University, Parkville, VIC 3052, Australia
| | - Xiaomeng Xu
- Drug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences & Department of Pharmacology Monash University, Parkville, VIC 3052, Australia
| | - Sebastian G B Furness
- Receptor Transducer Coupling Laboratory, School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St. Lucia, QLD 4072, Australia; Drug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences & Department of Pharmacology Monash University, Parkville, VIC 3052, Australia.
| |
Collapse
|
23
|
Lan J, Wang M, Qin K, Liu X, Shi X, Sun G, Liu X, Chen Y, He Z. Functional characterization of cAMP signaling of variant porcine MC1R alleles in PK15 cells. Anim Genet 2022; 53:317-326. [PMID: 35292981 DOI: 10.1111/age.13189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/21/2022] [Accepted: 03/01/2022] [Indexed: 11/28/2022]
Abstract
The melanocortin 1 receptor (MC1R), encoded by the classical extension (E) coat color locus, is expressed on the surface of melanocytes and plays a critical role in switching melanin synthesis from pheomelanin (red/yellow) to eumelanin (black/brown). Different MC1R alleles associated with various coat color patterns in pigs have been identified over the past decades. However, functional analysis of variant porcine MC1R alleles has not yet been performed. Therefore, in this study, we examined the subcellular localization and cyclic adenosine monophosphate (cAMP) signaling capability of MC1R variants in porcine kidney epithelial cells (PK15) overexpressing different MC1R alleles. Transcriptional slippage may partially restore the reading frame of the EP allele, possibly accounting for the observed spot phenotype. The A243T substitution in the e allele severely disrupted the membrane localization of the MC1R receptor, resulting in a severely impaired cAMP signaling capability. Both the V95M and L102P substitutions in the ED1 allele may contribute to the constitutively active function of MC1R, thus accounting for the dominant black phenotype. The D124N substitution in the ED2 allele severely attenuated the cAMP signaling capability of MC1R; however, whether this mutation contributes to the distinct phenotype of Hampshire pigs requires further investigation. Thus, our results provide new insights into the functional characteristics of MC1R variants and their roles in porcine coat color formation.
Collapse
Affiliation(s)
- Jin Lan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Min Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ke Qin
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xiaofeng Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xuan Shi
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Guanjie Sun
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zuyong He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
24
|
Akat E, Yenmiş M, Pombal MA, Molist P, Megías M, Arman S, Veselỳ M, Anderson R, Ayaz D. Comparison of Vertebrate Skin Structure at Class Level: A Review. Anat Rec (Hoboken) 2022; 305:3543-3608. [DOI: 10.1002/ar.24908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Esra Akat
- Ege University, Faculty of Science, Biology Department Bornova, İzmir Turkey
| | - Melodi Yenmiş
- Ege University, Faculty of Science, Biology Department Bornova, İzmir Turkey
| | - Manuel A. Pombal
- Universidade de Vigo, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía‐IBIV Vigo, España
| | - Pilar Molist
- Universidade de Vigo, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía‐IBIV Vigo, España
| | - Manuel Megías
- Universidade de Vigo, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía‐IBIV Vigo, España
| | - Sezgi Arman
- Sakarya University, Faculty of Science and Letters, Biology Department Sakarya Turkey
| | - Milan Veselỳ
- Palacky University, Faculty of Science, Department of Zoology Olomouc Czechia
| | - Rodolfo Anderson
- Departamento de Zoologia, Instituto de Biociências Universidade Estadual Paulista São Paulo Brazil
| | - Dinçer Ayaz
- Ege University, Faculty of Science, Biology Department Bornova, İzmir Turkey
| |
Collapse
|
25
|
Wang X, Xue S, Lei X, Song W, Li L, Li X, Fu Y, Zhang C, Zhang H, Luo Y, Wang M, Lin G, Zhang C, Guo J. Pharmacological Evaluation of Melanocortin 2 Receptor Accessory Protein 2 on Axolotl Neural Melanocortin Signaling. Front Endocrinol (Lausanne) 2022; 13:820896. [PMID: 35250878 PMCID: PMC8891371 DOI: 10.3389/fendo.2022.820896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/05/2022] [Indexed: 01/14/2023] Open
Abstract
The Melanocortin-3 receptor (MC3R) and Melanocortin-4 receptor (MC4R), two members of the key hypothalamic neuropeptide signaling, function as complex mediators to control the central appetitive and energy homeostasis. The melanocortin 2 receptor accessory protein 2 (MRAP2) is well-known for its modulation on the trafficking and signaling of MC3R and MC4R in mammals. In this study, we cloned and elucidated the pharmacological profiles of MRAP2 on the regulation of central melanocortin signaling in a relatively primitive poikilotherm amphibian species, the Mexican axolotl (Ambystoma mexicanum). Our results showed the higher conservation of axolotl mc3r and mc4r across species than mrap2, especially the transmembrane regions in these proteins. Phylogenetic analysis indicated that the axolotl MC3R/MC4R clustered closer to their counterparts in the clawed frog, whereas MRAP2 fell in between the reptile and amphibian clade. We also identified a clear co-expression of mc3r, mc4r, and mrap2 along with pomc and agrp in the axolotl brain tissue. In the presence of MRAP2, the pharmacological stimulation of MC3R by α-MSH or ACTH significantly decreased. MRAP2 significantly decreased the cell surface expression of MC4R in a dose dependent manner. The co-localization and formation of the functional complex of axolotl MC3R/MC4R and MRAP2 on the plasma membrane were further confirmed in vitro. Dramatic changes of the expression levels of mc3r, mrap2, pomc, and agrp in the fasting axolotl hypothalamus indicated their critical roles in the metabolic regulation of feeding behavior and energy homeostasis in the poikilotherm aquatic amphibian.
Collapse
Affiliation(s)
- Xiaozhu Wang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Song Xue
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiaowei Lei
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wenqi Song
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Lei Li
- Department of Plastic and Reconstructive Surgery, Shanghai Institute of Precision Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuan Li
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yanbin Fu
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Cong Zhang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Hailin Zhang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yao Luo
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Meng Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Institute of Precision Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gufa Lin
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Chao Zhang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jing Guo
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
26
|
Watanabe K, Konno N, Nakamachi T, Matsuda K. Intracerebroventricular administration of α-melanocyte-stimulating hormone (α-MSH) enhances thigmotaxis and induces anxiety-like behavior in the goldfish Carassius auratus. Peptides 2021; 145:170623. [PMID: 34375685 DOI: 10.1016/j.peptides.2021.170623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 12/23/2022]
Abstract
α-Melanocyte-stimulating hormone (α-MSH) is a body pigmentation-regulating hormone secreted from the intermediate lobe of the pituitary in vertebrates. It is also produced in the brain, and acts as an anorexigenic neuropeptide involved in feeding regulation. In rodents, intracerebroventricular (ICV) administration of α-MSH has been shown to affect not only feeding behavior, but also psychomotor activity. However, there is still no information regarding the psychophysiological effects of α-MSH on behavior in fish. Therefore, we examined the effect of synthetic α-MSH on psychomotor activity in goldfish. Since this species prefers the edge to the central area of a tank, we used this as a preference test for assessing psychomotor activity. When α-MSH was administered ICV at 1 and 10 pmol g-1 body weight (BW), the time spent in the edge area of a tank was prolonged at 10 pmol g-1 BW. However, α-MSH at these doses did not affect locomotor activity. The action of α-MSH mimicked those of FG-7142 (a central-type benzodiazepine receptor (CBR) inverse agonist with an anxiogenic effect) at 10 pmol g-1 BW and melanotan II (a melanocortin 4 receptor (MC4R) agonist) at 50 pmol g-1 BW, whereas ICV administration of tofisopam (a CBR agonist with an anxiolytic effect) at 10 pmol g-1 BW prolonged the time spent in the central area. The anxiogenic-like effect of α-MSH was abolished by treatment with the MC4R antagonist HS024 at 50 pmol g-1 BW. These data indicate that α-MSH affects psychomotor activity in goldfish, and exerts an anxiogenic-like effect via the MC4R-signaling pathway.
