1
|
Fathi PA, Bales MB, Ayala JE. Time-dependent changes in feeding behavior and energy balance associated with weight gain in mice fed obesogenic diets. Obesity (Silver Spring) 2024; 32:1373-1388. [PMID: 38932722 DOI: 10.1002/oby.24052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVE Obesity is characterized by dysregulated homeostatic mechanisms resulting in positive energy balance; however, when this dysregulation occurs is unknown. We assessed the time course of alterations to behaviors promoting weight gain in male and female mice switched to an obesogenic high-fat diet (HFD). METHODS Male and female C57BL/6J mice were housed in metabolic chambers and were switched from chow to a 60% or 45% HFD for 4 and 3 weeks, respectively. Food intake, meal patterns, energy expenditure (EE), and body weight were continuously measured. A separate cohort of male mice was switched from chow to a 60% HFD and was given access to locked or unlocked running wheels. RESULTS Switching mice to obesogenic diets promotes transient bouts of hyperphagia during the first 2 weeks followed by persistent caloric hyperphagia. EE increases but not sufficiently enough to offset increased caloric intake, resulting in a sustained net positive energy balance. Hyperphagia is associated with consumption of calorically larger meals (impaired satiation) more frequently (impaired satiety), particularly during the light cycle. Running wheel exercise delays weight gain in male mice fed a 60% HFD by enhancing satiation and increasing EE. However, exercise effects on satiation are no longer apparent after 2 weeks, coinciding with weight gain. CONCLUSIONS Exposure to obesogenic diets engages homeostatic regulatory mechanisms for ~2 weeks that ultimately fail, and consequent weight gain is characterized by impaired satiation and satiety. Insights into the etiology of obesity can be obtained by investigating changes to satiation and satiety mechanisms during the initial ~2 weeks of HFD exposure.
Collapse
Affiliation(s)
- Payam A Fathi
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Michelle B Bales
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Julio E Ayala
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Mouse Metabolic Phenotyping Center, Nashville, Tennessee, USA
- Vanderbilt Center for Addiction Research, Nashville, Tennessee, USA
| |
Collapse
|
2
|
Martinez de Morentin PB, Gonzalez JA, Dowsett GKC, Martynova Y, Yeo GSH, Sylantyev S, Heisler LK. A brainstem to hypothalamic arcuate nucleus GABAergic circuit drives feeding. Curr Biol 2024; 34:1646-1656.e4. [PMID: 38518777 DOI: 10.1016/j.cub.2024.02.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/05/2024] [Accepted: 02/29/2024] [Indexed: 03/24/2024]
Abstract
The obesity epidemic is principally driven by the consumption of more calories than the body requires. It is therefore essential that the mechanisms underpinning feeding behavior are defined. Neurons within the brainstem dorsal vagal complex (DVC) receive direct information from the digestive system and project to second-order regions in the brain to regulate food intake. Although γ-aminobutyric acid is expressed in the DVC (GABADVC), its function in this region has not been defined. In order to discover the unique gene expression signature of GABADVC cells, we used single-nucleus RNA sequencing (Nuc-seq), and this revealed 19 separate clusters. We next probed the function of GABADVC cells and discovered that the selective activation of GABADVC neurons significantly controls food intake and body weight. Optogenetic interrogation of GABADVC circuitry identified GABADVC → hypothalamic arcuate nucleus (ARC) projections as appetite suppressive without creating aversion. Electrophysiological analysis revealed that GABADVC → ARC stimulation inhibits hunger-promoting neuropeptide Y (NPY) neurons via GABA release. Adopting an intersectional genetics strategy, we clarify that the GABADVC → ARC circuit curbs food intake. These data identify GABADVC as a new modulator of feeding behavior and body weight and a controller of orexigenic NPY neuron activity, thereby providing insight into the neural underpinnings of obesity.
Collapse
Affiliation(s)
- Pablo B Martinez de Morentin
- The Rowett Institute, University of Aberdeen, Ashgrove Road W, Aberdeen AB25 2ZD, UK; School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Woodhouse LS2 9JT, UK.
| | - J Antonio Gonzalez
- The Rowett Institute, University of Aberdeen, Ashgrove Road W, Aberdeen AB25 2ZD, UK
| | - Georgina K C Dowsett
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Yuliia Martynova
- The Rowett Institute, University of Aberdeen, Ashgrove Road W, Aberdeen AB25 2ZD, UK
| | - Giles S H Yeo
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Sergiy Sylantyev
- The Rowett Institute, University of Aberdeen, Ashgrove Road W, Aberdeen AB25 2ZD, UK; Odesa National Mechnikov University, Biological Department, 2 Shampansky Ln., Odesa 65015, Ukraine.
| | - Lora K Heisler
- The Rowett Institute, University of Aberdeen, Ashgrove Road W, Aberdeen AB25 2ZD, UK
| |
Collapse
|
3
|
Metzger PJ, Zhang A, Carlson BA, Sun H, Cui Z, Li Y, Jahnke MT, Layton DR, Gupta MB, Liu N, Kostenis E, Gavrilova O, Chen M, Weinstein LS. A human obesity-associated MC4R mutation with defective Gq/11α signaling leads to hyperphagia in mice. J Clin Invest 2024; 134:e165418. [PMID: 38175730 PMCID: PMC10869179 DOI: 10.1172/jci165418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/21/2023] [Indexed: 01/06/2024] Open
Abstract
Melanocortin 4 receptor (MC4R) mutations are the most common cause of human monogenic obesity and are associated with hyperphagia and increased linear growth. While MC4R is known to activate Gsα/cAMP signaling, a substantial proportion of obesity-associated MC4R mutations do not affect MC4R/Gsα signaling. To further explore the role of specific MC4R signaling pathways in the regulation of energy balance, we examined the signaling properties of one such mutant, MC4R (F51L), as well as the metabolic consequences of MC4RF51L mutation in mice. The MC4RF51L mutation produced a specific defect in MC4R/Gq/11α signaling and led to obesity, hyperphagia, and increased linear growth in mice. The ability of a melanocortin agonist to acutely inhibit food intake when delivered to the paraventricular nucleus (PVN) was lost in MC4RF51L mice, as well as in WT mice in which a specific Gq/11α inhibitor was delivered to the PVN; this provided evidence that a Gsα-independent signaling pathway, namely Gq/11α, significantly contributes to the actions of MC4R on food intake and linear growth. These results suggest that a biased MC4R agonist that primarily activates Gq/11α may be a potential agent to treat obesity with limited untoward cardiovascular and other side effects.
