1
|
Ivanova N, Atanasova M, Terzieva D, Georgieva K, Tchekalarova J. The Role of Piromelatine on Peripheral and Hippocampal Insulin Resistance in Rat Offspring Exposed to Chronic Maternal Stress. Int J Mol Sci 2024; 25:7022. [PMID: 39000130 PMCID: PMC11241293 DOI: 10.3390/ijms25137022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Prenatal stress (PNS), which alters the hypothalamic-pituitary-adrenal axis function in the offspring, predisposes to insulin resistance (IR) in later life and is associated with numerous disorders, including cognitive and memory impairments. At present, our main goal is to assess the effects of chronic piromelatine (Pir) administration, a melatonin analogue, on PNS-provoked IR in the periphery and the hippocampus in male and female offspring. Pregnant Sprague-Dawley rats were exposed to chronic stress (one short-term stressor on a daily basis and one long-term stressor on a nightly basis) from the first gestation week until birth. Vehicle or Pir 20 mg/kg were administered intraperitoneally for 21 days. Plasma glucose, serum insulin levels, and the homeostasis model assessment of insulin resistance (HOMA-IR) were determined as markers of peripheral IR. For the hippocampal IR assessment, insulin receptors (IRs) and glucose transporter 4 (GLUT4) were examined. Prenatally stressed offspring of both sexes indicated enhanced plasma glucose and serum insulin concentrations, increased HOMA-IR, and decreased hippocampal GLUT4 only in male rats. The PNS-induced changes were corrected by chronic treatment with Pir. The present results suggest that the melatoninergic compound Pir exerts beneficial effects on altered glucose/insulin homeostasis in PNS-exposed offspring.
Collapse
Affiliation(s)
- Natasha Ivanova
- Institute of Neurobiology, Bulgarian Academy of Sciences (BAS), 1113 Sofia, Bulgaria
| | - Milena Atanasova
- Department of Biology, Medical University of Pleven, 5800 Pleven, Bulgaria;
| | - Dora Terzieva
- Department of Clinical Laboratory, Medical Faculty, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Katerina Georgieva
- Department of Physiology, Medical University of Plovdiv, 5800 Pleven, Bulgaria;
| | - Jana Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences (BAS), 1113 Sofia, Bulgaria
| |
Collapse
|
2
|
Guo C, He J, Deng X, Wang D, Yuan G. Potential therapeutic value of melatonin in diabetic nephropathy: improvement beyond anti-oxidative stress. Arch Physiol Biochem 2023; 129:1250-1261. [PMID: 34048666 DOI: 10.1080/13813455.2021.1933539] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 05/18/2021] [Indexed: 12/23/2022]
Abstract
Diabetic nephropathy (DN) is a common complication of diabetes, and it is also the main cause of chronic renal failure. Physiological/pathological changes mediated by high glucose are the main factors causing injury of DN, including the enhancement of polyol pathway, the accumulation of advanced glycation products (AGEs), and the activation of protein kinase C (PKC) and transforming growth factor-β (TGF-β) signals. In addition, the abnormal activation of renin-angiotensin system (RAS) and oxidative stress are also involved. Melatonin is a physiological hormone mainly secreted by the pineal gland which has been proved to be related to diabetes. Studies have shown that exogenous melatonin intervention can reduce blood glucose and alleviate high glucose mediated pathological damage. At the same time, melatonin also has a strong antioxidant effect, and can inhibit the activation of RAS. Therefore, it is of great significance to explore the therapeutic effect and value of melatonin on DN.
Collapse
Affiliation(s)
- Chang Guo
- Department of Nephrology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jianqiang He
- Department of Nephrology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xia Deng
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Dong Wang
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Guoyue Yuan
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
3
|
Robbins M. Therapies for Tau-associated neurodegenerative disorders: targeting molecules, synapses, and cells. Neural Regen Res 2023; 18:2633-2637. [PMID: 37449601 PMCID: PMC10358644 DOI: 10.4103/1673-5374.373670] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/14/2023] [Accepted: 03/15/2023] [Indexed: 07/18/2023] Open
Abstract
Advances in experimental and computational technologies continue to grow rapidly to provide novel avenues for the treatment of neurodegenerative disorders. Despite this, there remain only a handful of drugs that have shown success in late-stage clinical trials for Tau-associated neurodegenerative disorders. The most commonly prescribed treatments are symptomatic treatments such as cholinesterase inhibitors and N-methyl-D-aspartate receptor blockers that were approved for use in Alzheimer's disease. As diagnostic screening can detect disorders at earlier time points, the field needs pre-symptomatic treatments that can prevent, or significantly delay the progression of these disorders (Koychev et al., 2019). These approaches may be different from late-stage treatments that may help to ameliorate symptoms and slow progression once symptoms have become more advanced should early diagnostic screening fail. This mini-review will highlight five key avenues of academic and industrial research for identifying therapeutic strategies to treat Tau-associated neurodegenerative disorders. These avenues include investigating (1) the broad class of chemicals termed "small molecules"; (2) adaptive immunity through both passive and active antibody treatments; (3) innate immunity with an emphasis on microglial modulation; (4) synaptic compartments with the view that Tau-associated neurodegenerative disorders are synaptopathies. Although this mini-review will focus on Alzheimer's disease due to its prevalence, it will also argue the need to target other tauopathies, as through understanding Alzheimer's disease as a Tau-associated neurodegenerative disorder, we may be able to generalize treatment options. For this reason, added detail linking back specifically to Tau protein as a direct therapeutic target will be added to each topic.