Collapse
Affiliation(s)
- Keisuke Watanabe
- Laboratory of Regulatory Biology, Graduate School of Innovative Life Sciences, University of Toyama, Toyama, 930-8555, Japan
| | - Norifumi Konno
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama, 930-8555, Japan; Laboratory of Regulatory Biology, Faculty of Science, Academic Assembly, University of Toyama, Toyama, 930-8555, Japan
| | - Tomoya Nakamachi
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama, 930-8555, Japan; Laboratory of Regulatory Biology, Faculty of Science, Academic Assembly, University of Toyama, Toyama, 930-8555, Japan
| | - Kouhei Matsuda
- Laboratory of Regulatory Biology, Graduate School of Innovative Life Sciences, University of Toyama, Toyama, 930-8555, Japan; Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama, 930-8555, Japan; Laboratory of Regulatory Biology, Faculty of Science, Academic Assembly, University of Toyama, Toyama, 930-8555, Japan.
| |
Collapse
|
27
|
Investigation of Hemodynamic Receptors of the Internal Carotid Artery Segments. Artery Res 2021. [DOI: 10.1007/s44200-021-00005-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Abstract
Objectives
Internal carotid artery (ICA), the main artery of the brain, passes through the cavernous sinus (CS) which forms one of these venous pools. During this transition, while there is arterial blood in the lumen of ICA, its outer surface is in contact with venous blood from the brain. Herein, we aimed to detect the receptor differences of ICA in this highly specialized anatomical region of the skull base.
Methods
We performed the study on 10 human cadavers and searched CGRPR, TRP12, ASIC3 and ACTHR receptors via immunostaining using laser scanning confocal microscopy.
Results
We determined TRP12 receptor positive in the tunica media and tunica adventitia layers of the cavernous segment of ICA. We did not detect similar positivity in the cervical part of the ICA. In the receptor scan we made in terms of CGRPR, while we detected positivity in the tunica media layer of the cavernous segment, we found positivity in the tunica intima layer of the cervicalis segment of the ICA. We did not detect any positivity for ASIC3 and ACTHR receptors in both parts of the ICA.
Conclusions
As a result, we observed various differences in receptors between ICA segments. While the outer surface of the ICA in the cervical region did not show any receptor positivity, we detected TRP12 receptor positivity along the tissue contour of vessel in the CS. We assume that it may provide a new perspective on pathologies of the CS/ICA and preservation of brain hemodynamics for clinicians.
Collapse
|
28
|
Zhang H, Chen LN, Yang D, Mao C, Shen Q, Feng W, Shen DD, Dai A, Xie S, Zhou Y, Qin J, Sun JP, Scharf DH, Hou T, Zhou T, Wang MW, Zhang Y. Structural insights into ligand recognition and activation of the melanocortin-4 receptor. Cell Res 2021; 31:1163-1175. [PMID: 34433901 DOI: 10.1038/s41422-021-00552-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022] Open
Abstract
Melanocortin-4 receptor (MC4R) plays a central role in the regulation of energy homeostasis. Its high sequence similarity to other MC receptor family members, low agonist selectivity and the lack of structural information concerning MC4R-specific activation have hampered the development of MC4R-seletive therapeutics to treat obesity. Here, we report four high-resolution structures of full-length MC4R in complex with the heterotrimeric Gs protein stimulated by the endogenous peptide ligand α-MSH, FDA-approved drugs afamelanotide (Scenesse™) and bremelanotide (Vyleesi™), and a selective small-molecule ligand THIQ, respectively. Together with pharmacological studies, our results reveal the conserved binding mode of peptidic agonists, the distinctive molecular details of small-molecule agonist recognition underlying receptor subtype selectivity, and a distinct activation mechanism for MC4R, thereby offering new insights into G protein coupling. Our work may facilitate the discovery of selective therapeutic agents targeting MC4R.
Collapse
Affiliation(s)
- Huibing Zhang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China.,MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Li-Nan Chen
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China.,MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Dehua Yang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chunyou Mao
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China.,MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Qingya Shen
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China.,MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Wenbo Feng
- School of Pharmacy, Fudan University, Shanghai, China
| | - Dan-Dan Shen
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China.,MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Antao Dai
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Shanshan Xie
- Department of Cell Biology and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Institute of Gastroenterology, Zhejiang University, Hangzhou, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, China; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Yan Zhou
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jiao Qin
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China.,MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jin-Peng Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China.,Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Daniel H Scharf
- Department of Microbiology and The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Tingjun Hou
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tianhua Zhou
- Department of Cell Biology and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Institute of Gastroenterology, Zhejiang University, Hangzhou, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, China; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Ming-Wei Wang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China. .,The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China. .,University of Chinese Academy of Sciences, Beijing, China. .,School of Pharmacy, Fudan University, Shanghai, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, China. .,Department of Pharmacology, Fudan University, Shanghai, China.
| | - Yan Zhang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China. .,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China. .,MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China. .,Key Laboratory of Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
29
|
Piotrowska A, Starnowska-Sokół J, Makuch W, Mika J, Witkowska E, Tymecka D, Ignaczak A, Wilenska B, Misicka A, Przewłocka B. Novel bifunctional hybrid compounds designed to enhance the effects of opioids and antagonize the pronociceptive effects of nonopioid peptides as potent analgesics in a rat model of neuropathic pain. Pain 2021; 162:432-445. [PMID: 32826750 PMCID: PMC7808367 DOI: 10.1097/j.pain.0000000000002045] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/20/2020] [Accepted: 07/29/2020] [Indexed: 12/27/2022]
Abstract
ABSTRACT The purpose of our work was to determine the role of nonopioid peptides derived from opioid prohormones in sensory hypersensitivity characteristics of neuropathic pain and to propose a pharmacological approach to restore the balance of these endogenous opioid systems. Nonopioid peptides may have a pronociceptive effect and therefore contribute to less effective opioid analgesia in neuropathic pain. In our study, we used unilateral chronic constriction injury (CCI) of the sciatic nerve as a neuropathic pain model in rats. We demonstrated the pronociceptive effects of proopiomelanocortin- and proenkephalin-derived nonopioid peptides assessed by von Frey and cold plate tests, 7 to 14 days after injury. The concentration of proenkephalin-derived pronociceptive peptides was increased more robustly than that of Met-enkephalin in the ipsilateral lumbar spinal cord of CCI-exposed rats, as shown by mass spectrometry, and the pronociceptive effect of one of these peptides was blocked by an antagonist of the melanocortin 4 (MC4) receptor. The above results confirm our hypothesis regarding the possibility of creating an analgesic drug for neuropathic pain based on enhancing opioid activity and blocking the pronociceptive effect of nonopioid peptides. We designed and synthesized bifunctional hybrids composed of opioid (OP) receptor agonist and MC4 receptor antagonist (OP-linker-MC4). Moreover, we demonstrated that they have potent and long-lasting antinociceptive effects after a single administration and a delayed development of tolerance compared with morphine after repeated intrathecal administration to rats subjected to CCI. We conclude that the bifunctional hybrids OP-linker-MC4 we propose are important prototypes of drugs for use in neuropathic pain.