Collapse
Affiliation(s)
| | | | | | - Hui Sun
- Metabolic Diseases Branch and
| | - Zhenzhong Cui
- Mouse Metabolism Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | | | | | | | | | - Naili Liu
- Mouse Metabolism Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Evi Kostenis
- Molecular, Cellular, and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Oksana Gavrilova
- Mouse Metabolism Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | | | | |
Collapse
|
4
|
Eliason NL, Sharpe AL. Proopiomelanocortin projections to the nucleus accumbens modulate acquisition and maintenance of operant palatable pellet administration in mice. Physiol Behav 2023; 265:114176. [PMID: 36965574 PMCID: PMC10241194 DOI: 10.1016/j.physbeh.2023.114176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 03/27/2023]
Abstract
Obesity is a crisis in the United States, producing many co-morbid diseases that can drastically decrease quality of life. While diet is a major focus for therapeutic intervention, the need to understand underlying appetitive neurocircuitry persists. Proopiomelanocortin (POMC) peptides are well-known for their anorexigenic activity, but also mediate reward and learning. The nucleus accumbens (NAcc) is best known for its role in reward-based learning, but the contribution of POMC projections to NAcc on feeding are controversial since the two major POMC-derived peptides (β-endorphin and α-MSH) have opposite effects on food intake. Our objective was to determine the effect of stimulating POMC projections in the NAcc on acquisition and maintenance of operant self-administration of a palatable food. Adult POMCCre mice were microinjected into the NAcc with a Cre-dependent retrograde adeno-associated viral vector expressing Gq Designer Receptors Exclusively Activated by Designer Drugs (DREADDs). Mice were trained to self-administer palatable 20-mg pellets in daily operant sessions. Acquisition of self-administration (fixed ratio 30) and baseline self-administration were measured in daily sessions, with mice receiving injections of either JHU37152 (DREADD agonist) or saline (i.p.) 15 min prior to the sessions. POMC neuron stimulation (JHU injection) before training sessions produced a significant increase in rate of acquisition and accuracy compared to the saline treated group, with no significant effect on rewards earned. Removal of POMC neuron stimulation before sessions initially reduced consumption with a gradual increase in responding for reinforcer over 3 days of saline injections. Reinstatement of POMC neuron stimulation (JHU) before the session resulted in a significant decrease in responding and rewards earned. These results suggest a complex role of POMC peptides within the NAcc that increase reward learning for a novel palatable food while decreasing consumption of the reinforcer following experience with it.
Collapse
Affiliation(s)
- Nicole L Eliason
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma Health Science Center, Oklahoma City, OK, 73117, United States of America
| | - Amanda L Sharpe
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma Health Science Center, Oklahoma City, OK, 73117, United States of America; Harold Hamm Diabetes Center, The University of Oklahoma Health Science Center, Oklahoma City, OK, 73117, United States of America.
| |
Collapse
|
5
|
Eliason NL, Martin L, Low MJ, Sharpe AL. Melanocortin receptor agonist melanotan-II microinjected in the nucleus accumbens decreases appetitive and consumptive responding for food. Neuropeptides 2022; 96:102289. [PMID: 36155088 PMCID: PMC10152796 DOI: 10.1016/j.npep.2022.102289] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/20/2022] [Accepted: 09/13/2022] [Indexed: 01/23/2023]
Abstract
RATIONALE Obesity is a major health problem worldwide. An understanding of the factors that drive feeding behaviors is key to the development of pharmaceuticals to decrease appetite and consumption. Proopiomelanocortin (POMC), the melanocortin peptide precursor, is essential in the regulation of body weight and ingestive behaviors. Deletion of POMC or impairment of melanocortin signaling in the brain results in hyperphagic obesity. Neurons in the hypothalamic arcuate nucleus produce POMC and project to many areas including the nucleus accumbens (NAcc), which is well established in the rewarding and reinforcing effects of both food and drugs of abuse. OBJECTIVE These studies sought to determine the role of melanocortins in the NAcc on consumption of and motivation to obtain access to standard rodent chow. METHODS Male, C57BL/6J mice were microinjected bilaterally into the NAcc (100 nl/side) with the melanocortin receptor 3/4 agonist melanotan-II (MT-II; 0.1, 0.3, and 1 nmol), and ingestive behaviors were examined in both home cage and operant food self-administration experiments. In addition, the ability of MT-II in the NAcc to produce aversive properties or affect metabolic rate were tested. RESULTS MT-II injected into the NAcc significantly decreased consumption in both home cage and operant paradigms, and furthermore decreased appetitive responding to gain access to food. There was no development of conditioned taste avoidance or change in metabolic parameters following anorexic doses of MT-II. CONCLUSIONS MT-II in the NAcc decreased both the motivation to eat and the amount of food consumed without inducing an aversive state or affecting metabolic rate, suggesting a role for melanocortin signaling in the NAcc that is selective for appetite and satiety without affecting metabolism or producing an aversive state.
Collapse
Affiliation(s)
- Nicole L Eliason
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Lynne Martin
- Department of Pharmaceutical Sciences, Feik College of Pharmacy, University of the Incarnate Word, San Antonio, TX, United States of America
| | - Malcolm J Low
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Amanda L Sharpe
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America; Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America.
| |
Collapse
|
6
|
Vigil P, Meléndez J, Petkovic G, Del Río JP. The importance of estradiol for body weight regulation in women. Front Endocrinol (Lausanne) 2022; 13:951186. [PMID: 36419765 PMCID: PMC9677105 DOI: 10.3389/fendo.2022.951186] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022] Open
Abstract
Obesity in women of reproductive age has a number of adverse metabolic effects, including Type II Diabetes (T2D), dyslipidemia, and cardiovascular disease. It is associated with increased menstrual irregularity, ovulatory dysfunction, development of insulin resistance and infertility. In women, estradiol is not only critical for reproductive function, but they also control food intake and energy expenditure. Food intake is known to change during the menstrual cycle in humans. This change in food intake is largely mediated by estradiol, which acts directly upon anorexigenic and orexigenic neurons, largely in the hypothalamus. Estradiol also acts indirectly with peripheral mediators such as glucagon like peptide-1 (GLP-1). Like estradiol, GLP-1 acts on receptors at the hypothalamus. This review describes the physiological and pathophysiological mechanisms governing the actions of estradiol during the menstrual cycle on food intake and energy expenditure and how estradiol acts with other weight-controlling molecules such as GLP-1. GLP-1 analogs have proven to be effective both to manage obesity and T2D in women. This review also highlights the relationship between steroid hormones and women's mental health. It explains how a decline or imbalance in estradiol levels affects insulin sensitivity in the brain. This can cause cerebral insulin resistance, which contributes to the development of conditions such as Parkinson's or Alzheimer's disease. The proper use of both estradiol and GLP-1 analogs can help to manage obesity and preserve an optimal mental health in women by reducing the mechanisms that trigger neurodegenerative disorders.