Collapse
Affiliation(s)
- Miranda Robbins
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Ave, Trumpington, Cambridge, UK; University of Cambridge, Department of Zoology, Cambridge, UK
| |
Collapse
|
4
|
Sex-Dependent Effect of Chronic Piromelatine Treatment on Prenatal Stress-Induced Memory Deficits in Rats. Int J Mol Sci 2023; 24:ijms24021271. [PMID: 36674787 PMCID: PMC9864968 DOI: 10.3390/ijms24021271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/22/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Prenatal stress impairs cognitive function in rats, while Piromelatine treatment corrects memory decline in male rats with chronic mild stress. In the present study, we aimed to evaluate the effect of chronic treatment with the melatonin analogue Piromelatine on the associative and spatial hippocampus-dependent memory of male and female offspring with a history of prenatal stress (PNS). We report that male and female young adult offspring with PNS treated with a vehicle had reduced memory responses in an object recognition test (ORT). However, the cognitive performance in the radial arm maze test (RAM) was worsened only in the male offspring. The 32-day treatment with Piromelatine (20 mg/kg, i.p.) of male and female offspring with PNS attenuated the impaired responses in the ORT task. Furthermore, the melatonin analogue corrected the disturbed spatial memory in the male offspring. While the ratio of phosphorylated and nonphosphorylated adenosine monophosphate response element binding protein (pCREB/CREB) was reduced in the two sexes with PNS and treated with a vehicle, the melatonin analogue elevated the ratio of these signaling molecules in the hippocampus of the male rats only. Our results suggest that Piromelatine exerts a beneficial effect on PNS-induced spatial memory impairment in a sex-dependent manner that might be mediated via the pCREB/CREB pathway.
Collapse
|
5
|
Tchekalarova J, Kortenska L, Marinov P, Ivanova N. Sex-Dependent Effects of Piromelatine Treatment on Sleep-Wake Cycle and Sleep Structure of Prenatally Stressed Rats. Int J Mol Sci 2022; 23:ijms231810349. [PMID: 36142262 PMCID: PMC9499655 DOI: 10.3390/ijms231810349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/27/2022] [Accepted: 09/04/2022] [Indexed: 11/24/2022] Open
Abstract
Prenatal stress (PNS) impairs the circadian rhythm of the sleep/wake cycle. The melatonin (MT) analogue Piromelatine (Pir) was designed for the treatment of insomnia. The present study aimed to explore effects of Pir on circadian rhythmicity, motor activity, and sleep structure in male and female rats with a history of prenatal stress (PNS). In addition, we elucidated the role of MT receptors and brain-derived neurotrophic factor (BDNF) to ascertain the underlying mechanism of the drug. Pregnant rats were exposed to different stressors from day seven until birth. Piromelatine (20 mg/kg/day/14 days) was administered to young adult offspring. Home-cage locomotion, electroencephalographic (EEG) and electromyographic (EMG) recordings were conducted for 24 h. Offspring treated with vehicle showed sex-and phase-dependent disturbed circadian rhythm of motor activity and sleep/wake cycle accompanied by elevated rapid eye movement (REM) pattern and theta power and diminished non-rapid eye movement (NREM) sleep and delta power. While Pir corrected the PNS-induced impaired sleep patterns, the MT receptor antagonist luzindol suppressed its effects in male and female offspring. In addition, Pir increased the BDNF expression in the hippocampus in male and female offspring with PNS. Our findings suggest that the beneficial effect of Pir on PNS-induced impairment of sleep/wake cycle circadian rhythm and sleep structure is exerted via activation of MT receptors and enhanced BDNF expression in the hippocampus in male and female offspring.
Collapse
Affiliation(s)
- Jana Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences (BAS), 1113 Sofia, Bulgaria
- Correspondence: ; Tel.: +359-887267052
| | - Lidia Kortenska
- Institute of Neurobiology, Bulgarian Academy of Sciences (BAS), 1113 Sofia, Bulgaria
| | - Pencho Marinov
- Institute of Information and Communication Technologies, Bulgarian Academy of Sciences (BAS), 1113 Sofia, Bulgaria
| | - Natasha Ivanova
- Institute of Neurobiology, Bulgarian Academy of Sciences (BAS), 1113 Sofia, Bulgaria
| |
Collapse
|
6
|
Wang YQ, Jiang YJ, Zou MS, Liu J, Zhao HQ, Wang YH. Antidepressant actions of melatonin and melatonin receptor agonist: Focus on pathophysiology and treatment. Behav Brain Res 2021; 420:113724. [PMID: 34929236 DOI: 10.1016/j.bbr.2021.113724] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/15/2021] [Accepted: 12/15/2021] [Indexed: 12/27/2022]
Abstract
Depression has become one of the most commonly prevalent neuropsychiatric disorders, and the main characteristics of depression are sleep disorders and melatonin secretion disorders caused by circadian rhythm disorders. Abnormal endogenous melatonin alterations can contribute to the occurrence and development of depression. However, molecular mechanisms underlying this abnormality remain ambiguous. The present review summarizes the mechanisms underlying the antidepressant effects of melatonin, which is related to its functions in the regulation of the hypothalamic-pituitary-adrenal axis, inhibition of neuroinflammation, inhibition of oxidative stress, alleviation of autophagy, and upregulation of neurotrophic, promotion of neuroplasticity and upregulation of the levels of neurotransmitters, etc. Also, melatonin receptor agonists, such as agomelatine, ramelteon, piromelatine, tasimelteon, and GW117, have received considerable critical attention and are highly implicated in treating depression and comorbid disorders. This review focuses on melatonin and various melatonin receptor agonists in the pathophysiology and treatment of depression, aiming to provide further insight into the pathogenesis of depression and explore potential targets for novel agent development.