Collapse
Affiliation(s)
- Anna Piotrowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Krakow, Poland
| | - Joanna Starnowska-Sokół
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Krakow, Poland
| | - Wioletta Makuch
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Krakow, Poland
| | - Joanna Mika
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Krakow, Poland
| | - Ewa Witkowska
- Faculty of Chemistry, Biological, and Chemistry Research Centre, University of Warsaw, Warsaw, Poland
| | - Dagmara Tymecka
- Faculty of Chemistry, Biological, and Chemistry Research Centre, University of Warsaw, Warsaw, Poland
| | - Angelika Ignaczak
- Faculty of Chemistry, Biological, and Chemistry Research Centre, University of Warsaw, Warsaw, Poland
| | - Beata Wilenska
- Faculty of Chemistry, Biological, and Chemistry Research Centre, University of Warsaw, Warsaw, Poland
| | - Aleksandra Misicka
- Faculty of Chemistry, Biological, and Chemistry Research Centre, University of Warsaw, Warsaw, Poland
| | - Barbara Przewłocka
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Krakow, Poland
| |
Collapse
|
30
|
Minder AE, Barman-Aksoezen J, Schmid M, Minder EI, Zulewski H, Minder CE, Schneider-Yin X. Beyond pigmentation: signs of liver protection during afamelanotide treatment in Swiss patients with erythropoietic protoporphyria, an observational study. THERAPEUTIC ADVANCES IN RARE DISEASE 2021; 2:26330040211065453. [PMID: 37181106 PMCID: PMC10032460 DOI: 10.1177/26330040211065453] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 11/18/2021] [Indexed: 05/16/2023]
Abstract
Erythropoietic protoporphyria (EPP) is an ultra-rare inherited disorder with overproduction of protoporphyrin in maturating erythroblasts. This excess protoporphyrin leads to incapacitating phototoxic burns in sunlight exposed skin. Its biliary elimination causes cholestatic liver injury in 20% and terminal liver failure in 4% of EPP patients. Thereby, the risk of liver injury increases with increasing erythrocyte protoporphyrin concentrations. Afamelanotide, an α-melanocyte-stimulating hormone (MSH) analog inducing skin pigmentation, was shown to improve sunlight tolerance in EPP. Beyond this well-known effect on pigmentation, the MSHs have liver-protective effects and improve survival of maturating erythroblasts, effects described in animal or in vitro models to date only. We investigated whether afamelanotide treatment in EPP has effects on erythropoiesis, protoporphyrin concentrations, and liver injury by analyzing retrospectively our long-term safety data. Methods From the 47 Swiss EPP-patients treated at our center since 2006, we included those 38 patients in the current analysis who received at least one afamelanotide dose between 2016 and 2018 and underwent regular laboratory testing before and during the treatment. We compared the means of pretreatment measurements with those during the treatment. Results Protoporphyrin concentrations dropped from 21.39 ± 11.12 (mean ± SD) before afamelanotide to 16.83 ± 8.24 µmol/L (p < .0001) during treatment. Aspartate aminotransferase decreased from 26.67 ± 13.16 to 22.9 ± 7.76 IU/L (p = .0146). For both entities, patients with higher values showed a more progressive decrease, indicating a risk reduction of EPP-related liver disease. The pre-existing hypochromia and broad mean red-cell distribution width were further augmented under afamelanotide. This was more likely due to an influence of afamelanotide on maturating erythroblasts than due to an exacerbated iron deficiency, as mean zinc-protoporphyrin decreased significantly and ferritin remained unchanged. No serious afamelanotide-related adverse events were observed for a total of 240 treatment years. Conclusion Our findings point to a protective effect of afamelanotide on erythroblast maturation and protoporphyrin-induced liver injury. Plain Language summary Afamelanotide, a skin tanning hormone, may protect patients with erythropoietic protoporphyria not only from skin burns, but also from liver injury associated with the disease. Patients with erythropoietic protoporphyria (EPP), an inherited metabolic disease, suffer from light-induced skin burns and liver injury elicited by the accumulated light sensitizer protoporphyrin. The excess protoporphyrin is produced in red cell precursors in the bone marrow, and it is eliminated from the body via the liver and bile. A high protoporphyrin excretion burden damages the liver cells, the risk for this increases with higher protoporphyrin concentrations. About 20% of EPP patients show some sign of liver injury and 4% develop life-threatening liver dysfunction.Afamelanotide, closely related to natural α-melanocyte stimulating hormone (MSH), induces skin tanning. This effect protects EPP patients from light-induced skin burns as shown in previous studies. We have treated Swiss EPP patients with afamelanotide since 2006, and we regularly perform safety tests of this treatment.Recent in vitro and animal studies demonstrated α-MSH effects other than skin tanning, including an improved synthesis of red blood cell precursors in the bone-marrow and protection of the liver from experimentally induced damage. Until now, it is unknown whether afamelanotide has similar effects in the human organism.To study this question, we analyzed retrospectively the safety laboratory data of 38 Swiss patients, who received at least one dose of afamelanotide from 2016 to 2019. We found that both, the average protoporphyrin concentrations and aspartate aminotransferase, a test for liver function, improved during afamelanotide treatment as compared to before.We concluded that afamelanotide applied to EPP patients to protect them from light-induced skin burns also may reduce their risk of liver injury.
Collapse
Affiliation(s)
- Anna-Elisabeth Minder
- Division of Endocrinology, Diabetology,
Porphyria, Stadtspital Zürich, Birmensdorferstrasse 497, 8063 Zurich,
Switzerland
| | | | - Mathias Schmid
- Department of Hematology and Oncology,
Stadtspital Zürich, Zurich, Switzerland
| | - Elisabeth I. Minder
- Division of Endocrinology, Diabetology,
Porphyria, Stadtspital Zürich, Zurich, Switzerland
| | - Henryk Zulewski
- Division of Endocrinology, Diabetology,
Porphyria, Stadtspital Zürich, Zurich, Switzerland
| | - Christoph E. Minder
- Department of Social and Preventive Medicine,
University of Bern, Bern, Switzerland
| | | |
Collapse
|
31
|
Tran A, Loganathan N, McIlwraith EK, Belsham DD. Palmitate and Nitric Oxide Regulate the Expression of Spexin and Galanin Receptors 2 and 3 in Hypothalamic Neurons. Neuroscience 2020; 447:41-52. [DOI: 10.1016/j.neuroscience.2019.10.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/14/2019] [Accepted: 10/16/2019] [Indexed: 12/13/2022]
|
32
|
Malik U, Chan LY, Cai M, Hruby VJ, Kaas Q, Daly NL, Craik DJ. Development of novel frog‐skin peptide scaffolds with selectivity towards melanocortin receptor subtypes. Pept Sci (Hoboken) 2020. [DOI: 10.1002/pep2.24209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Uru Malik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science The University of Queensland Brisbane Queensland Australia
| | - Lai Yue Chan
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science The University of Queensland Brisbane Queensland Australia
| | - Minying Cai
- Department of Chemistry and Biochemistry University of Arizona Tucson Arizona USA
| | - Victor J. Hruby
- Department of Chemistry and Biochemistry University of Arizona Tucson Arizona USA
| | - Quentin Kaas
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science The University of Queensland Brisbane Queensland Australia
| | - Norelle L. Daly
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science The University of Queensland Brisbane Queensland Australia
- Australian Institute of Tropical Health and Medicine James Cook University Cairns Queensland Australia
| | - David J. Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science The University of Queensland Brisbane Queensland Australia
| |
Collapse
|
33
|
Muratspahić E, Koehbach J, Gruber CW, Craik DJ. Harnessing cyclotides to design and develop novel peptide GPCR ligands. RSC Chem Biol 2020; 1:177-191. [PMID: 34458757 PMCID: PMC8341132 DOI: 10.1039/d0cb00062k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022] Open
Abstract
Cyclotides are plant-derived cyclic, disulfide-rich peptides with a unique cyclic cystine knot topology that confers them with remarkable structural stability and resistance to proteolytic degradation. Recently, cyclotides have emerged as promising scaffold molecules for designing peptide-based therapeutics. Here, we provide examples of how engineering cyclotides using molecular grafting may lead to the development of novel peptide ligands of G protein-coupled receptors (GPCRs), today's most exploited drug targets. Integrating bioactive epitopes into stable cyclotide scaffolds can lead to improved pharmacokinetics and oral activity as well as selectivity and high enzymatic stability. We also discuss and highlight the importance of engineered cyclotides as novel tools to study GPCR signaling.
Collapse
Affiliation(s)
- Edin Muratspahić
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna Austria
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane Queensland 4072 Australia
| | - Johannes Koehbach
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane Queensland 4072 Australia
| | - Christian W Gruber
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna Austria
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane Queensland 4072 Australia
| |
Collapse
|
34
|
Tsilingiris D, Liatis S, Dalamaga M, Kokkinos A. The Fight Against Obesity Escalates: New Drugs on the Horizon and Metabolic Implications. Curr Obes Rep 2020; 9:136-149. [PMID: 32388792 DOI: 10.1007/s13679-020-00378-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW There is currently a steep rise in the global prevalence of obesity. Pharmaceutical therapy is a valuable component of conservative obesity therapy. Herein, medications currently in the phase of preclinical or clinical testing are reviewed, along with an overview of the mechanisms that regulate energy intake and expenditure. In addition, the current and potential future directions of obesity drug therapy are discussed. RECENT FINDINGS Although the current arsenal of obesity pharmacotherapy is limited, a considerable number of agents that exert their actions through a variety of pharmacodynamic targets and mechanisms are in the pipeline. This expansion shapes a potential near future of obesity conservative management, characterized by tailored combined therapeutic regimens, targeting not only weight loss but also improved overall health outcomes. The progress regarding the elucidation of the mechanisms which regulate the bodily energy equilibrium has led to medications which mimic hormonal adaptations that follow bariatric surgery, in the quest for a "Medical bypass." These, combined with agents which could increase energy expenditure, point to a brilliant future in the conservative treatment of obesity.