Collapse
Affiliation(s)
- Pilar Vigil
- Reproductive Health Research Institute (RHRI), Santiago, Chile
| | - Jaime Meléndez
- Reproductive Health Research Institute (RHRI), Santiago, Chile
| | - Grace Petkovic
- Arrowe Park Hospital, Department of Paediatrics, Wirral CH49 5PE, Merseyside, United Kingdom
| | - Juan Pablo Del Río
- Unidad de Psiquiatría Infantil y del Adolescente, Clínica Psiquiátrica Universitaria, Universidad de Chile, Santiago, Chile
- Millennium Nucleus to Improve the Mental Health of Adolescents and Youths, Millennium Science Initiative, Santiago, Chile
| |
Collapse
|
7
|
Ben Fradj S, Nédélec E, Salvi J, Fouesnard M, Huillet M, Pallot G, Cansell C, Sanchez C, Philippe C, Gigot V, Lemoine A, Trompier D, Henry T, Petrilli V, Py BF, Guillou H, Loiseau N, Ellero-Simatos S, Nahon JL, Rovère C, Grober J, Boudry G, Douard V, Benani A. Evidence for Constitutive Microbiota-Dependent Short-Term Control of Food Intake in Mice: Is There a Link with Inflammation, Oxidative Stress, Endotoxemia, and GLP-1? Antioxid Redox Signal 2022; 37:349-369. [PMID: 35166124 DOI: 10.1089/ars.2021.0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Aims: Although prebiotics, probiotics, and fecal transplantation can alter the sensation of hunger and/or feeding behavior, the role of the constitutive gut microbiota in the short-term regulation of food intake during normal physiology is still unclear. Results: An antibiotic-induced microbiota depletion study was designed to compare feeding behavior in conventional and microbiota-depleted mice. Tissues were sampled to characterize the time profile of microbiota-derived signals in mice during consumption of either standard or high-fat food for 1 h. Pharmacological and genetic tools were used to evaluate the contribution of postprandial endotoxemia and inflammatory responses in the short-term regulation of food intake. We observed constitutive microbial and macronutrient-dependent control of food intake at the time scale of a meal; that is, within 1 h of food introduction. Specifically, microbiota depletion increased food intake, and the microbiota-derived anorectic effect became significant during the consumption of high-fat but not standard food. This anorectic effect correlated with a specific postprandial microbial metabolic signature, and did not require postprandial endotoxemia or an NOD-, LRR-, and Pyrin domain-containing protein 3-inflammasome-mediated inflammatory response. Innovation and Conclusion: These findings show that the gut microbiota controls host appetite at the time scale of a meal under normal physiology. Interestingly, a microbiota-derived anorectic effect develops specifically with a high-fat meal, indicating that gut microbiota activity is involved in the satietogenic properties of foods. Antioxid. Redox Signal. 37, 349-369.
Collapse
Affiliation(s)
- Selma Ben Fradj
- CSGA, Centre des Sciences du Goût et de l'Alimentation, CNRS (UMR6265), INRAE (UMR1324), Institut Agro Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Emmanuelle Nédélec
- CSGA, Centre des Sciences du Goût et de l'Alimentation, CNRS (UMR6265), INRAE (UMR1324), Institut Agro Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Juliette Salvi
- CSGA, Centre des Sciences du Goût et de l'Alimentation, CNRS (UMR6265), INRAE (UMR1324), Institut Agro Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Mélanie Fouesnard
- Institut Micalis, INRAE (UMR1319), AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.,Institut NuMeCan, INRAE (UMR1341), INSERM (UMR1241), Université de Rennes 1, St-Gilles, France
| | - Marine Huillet
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse 3, INRAE (UMR1331), ENVT, INP-Purpan, Université Paul Sabatier, Toulouse, France
| | - Gaëtan Pallot
- Centre de Recherche Lipides, Nutrition, Cancer, INSERM (UMR1231), Institut Agro Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Céline Cansell
- IPMC, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS (UMR7275), Université Côte d'Azur, Valbonne, France
| | - Clara Sanchez
- IPMC, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS (UMR7275), Université Côte d'Azur, Valbonne, France
| | - Catherine Philippe
- Institut Micalis, INRAE (UMR1319), AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Vincent Gigot
- CSGA, Centre des Sciences du Goût et de l'Alimentation, CNRS (UMR6265), INRAE (UMR1324), Institut Agro Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Aleth Lemoine
- CSGA, Centre des Sciences du Goût et de l'Alimentation, CNRS (UMR6265), INRAE (UMR1324), Institut Agro Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Doriane Trompier
- CSGA, Centre des Sciences du Goût et de l'Alimentation, CNRS (UMR6265), INRAE (UMR1324), Institut Agro Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Thomas Henry
- CIRI, Centre International de Recherche en Infectiologie, Inserm (U1111), CNRS (UMR5308), ENS de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Virginie Petrilli
- Centre de Recherche en Cancérologie de Lyon, Inserm (U1052), CNRS (UMR5286), Université de Lyon 1, Lyon, France
| | - Benedicte F Py
- CIRI, Centre International de Recherche en Infectiologie, Inserm (U1111), CNRS (UMR5308), ENS de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Hervé Guillou
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse 3, INRAE (UMR1331), ENVT, INP-Purpan, Université Paul Sabatier, Toulouse, France
| | - Nicolas Loiseau
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse 3, INRAE (UMR1331), ENVT, INP-Purpan, Université Paul Sabatier, Toulouse, France
| | - Sandrine Ellero-Simatos
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse 3, INRAE (UMR1331), ENVT, INP-Purpan, Université Paul Sabatier, Toulouse, France
| | - Jean-Louis Nahon
- IPMC, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS (UMR7275), Université Côte d'Azur, Valbonne, France
| | - Carole Rovère
- IPMC, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS (UMR7275), Université Côte d'Azur, Valbonne, France
| | - Jacques Grober
- Centre de Recherche Lipides, Nutrition, Cancer, INSERM (UMR1231), Institut Agro Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Gaelle Boudry
- Institut NuMeCan, INRAE (UMR1341), INSERM (UMR1241), Université de Rennes 1, St-Gilles, France
| | - Véronique Douard
- Institut Micalis, INRAE (UMR1319), AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Alexandre Benani
- CSGA, Centre des Sciences du Goût et de l'Alimentation, CNRS (UMR6265), INRAE (UMR1324), Institut Agro Dijon, Université Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
8
|
Ciriello J, Moreau JM, Caverson MM, Moranis R. Leptin: A Potential Link Between Obstructive Sleep Apnea and Obesity. Front Physiol 2022; 12:767318. [PMID: 35153807 PMCID: PMC8829507 DOI: 10.3389/fphys.2021.767318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/17/2021] [Indexed: 12/02/2022] Open
Abstract
Chronic intermittent hypoxia (CIH), a pathophysiological manifestation of obstructive sleep apnea (OSA), is strongly correlated with obesity, as patients with the disease experience weight gain while exhibiting elevated plasma levels of leptin. This study was done to determine whether a relationship may exist between CIH and obesity, and body energy balance and leptin signaling during CIH. Sprague-Dawley rats were exposed to 96 days of CIH or normoxic control conditions, and were assessed for measures of body weight, food and water intake, and food conversion efficiency. At the completion of the study leptin sensitivity, locomotor activity, fat pad mass and plasma leptin levels were determined within each group. Additionally, the hypothalamic arcuate nucleus (ARC) was isolated and assessed for changes in the expression of proteins associated with leptin receptor signaling. CIH animals were found to have reduced locomotor activity and food conversion efficiency. Additionally, the CIH group had increased food and water intake over the study period and had a higher body weight compared to normoxic controls at the end of the study. Basal plasma concentrations of leptin were significantly elevated in CIH exposed animals. To test whether a resistance to leptin may have occurred in the CIH animals due to the elevated plasma levels of leptin, an acute exogenous (ip) leptin (0.04 mg/kg carrier-free recombinant rat leptin) injection was administered to the normoxic and CIH exposed animals. Leptin injections into the normoxic controls reduced their food intake, whereas CIH animals did not alter their food intake compared to vehicle injected CIH animals. Within ARC, CIH animals had reduced protein expression of the short form of the obese (leptin) receptor (isoform OBR100) and showed a trend toward an elevated protein expression of the long form of obese (leptin) receptor (OBRb). In addition, pro-opiomelanocortin (POMC) protein expression was reduced, but increased expression of the phosphorylated extracellular-signal-regulated kinase 1/2 (pERK1/2) and of the suppressor of cytokine signaling 3 (SOCS3) proteins was observed in the CIH group, with little change in phosphorylated signal transducer and activator of transcription 3 (pSTAT3). Taken together, these data suggest that long-term exposure to CIH, as seen in obstructive sleep apnea, may contribute to a state of leptin resistance promoting an increase in body weight.