Collapse
Affiliation(s)
- Ye-Qing Wang
- Institute of Innovation and Applied Research, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Ya-Jie Jiang
- Institute of Innovation and Applied Research, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Man-Shu Zou
- Institute of Innovation and Applied Research, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Jian Liu
- The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Hong-Qing Zhao
- Institute of Innovation and Applied Research, Hunan University of Chinese Medicine, Changsha, Hunan Province, China.
| | - Yu-Hong Wang
- Institute of Innovation and Applied Research, Hunan University of Chinese Medicine, Changsha, Hunan Province, China.
| |
Collapse
|
7
|
Shah N, Abdalla MA, Deshmukh H, Sathyapalan T. Therapeutics for type-2 diabetes mellitus: a glance at the recent inclusions and novel agents under development for use in clinical practice. Ther Adv Endocrinol Metab 2021; 12:20420188211042145. [PMID: 34589201 PMCID: PMC8474306 DOI: 10.1177/20420188211042145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/06/2021] [Indexed: 12/18/2022] Open
Abstract
Diabetes mellitus (DM) is a chronic, progressive, and multifaceted illness resulting in significant physical and psychological detriment to patients. As of 2019, 463 million people are estimated to be living with DM worldwide, out of which 90% have type-2 diabetes mellitus (T2DM). Over the years, significant progress has been made in identifying the risk factors for developing T2DM, understanding its pathophysiology and uncovering various metabolic pathways implicated in the disease process. This has culminated in the implementation of robust prevention programmes and the development of effective pharmacological agents, which have had a favourable impact on the management of T2DM in recent times. Despite these advances, the incidence and prevalence of T2DM continue to rise. Continuing research in improving efficacy, potency, delivery and reducing the adverse effect profile of currently available formulations is required to keep pace with this growing health challenge. Moreover, new metabolic pathways need to be targeted to produce novel pharmacotherapy to restore glucose homeostasis and address metabolic sequelae in patients with T2DM. We searched PubMed, MEDLINE, and Google Scholar databases for recently included agents and novel medication under development for treatment of T2DM. We discuss the pathophysiology of T2DM and review how the emerging anti-diabetic agents target the metabolic pathways involved. We also look at some of the limiting factors to developing new medication and the introduction of unique methods, including facilitating drug delivery to bypass some of these obstacles. However, despite the advances in the therapeutic options for the treatment of T2DM in recent years, the industry still lacks a curative agent.
Collapse
Affiliation(s)
- Najeeb Shah
- Hull University Teaching Hospitals NHS Trust,
Hull, UK
- Department of Academic Diabetes, Endocrinology
& Metabolism, Hull York Medical School, University of Hull, Brocklehurst
Building, 220-236 Anlaby Road, Hull, HU3 2RW, UK
| | - Mohammed Altigani Abdalla
- Department of Academic Diabetes, Endocrinology
& Metabolism, Hull York Medical School, University of Hull, Hull,
UK
| | - Harshal Deshmukh
- University Teaching Hospitals NHS Trust and
Department of Academic Diabetes, Endocrinology & Metabolism, Hull York
Medical School, University of Hull, Hull, UK
| | - Thozhukat Sathyapalan
- University Teaching Hospitals NHS Trust and
Department of Academic Diabetes, Endocrinology & Metabolism, Hull York
Medical School, University of Hull, Hull, UK
| |
Collapse
|
8
|
Veronesi VB, Pioli MR, de Souza DN, Teixeira CJ, Murata GM, Santos-Silva JC, Hecht FB, Vicente JM, Bordin S, Anhê GF. Agomelatine reduces circulating triacylglycerides and hepatic steatosis in fructose-treated rats. Biomed Pharmacother 2021; 141:111807. [PMID: 34120066 DOI: 10.1016/j.biopha.2021.111807] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/28/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022] Open
Abstract
Agomelatine (AGO) is an antidepressant drug with agonistic activity at melatonin receptor 1 (MT1) and MT2 and with neutral antagonistic activity at serotonin receptor 5-HT2C. Although experimental studies show that melatonin reduces hypertriglyceridemia and hepatic steatosis induced by excessive fructose intake, no studies have tested if AGO exerts similar actions. To address this issue we have treated male Wistar rats with fructose (15% in the drinking water) and/or AGO (40 mg/kg/day) for two weeks. AGO reduced body weight gain, feeding efficiency and hepatic lipid levels without affecting caloric intake in fructose-treated rats. AGO has also decreased very low-density lipoprotein (VLDL) production and circulating TAG levels after an oral load with olive oil. Accordingly, treatment with AGO reduced the hepatic expression of fatty acid synthase (Fasn), a limiting step for hepatic de novo lipogenesis (DNLG). The expression of apolipoprotein B (Apob) and microsomal triglyceride transfer protein (Mttp) in the ileum, two crucial proteins for intestinal lipoprotein production, were also downregulated by treatment with AGO. Altogether, the present data show that AGO mimics the metabolic benefits of melatonin when used in fructose-treated rats. This study also suggests that it is relevant to evaluate the potential of AGO to treat metabolic disorders in future clinical trials.