Collapse
Affiliation(s)
- Dimitrios Tsilingiris
- First Department of Propaedeutic Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 17 Ag. Thoma Street, 11527, Athens, Greece
| | - Stavros Liatis
- First Department of Propaedeutic Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 17 Ag. Thoma Street, 11527, Athens, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexander Kokkinos
- First Department of Propaedeutic Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 17 Ag. Thoma Street, 11527, Athens, Greece.
| |
Collapse
|
35
|
Zhang C, Chery S, Lazerson A, Altman NH, Jackson R, Holt G, Campos M, Schally AV, Mirsaeidi M. Anti-inflammatory effects of α-MSH through p-CREB expression in sarcoidosis like granuloma model. Sci Rep 2020; 10:7277. [PMID: 32350353 PMCID: PMC7190699 DOI: 10.1038/s41598-020-64305-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 04/08/2020] [Indexed: 12/11/2022] Open
Abstract
Lung inflammation due to sarcoidosis is characterized by a complex cascade of immunopathologic events, including leukocyte recruitment and granuloma formation. α-melanocyte stimulating hormone (α-MSH) is a melanocortin signaling peptide with anti-inflammatory properties. We aimed to evaluate the effects of α-MSH in a novel in vitro sarcoidosis model. An in vitro sarcoidosis-like granuloma model was developed by challenging peripheral blood mononuclear cells (PBMCs) derived from patients with confirmed treatment-naïve sarcoidosis with microparticles generated from Mycobacterium abscessus cell walls. Unchallenged PBMCsand developed granulomas were treated daily with 10 μM α-MSH or saline as control. Cytokine concentrations in supernatants of culture and in cell extracts were measured using Illumina multiplex Elisa and western blot, respectively. Gene expression was analyzed using RNA-Seq and RT-PCR. Protein secretion and gene expression of IL-7, IL-7R, IFN-γ, MC1R, NF-κB, phosphorylated NF-κB (p-NF-κB), MARCO, and p-CREB were measured with western blot and RNAseq. A significant increase in IL-7, IL-7R, and IFN-γ protein expression was found in developed granulomas comparing to microparticle unchallenged PBMCs. IL-7, IL-7R, and IFN-γ protein expression was significantly reduced in developed granulomas after exposure to α-MSH compared with saline treated granulomas. Compared with microparticle unchallenged PBMCs, total NF-κB and p-NF-κB were significantly increased in developed granulomas, while expression of p-CREB was not changed. Treatment with α-MSH promoted a significantly higher concentration of p-CREB in granulomas. The anti-inflammatory effects of α-MSH were blocked by specific p-CREB inhibition. α-MSH has anti-inflammatory properties in this in vitro granuloma model, which is an effect mediated by induction of phosphorylation of CREB.
Collapse
Affiliation(s)
- Chongxu Zhang
- Section of Pulmonary, Miami VA Health System, Miami, FL, USA
| | - Stephanie Chery
- Departments of Medicine University of Miami Miller School of Medicine, Miami, FL, USA
| | - Aaron Lazerson
- Comparative Pathology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Norman H Altman
- Comparative Pathology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Robert Jackson
- Section of Pulmonary, Miami VA Health System, Miami, FL, USA
- Division of Pulmonary and Critical Care, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Greg Holt
- Section of Pulmonary, Miami VA Health System, Miami, FL, USA
- Division of Pulmonary and Critical Care, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Michael Campos
- Section of Pulmonary, Miami VA Health System, Miami, FL, USA
- Division of Pulmonary and Critical Care, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Andrew V Schally
- Polypeptide and Cancer Institute, Veterans Affairs Medical Center, Miami, FL, USA
| | - Mehdi Mirsaeidi
- Section of Pulmonary, Miami VA Health System, Miami, FL, USA.
- Division of Pulmonary and Critical Care, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
36
|
Ocampo-Garza J, Salinas-Santander M, Welsh O, Herz-Ruelas M, Ocampo-Candiani J. Expression of melanocortin 1 receptor before and after narrowband UVB phototherapy treatment in patients with stable vitiligo: A prospective study. Exp Ther Med 2020; 19:1649-1654. [PMID: 32104216 PMCID: PMC7027148 DOI: 10.3892/etm.2020.8435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/16/2019] [Indexed: 12/13/2022] Open
Abstract
Vitiligo is a disease characterized by skin depigmentation caused by the selective destruction of melanocytes. The melanocortin system participates as a regulator of melanogenesis and skin pigmentation. Narrowband UVB phototherapy (nb-UVB) is currently considered to be the gold standard and first choice treatment method for vitiligo vulgaris. The aim of the present study was to analyze the clinical and biochemical parameters of vitiligo, as well as to determine the expression of proopiomelanocortin (POMC), melanocortin 1 receptor (MC1R) and melanocortin 4 receptor (MC4R) genes in the skin of patients with stable vitiligo receiving nb-UVB phototherapy. Patient clinical and biochemical parameters, and the skin biopsies of 22 patients with stable vitiligo were analyzed. These biopsies were obtained before and after nb-UVB phototherapy. The genetic expression analysis of POMC, MC1R and MC4R genes was performed via RNA-Sequence analysis. A statistical evaluation of the clinical and biochemical parameters, the degree of response to treatment and the expression profiles of the melanocortin system genes were performed to identify their association with treatment response. A two-sided P≤0.05 value was considered to indicate a statistically significant difference. Alterations were observed in the expression profiles of MC1R following nb-UVB phototherapy (P≤0.05). In addition, elevated levels of triiodothyronine were associated with a poor response to nb-UVB phototherapy. In conclusion the current study revealed that nb-UVB phototherapy altered the expression profile of the MC1R gene.
Collapse
Affiliation(s)
- Jorge Ocampo-Garza
- Department of Dermatology, 'Dr. Jose Eleuterio Gonzalez' University Hospital of The School of Medicine, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León 64460, Mexico
| | - Mauricio Salinas-Santander
- Department of Research, Universidad Autónoma de Coahuila, Faculty of Medicine, Saltillo, Coahuila 25000, Mexico
| | - Oliverio Welsh
- Department of Dermatology, 'Dr. Jose Eleuterio Gonzalez' University Hospital of The School of Medicine, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León 64460, Mexico
| | - Maira Herz-Ruelas
- Department of Dermatology, 'Dr. Jose Eleuterio Gonzalez' University Hospital of The School of Medicine, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León 64460, Mexico
| | - Jorge Ocampo-Candiani
- Department of Dermatology, 'Dr. Jose Eleuterio Gonzalez' University Hospital of The School of Medicine, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León 64460, Mexico
| |
Collapse
|
37
|
Clayton RW, Langan EA, Ansell DM, de Vos IJHM, Göbel K, Schneider MR, Picardo M, Lim X, van Steensel MAM, Paus R. Neuroendocrinology and neurobiology of sebaceous glands. Biol Rev Camb Philos Soc 2020; 95:592-624. [PMID: 31970855 DOI: 10.1111/brv.12579] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022]
Abstract
The nervous system communicates with peripheral tissues through nerve fibres and the systemic release of hypothalamic and pituitary neurohormones. Communication between the nervous system and the largest human organ, skin, has traditionally received little attention. In particular, the neuro-regulation of sebaceous glands (SGs), a major skin appendage, is rarely considered. Yet, it is clear that the SG is under stringent pituitary control, and forms a fascinating, clinically relevant peripheral target organ in which to study the neuroendocrine and neural regulation of epithelia. Sebum, the major secretory product of the SG, is composed of a complex mixture of lipids resulting from the holocrine secretion of specialised epithelial cells (sebocytes). It is indicative of a role of the neuroendocrine system in SG function that excess circulating levels of growth hormone, thyroxine or prolactin result in increased sebum production (seborrhoea). Conversely, growth hormone deficiency, hypothyroidism, and adrenal insufficiency result in reduced sebum production and dry skin. Furthermore, the androgen sensitivity of SGs appears to be under neuroendocrine control, as hypophysectomy (removal of the pituitary) renders SGs largely insensitive to stimulation by testosterone, which is crucial for maintaining SG homeostasis. However, several neurohormones, such as adrenocorticotropic hormone and α-melanocyte-stimulating hormone, can stimulate sebum production independently of either the testes or the adrenal glands, further underscoring the importance of neuroendocrine control in SG biology. Moreover, sebocytes synthesise several neurohormones and express their receptors, suggestive of the presence of neuro-autocrine mechanisms of sebocyte modulation. Aside from the neuroendocrine system, it is conceivable that secretion of neuropeptides and neurotransmitters from cutaneous nerve endings may also act on sebocytes or their progenitors, given that the skin is richly innervated. However, to date, the neural controls of SG development and function remain poorly investigated and incompletely understood. Botulinum toxin-mediated or facial paresis-associated reduction of human sebum secretion suggests that cutaneous nerve-derived substances modulate lipid and inflammatory cytokine synthesis by sebocytes, possibly implicating the nervous system in acne pathogenesis. Additionally, evidence suggests that cutaneous denervation in mice alters the expression of key regulators of SG homeostasis. In this review, we examine the current evidence regarding neuroendocrine and neurobiological regulation of human SG function in physiology and pathology. We further call attention to this line of research as an instructive model for probing and therapeutically manipulating the mechanistic links between the nervous system and mammalian skin.