Collapse
|
9
|
Andersson B, Tan EP, McGreal SR, Apte U, Hanover JA, Slawson C, Lagerlöf O. O-GlcNAc cycling mediates energy balance by regulating caloric memory. Appetite 2021; 165:105320. [PMID: 34029673 DOI: 10.1016/j.appet.2021.105320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/26/2022]
Abstract
Caloric need has long been thought a major driver of appetite. However, it is unclear whether caloric need regulates appetite in environments offered by many societies today where there is no shortage of food. Here we observed that wildtype mice with free access to food did not match calorie intake to calorie expenditure. While the size of a meal affected subsequent intake, there was no compensation for earlier under- or over-consumption. To test how spontaneous eating is subject to caloric control, we manipulated O-linked β-N-acetylglucosamine (O-GlcNAc), an energy signal inside cells dependent on nutrient access and metabolic hormones. Genetic and pharmacological manipulation in mice increasing or decreasing O-GlcNAcylation regulated daily intake by controlling meal size. Meal size was affected at least in part due to faster eating speed. Without affecting meal frequency, O-GlcNAc disrupted the effect of caloric consumption on future intake. Across days, energy balance was improved upon increased O-GlcNAc levels and impaired upon removal of O-GlcNAcylation. Rather than affecting a perceived need for calories, O-GlcNAc regulates how a meal affects future intake, suggesting that O-GlcNAc mediates a caloric memory and subsequently energy balance.
Collapse
Affiliation(s)
- Björn Andersson
- Department of Pediatric Surgery, Uppsala University Hospital, 75185, Uppsala, Sweden
| | - Ee Phie Tan
- Sanford Burnham Prebys Medical Discovery Institute, 92037, CA, USA
| | - Steven R McGreal
- Department of Pharmacology, Toxicology and Therapeutics, Kansas University, 66160, KS, USA
| | - Udayan Apte
- Department of Pharmacology, Toxicology and Therapeutics, Kansas University, 66160, KS, USA
| | - John A Hanover
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Health, 20892, MD, USA
| | - Chad Slawson
- Department of Biochemistry and Molecular Biology, Kansas University, 66160, KS, USA
| | - Olof Lagerlöf
- Department of Clinical Sciences, Umeå University, 901 87, Umeå, Sweden; Department of Integrative Medical Biology, Umeå University, 901 87, Umeå, Sweden; Wallenberg Centre for Molecular Medicine, Umeå University, 901 87, Umeå, Sweden.
| |
Collapse
|
10
|
Nuzzaci D, Cansell C, Liénard F, Nédélec E, Ben Fradj S, Castel J, Foppen E, Denis R, Grouselle D, Laderrière A, Lemoine A, Mathou A, Tolle V, Heurtaux T, Fioramonti X, Audinat E, Pénicaud L, Nahon JL, Rovère C, Benani A. Postprandial Hyperglycemia Stimulates Neuroglial Plasticity in Hypothalamic POMC Neurons after a Balanced Meal. Cell Rep 2021; 30:3067-3078.e5. [PMID: 32130907 DOI: 10.1016/j.celrep.2020.02.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 12/17/2019] [Accepted: 02/06/2020] [Indexed: 12/31/2022] Open
Abstract
Mechanistic studies in rodents evidenced synaptic remodeling in neuronal circuits that control food intake. However, the physiological relevance of this process is not well defined. Here, we show that the firing activity of anorexigenic POMC neurons located in the hypothalamus is increased after a standard meal. Postprandial hyperactivity of POMC neurons relies on synaptic plasticity that engages pre-synaptic mechanisms, which does not involve structural remodeling of synapses but retraction of glial coverage. These functional and morphological neuroglial changes are triggered by postprandial hyperglycemia. Chemogenetically induced glial retraction on POMC neurons is sufficient to increase POMC activity and modify meal patterns. These findings indicate that synaptic plasticity within the melanocortin system happens at the timescale of meals and likely contributes to short-term control of food intake. Interestingly, these effects are lost with a high-fat meal, suggesting that neuroglial plasticity of POMC neurons is involved in the satietogenic properties of foods.
Collapse
Affiliation(s)
- Danaé Nuzzaci
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Céline Cansell
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France
| | - Fabienne Liénard
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Emmanuelle Nédélec
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Selma Ben Fradj
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Julien Castel
- Unité "Biologie Fonctionnelle & Adaptative," CNRS, Université Paris Diderot, 75005 Paris, France
| | - Ewout Foppen
- Unité "Biologie Fonctionnelle & Adaptative," CNRS, Université Paris Diderot, 75005 Paris, France
| | - Raphael Denis
- Unité "Biologie Fonctionnelle & Adaptative," CNRS, Université Paris Diderot, 75005 Paris, France
| | - Dominique Grouselle
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, 75014 Paris, France
| | - Amélie Laderrière
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Aleth Lemoine
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Alexia Mathou
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Virginie Tolle
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, 75014 Paris, France
| | - Tony Heurtaux
- Luxembourg Center of Neuropathology, Department of Life Sciences and Medicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg
| | - Xavier Fioramonti
- Laboratoire NutriNeuro, INRA, Université de Bordeaux, 33076 Bordeaux, France
| | - Etienne Audinat
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Luc Pénicaud
- StromaLab, CNRS, EFS, INP-ENVT, INSERM, Université Paul Sabatier, 31100 Toulouse, France
| | - Jean-Louis Nahon
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France
| | - Carole Rovère
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France
| | - Alexandre Benani
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, 21000 Dijon, France.
| |
Collapse
|
11
|
Page AJ. Gastrointestinal Vagal Afferents and Food Intake: Relevance of Circadian Rhythms. Nutrients 2021; 13:nu13030844. [PMID: 33807524 PMCID: PMC7998414 DOI: 10.3390/nu13030844] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 01/20/2023] Open
Abstract
Gastrointestinal vagal afferents (VAs) play an important role in food intake regulation, providing the brain with information on the amount and nutrient composition of a meal. This is processed, eventually leading to meal termination. The response of gastric VAs, to food-related stimuli, is under circadian control and fluctuates depending on the time of day. These rhythms are highly correlated with meal size, with a nadir in VA sensitivity and increase in meal size during the dark phase and a peak in sensitivity and decrease in meal size during the light phase in mice. These rhythms are disrupted in diet-induced obesity and simulated shift work conditions and associated with disrupted food intake patterns. In diet-induced obesity the dampened responses during the light phase are not simply reversed by reverting back to a normal diet. However, time restricted feeding prevents loss of diurnal rhythms in VA signalling in high fat diet-fed mice and, therefore, provides a potential strategy to reset diurnal rhythms in VA signalling to a pre-obese phenotype. This review discusses the role of the circadian system in the regulation of gastrointestinal VA signals and the impact of factors, such as diet-induced obesity and shift work, on these rhythms.