Collapse
Affiliation(s)
- Vanessa Barbosa Veronesi
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, 105 Alexander Flemming St., Zip Code: 13083-881, Campinas, SP, Brazil
| | - Mariana Rodrigues Pioli
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, 105 Alexander Flemming St., Zip Code: 13083-881, Campinas, SP, Brazil
| | - Dailson Nogueira de Souza
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, 105 Alexander Flemming St., Zip Code: 13083-881, Campinas, SP, Brazil
| | - Caio Jordão Teixeira
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of Sao Paulo, 1524 Prof. Lineu Prestes Ave., ICB 1, Zip Code: 05508-000, Sao Paulo, SP, Brazil
| | - Gilson Masahiro Murata
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of Sao Paulo, 1524 Prof. Lineu Prestes Ave., ICB 1, Zip Code: 05508-000, Sao Paulo, SP, Brazil
| | - Junia Carolina Santos-Silva
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, 105 Alexander Flemming St., Zip Code: 13083-881, Campinas, SP, Brazil
| | - Fernanda Ballerini Hecht
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, 105 Alexander Flemming St., Zip Code: 13083-881, Campinas, SP, Brazil
| | - Julia Modesto Vicente
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, 105 Alexander Flemming St., Zip Code: 13083-881, Campinas, SP, Brazil
| | - Silvana Bordin
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of Sao Paulo, 1524 Prof. Lineu Prestes Ave., ICB 1, Zip Code: 05508-000, Sao Paulo, SP, Brazil
| | - Gabriel Forato Anhê
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, 105 Alexander Flemming St., Zip Code: 13083-881, Campinas, SP, Brazil.
| |
Collapse
|
9
|
Khan S, Khurana M, Vyas P, Vohora D. The role of melatonin and its analogues in epilepsy. Rev Neurosci 2020; 32:/j/revneuro.ahead-of-print/revneuro-2019-0088/revneuro-2019-0088.xml. [PMID: 32950966 DOI: 10.1515/revneuro-2019-0088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 04/01/2020] [Indexed: 12/31/2022]
Abstract
Extensive research has gone into proposing a promising link between melatonin administration and attenuation of epileptic activity, the majority of which suggest its propensity as an antiseizure with antioxidant and neuroprotective properties. In the past few years, a number of studies highlighting the association of the melatonergic ligands with epilepsy have also emerged. In this context, our review is based on discussing the recent studies and various mechanisms of action that the said category of drugs exhibit in the context of being therapeutically viable antiseizure drugs. Our search revealed several articles on the four major drugs i.e. melatonin, agomelatine, ramelteon and piromelatine along with other melatonergic agonists like tasimelteon and TIK-301. Our review is suggestive of antiseizure effects of both melatonin and its analogues; however, extensive research work is still required to study their implications in the treatment of persons with epilepsy. Further evaluation of melatonergic signaling pathways and mechanisms may prove to be helpful in the near future and might prove to be a significant advance in the field of epileptology.
Collapse
Affiliation(s)
- Sumaira Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mallika Khurana
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Preeti Vyas
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Divya Vohora
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
10
|
Roehrs TA, Auciello J, Tseng J, Whiteside G. Current and potential pharmacological treatment options for insomnia in patients with alcohol use disorder in recovery. Neuropsychopharmacol Rep 2020; 40:211-223. [PMID: 32543111 PMCID: PMC7722668 DOI: 10.1002/npr2.12117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/28/2020] [Accepted: 05/07/2020] [Indexed: 01/12/2023] Open
Abstract
Alcohol use disorder (AUD) is characterized by dysfunction in motivational, mood-stress regulation, and sleep systems that interact in complex ways to heighten the risk of relapse during abstinence. Emerging data suggest that excessive and chronic alcohol use disrupts sleep homeostasis and, in abstinence, subjects with AUD are known to experience insomnia that may persist for weeks to years, which we propose to refer to as insomnia associated with alcohol cessation (IAAC). The purpose of this review is to provide an update of pharmacological approaches to therapy including compounds in development, to raise awareness of the prevalence of and unmet need in IAAC and highlight differences in treatment consideration for IAAC as compared to insomnia disorder. We performed a search of select electronic databases to identify studies of pharmacological agents used to treat sleep disturbances in abstinent or treatment-seeking patients with alcohol use disorder. The search, conducted in June 2019 and updated in December 2019, yielded 1,188 abstracts after duplicates were removed, of which 36 full-text articles were assessed for eligibility. Eighteen studies were included, 15 randomized controlled trials and three open-label studies. Several classes of medications including antidepressants, anticonvulsants, and antipsychotics have been evaluated for their effectiveness in treating sleep disturbances in abstinent or treatment-seeking patients with AUD. None of these medications are approved by the FDA for the treatment of IAAC, and the currently available evidence for these agents is limited. Randomized, controlled clinical trials are warranted to evaluate the efficacy and safety of medications in the treatment of IAAC.
Collapse
Affiliation(s)
- Timothy A. Roehrs
- Henry Ford Health SystemSleep Disorders and Research CenterDetroitMIUSA
- Department of Psychiatry and Behavioral NeuroscienceSchool of MedicineWayne State UniversityDetroitMIUSA
| | | | | | | |
Collapse
|
11
|
Chitimus DM, Popescu MR, Voiculescu SE, Panaitescu AM, Pavel B, Zagrean L, Zagrean AM. Melatonin's Impact on Antioxidative and Anti-Inflammatory Reprogramming in Homeostasis and Disease. Biomolecules 2020; 10:biom10091211. [PMID: 32825327 PMCID: PMC7563541 DOI: 10.3390/biom10091211] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/30/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022] Open
Abstract
There is a growing consensus that the antioxidant and anti-inflammatory properties of melatonin are of great importance in preserving the body functions and homeostasis, with great impact in the peripartum period and adult life. Melatonin promotes adaptation through allostasis and stands out as an endogenous, dietary, and therapeutic molecule with important health benefits. The anti-inflammatory and antioxidant effects of melatonin are intertwined and are exerted throughout pregnancy and later during development and aging. Melatonin supplementation during pregnancy can reduce ischemia-induced oxidative damage in the fetal brain, increase offspring survival in inflammatory states, and reduce blood pressure in the adult offspring. In adulthood, disturbances in melatonin production negatively impact the progression of cardiovascular risk factors and promote cardiovascular and neurodegenerative diseases. The most studied cardiovascular effects of melatonin are linked to hypertension and myocardial ischemia/reperfusion injury, while the most promising ones are linked to regaining control of metabolic syndrome components. In addition, there might be an emerging role for melatonin as an adjuvant in treating coronavirus disease 2019 (COVID 19). The present review summarizes and comments on important data regarding the roles exerted by melatonin in homeostasis and oxidative stress and inflammation related pathologies.