Collapse
Affiliation(s)
- Richard W Clayton
- Centre for Dermatology, School of Biological Sciences, University of Manchester, and NIHR Manchester Biomedical Research Centre, Stopford Building, Oxford Road, Manchester, M13 9PT, U.K.,Skin Research Institute of Singapore, Agency for Science, Technology and Research, 11 Mandalay Road, #17-01 Clinical Sciences Building, 308232, Singapore
| | - Ewan A Langan
- Centre for Dermatology, School of Biological Sciences, University of Manchester, and NIHR Manchester Biomedical Research Centre, Stopford Building, Oxford Road, Manchester, M13 9PT, U.K.,Department of Dermatology, Allergology und Venereology, University of Lübeck, Ratzeburger Allee 160, Lübeck, 23538, Germany
| | - David M Ansell
- Centre for Dermatology, School of Biological Sciences, University of Manchester, and NIHR Manchester Biomedical Research Centre, Stopford Building, Oxford Road, Manchester, M13 9PT, U.K.,Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, U.K
| | - Ivo J H M de Vos
- Skin Research Institute of Singapore, Agency for Science, Technology and Research, 11 Mandalay Road, #17-01 Clinical Sciences Building, 308232, Singapore
| | - Klaus Göbel
- Skin Research Institute of Singapore, Agency for Science, Technology and Research, 11 Mandalay Road, #17-01 Clinical Sciences Building, 308232, Singapore.,Department of Dermatology, Cologne Excellence Cluster on Stress Responses in Aging Associated Diseases (CECAD), and Centre for Molecular Medicine Cologne, The University of Cologne, Joseph-Stelzmann-Straße 26, Cologne, 50931, Germany
| | - Marlon R Schneider
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Max-Dohrn-Straße 8-10, Berlin, 10589, Germany
| | - Mauro Picardo
- Cutaneous Physiopathology and Integrated Centre of Metabolomics Research, San Gallicano Dermatological Institute IRCCS, Via Elio Chianesi 53, Rome, 00144, Italy
| | - Xinhong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Maurice A M van Steensel
- Skin Research Institute of Singapore, Agency for Science, Technology and Research, 11 Mandalay Road, #17-01 Clinical Sciences Building, 308232, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Ralf Paus
- Centre for Dermatology, School of Biological Sciences, University of Manchester, and NIHR Manchester Biomedical Research Centre, Stopford Building, Oxford Road, Manchester, M13 9PT, U.K.,Dr. Phllip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB 2023A, Miami, FL, 33136, U.S.A.,Monasterium Laboratory, Mendelstraße 17, Münster, 48149, Germany
| |
Collapse
|
38
|
Rossino MG, Dal Monte M, Casini G. Relationships Between Neurodegeneration and Vascular Damage in Diabetic Retinopathy. Front Neurosci 2019; 13:1172. [PMID: 31787868 PMCID: PMC6856056 DOI: 10.3389/fnins.2019.01172] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/16/2019] [Indexed: 12/15/2022] Open
Abstract
Diabetic retinopathy (DR) is a common complication of diabetes and constitutes a major cause of vision impairment and blindness in the world. DR has long been described exclusively as a microvascular disease of the eye. However, in recent years, a growing interest has been focused on the contribution of neuroretinal degeneration to the pathogenesis of the disease, and there are observations suggesting that neuronal death in the early phases of DR may favor the development of microvascular abnormalities, followed by the full manifestation of the disease. However, the mediators that are involved in the crosslink between neurodegeneration and vascular changes have not yet been identified. According to our hypothesis, vascular endothelial growth factor (VEGF) could probably be the most important connecting link between the death of retinal neurons and the occurrence of microvascular lesions. Indeed, VEGF is known to play important neuroprotective actions; therefore, in the early phases of DR, it may be released in response to neuronal suffering, and it would act as a double-edged weapon inducing both neuroprotective and vasoactive effects. If this hypothesis is correct, then any retinal stress causing neuronal damage should be accompanied by VEGF upregulation and by vascular changes. Similarly, any compound with neuroprotective properties should also induce VEGF downregulation and amelioration of the vascular lesions. In this review, we searched for a correlation between neurodegeneration and vasculopathy in animal models of retinal diseases, examining the effects of different neuroprotective substances, ranging from nutraceuticals to antioxidants to neuropeptides and others and showing that reducing neuronal suffering also prevents overexpression of VEGF and vascular complications. Taken together, the reviewed evidence highlights the crucial role played by mediators such as VEGF in the relationship between retinal neuronal damage and vascular alterations and suggests that the use of neuroprotective substances could be an efficient strategy to prevent the onset or to retard the development of DR.
Collapse
Affiliation(s)
| | - Massimo Dal Monte
- Department of Biology, University of Pisa, Pisa, Italy.,Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| | - Giovanni Casini
- Department of Biology, University of Pisa, Pisa, Italy.,Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| |
Collapse
|
39
|
Min T, Liu M, Zhang H, Liu Y, Wang Z. Molecular and pharmacological characterization of poultry (Gallus gallus, Anas platyrhynchos, Anser cygnoides domesticus) and pig (Sus scrofa domestica) melanocortin-5 receptors and their mutants. Gen Comp Endocrinol 2019; 283:113233. [PMID: 31356812 DOI: 10.1016/j.ygcen.2019.113233] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/08/2019] [Accepted: 07/25/2019] [Indexed: 12/25/2022]
Abstract
The melanocortin-5 receptor (MC5R) is a member of the G protein-coupled receptor superfamily that plays a critical role in lipid production, skeletal muscle fatty acid oxidation, and adipocyte lipolysis. Although multiple functions and important value of MC5R in human beings have been fully demonstrated, however, the potential molecular cloning, pharmacological characteristics and key amino acids in poultry and pig were still not fully understood. Herein, we successfully cloned MC5R genes from chicken (Gallus gallus, cMC5R), duck (Anas platyrhynchos, dMC5R), goose (Anser cygnoides domesticus, gMC5R) and pig (Sus scrofa domestica, pMC5R), and compared their genetic and protein difference with hMC5R through phylogenetic analysis and homology models. Besides, we constructed three alanine-substitution mutants for each of MC5Rs through homologous reorganization, including c/d/gMC5R-D119A/F254A/H257A and pMC5R-D204A/F339A/H342A. Subsequently, we focused our investigation on the pharmacological characterization of four wide-type MC5Rs and their mutants in HEK293T cells, including the intracellular cAMP generation and phosphorylation level of ERK1/2. The results showed that these mutants had decreased cAMP levels under the stimulation of ligands, in spite of enhanced basal activity for c/d/gF254A and pH342A, indicating their important roles in the location and activation of receptors. Notably, these MC5Rs and mutants displayed significant species-specific phenotypes in the activation of pERK1/2 with ligands, which was not completely consistent with hMC5R. These findings demonstrated that presence of interspecies differences for MC5Rs, particularly for the pERK1/2 pathway. Taken together, our study expands current knowledge about the molecular and pharmacological characterization of c/d/g/pMC5Rs, providing preliminary data for MC5R-targeted drug screening or genetic breeding of economic animals in the future.