Collapse
Affiliation(s)
- Amanda J. Page
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia; ; Tel.: +61-8-8128-4840
- Nutrition, Diabetes and Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institution (SAHMRI), Adelaide, SA 5000, Australia
| |
Collapse
|
12
|
Gendron WH, Fertan E, Pelletier S, Roddick KM, O'Leary TP, Anini Y, Brown RE. Age related weight loss in female 5xFAD mice from 3 to 12 months of age. Behav Brain Res 2021; 406:113214. [PMID: 33677013 DOI: 10.1016/j.bbr.2021.113214] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/04/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023]
Abstract
In addition to cognitive decline, patients with Alzheimer's disease (AD) exhibit sensory, motor, and neuropsychiatric deficits. Many AD patients also show weight loss, suggesting that AD may involve a metabolic syndrome. The 5xFAD mouse model shows age-related weight loss compared to wildtype controls, and thus may exhibit metabolic dysfunction. This longitudinal study measured age-related weight loss in female 5xFAD and B6SJL/JF2 wild-type mice from 3 to 12 months of age, and examines some of the behavioural and physiological phenotypes in these mice that have been proposed to contribute to this weight loss. Because some mice had to be singly housed during the study, we also examined genotype by housing interactions. The 5xFAD mice weighed less and ate less than WT littermates starting at 6 months of age, exhibited less home cage activity, had higher frailty scores, less white adipose tissue, and lower leptin expression. At 9 and 12 months of age, heavier 5xFAD mice performed better on the rotarod, suggesting that metabolic deficits which begin between 6 and 9 months of age may exacerbate the behavioural deficits in 5xFAD mice. These results indicate that the 5xFAD mouse is a useful model to study the behavioural and metabolic changes in AD.
Collapse
Affiliation(s)
- William H Gendron
- Departments of Psychology and Neuroscience, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Emre Fertan
- Departments of Psychology and Neuroscience, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Stephanie Pelletier
- Departments of Psychology and Neuroscience, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Kyle M Roddick
- Departments of Psychology and Neuroscience, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Timothy P O'Leary
- Departments of Psychology and Neuroscience, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Younes Anini
- Departments of Physiology and Biophysics, Halifax, Nova Scotia, B3H 4R2, Canada; Departments of Obstetrics and Gynecology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Richard E Brown
- Departments of Psychology and Neuroscience, Halifax, Nova Scotia, B3H 4R2, Canada; Departments of Physiology and Biophysics, Halifax, Nova Scotia, B3H 4R2, Canada.
| |
Collapse
|
13
|
Rathod YD, Di Fulvio M. The feeding microstructure of male and female mice. PLoS One 2021; 16:e0246569. [PMID: 33539467 PMCID: PMC7861458 DOI: 10.1371/journal.pone.0246569] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/21/2021] [Indexed: 11/19/2022] Open
Abstract
The feeding pattern and control of energy intake in mice housed in groups are poorly understood. Here, we determined and quantified the normal feeding microstructure of social male and female mice of the C57BL/6J genetic background fed a chow diet. Mice at 10w, 20w and 30w of age showed the expected increase in lean and fat mass, being the latter more pronounced and variable in males than in females. Under ad libitum conditions, 20w and 30w old females housed in groups showed significantly increased daily energy intake when adjusted to body weight relative to age-matched males. This was the combined result of small increases in energy intake during the nocturnal and diurnal photoperiods of the day without major changes in the circadian pattern of energy intake or spontaneous ambulatory activity. The analysis of the feeding microstructure suggests sex- and age-related contributions of meal size, meal frequency and intermeal interval to the control of energy intake under stable energy balance, but not under negative energy balance imposed by prolonged fasting. During the night, 10-20w old females ate less frequently bigger meals and spent more time eating them resulting in reduced net energy intake relative to age-matched males. In addition, male and female mice at all ages tested significantly shortened the intermeal interval during the first hours of re-feeding in response to fasting without affecting meal size. Further, 20-30w old males lengthened their intermeal interval as re-feeding time increased to reach fed-levels faster than age-matched females. Collectively, our results suggest that the physiological mechanisms controlling meal size (satiation) and the non-eating time spent between meals (satiety) during stable or negative energy balance are regulated in a sex- and age-dependent manner in social mice.
Collapse
Affiliation(s)
- Yakshkumar Dilipbhai Rathod
- Department of Pharmacology and Toxicology, School of Medicine, Wright State University, Dayton, OH, United States of America
| | - Mauricio Di Fulvio
- Department of Pharmacology and Toxicology, School of Medicine, Wright State University, Dayton, OH, United States of America
| |
Collapse
|
14
|
Biddinger JE, Lazarenko RM, Scott MM, Simerly R. Leptin suppresses development of GLP-1 inputs to the paraventricular nucleus of the hypothalamus. eLife 2020; 9:59857. [PMID: 33206596 PMCID: PMC7673779 DOI: 10.7554/elife.59857] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023] Open
Abstract
The nucleus of the solitary tract (NTS) is critical for the central integration of signals from visceral organs and contains preproglucagon (PPG) neurons, which express leptin receptors in the mouse and send direct projections to the paraventricular nucleus of the hypothalamus (PVH). Here, we visualized projections of PPG neurons in leptin-deficient Lepob/ob mice and found that projections from PPG neurons are elevated compared with controls, and PPG projections were normalized by targeted rescue of leptin receptors in LepRbTB/TB mice, which lack functional neuronal leptin receptors. Moreover, Lepob/ob and LepRbTB/TB mice displayed increased levels of neuronal activation in the PVH following vagal stimulation, and whole-cell patch recordings of GLP-1 receptor-expressing PVH neurons revealed enhanced excitatory neurotransmission, suggesting that leptin acts cell autonomously to suppress representation of excitatory afferents from PPG neurons, thereby diminishing the impact of visceral sensory information on GLP-1 receptor-expressing neurons in the PVH.
Collapse
Affiliation(s)
- Jessica E Biddinger
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, United States
| | - Roman M Lazarenko
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, United States
| | - Michael M Scott
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, United States
| | - Richard Simerly
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, United States
| |
Collapse
|
15
|
Abstract
Feeding, which is essential for all animals, is regulated by homeostatic mechanisms. In addition, food consumption is temporally coordinated by the brain over the circadian (~24 h) cycle. A network of circadian clocks set daily windows during which food consumption can occur. These daily windows mostly overlap with the active phase. Brain clocks that ensure the circadian control of food intake include a master light-entrainable clock in the suprachiasmatic nuclei of the hypothalamus and secondary clocks in hypothalamic and brainstem regions. Metabolic hormones, circulating nutrients and visceral neural inputs transmit rhythmic cues that permit (via close and reciprocal molecular interactions that link metabolic processes and circadian clockwork) brain and peripheral organs to be synchronized to feeding time. As a consequence of these complex interactions, growing evidence shows that chronodisruption and mistimed eating have deleterious effects on metabolic health. Conversely, eating, even eating an unbalanced diet, during the normal active phase reduces metabolic disturbances. Therefore, in addition to energy intake and dietary composition, appropriately timed meal patterns are critical to prevent circadian desynchronization and limit metabolic risks. This Review provides insight into the dual modulation of food intake by homeostatic and circadian processes, describes the mechanisms regulating feeding time and highlights the beneficial effects of correctly timed eating, as opposed to the negative metabolic consequences of mistimed eating.