Collapse
Affiliation(s)
- Diana Maria Chitimus
- Division of Physiology and Neuroscience, Department of Functional Sciences, “Carol Davila” University of Medicine and Pharmacy, 010164 Bucharest, Romania; (D.M.C.); (S.E.V.); (B.P.); (L.Z.)
| | - Mihaela Roxana Popescu
- Department of Cardiology, “Carol Davila” University of Medicine and Pharmacy, Elias University Hospital, 010164 Bucharest, Romania;
| | - Suzana Elena Voiculescu
- Division of Physiology and Neuroscience, Department of Functional Sciences, “Carol Davila” University of Medicine and Pharmacy, 010164 Bucharest, Romania; (D.M.C.); (S.E.V.); (B.P.); (L.Z.)
| | - Anca Maria Panaitescu
- Department of Obstetrics and Gynecology, “Carol Davila” University of Medicine and Pharmacy, Filantropia Clinical Hospital, 010164 Bucharest, Romania;
| | - Bogdan Pavel
- Division of Physiology and Neuroscience, Department of Functional Sciences, “Carol Davila” University of Medicine and Pharmacy, 010164 Bucharest, Romania; (D.M.C.); (S.E.V.); (B.P.); (L.Z.)
| | - Leon Zagrean
- Division of Physiology and Neuroscience, Department of Functional Sciences, “Carol Davila” University of Medicine and Pharmacy, 010164 Bucharest, Romania; (D.M.C.); (S.E.V.); (B.P.); (L.Z.)
| | - Ana-Maria Zagrean
- Division of Physiology and Neuroscience, Department of Functional Sciences, “Carol Davila” University of Medicine and Pharmacy, 010164 Bucharest, Romania; (D.M.C.); (S.E.V.); (B.P.); (L.Z.)
- Correspondence:
| |
Collapse
|
12
|
Choi Y, Raymer BK. Sleep modulating agents. Bioorg Med Chem Lett 2019; 29:2025-2033. [PMID: 31307886 DOI: 10.1016/j.bmcl.2019.06.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/17/2019] [Accepted: 06/22/2019] [Indexed: 12/28/2022]
Abstract
Sleep and wake are two fundamental states of human existence. Conditions such as insomnia and hypersomnia can have profound negative effects on human health. Many pharmacological interventions impacting sleep and wake are available or are under development. This brief digest surveys early approaches to sleep modulation and highlights recent developments in sleep modulating agents.
Collapse
Affiliation(s)
- Younggi Choi
- Discovery Chemistry, Alkermes, 852 Winter Street, Waltham, MA, United States
| | - Brian K Raymer
- Discovery Research, Alkermes, 852 Winter Street, Waltham, MA, United States.
| |
Collapse
|
13
|
The Mystery behind the Pineal Gland: Melatonin Affects the Metabolism of Cholesterol. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4531865. [PMID: 31360294 PMCID: PMC6652030 DOI: 10.1155/2019/4531865] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/20/2019] [Accepted: 06/23/2019] [Indexed: 12/17/2022]
Abstract
Melatonin may be considered a cardioprotective agent. Since atherogenesis is partly associated with the metabolism of lipoproteins, it seems plausible that melatonin affects cardiovascular risk by modulating the metabolism of cholesterol and its subfractions. Moreover, cholesterol-driven atherogenesis can be hypothetically reduced by melatonin, mainly due to the minimalization of harmful reactions triggered in the cardiovascular system by the reactive oxygen species-induced toxic derivatives of cholesterol. In this review, we attempted to summarize the available data on the hypolipemizing effects of melatonin, with some emphasis on the molecular mechanisms underlying these reactions. We aimed to attract readers' attention to the numerous gaps of knowledge present in the reviewed field and the essential irrelevance between the findings originating from different sources: clinical observations and in vitro mechanistic and molecular studies, as well as preclinical experiments involving animal models. Overall, such inconsistencies make it currently impossible to give a reliable opinion on the action of melatonin on the metabolism of lipoproteins.
Collapse
|
14
|
Thakur P, Kumar A, Kumar A. Targeting oxidative stress through antioxidants in diabetes mellitus. J Drug Target 2018; 26:766-776. [DOI: 10.1080/1061186x.2017.1419478] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Parul Thakur
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, India
| | - Ashwini Kumar
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, India
| |
Collapse
|
15
|
Cardinali DP, Vigo DE. Melatonin, mitochondria, and the metabolic syndrome. Cell Mol Life Sci 2017; 74:3941-3954. [PMID: 28819865 PMCID: PMC11107716 DOI: 10.1007/s00018-017-2611-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 08/03/2017] [Indexed: 12/12/2022]
Abstract
A number of risk factors for cardiovascular disease including hyperinsulinemia, glucose intolerance, dyslipidemia, obesity, and elevated blood pressure are collectively known as metabolic syndrome (MS). Since mitochondrial activity is modulated by the availability of energy in cells, the disruption of key regulators of metabolism in MS not only affects the activity of mitochondria but also their dynamics and turnover. Therefore, a link of MS with mitochondrial dysfunction has been suspected since long. As a chronobiotic/cytoprotective agent, melatonin has a special place in prevention and treatment of MS. Melatonin levels are reduced in diseases associated with insulin resistance like MS. Melatonin improves sleep efficiency and has antioxidant and anti-inflammatory properties, partly for its role as a metabolic regulator and mitochondrial protector. We discuss in the present review the several cytoprotective melatonin actions that attenuate inflammatory responses in MS. The clinical data that support the potential therapeutical value of melatonin in human MS are reviewed.
