1
|
Elrashidy RA, Zakaria EM, Hasan RA, Elmaghraby AM, Hassan DA, Abdelgalil RM, Abdelmohsen SR, Negm AM, Khalil AS, Eraque AMS, Ahmed RM, Sabbah WS, Ahmed AA, Ibrahim SE. Implication of endoplasmic reticulum stress and mitochondrial perturbations in remote liver injury after renal ischemia/reperfusion in rats: potential protective role of azilsartan. Redox Rep 2024; 29:2319963. [PMID: 38411133 PMCID: PMC10903753 DOI: 10.1080/13510002.2024.2319963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
Objectives: Distant liver injury is a complication of renal ischemia-reperfusion (I/R) injury, which imposes mortality and economic burden. This study aimed to elucidate the cross-talk of endoplasmic reticulum (ER) stress and mitochondrial perturbations in renal I/R-induced liver injury, and the potential hepatoprotective effect of azilsartan (AZL).Methods: Male albino Wister rats were pre-treated with AZL (3 mg/kg/day, PO) for 7 days then a bilateral renal I/R or sham procedure was performed. Activities of liver enzymes were assessed in plasma. The structure and ultra-structure of hepatocytes were assessed by light and electron microscopy. Markers of ER stress, mitochondrial biogenesis and apoptosis were analyzed in livers of rats.Results: Renal ischemic rats showed higher plasma levels of liver enzymes than sham-operated rats, coupled with histological and ultra-structural alterations in hepatocytes. Mechanistically, there was up-regulation of ER stress markers and suppression of mitochondrial biogenesis-related proteins and enhanced apoptosis in livers of renal ischemic rats. These abnormalities were almost abrogated by AZL pretreatment.Discussion: Our findings uncovered the involvement of mitochondrial perturbations, ER stress and apoptosis in liver injury following renal I/R, and suggested AZL as a preconditioning strategy to ameliorate remote liver injury in patients susceptible to renal I/R after adequate clinical testing.
Collapse
Affiliation(s)
- Rania A. Elrashidy
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Esraa M. Zakaria
- Pharmacology Department, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Rehab A. Hasan
- Histology and Cell Biology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Asmaa M. Elmaghraby
- Histology and Cell Biology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Dina A. Hassan
- Histology and Cell Biology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Ranya M. Abdelgalil
- Anatomy and Embryology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Shaimaa R. Abdelmohsen
- Anatomy and Embryology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Amira M. Negm
- Medical Physiology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Azza S. Khalil
- Medical Physiology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Ayat M. S. Eraque
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Reem M. Ahmed
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Walaa S. Sabbah
- Anatomy and Embryology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Ahmed A. Ahmed
- Medical Student, Faculty of Medicine, Kasr Al Ainy, Cairo University, Cairo, Egypt
| | - Samah E. Ibrahim
- Medical Physiology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
2
|
Cheng C, Yuan Y, Yuan F, Li X. Acute kidney injury: exploring endoplasmic reticulum stress-mediated cell death. Front Pharmacol 2024; 15:1308733. [PMID: 38434710 PMCID: PMC10905268 DOI: 10.3389/fphar.2024.1308733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/31/2024] [Indexed: 03/05/2024] Open
Abstract
Acute kidney injury (AKI) is a global health problem, given its substantial morbidity and mortality rates. A better understanding of the mechanisms and factors contributing to AKI has the potential to guide interventions aimed at mitigating the risk of AKI and its subsequent unfavorable outcomes. Endoplasmic reticulum stress (ERS) is an intrinsic protective mechanism against external stressors. ERS occurs when the endoplasmic reticulum (ER) cannot deal with accumulated misfolded proteins completely. Excess ERS can eventually cause pathological reactions, triggering various programmed cell death (autophagy, ferroptosis, apoptosis, pyroptosis). This article provides an overview of the latest research progress in deciphering the interaction between ERS and different programmed cell death. Additionally, the report consolidates insights into the roles of ERS in AKI and highlights the potential avenues for targeting ERS as a treatment direction toward for AKI.
Collapse
Affiliation(s)
- Cong Cheng
- Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuan Yuan
- Department of Emergency, Changsha Hospital of Traditional Chinese Medicine (Changsha Eighth Hospital), Changsha, Hunan, China
| | - Fang Yuan
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, Hunan, China
| | - Xin Li
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, Hunan, China
| |
Collapse
|
3
|
Rodrigues P, Bangali H, Ali E, Nauryzbaevish AS, Hjazi A, Fenjan MN, Alawadi A, Alsaalamy A, Alasheqi MQ, Mustafa YF. The mechanistic role of NAT10 in cancer: Unraveling the enigmatic web of oncogenic signaling. Pathol Res Pract 2024; 253:154990. [PMID: 38056132 DOI: 10.1016/j.prp.2023.154990] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
N-acetyltransferase 10 (NAT10), a versatile enzyme, has gained considerable attention as a significant player in the complex realm of cancer biology. Its enigmatic role in tumorigenesis extends across a wide array of cellular processes, impacting cell growth, differentiation, survival, and genomic stability. Within the intricate network of oncogenic signaling, NAT10 emerges as a crucial agent in multiple cancer types, such as breast, lung, colorectal, and leukemia. This compelling research addresses the intricate complexity of the mechanistic role of NAT10 in cancer development. By elucidating its active participation in essential physiological processes, we investigate the regulatory role of NAT10 in cell cycle checkpoints, coordination of chromatin remodeling, and detailed modulation of the delicate balance between apoptosis and cell survival. Perturbations in NAT10 expression and function have been linked to oncogenesis, metastasis, and drug resistance in a variety of cancer types. Furthermore, the bewildering interactions between NAT10 and key oncogenic factors, such as p53 and c-Myc, are deciphered, providing profound insights into the molecular underpinnings of cancer pathogenesis. Equally intriguing, the paradoxical role of NAT10 as a potential tumor suppressor or oncogene is influenced by context-dependent factors and the cellular microenvironment. This study explores the fascinating interplay of genetic changes, epigenetic changes, and post-translational modifications that shape the dual character of NAT10, revealing the delicate balance between cancer initiation and suppression. Taken together, this overview delves deeply into the enigmatic role of NAT10 in cancer, elucidating its multifaceted roles and its complex interplay with oncogenic networks.