Collapse
Affiliation(s)
- Etienne Challet
- Circadian clocks and metabolism team, Institute of Cellular and Integrative Neurosciences, Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, Strasbourg, France.
| |
Collapse
|
16
|
Ciullo DL, Dotson CD. Using Animal Models to Determine the Role of Gustatory Neural Input in the Control of Ingestive Behavior and the Maintenance of Body Weight. CHEMOSENS PERCEPT 2015; 8:61-77. [PMID: 26557212 PMCID: PMC4636125 DOI: 10.1007/s12078-015-9190-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Decades of research have suggested that nutritional intake contributes to the development of human disease, mainly by influencing the development of obesity and obesity-related conditions. A relatively large body of research indicates that functional variation in human taste perception can influence nutritional intake as well as body mass accumulation. However, there are a considerable number of studies that suggest that no link between these variables actually exists. These discrepancies in the literature likely result from the confounding influence of a variety of other, uncontrolled, factors that can influence ingestive behavior. STRATEGY In this review, the use of controlled animal experimentation to alleviate at least some of these issues related to the lack of control of experimental variables is discussed. Specific examples of the use of some of these techniques are examined. DISCUSSION AND CONCLUSIONS The review will close with some specific suggestions aimed at strengthening the link between gustatory neural input and its putative influence on ingestive behaviors and the maintenance of body weight.
Collapse
Affiliation(s)
- Dana L Ciullo
- Departments of Neuroscience and Psychiatry, Division of Addiction Medicine, University of Florida College of Medicine, and Center for Smell and Taste, University of Florida, Gainesville, FL 32611, USA,
| | - Cedrick D Dotson
- Departments of Neuroscience and Psychiatry, Division of Addiction Medicine, University of Florida College of Medicine, and Center for Smell and Taste, University of Florida, Gainesville, FL 32611, USA,
| |
Collapse
|
17
|
Obici S, Magrisso IJ, Ghazarian AS, Shirazian A, Miller JR, Loyd CM, Begg DP, Krawczewski Carhuatanta KA, Haas MK, Davis JF, Woods SC, Sandoval DA, Seeley RJ, Goodyear LJ, Pothos EN, Mul JD. Moderate voluntary exercise attenuates the metabolic syndrome in melanocortin-4 receptor-deficient rats showing central dopaminergic dysregulation. Mol Metab 2015; 4:692-705. [PMID: 26500841 PMCID: PMC4588435 DOI: 10.1016/j.molmet.2015.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 07/07/2015] [Accepted: 07/09/2015] [Indexed: 01/12/2023] Open
Abstract
Objective Melanocortin-4 receptors (MC4Rs) are highly expressed by dopamine-secreting neurons of the mesolimbic tract, but their functional role has not been fully resolved. Voluntary wheel running (VWR) induces adaptations in the mesolimbic dopamine system and has a myriad of long-term beneficial effects on health. In the present experiments we asked whether MC4R function regulates the effects of VWR, and whether VWR ameliorates MC4R-associated symptoms of the metabolic syndrome. Methods Electrically evoked dopamine release was measured in slice preparations from sedentary wild-type and MC4R-deficient Mc4rK314X (HOM) rats. VWR was assessed in wild-type and HOM rats, and in MC4R-deficient loxTBMc4r mice, wild-type mice body weight-matched to loxTBMc4r mice, and wild-type mice with intracerebroventricular administration of the MC4R antagonist SHU9119. Mesolimbic dopamine system function (gene/protein expression) and metabolic parameters were examined in wheel-running and sedentary wild-type and HOM rats. Results Sedentary obese HOM rats had increased electrically evoked dopamine release in several ventral tegmental area (VTA) projection sites compared to wild-type controls. MC4R loss-of-function decreased VWR, and this was partially independent of body weight. HOM wheel-runners had attenuated markers of intracellular D1-type dopamine receptor signaling despite increased dopamine flux in the VTA. VWR increased and decreased ΔFosB levels in the nucleus accumbens (NAc) of wild-type and HOM runners, respectively. VWR improved metabolic parameters in wild-type wheel-runners. Finally, moderate voluntary exercise corrected many aspects of the metabolic syndrome in HOM runners. Conclusions Central dopamine dysregulation during VWR reinforces the link between MC4R function and molecular and behavioral responding to rewards. The data also suggest that exercise can be a successful lifestyle intervention in MC4R-haploinsufficient individuals despite reduced positive reinforcement during exercise training. MC4R-deficiency causes metabolic syndrome. Loss of MC4R signaling decreases voluntary wheel running (VWR). Despite moderate amounts of VWR, MC4R-associated metabolic syndrome is severely attenuated. MC4R-deficiency is associated with mesolimbic dopamine dysregulation during VWR.
Collapse
Affiliation(s)
- Silvana Obici
- Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH, USA
| | - I Jack Magrisso
- Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH, USA
| | - Armen S Ghazarian
- Programs in Pharmacology and Experimental Therapeutics and Neuroscience, Sackler School of Graduate Biomedical Sciences and Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA
| | - Alireza Shirazian
- Programs in Pharmacology and Experimental Therapeutics and Neuroscience, Sackler School of Graduate Biomedical Sciences and Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA
| | - Jonas R Miller
- Programs in Pharmacology and Experimental Therapeutics and Neuroscience, Sackler School of Graduate Biomedical Sciences and Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA
| | - Christine M Loyd
- Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH, USA
| | - Denovan P Begg
- Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH, USA ; School of Psychology, UNSW Australia, Sydney, NSW, Australia
| | | | - Michael K Haas
- Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH, USA
| | - Jon F Davis
- Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH, USA
| | - Stephen C Woods
- Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH, USA
| | - Darleen A Sandoval
- North Campus Research Complex, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Randy J Seeley
- North Campus Research Complex, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | | | - Emmanuel N Pothos
- Programs in Pharmacology and Experimental Therapeutics and Neuroscience, Sackler School of Graduate Biomedical Sciences and Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA
| | - Joram D Mul
- Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH, USA ; Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Dopamine release in the lateral hypothalamus is stimulated by α-MSH in both the anticipatory and consummatory phases of feeding. Psychoneuroendocrinology 2015; 56:79-87. [PMID: 25805178 DOI: 10.1016/j.psyneuen.2015.02.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 02/24/2015] [Accepted: 02/24/2015] [Indexed: 12/14/2022]
Abstract
α-Melanocyte-stimulating hormone (α-MSH), is a hypothalamic neuropeptide signaling satiation, but it is not known if α-MSH may stimulate dopamine release in a feeding control brain region of the lateral hypothalamic area (LHA), during the anticipatory and consummatory phases of feeding behavior. To address these questions, dynamics of dopamine release were measured in 15 min microdialysis samples simultaneously from the LHA and the nucleus accumbens (NAc) during consecutive exposure and provision of food and 1% sucrose in Wistar rats after overnight food deprivation. α-MSH was infused via the microdialysis probe either into the LHA or NAc starting before food exposure. Food, sucrose and water intakes were automatically monitored and analyzed concomitantly with microdialysis samples. We found that LHA-α-MSH-infused rats stopped eating earlier and consumed less food and sucrose as compared to control and NAc-α-MSH-infused rats. Exposure to food produced a peak of LHA dopamine in both LHA-α-MSH and NAc-α-MSH-infused rats but not in the controls. During food provision, LHA dopamine levels were strongly elevated in LHA-α-MSH infused rats, while delivery of α-MSH into the NAc induced a less intense increase of dopamine in both NAc and LHA. In all rats, LHA dopamine levels correlated inversely with sucrose intake. In conclusion, our study showed that α-MSH stimulates dopamine release in the LHA during both the anticipatory and consummatory phases of feeding, decreases food intake and inhibits sucrose intake. These data suggest that LHA dopamine release can be involved in α-MSH anorexigenic effects.