Collapse
Affiliation(s)
- Daniel P Cardinali
- BIOMED-UCA-CONICET and Department of Teaching and Research, Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Av. Alicia Moreau de Justo 1500, 4o piso, 1107, Buenos Aires, Argentina.
| | - Daniel E Vigo
- BIOMED-UCA-CONICET and Department of Teaching and Research, Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Av. Alicia Moreau de Justo 1500, 4o piso, 1107, Buenos Aires, Argentina
| |
Collapse
|
16
|
Neu-P11, a novel MT1/MT2 agonist, reverses diabetes by suppressing the hypothalamic-pituitary-adrenal axis in rats. Eur J Pharmacol 2017; 812:225-233. [PMID: 28687198 DOI: 10.1016/j.ejphar.2017.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 06/19/2017] [Accepted: 07/03/2017] [Indexed: 12/15/2022]
Abstract
Excessive glucocorticoid (GC) in type 2 diabetes mellitus (T2DM) reduces insulin sensitivity, impairs β-cell function, increases gluconeogenesis and glycogenolysis, impairs glucose uptake and metabolism, and reduces the insulinotropic effects of glucagon-like peptide 1. Melatonin, which serves as a physiological regulator of the hypothalamic-pituitary-adrenal (HPA) axis, has been suggested to have anti-diabetic effects. The objective of the present study was to investigate the effect of the MT1/MT2 melatonin agonist Neu-P11 on glucose and lipid metabolism in T2DM rats induced by a high fat diet combined with low doses of streptozotocin. T2DM rats were intragastrically administered melatonin (20mg/kg), Neu-P11 (20, 10, 5mg/kg), or a vehicle for 4 weeks. The results showed that the increased food intake, water consumption, hyperglycemia, glucose intolerance, and insulin resistance in T2DM rats were all improved by Neu-P11 treatment. Neu-P11 increased GC receptor expression and suppressed 11β-hydroxysteroid dehydrogenase 1 activity in the hippocampus by enhancing GC sensitivity and HPA feedback, thus decreasing the high GC levels. Transcript levels of the glucose metabolism-related genes peroxisome proliferator-activated receptor-γ, glucose transporter type-4, and adiponectin in adipose tissue were significantly increased after Neu-P11 treatment, while leptin mRNA was significantly decreased. Furthermore, MT1 and MT2 protein levels were enhanced by Neu-P11. These data suggest that normalization of the hyperactivated HPA axis by melatonin and Neu-P11 in T2DM regulates metabolic profiles and insulin sensitivity, which may attenuate insulin resistance and glucose homeostasis. Because Neu-P11 has superior pharmacokinetics and a longer half-life than melatonin, it might be beneficial in treating obesity and T2DM.
Collapse
|
17
|
Meng X, Li Y, Li S, Zhou Y, Gan RY, Xu DP, Li HB. Dietary Sources and Bioactivities of Melatonin. Nutrients 2017; 9:E367. [PMID: 28387721 PMCID: PMC5409706 DOI: 10.3390/nu9040367] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 03/14/2017] [Accepted: 03/31/2017] [Indexed: 12/14/2022] Open
Abstract
Insomnia is a serious worldwide health threat, affecting nearly one third of the general population. Melatonin has been reported to improve sleep efficiency and it was found that eating melatonin-rich foods could assist sleep. During the last decades, melatonin has been widely identified and qualified in various foods from fungi to animals and plants. Eggs and fish are higher melatonin-containing food groups in animal foods, whereas in plant foods, nuts are with the highest content of melatonin. Some kinds of mushrooms, cereals and germinated legumes or seeds are also good dietary sources of melatonin. It has been proved that the melatonin concentration in human serum could significantly increase after the consumption of melatonin containing food. Furthermore, studies show that melatonin exhibits many bioactivities, such as antioxidant activity, anti-inflammatory characteristics, boosting immunity, anticancer activity, cardiovascular protection, anti-diabetic, anti-obese, neuroprotective and anti-aging activity. This review summaries the dietary sources and bioactivities of melatonin, with special attention paid to the mechanisms of action.
Collapse
Affiliation(s)
- Xiao Meng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Ya Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Sha Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China.
| | - Yue Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Ren-You Gan
- School of Biological Sciences, The University of Hong Kong, Hong Kong 999077, China.