Collapse
Affiliation(s)
- Tianqi Min
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Min Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Haijie Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yuan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China.
| |
Collapse
|
40
|
Wolverton EA, Wong MKS, Davis PE, Hoglin B, Braasch I, Dores RM. Analyzing the signaling properties of gar (Lepisosteus oculatus) melanocortin receptors: Evaluating interactions with MRAP1 and MRAP2. Gen Comp Endocrinol 2019; 282:113215. [PMID: 31276671 PMCID: PMC7263024 DOI: 10.1016/j.ygcen.2019.113215] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/29/2019] [Accepted: 06/30/2019] [Indexed: 12/18/2022]
Abstract
RT-PCR analysis of gar pituitary and brain indicated that different combinations of gar melanocortin receptor mRNAs are present in the same tissues with mRNAs for gar mrap1 and gar mrap2. Against this background, an objective of this study was to determine whether the ligand sensitivity for either ACTH or α-MSH was affected when gar (g) melanocortin receptors (Mcrs) were co-expressed with either of the accessory proteins gMrap1 or gMrap2 in Chinese Hamster Ovary cells. The results indicated that gMc2r has an obligatory requirement for co-expression with gMrap1 in order for the receptor to be activated by hACTH(1-24). In addition, activation of gMc2r did not occur when the receptor was expressed alone or co-expressed with gMrap2. Furthermore, co-expression of gMc2r with gMrap1 followed by stimulation with NDP-MSH resulted in a low level of activation (only at 10-7 M and 10-6 M). However, gMc1r, gMc3r, gMc4r, and gMc5r responded to stimulation by NDP-MSH in a more robust manner. Co-expression of gMc1r, gMc3r, gMc4r, and gMc5r with gMRAP1 had no effect on sensitivity to stimulation by NDP-MSH or hACTH(1-24). Co-expression with gMRAP2 had no negative or positive effect on ligand sensitivity for gMc1r, gMc3r, and gMc5r, however this treatment did increase the activation of CHO cells transfected with gMc4r following stimulation with both hACTH(1-24) (p < 0.001), and NDP-MSH (p < 0.001). Co-expression of gMC5R with either gMRAP1 or gMRAP2 increased trafficking of gMC5R to the plasma membrane. These pharmacological observations are compared to the response of melanocortin receptors from other neopterygian fishes, cartilaginous fishes, and tetrapods to stimulation by ACTH(1-24) and forms of α-MSH.
Collapse
Affiliation(s)
| | | | - Perry E Davis
- Department of Biological Sciences, University of Denver, USA
| | - Brianne Hoglin
- Department of Biological Sciences, University of Denver, USA
| | - Ingo Braasch
- Integrative Biology, Michigan State University, USA
| | - Robert M Dores
- Department of Biological Sciences, University of Denver, USA.
| |
Collapse
|
41
|
Xiao N, Li H, Shafique L, Zhao S, Su X, Zhang Y, Cui K, Liu Q, Shi D. A Novel Pale-Yellow Coat Color of Rabbits Generated via MC1R Mutation With CRISPR/Cas9 System. Front Genet 2019; 10:875. [PMID: 31620174 PMCID: PMC6759607 DOI: 10.3389/fgene.2019.00875] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/20/2019] [Indexed: 11/13/2022] Open
Abstract
Coat color is of great importance in animal breed characteristics; it is not only a significant productive trait but also an indispensable economic trait, especially in the rabbit industry. In the present study, the relationship between melanocortin 1 receptor (MC1R) genotypes and coat color phenotypes was observed in five rabbit breeds with popular coat colors that are present in China. These breeds comprised the Lianshan black rabbit (BR), Fujian yellow rabbit (YR), New Zealand white rabbit (WR), Gray Giant rabbit (GR), and Checkered Giant rabbit (CR), which were firstly determined, and the results showed that GR had an E allele; WR, CR, and BR had a 6-bp in-frame deletion (c.281_286del6, ED allele); and YR had a 30-bp deletion (c.304_333del30 E allele). To explore the feasibility of obtaining a novel rabbit coat color through the mutation of MC1R with the CRISPR/Cas9 system, two single-guide RNAs (sgRNAs) were designed for the MC1R gene, and the editing efficiency was confirmed by injection of rabbits' zygotes. Unlike the donor rabbits whose coat color was originally black, two novel pale-yellow-coated rabbits were generated in the founders. A total of six novel MC1R gene deletions were identified in the two founder rabbits, in which the longest deletion was more than 700 bp. The histological hematoxylin-and-eosin (H&E) staining results indicated that eumelanin amounts were absent in hair follicles of MC1R-knockout (KO) rabbits, when compared with that of donor BR. In addition, the messenger RNA (mRNA) levels of some key downstream genes in the MC1R pathway were all downregulated in MC1R-KO rabbits compared with BR and YR. These results further indicate that loss-of-function MC1R contributed to blocking the synthesis of eumelanin and created a novel pale-yellow coat color in the MC1R-KO rabbits, and gene editing technology may be a useful tool to generate novel phenotypes in rabbit breeding.
Collapse
Affiliation(s)
- Ning Xiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Hongli Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Laiba Shafique
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Shanshan Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Xiaoping Su
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Yu Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Kuiqing Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| |
Collapse
|
42
|
Semple E, Shalabi F, Hill JW. Oxytocin Neurons Enable Melanocortin Regulation of Male Sexual Function in Mice. Mol Neurobiol 2019; 56:6310-6323. [PMID: 30756300 PMCID: PMC6684847 DOI: 10.1007/s12035-019-1514-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/28/2019] [Indexed: 12/13/2022]
Abstract
The melanocortin pathway has been implicated in both metabolism and sexual function. When the melanocortin 4 receptor (MC4R) is knocked out globally, male mice display obesity, low sexual desire, and copulatory difficulties; however, it is unclear whether these phenotypes are interdependent. To elucidate the neuronal circuitry involved in sexual dysfunction in MC4R knockouts, we re-expressed the MC4R in these mice exclusively on Sim1 neurons (tbMC4RSim1 mice) or on a subset of Sim1 neurons, namely oxytocin neurons (tbMC4Roxt mice). The groups were matched at young ages to control for the effects of obesity. Interestingly, young MC4R null mice had no deficits in sexual motivation or erectile function. However, MC4R null mice were found to have an increased latency to reach ejaculation compared to control mice, which was restored in both tbMC4RSim1 and tbMC4Roxt mice. These results indicate that melanocortin signaling via the MC4R on oxytocin neurons is important for normal ejaculation independent of the male's metabolic health.
Collapse
Affiliation(s)
- Erin Semple
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, 3000 Arlington Ave., Toledo, OH, 43614, USA
| | - Firas Shalabi
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, 3000 Arlington Ave., Toledo, OH, 43614, USA
| | - Jennifer W Hill
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, 3000 Arlington Ave., Toledo, OH, 43614, USA.
| |
Collapse
|
43
|
Neuroprotective Peptides in Retinal Disease. J Clin Med 2019; 8:jcm8081146. [PMID: 31374938 PMCID: PMC6722704 DOI: 10.3390/jcm8081146] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 07/26/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023] Open
Abstract
In the pathogenesis of many disorders, neuronal death plays a key role. It is now assumed that neurodegeneration is caused by multiple and somewhat converging/overlapping death mechanisms, and that neurons are sensitive to unique death styles. In this respect, major advances in the knowledge of different types, mechanisms, and roles of neurodegeneration are crucial to restore the neuronal functions involved in neuroprotection. Several novel concepts have emerged recently, suggesting that the modulation of the neuropeptide system may provide an entirely new set of pharmacological approaches. Neuropeptides and their receptors are expressed widely in mammalian retinas, where they exert neuromodulatory functions including the processing of visual information. In multiple models of retinal diseases, different peptidergic substances play neuroprotective actions. Herein, we describe the novel advances on the protective roles of neuropeptides in the retina. In particular, we focus on the mechanisms by which peptides affect neuronal death/survival and the vascular lesions commonly associated with retinal neurodegenerative pathologies. The goal is to highlight the therapeutic potential of neuropeptide systems as neuroprotectants in retinal diseases.
Collapse
|
44
|
Moscowitz AE, Asif H, Lindenmaier LB, Calzadilla A, Zhang C, Mirsaeidi M. The Importance of Melanocortin Receptors and Their Agonists in Pulmonary Disease. Front Med (Lausanne) 2019; 6:145. [PMID: 31316990 PMCID: PMC6610340 DOI: 10.3389/fmed.2019.00145] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/10/2019] [Indexed: 12/13/2022] Open
Abstract
Melanocortin agonists are ancient neuropeptides that have steroidogenesis and anti-inflammatory properties. They activate melanocortin receptors (MCR), a family of five seven-transmembrane G-protein coupled receptors. MC1R and MC3R are mainly involved in immunomodulatory effects. Adrenocorticotropin hormone (ACTH) and alpha-Melanocortin stimulating hormone (α-MSH) reduce pro-inflammatory cytokines in several pulmonary inflammatory disorders including asthma, sarcoidosis, and the acute respiratory distress syndrome. They have also been shown to reduce fibrogenesis in animal models with pulmonary fibrosis. By understanding the functions of MCR in macrophages, T-helper cell type 1, and T-helper cell type 17, we may uncover the mechanism of action of melanocortin agonists in sarcoidosis. Further translational and clinical research is needed to define the role of ACTH and α-MSH in pulmonary diseases.