Collapse
|
19
|
Bacterial ClpB heat-shock protein, an antigen-mimetic of the anorexigenic peptide α-MSH, at the origin of eating disorders. Transl Psychiatry 2014; 4:e458. [PMID: 25290265 PMCID: PMC4350527 DOI: 10.1038/tp.2014.98] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/13/2014] [Accepted: 08/21/2014] [Indexed: 12/12/2022] Open
Abstract
The molecular mechanisms at the origin of eating disorders (EDs), including anorexia nervosa (AN), bulimia and binge-eating disorder (BED), are currently unknown. Previous data indicated that immunoglobulins (Igs) or autoantibodies (auto-Abs) reactive with α-melanocyte-stimulating hormone (α-MSH) are involved in regulation of feeding and emotion; however, the origin of such auto-Abs is unknown. Here, using proteomics, we identified ClpB heat-shock disaggregation chaperone protein of commensal gut bacteria Escherichia coli as a conformational antigen mimetic of α-MSH. We show that ClpB-immunized mice produce anti-ClpB IgG crossreactive with α-MSH, influencing food intake, body weight, anxiety and melanocortin receptor 4 signaling. Furthermore, chronic intragastric delivery of E. coli in mice decreased food intake and stimulated formation of ClpB- and α-MSH-reactive antibodies, while ClpB-deficient E. coli did not affect food intake or antibody levels. Finally, we show that plasma levels of anti-ClpB IgG crossreactive with α-MSH are increased in patients with AN, bulimia and BED, and that the ED Inventory-2 scores in ED patients correlate with anti-ClpB IgG and IgM, which is similar to our previous findings for α-MSH auto-Abs. In conclusion, this work shows that the bacterial ClpB protein, which is present in several commensal and pathogenic microorganisms, can be responsible for the production of auto-Abs crossreactive with α-MSH, associated with altered feeding and emotion in humans with ED. Our data suggest that ClpB-expressing gut microorganisms might be involved in the etiology of EDs.
Collapse
|
20
|
Bechtold DA, Loudon AS. Hypothalamic clocks and rhythms in feeding behaviour. Trends Neurosci 2013; 36:74-82. [DOI: 10.1016/j.tins.2012.12.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 12/16/2012] [Indexed: 01/23/2023]
|
21
|
Diacylglycerol acyltransferase-1 (DGAT1) inhibition perturbs postprandial gut hormone release. PLoS One 2013; 8:e54480. [PMID: 23336002 PMCID: PMC3545956 DOI: 10.1371/journal.pone.0054480] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 12/12/2012] [Indexed: 12/27/2022] Open
Abstract
Diacylglycerol acyltransferase-1 (DGAT1) is a potential therapeutic target for treatment of obesity and related metabolic diseases. However, the degree of DGAT1 inhibition required for metabolic benefits is unclear. Here we show that partial DGAT1 deficiency in mice suppressed postprandial triglyceridemia, led to elevations in glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) only following meals with very high lipid content, and did not protect from diet-induced obesity. Maximal DGAT1 inhibition led to enhanced GLP-1 and PYY secretion following meals with physiologically relevant lipid content. Finally, combination of DGAT1 inhibition with dipeptidyl-peptidase-4 (DPP-4) inhibition led to further enhancements in active GLP-1 in mice and dogs. The current study suggests that targeting DGAT1 to enhance postprandial gut hormone secretion requires maximal inhibition, and suggests combination with DPP-4i as a potential strategy to develop DGAT1 inhibitors for treatment of metabolic diseases.
Collapse
|
22
|
Fox EA, Biddinger JE, Jones KR, McAdams J, Worman A. Mechanism of hyperphagia contributing to obesity in brain-derived neurotrophic factor knockout mice. Neuroscience 2012; 229:176-99. [PMID: 23069761 DOI: 10.1016/j.neuroscience.2012.09.078] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 09/28/2012] [Accepted: 09/28/2012] [Indexed: 10/27/2022]
Abstract
Global-heterozygous and brain-specific homozygous knockouts (KOs) of brain-derived neurotrophic factor (BDNF) cause late- and early-onset obesity, respectively, both involving hyperphagia. Little is known about the mechanism underlying this hyperphagia or whether BDNF loss from peripheral tissues could contribute to overeating. Since global-homozygous BDNF-KO is perinatal lethal, a BDNF-KO that spared sufficient brainstem BDNF to support normal health was utilized to begin to address these issues. Meal pattern and microstructure analyses suggested overeating of BDNF-KO mice was mediated by deficits in both satiation and satiety that resulted in increased meal size and frequency and implicated a reduction of vagal signaling from the gut to the brain. Meal-induced c-Fos activation in the nucleus of the solitary tract, a more direct measure of vagal afferent signaling, however, was not decreased in BDNF-KO mice, and thus was not consistent with a vagal afferent role. Interestingly though, meal-induced c-Fos activation was increased in the dorsal motor nucleus of the vagus nerve (DMV) of BDNF-KO mice. This could imply that augmentation of vago-vagal digestive reflexes occurred (e.g., accommodation), which would support increased meal size and possibly increased meal number by reducing the increase in intragastric pressure produced by a given amount of ingesta. Additionally, vagal sensory neuron number in BDNF-KO mice was altered in a manner consistent with the increased meal-induced activation of the DMV. These results suggest reduced BDNF causes satiety and satiation deficits that support hyperphagia, possibly involving augmentation of vago-vagal reflexes mediated by central pathways or vagal afferents regulated by BDNF levels.
Collapse
Affiliation(s)
- E A Fox
- Behavioral Neurogenetics Laboratory, Department of Psychological Sciences, Purdue University, West Lafayette, IN 47907, USA.
| | | | | | | | | |
Collapse
|
23
|
Stengel A, Goebel-Stengel M, Wang L, Kato I, Mori M, Taché Y. Nesfatin-1(30-59) but not the N- and C-terminal fragments, nesfatin-1(1-29) and nesfatin-1(60-82) injected intracerebroventricularly decreases dark phase food intake by increasing inter-meal intervals in mice. Peptides 2012; 35:143-8. [PMID: 22682899 PMCID: PMC3372867 DOI: 10.1016/j.peptides.2012.03.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 03/16/2012] [Accepted: 03/17/2012] [Indexed: 12/28/2022]
Abstract
Nesfatin-1 is an 82 amino acid N-terminal fragment of nucleobindin2 that was consistently shown to reduce dark phase food intake upon brain injection in rodents. We recently reported that nesfatin-1(1-82) injected intracerebroventricularly (icv) reduces dark phase feeding in mice. Moreover, intraperitoneal injection of mid-fragment nesfatin-1 (nesfatin-1(30-59)) mimics the food intake-reducing effects of nesfatin-1(1-82), whereas N-terminal (nesfatin-1(1-29)) and C-terminal fragments (nesfatin-1(60-82)) did not. We therefore characterized the structure-activity relationship of nesfatin-1 injected icv to influence the dark phase meal pattern in mice. Mouse nesfatin-1(1-29), nesfatin-1(30-59), nesfatin-1(60-82) or vehicle was injected icv in freely fed C57Bl/6 mice immediately before the dark phase and food intake was monitored using an automated episodic feeding monitoring system. Nesfatin-1(30-59) (0.1, 0.3, 0.9 nmol/mouse) induced a dose-related reduction of 4-h food intake by 28%, 49% and 49% respectively resulting in a 23% decreased cumulative 24-h food intake compared to vehicle at the 0.3 nmol/mouse dose (p<0.05). The peak reduction occurred during the 3rd (-96%) and 4th hour (-91%) post injection and was associated with a reduced meal frequency (0-4h: -47%) and prolonged inter-meal intervals (3.1-times) compared to vehicle (p<0.05), whereas meal size was not altered. In contrast, neither nesfatin-1(1-29) nor nesfatin-1(60-82) reduced dark phase food intake at equimolar doses although nesfatin-1(60-82) prolonged inter-meal intervals (1.7-times, p<0.05). Nesfatin-1(30-59) is the active core of nesfatin-1(1-82) to induce satiety indicated by a reduced meal number during the first 4h post injection. The delayed onset may be indicative of time required to modulate other hypothalamic and medullary networks regulating nocturnal feeding as established for nesfatin-1.