| | - Dong-Ping Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
- South China Sea Bioresource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
18
|
Hardeland R. Melatonin and the pathologies of weakened or dysregulated circadian oscillators. J Pineal Res 2017; 62. [PMID: 27763686 DOI: 10.1111/jpi.12377] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/18/2016] [Indexed: 12/20/2022]
Abstract
Dynamic aspects of melatonin's actions merit increasing future attention. This concerns particularly entirely different effects in senescent, weakened oscillators and in dysregulated oscillators of cancer cells that may be epigenetically blocked. This is especially obvious in the case of sirtuin 1, which is upregulated by melatonin in aged tissues, but strongly downregulated in several cancer cells. These findings are not at all controversial, but are explained on the basis of divergent changes in weakened and dysregulated oscillators. Similar findings can be expected to occur in other accessory oscillator components that are modulated by melatonin, among them several transcription factors and metabolic sensors. Another cause of opposite effects concerns differences between nocturnally active laboratory rodents and the diurnally active human. This should be more thoroughly considered in the field of metabolic syndrome and related pathologies, especially with regard to type 2 diabetes and other aspects of insulin resistance. Melatonin was reported to impair glucose tolerance in humans, especially in carriers of the risk allele of the MT2 receptor gene, MTNR1B, that contains the SNP rs10830963. These findings contrast with numerous reports on improvements of glucose tolerance in preclinical studies. However, the relationship between melatonin and insulin may be more complex, as indicated by loss-of-function mutants of the MT2 receptor that are also prodiabetic, by the age-dependent time course of risk allele overexpression, by progressive reduction in circadian amplitudes and melatonin secretion, which are aggravated in diabetes. By supporting high-amplitude rhythms, melatonin may be beneficial in preventing or delaying diabetes.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| |
Collapse
|
19
|
Siervo GEML, Ogo FM, Valério AD, Silva TNX, Staurengo-Ferrari L, Alvarenga TA, Cecchini R, Verri WA, Guarnier FA, Andersen ML, Fernandes GSA. Sleep restriction in Wistar rats impairs epididymal postnatal development and sperm motility in association with oxidative stress. Reprod Fertil Dev 2017; 29:1813-1820. [DOI: 10.1071/rd15535] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 09/27/2016] [Indexed: 11/23/2022] Open
Abstract
Good sleep quality has a direct effect on the activity of the neuroendocrine–reproductive control axis and oxidative stress. Thus, the aim of the present study was to evaluate whether sleep restriction (SR) during the peripubertal period impaired the postnatal development of the epididymis in Wistar rats. After 21 days SR (18 h per day), epididymides were collected on Postnatal Day (PND) 62 for evaluation of oxidative stress markers, inflammatory profile, sperm count and histopathological and stereological analyses; in addition, the motility of spermatozoa from the vas deferens was examined. SR significantly increased lipid peroxidation and glutathione levels in the caput and cauda epididymidis, and increased levels of total radical-trapping antioxidant potential in the caput epididymidis only. Neutrophil migration to the caput or corpus epididymidis was decreased by SR, and the size of the luminal compartment in the 2A region and the epithelial compartment in the 5A/B region was also decreased. In these regions, there was an increase in the size of the interstitial compartment. The percentage of immotile spermatozoa was higher in the SR group. In conclusion, SR affects epididymal postnatal development, as well as sperm motility, in association with increased oxidative stress and a decrease in the size of the epithelial compartment in the cauda epididymidis.
Collapse
|
20
|
Tsuneki H, Sasaoka T, Sakurai T. Sleep Control, GPCRs, and Glucose Metabolism. Trends Endocrinol Metab 2016; 27:633-642. [PMID: 27461005 DOI: 10.1016/j.tem.2016.06.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/29/2016] [Accepted: 06/29/2016] [Indexed: 12/29/2022]
Abstract
Modern lifestyles prolong daily activities into the nighttime, disrupting circadian rhythms, which may cause sleep disturbances. Sleep disturbances have been implicated in the dysregulation of blood glucose levels and reported to increase the risk of type 2 diabetes (T2D) and diabetic complications. Sleep disorders are treated using anti-insomnia drugs that target ionotropic and G protein-coupled receptors (GPCRs), including γ-aminobutyric acid (GABA) agonists, melatonin agonists, and orexin receptor antagonists. A deeper understanding of the effects of these medications on glucose metabolism and their underlying mechanisms of action is crucial for the treatment of diabetic patients with sleep disorders. In this review we focus on the beneficial impact of sleep on glucose metabolism and suggest a possible strategy for therapeutic intervention against sleep-related metabolic disorders.
Collapse
Affiliation(s)
- Hiroshi Tsuneki
- Department of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Toshiyasu Sasaoka
- Department of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Takeshi Sakurai
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.
| |
Collapse
|
21
|
Qian J, Scheer FAJL. Circadian System and Glucose Metabolism: Implications for Physiology and Disease. Trends Endocrinol Metab 2016; 27:282-293. [PMID: 27079518 PMCID: PMC4842150 DOI: 10.1016/j.tem.2016.03.005] [Citation(s) in RCA: 221] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/07/2016] [Accepted: 03/07/2016] [Indexed: 12/24/2022]
Abstract
The circadian system serves one of the most fundamental properties present in nearly all organisms: it generates 24-h rhythms in behavioral and physiological processes and enables anticipating and adapting to daily environmental changes. Recent studies indicate that the circadian system is important in regulating the daily rhythm in glucose metabolism. Disturbance of this circadian control or of its coordination relative to the environmental/behavioral cycle, such as in shift work, eating late, or due to genetic changes, results in disturbed glucose control and increased type 2 diabetes risk. Therefore, an in-depth understanding of the mechanisms underlying glucose regulation by the circadian system and its disturbance may help in the development of therapeutic interventions against the deleterious health consequences of circadian disruption.
Collapse
Affiliation(s)
- Jingyi Qian
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA 02115, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA.
| | - Frank A J L Scheer
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA 02115, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
22
|
Hao H, Haas MJ, Wu R, Gragnoli C. T2D and Depression Risk Gene Proteasome Modulator 9 is Linked to Insomnia. Sci Rep 2015; 5:12032. [PMID: 26166263 PMCID: PMC4648424 DOI: 10.1038/srep12032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 06/15/2015] [Indexed: 12/18/2022] Open
Abstract
Insomnia increases type-2 diabetes (T2D) risk. The 12q24 locus is linked to T2D, depression, bipolar disorder and anxiety. At the 12q24 locus, the Proteasome-Modulator 9 (PSMD9) single nucleotide polymorphisms (SNPs) rs74421874 [intervening sequence (IVS) 3+nt460-G>A], rs3825172 (IVS3+nt437-C>T) and rs14259 (E197G-A>G) are linked to: T2D, depression, anxiety, maturity-onset-diabetes-of the young 3/MODY3, obesity, waist circumference, hypertension, hypercholesterolemia, T2D-macrovascular disease, T2D-microvascular disease, T2D-neuropathy, T2D-carpal-tunnel syndrome, T2D-nephropathy, T2D-retinopathy and non-diabetic retinopathy. PSMD9 SNP rs1043307/rs14259 (E197G-A>G) plays a role in anti-depressant therapy response, depression and schizophrenia. We aimed at determining PSMD9 rs74421874/rs3825172/rs14259 SNPs potential linkage to primary insomnia and sleep hours in T2D families. We recruited 200 Italian T2D families phenotyping them for primary insomnia and sleep hours per night. PSMD9-T2D-risk SNPs rs74421874/rs3825172 and rs1043307/rs14259 were tested for linkage with insomnia and sleep hours. Non-parametric-linkage analysis, linkage-disequilibrium-model analysis, single-SNP analysis, cluster-based-parametric analysis, quantitative-trait and variant-component analysis were performed using Merlin software. To validate data, 1000 replicates were executed for the significant non-parametric data. PSMD9 rs74421874 (IVS3+nt460-G>A), rs3825172 (IVS3+nt437-C>T) and rs1043307/rs14259 (E197G-A>G) SNPs are linked to insomnia in our Italian families.