Collapse
Affiliation(s)
| | - Huda Asif
- Division of Pulmonary and Critical Care, University of Miami, Miami, FL, United States
| | | | - Andrew Calzadilla
- Division of Pulmonary and Critical Care, University of Miami, Miami, FL, United States
| | - Chongxu Zhang
- Section of Pulmonary, Miami VA Healthcare System, Miami, FL, United States
| | - Mehdi Mirsaeidi
- Division of Pulmonary and Critical Care, University of Miami, Miami, FL, United States.,Section of Pulmonary, Miami VA Healthcare System, Miami, FL, United States
| |
Collapse
|
45
|
Duque-Díaz E, Alvarez-Ojeda O, Coveñas R. Enkephalins and ACTH in the mammalian nervous system. VITAMINS AND HORMONES 2019; 111:147-193. [PMID: 31421699 DOI: 10.1016/bs.vh.2019.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The pentapeptides methionine-enkephalin and leucine-enkephalin belong to the opioid family of peptides, and the non-opiate peptide adrenocorticotropin hormone (ACTH) to the melanocortin peptide family. Enkephalins/ACTH are derived from pro-enkephalin, pro-dynorphin or pro-opiomelanocortin precursors and, via opioid and melanocortin receptors, are responsible for many biological activities. Enkephalins exhibit the highest affinity for the δ receptor, followed by the μ and κ receptors, whereas ACTH binds to the five subtypes of melanocortin receptor, and is the only member of the melanocortin family of peptides that binds to the melanocortin-receptor 2 (ACTH receptor). Enkephalins/ACTH and their receptors exhibit a widespread anatomical distribution. Enkephalins are involved in analgesia, angiogenesis, blood pressure, embryonic development, emotional behavior, feeding, hypoxia, limbic system modulation, neuroprotection, peristalsis, and wound repair; as well as in hepatoprotective, motor, neuroendocrine and respiratory mechanisms. ACTH plays a role in acetylcholine release, aggressive behavior, blood pressure, bone maintenance, hyperalgesia, feeding, fever, grooming, learning, lipolysis, memory, nerve injury repair, neuroprotection, sexual behavior, sleep, social behavior, tissue growth and stimulates the synthesis and secretion of glucocorticoids. Enkephalins/ACTH are also involved in many pathologies. Enkephalins are implicated in alcoholism, cancer, colitis, depression, heart failure, Huntington's disease, influenza A virus infection, ischemia, multiple sclerosis, and stress. ACTH plays a role in Addison's disease, alcoholism, cancer, Cushing's disease, dermatitis, encephalitis, epilepsy, Graves' disease, Guillain-Barré syndrome, multiple sclerosis, podocytopathies, and stress. In this review, we provide an updated description of the enkephalinergic and ACTH systems.
Collapse
Affiliation(s)
- Ewing Duque-Díaz
- Universidad de Santander UDES, Laboratory of Neurosciences, School of Medicine, Bucaramanga, Colombia.
| | - Olga Alvarez-Ojeda
- Universidad Industrial de Santander, Department of Pathology, School of Medicine, Bucaramanga, Colombia
| | - Rafael Coveñas
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain
| |
Collapse
|
46
|
Oliveira MC, Correia JDG. Biomedical applications of radioiodinated peptides. Eur J Med Chem 2019; 179:56-77. [PMID: 31238251 DOI: 10.1016/j.ejmech.2019.06.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 02/08/2023]
Abstract
The overexpression of peptide receptors in certain tumors as compared to endogeneous expression levels represents the molecular basis for the design of peptide-based tools for targeted nuclear imaging and therapy. Receptor targeting with radiolabelled peptides became a very important imaging and/or therapeutic approach in nuclear medicine and oncology. A great variety of peptides has been radiolabelled with clinical relevant radionuclides, such as radiometals and radiohalogens. However, to the best of our knowledge concise and updated reviews providing information about the biomedical application of radioiodinated peptides are still missing. This review outlines the synthetic efforts in the preparation of radioiodinated peptides highlighting the importance of radioiodine in nuclear medicine, giving an overview of the most relevant radioiodination strategies that have been employed and describes relevant examples of their use in the biomedical field.
Collapse
Affiliation(s)
- Maria Cristina Oliveira
- Centro de Ciências e Tecnologias Nucleares, Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), 2695-066, Bobadela LRS, Portugal.
| | - João D G Correia
- Centro de Ciências e Tecnologias Nucleares, Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), 2695-066, Bobadela LRS, Portugal.
| |
Collapse
|
47
|
Falls BA, Zhang Y. Insights into the Allosteric Mechanism of Setmelanotide (RM-493) as a Potent and First-in-Class Melanocortin-4 Receptor (MC4R) Agonist To Treat Rare Genetic Disorders of Obesity through an in Silico Approach. ACS Chem Neurosci 2019; 10:1055-1065. [PMID: 30048591 DOI: 10.1021/acschemneuro.8b00346] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Human melanocortin-4 receptor (hMC4R) mutations have been implicated as the cause for about 6-8% of all severe obesity cases. Drug-like molecules that are able to rescue the functional activity of mutated receptors are highly desirable to combat genetic obesity among this population of patients. One such molecule is the selective MC4R agonist RM-493 (setmelanotide). While this molecule has been shown to activate mutated receptors with 20-fold higher potency over the endogenous agonist, little is known about its binding mode and how it effectively interacts with hMC4R despite the presence of mutations. In this study, a MC4R homology model was constructed based on the X-ray crystal structure of the adenosine A2A receptor in the active state. Four MC4R mutations commonly found in genetically obese patients and known to effect ligand binding in vitro were introduced into the constructed model. RM-493 was then docked into the wild-type and mutated models in order to better elucidate the possible binding modes for this promising drug candidate and assess how it may be interacting with MC4R to effectively activate receptor polymorphisms. The results reflected the orthosteric interactions of both the endogenous and synthetic ligands with the MC4R, which is supported by the site-directed mutagenesis studies. Meanwhile it helped explain the decremental affinity and potency of these ligands with the receptor polymorphisms. More significantly, our findings indicated that the structural characteristics of RM-493 may allow for enhanced receptor-ligand interactions, particularly through those with the putative allosteric binding sites, which facilitated the ligand to stabilize the active state of native and mutant MC4Rs to maintain reasonably high affinity and potency.
Collapse
Affiliation(s)
- Bethany A. Falls
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 East Leigh Street, Richmond, Virginia 23298, United States
| | - Yan Zhang
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 East Leigh Street, Richmond, Virginia 23298, United States
| |
Collapse
|
48
|
Tafreshi NK, Tichacek CJ, Pandya DN, Doligalski ML, Budzevich MM, Kil H, Bhatt NB, Kock ND, Messina JL, Ruiz EE, Delva NC, Weaver A, Gibbons WR, Boulware DC, Khushalani NI, El-Haddad G, Triozzi PL, Moros EG, McLaughlin ML, Wadas TJ, Morse DL. Melanocortin 1 Receptor-Targeted α-Particle Therapy for Metastatic Uveal Melanoma. J Nucl Med 2019; 60:1124-1133. [PMID: 30733316 DOI: 10.2967/jnumed.118.217240] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 12/20/2018] [Indexed: 02/03/2023] Open
Abstract
New effective therapies are greatly needed for metastatic uveal melanoma, which has a very poor prognosis with a median survival of less than 1 y. The melanocortin 1 receptor (MC1R) is expressed in 94% of uveal melanoma metastases, and a MC1R-specific ligand (MC1RL) with high affinity and selectivity for MC1R was previously developed. Methods: The 225Ac-DOTA-MC1RL conjugate was synthesized in high radiochemical yield and purity and was tested in vitro for biostability and for MC1R-specific cytotoxicity in uveal melanoma cells, and the lanthanum-DOTA-MC1RL analog was tested for binding affinity. Non-tumor-bearing BALB/c mice were tested for maximum tolerated dose and biodistribution. Severe combined immunodeficient mice bearing uveal melanoma tumors or engineered MC1R-positive and -negative tumors were studied for biodistribution and efficacy. Radiation dosimetry was calculated using mouse biodistribution data and blood clearance kinetics from Sprague-Dawley rat data. Results: High biostability, MC1R-specific cytotoxicity, and high binding affinity were observed. Limiting toxicities were not observed at even the highest administered activities. Pharmacokinetics and biodistribution studies revealed rapid blood clearance (<15 min), renal and hepatobillary excretion, MC1R-specific tumor uptake, and minimal retention in other normal tissues. Radiation dosimetry calculations determined pharmacokinetics parameters and absorbed α-emission dosages from 225Ac and its daughters. Efficacy studies demonstrated significantly prolonged survival and decreased metastasis burden after a single administration of 225Ac-DOTA-MC1RL in treated mice relative to controls. Conclusion: These results suggest significant potential for the clinical translation of 225Ac-DOTA-MC1RL as a novel therapy for metastatic uveal melanoma.