Collapse
Affiliation(s)
- Andreas Stengel
- CURE/Digestive Diseases Research Center, Center for Neurobiology of Stress, Digestive Diseases Division, Department of Medicine, University of California Los Angeles and Veteran Affaires Greater Los Angeles Healthcare System, Los Angeles, CA USA
- Department of Medicine, Obesity Center Berlin, Division Psychosomatic Medicine; Charité Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Miriam Goebel-Stengel
- CURE/Digestive Diseases Research Center, Center for Neurobiology of Stress, Digestive Diseases Division, Department of Medicine, University of California Los Angeles and Veteran Affaires Greater Los Angeles Healthcare System, Los Angeles, CA USA
- Department of Internal Medicine, Institute of Neurogastroenterology and Motility; Martin-Luther Hospital, Academic Teaching Institution of Charité – University Medical Center, Berlin, Germany
| | - Lixin Wang
- CURE/Digestive Diseases Research Center, Center for Neurobiology of Stress, Digestive Diseases Division, Department of Medicine, University of California Los Angeles and Veteran Affaires Greater Los Angeles Healthcare System, Los Angeles, CA USA
| | - Ikuo Kato
- Department of Bioorganic Chemistry, Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa, Japan
| | - Masatomo Mori
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yvette Taché
- CURE/Digestive Diseases Research Center, Center for Neurobiology of Stress, Digestive Diseases Division, Department of Medicine, University of California Los Angeles and Veteran Affaires Greater Los Angeles Healthcare System, Los Angeles, CA USA
| |
Collapse
|
24
|
McAllan L, Cotter PD, Roche HM, Korpela R, Nilaweera KN. Impact of leucine on energy balance. J Physiol Biochem 2012; 69:155-63. [PMID: 22535285 DOI: 10.1007/s13105-012-0170-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 04/10/2012] [Indexed: 12/14/2022]
Abstract
Body weight is determined by the balance between energy intake and energy expenditure. When energy intake exceeds energy expenditure, the surplus energy is stored as fat in the adipose tissue, which causes its expansion and may even lead to the development of obesity. Thus, there is a growing interest to develop dietary interventions that could reduce the current obesity epidemic. In this regard, data from a number of in vivo and in vitro studies suggest that the branched-chain amino acid leucine influences energy balance. However, this has not been consistently reported. Here, we review the literature related to the effects of leucine on energy intake, energy expenditure and lipid metabolism as well as its effects on the cellular activity in the brain (hypothalamus) and in peripheral tissues (gastro-intestinal tract, adipose tissue, liver and muscle) regulating the above physiological processes. Moreover, we discuss how obesity may influence the actions of this amino acid.
Collapse
Affiliation(s)
- Liam McAllan
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | | | | | | | | |
Collapse
|
25
|
Lin HV, Frassetto A, Kowalik EJ, Nawrocki AR, Lu MM, Kosinski JR, Hubert JA, Szeto D, Yao X, Forrest G, Marsh DJ. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS One 2012; 7:e35240. [PMID: 22506074 PMCID: PMC3323649 DOI: 10.1371/journal.pone.0035240] [Citation(s) in RCA: 851] [Impact Index Per Article: 70.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 03/10/2012] [Indexed: 12/14/2022] Open
Abstract
Short-chain fatty acids (SCFAs), primarily acetate, propionate, and butyrate, are metabolites formed by gut microbiota from complex dietary carbohydrates. Butyrate and acetate were reported to protect against diet-induced obesity without causing hypophagia, while propionate was shown to reduce food intake. However, the underlying mechanisms for these effects are unclear. It was suggested that SCFAs may regulate gut hormones via their endogenous receptors Free fatty acid receptors 2 (FFAR2) and 3 (FFAR3), but direct evidence is lacking. We examined the effects of SCFA administration in mice, and show that butyrate, propionate, and acetate all protected against diet-induced obesity and insulin resistance. Butyrate and propionate, but not acetate, induce gut hormones and reduce food intake. As FFAR3 is the common receptor activated by butyrate and propionate, we examined these effects in FFAR3-deficient mice. The effects of butyrate and propionate on body weight and food intake are independent of FFAR3. In addition, FFAR3 plays a minor role in butyrate stimulation of Glucagon-like peptide-1, and is not required for butyrate- and propionate-dependent induction of Glucose-dependent insulinotropic peptide. Finally, FFAR3-deficient mice show normal body weight and glucose homeostasis. Stimulation of gut hormones and food intake inhibition by butyrate and propionate may represent a novel mechanism by which gut microbiota regulates host metabolism. These effects are largely intact in FFAR3-deficient mice, indicating additional mediators are required for these beneficial effects.
Collapse
Affiliation(s)
- Hua V Lin
- Diabetes and In Vivo Pharmacology, Merck Research Laboratories, Rahway, New Jersey, United States of America.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Lin HV, Frassetto A, Kowalik EJ, Nawrocki AR, Lu MM, Kosinski JR, Hubert JA, Szeto D, Yao X, Forrest G, Marsh DJ. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS One 2012. [PMID: 22506074 DOI: 10.1371/journal.pone.0035240pone-d-11-22997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Short-chain fatty acids (SCFAs), primarily acetate, propionate, and butyrate, are metabolites formed by gut microbiota from complex dietary carbohydrates. Butyrate and acetate were reported to protect against diet-induced obesity without causing hypophagia, while propionate was shown to reduce food intake. However, the underlying mechanisms for these effects are unclear. It was suggested that SCFAs may regulate gut hormones via their endogenous receptors Free fatty acid receptors 2 (FFAR2) and 3 (FFAR3), but direct evidence is lacking. We examined the effects of SCFA administration in mice, and show that butyrate, propionate, and acetate all protected against diet-induced obesity and insulin resistance. Butyrate and propionate, but not acetate, induce gut hormones and reduce food intake. As FFAR3 is the common receptor activated by butyrate and propionate, we examined these effects in FFAR3-deficient mice. The effects of butyrate and propionate on body weight and food intake are independent of FFAR3. In addition, FFAR3 plays a minor role in butyrate stimulation of Glucagon-like peptide-1, and is not required for butyrate- and propionate-dependent induction of Glucose-dependent insulinotropic peptide. Finally, FFAR3-deficient mice show normal body weight and glucose homeostasis. Stimulation of gut hormones and food intake inhibition by butyrate and propionate may represent a novel mechanism by which gut microbiota regulates host metabolism. These effects are largely intact in FFAR3-deficient mice, indicating additional mediators are required for these beneficial effects.
Collapse
Affiliation(s)
- Hua V Lin
- Diabetes and In Vivo Pharmacology, Merck Research Laboratories, Rahway, New Jersey, United States of America.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|