Collapse
Affiliation(s)
- Han Hao
- Department of Statistics, Penn State University, State College, PA, USA
| | - Michael J. Haas
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida College of Medicine, Jacksonville, FL
| | - Rongling Wu
- Department of Statistics, Penn State University, State College, PA, USA
| | - Claudia Gragnoli
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida College of Medicine, Jacksonville, FL
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
- Center for Biotechnology and Department of Biology, Temple University’s College of Science & Technology, Philadelphia, PA, USA
- Molecular Biology Laboratory, Bios Biotech Multi-Diagnostic Health Center, Rome, Italy
| |
Collapse
|
23
|
Nohara K, Yoo SH, Chen Z(J. Manipulating the circadian and sleep cycles to protect against metabolic disease. Front Endocrinol (Lausanne) 2015; 6:35. [PMID: 25852644 PMCID: PMC4369727 DOI: 10.3389/fendo.2015.00035] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/03/2015] [Indexed: 11/30/2022] Open
Abstract
Modernization of human society parallels an epidemic of metabolic disorders including obesity. Apart from excess caloric intake, a 24/7 lifestyle poses another important challenge to our metabolic health. Recent research under both laboratory and epidemiological settings has indicated that abnormal temporal organization of sleep and wakeful activities including food intake is a significant risk factor for metabolic disease. The circadian clock system is our intrinsic biological timer that regulates internal rhythms such as the sleep/wake cycle and also responses to external stimuli including light and food. Initially thought to be mainly involved in the timing of sleep, the clock, and/or clock genes may also play a role in sleep architecture and homeostasis. Importantly, an extensive body of evidence has firmly established a master regulatory role of the clock in energy balance. Together, a close relationship between well-timed circadian/sleep cycles and metabolic health is emerging. Exploiting this functional connection, an important holistic strategy toward curbing the epidemic of metabolic disorders (e.g., obesity) involves corrective measures on the circadian clock and sleep. In addition to behavioral and environmental interventions including meal timing and light control, pharmacological agents targeting sleep and circadian clocks promise convenient and effective applications. Recent studies, for example, have reported small molecules targeting specific clock components and displaying robust beneficial effects on sleep and metabolism. Furthermore, a group of clock-amplitude-enhancing small molecules (CEMs) identified via high-throughput chemical screens are of particular interest for future in vivo studies of their metabolic and sleep efficacies. Elucidating the functional relationship between clock, sleep, and metabolism will also have far-reaching implications for various chronic human diseases and aging.
Collapse
Affiliation(s)
- Kazunari Nohara
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Seung-Hee Yoo
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zheng (Jake) Chen
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, USA
- *Correspondence: Zheng (Jake) Chen, Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, 6431 Fannin Street, MSB 6.200, Houston, TX 77030, USA e-mail:
| |
Collapse
|
24
|
She M, Laudon M, Yin W. Melatonin receptors in diabetes: a potential new therapeutical target? Eur J Pharmacol 2014; 744:220-3. [PMID: 25160745 DOI: 10.1016/j.ejphar.2014.08.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 08/08/2014] [Accepted: 08/18/2014] [Indexed: 01/13/2023]
Abstract
Melatonin is synthesized and secreted mainly by the pineal gland in a circadian fashion, and it thus mediates endogenous circadian rhythms and influences other physiological functions. Both the G-protein coupled receptors MT1 (encoded by MTNR1A) and MT2 (encoded by MTNR1B) in mammals mediate the actions of melatonin. Evidence from in vivo and in vitro studies proved a key role of melatonin in the regulation of glucose metabolism and the pathogenesis of diabetes, as further confirmed by the recent studies of human genetic variants of MTNR1B. Remarkably, it was also suggested that genetic variations within MTNR1B disordered β-cells function directly, i.e. insulin secretion. This indicated the functional link between MT2 and T2D risk at the protein level, and it may represent the prevailing pathomechanism for how impaired melatonin signaling causes metabolic disorders and increases the T2D risk. It is speculated that melatonin and its receptors may be a new therapeutic avenue in diabetes.
Collapse
Affiliation(s)
- Meihua She
- Institute of Cardiovascular Research, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang 421001, China; Department of Biochemistry and Molecular Biology, School of Pharmaceutical and Biological Science, University of South China, Hengyang, China
| | - Moshe Laudon
- Drug Discovery, Neurim Pharmaceuticals Ltd., Tel Aviv, Israel
| | - Weidong Yin
- Institute of Cardiovascular Research, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang 421001, China; Department of Biochemistry and Molecular Biology, School of Pharmaceutical and Biological Science, University of South China, Hengyang, China.
| |
Collapse
|