Collapse
Affiliation(s)
- Narges K Tafreshi
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Christopher J Tichacek
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.,Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.,Department of Physics, University of South Florida, Tampa, Florida
| | - Darpan N Pandya
- Department of Cancer Biology, Wake Forest University Health Sciences, Winston-Salem, North Carolina
| | - Michael L Doligalski
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Mikalai M Budzevich
- Small Animal Imaging Laboratory, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - HyunJoo Kil
- Department of Pharmaceutical Sciences, Health Sciences Center, West Virginia University, and Modulation Therapeutics Inc., Morgantown, West Virginia
| | - Nikunj B Bhatt
- Department of Cancer Biology, Wake Forest University Health Sciences, Winston-Salem, North Carolina
| | - Nancy D Kock
- Section on Comparative Medicine, Department of Pathology, Wake Forest University Health Sciences, Winston-Salem, North Carolina
| | - Jane L Messina
- Departments of Anatomic Pathology and Cutaneous Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.,Department of Dermatology, University of South Florida, Tampa, Florida.,Department of Oncologic Sciences, University of South Florida, Tampa, Florida
| | - Epifanio E Ruiz
- Small Animal Imaging Laboratory, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Nella C Delva
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Adam Weaver
- Division of Research Integrity and Compliance, University of South Florida, Tampa, Florida
| | - William R Gibbons
- Division of Research Integrity and Compliance, University of South Florida, Tampa, Florida
| | - David C Boulware
- Biostatistics Core Facility, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Nikhil I Khushalani
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Ghassan El-Haddad
- Departments of Diagnostic Imaging and Interventional Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida; and
| | - Pierre L Triozzi
- Department of Hematology and Oncology, Wake Forest University Health Sciences, Winston-Salem, North Carolina
| | - Eduardo G Moros
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.,Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.,Department of Physics, University of South Florida, Tampa, Florida.,Department of Oncologic Sciences, University of South Florida, Tampa, Florida
| | - Mark L McLaughlin
- Department of Pharmaceutical Sciences, Health Sciences Center, West Virginia University, and Modulation Therapeutics Inc., Morgantown, West Virginia
| | - Thaddeus J Wadas
- Department of Cancer Biology, Wake Forest University Health Sciences, Winston-Salem, North Carolina
| | - David L Morse
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida .,Department of Physics, University of South Florida, Tampa, Florida.,Small Animal Imaging Laboratory, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.,Department of Oncologic Sciences, University of South Florida, Tampa, Florida
| |
Collapse
|
49
|
Harno E, Gali Ramamoorthy T, Coll AP, White A. POMC: The Physiological Power of Hormone Processing. Physiol Rev 2019; 98:2381-2430. [PMID: 30156493 DOI: 10.1152/physrev.00024.2017] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Pro-opiomelanocortin (POMC) is the archetypal polypeptide precursor of hormones and neuropeptides. In this review, we examine the variability in the individual peptides produced in different tissues and the impact of the simultaneous presence of their precursors or fragments. We also discuss the problems inherent in accurately measuring which of the precursors and their derived peptides are present in biological samples. We address how not being able to measure all the combinations of precursors and fragments quantitatively has affected our understanding of the pathophysiology associated with POMC processing. To understand how different ratios of peptides arise, we describe the role of the pro-hormone convertases (PCs) and their tissue specificities and consider the cellular processing pathways which enable regulated secretion of different peptides that play crucial roles in integrating a range of vital physiological functions. In the pituitary, correct processing of POMC peptides is essential to maintain the hypothalamic-pituitary-adrenal axis, and this processing can be disrupted in POMC-expressing tumors. In hypothalamic neurons expressing POMC, abnormalities in processing critically impact on the regulation of appetite, energy homeostasis, and body composition. More work is needed to understand whether expression of the POMC gene in a tissue equates to release of bioactive peptides. We suggest that this comprehensive view of POMC processing, with a focus on gaining a better understanding of the combination of peptides produced and their relative bioactivity, is a necessity for all involved in studying this fascinating physiological regulatory phenomenon.
Collapse
Affiliation(s)
- Erika Harno
- Division of Diabetes, Endocrinology and Gastrointestinal Sciences, Faculty of Biology, Medicine and Health, University of Manchester , Manchester , United Kingdom ; and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science , Cambridge , United Kingdom
| | - Thanuja Gali Ramamoorthy
- Division of Diabetes, Endocrinology and Gastrointestinal Sciences, Faculty of Biology, Medicine and Health, University of Manchester , Manchester , United Kingdom ; and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science , Cambridge , United Kingdom
| | - Anthony P Coll
- Division of Diabetes, Endocrinology and Gastrointestinal Sciences, Faculty of Biology, Medicine and Health, University of Manchester , Manchester , United Kingdom ; and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science , Cambridge , United Kingdom
| | - Anne White
- Division of Diabetes, Endocrinology and Gastrointestinal Sciences, Faculty of Biology, Medicine and Health, University of Manchester , Manchester , United Kingdom ; and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science , Cambridge , United Kingdom
| |
Collapse
|
50
|
Heyder N, Kleinau G, Szczepek M, Kwiatkowski D, Speck D, Soletto L, Cerdá-Reverter JM, Krude H, Kühnen P, Biebermann H, Scheerer P. Signal Transduction and Pathogenic Modifications at the Melanocortin-4 Receptor: A Structural Perspective. Front Endocrinol (Lausanne) 2019; 10:515. [PMID: 31417496 PMCID: PMC6685040 DOI: 10.3389/fendo.2019.00515] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/15/2019] [Indexed: 12/19/2022] Open
Abstract
The melanocortin-4 receptor (MC4R) can be endogenously activated by binding of melanocyte-stimulating hormones (MSH), which mediates anorexigenic effects. In contrast, the agouti-related peptide (AgRP) acts as an endogenous inverse agonist and suppresses ligand-independent basal signaling activity (orexigenic effects). Binding of ligands to MC4R leads to the activation of different G-protein subtypes or arrestin and concomitant signaling pathways. This receptor is a key protein in the hypothalamic regulation of food intake and energy expenditure and naturally-occurring inactivating MC4R variants are the most frequent cause of monogenic obesity. In general, obesity is a growing problem on a global scale and is of social, medical, and economic relevance. A significant goal is to develop optimized pharmacological tools targeting MC4R without adverse effects. To date, this has not been achieved because of inter alia non-selective ligands across the five functionally different MCR subtypes (MC1-5R). This motivates further investigation of (i) the three-dimensional MC4R structure, (ii) binding mechanisms of various ligands, and (iii) the molecular transfer process of signal transduction, with the aim of understanding how structural features are linked with functional-physiological aspects. Unfortunately, experimentally elucidated structural information is not yet available for the MC receptors, a group of class A G-protein coupled receptors (GPCRs). We, therefore, generated MC4R homology models and complexes with interacting partners to describe approximate structural properties associated with signaling mechanisms. In addition, molecular insights from pathogenic mutations were incorporated to discriminate more precisely their individual malfunction of the signal transfer mechanism.
Collapse
Affiliation(s)
- Nicolas Heyder
- Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gunnar Kleinau
- Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- *Correspondence: Gunnar Kleinau
| | - Michal Szczepek
- Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dennis Kwiatkowski
- Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - David Speck
- Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lucia Soletto
- Departamento de Fisiología de Peces y Biotecnología, Consejo Superior de Investigaciones Científicas, Instituto de Acuicultura Torre de la Sal, Ribera de Cabanes, Spain
| | - José Miguel Cerdá-Reverter
- Departamento de Fisiología de Peces y Biotecnología, Consejo Superior de Investigaciones Científicas, Instituto de Acuicultura Torre de la Sal, Ribera de Cabanes, Spain
| | - Heiko Krude
- Institute of Experimental Pediatric Endocrinology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Peter Kühnen
- Institute of Experimental Pediatric Endocrinology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Heike Biebermann
- Institute of Experimental Pediatric Endocrinology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Patrick Scheerer
- Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Patrick Scheerer
| |
Collapse
|