Collapse
Affiliation(s)
- Paul Rodrigues
- Department of Computer Engineering, College of Computer Science, King Khalid University, Al-Faraa, Saudi Arabia.
| | - Harun Bangali
- Department of Computer Engineering, College of Computer Science, King Khalid University, Al-Faraa, Saudi Arabia
| | - Eyhab Ali
- College of Chemistry, Al-Zahraa University for Women, Karbala, Iraq
| | - Abdreshov Serik Nauryzbaevish
- Institute of Genetics and Physiology SC MSHE RK, Laboratory of Physiology Lymphatic System, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohammed N Fenjan
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | - Ahmed Alawadi
- College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Iraq; College of Technical Engineering, the Islamic University of Babylon, Iraq
| | - Ali Alsaalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| |
Collapse
|
4
|
Liu H, He S, Li C, Wang J, Zou Q, Liao Y, Chen R. Tetrandrine alleviates inflammation and neuron apoptosis in experimental traumatic brain injury by regulating the IRE1α/JNK/CHOP signal pathway. Brain Behav 2022; 12:e2786. [PMID: 36377337 PMCID: PMC9759135 DOI: 10.1002/brb3.2786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/28/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022] Open
Abstract
AIM The aim of this study was to investigate the therapeutic roles of Tetrandrine (TET) on traumatic brain injury (TBI) and the underlying mechanism. METHOD Traumatic injury model of hippocampal neurons and TBI mouse model were established to evaluate the therapeutic effects. The expression of neuron-specific enolase (NSE), Caspase 3, and Caspase 12 was detected by immunofluorescence. The expression of TNF-α, NF-κB, TRAF1, ERS markers (GADD34 and p-PERK), IRE1α, CHOP, JNK, and p-JNK were evaluated by western blot. Flow cytometry was used to determine the apoptosis of neurons. Brain injury was assessed by Garcia score, cerebral water content, and Evan blue extravasation test. Hematoxylin and eosin staining was used to determine the morphological changes of hippocampal tissue. Apoptosis was assessed by TUNEL staining. RESULT In traumatic injury model of hippocampal neurons, TET downregulated NSE, TNF-α, NF-κB, TRAF1, GADD34, p-PERK, IRE1α, CHOP, and p-JNK expression. TET reduced Caspase 3 and Caspase 12 cleavage. Apoptosis rate was inhibited by the introduction of TET. TET improved the Garcia neural score, decreased the cerebral water content and Evans blue extravasation, and reduced NSE, TNF-α, NF-κB, TRAF1, IRE1α, CHOP, and p-JNK expression in mice with TBI, which was significantly reversed by Anisomycin, a JNK selective activator. CONCLUSION TET alleviated inflammation and neuron apoptosis in experimental TBI by regulating the IRE1α/JNK/CHOP signal pathway.
Collapse
Affiliation(s)
- Huan Liu
- Department of Cardiology, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Shiqing He
- Department of Neurosurgery, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Chong Li
- Department of Neurosurgery, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Jianpeng Wang
- Department of Neurosurgery, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Qin Zou
- Department of Neurosurgery, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Yongshi Liao
- Department of Neurosurgery, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Rui Chen
- Department of Neurosurgery, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| |
Collapse
|
5
|
Role of olmesartan in ameliorating diabetic nephropathy in rats by targeting the AGE/PKC, TLR4/P38-MAPK and SIRT-1 autophagic signaling pathways. Eur J Pharmacol 2022; 928:175117. [PMID: 35752350 DOI: 10.1016/j.ejphar.2022.175117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/18/2022] [Accepted: 06/19/2022] [Indexed: 11/21/2022]
Abstract
Diabetic nephropathy (DN) is one of the most serious consequences of diabetes and the most common reason for end-stage renal disease. The current study was set out to investigate the ability of olmesartan medoxomil (OM) to treat DN by evaluating the reno-protective effects of this drug on fat/fructose/streptozotocin (F/Fr/STZ)-induced diabetic rat model. This model was induced by feeding rats high F/Fr diet for 7 weeks followed by injection of a single sub-diabetogenic dose of STZ (35mg/kg; i.p). The F/Fr/STZ-induced diabetic rats were orally treated with either OM (10 mg/kg) or pioglitazone (10 mg/kg); as a standard drug daily for four consecutive weeks. F/Fr/STZ-induced diabetic rats propagated inflammatory, oxidative, and fibrotic events. OM was able to oppose the injurious effects of diabetes; it significantly reduced the elevated levels of advanced glycated end products (AGEs) and downregulated PKC gene expression, therefore, indicating its antioxidant capacity evidenced by mitigation in GSH, MDA renal content. Moreover, OM impaired the inflammatory cascade by suppressing the elevated level of renal TLR4 as well as diminished the inflammatory profibrotic cytokine TGF-β1. Additionally, OM was able to turn off the MAPK cascade mediated by an upsurge in renal angiotensin 1-7 content and decrease the level of renal tubular injury marker, KIM-1. Furthermore, OM enhanced the autophagic activity pathway by upregulating of gene expression of SIRT-1. The histopathological examination confirmed these results. Finally, OM protected against type 2 diabetes-related nephropathy complications by altering inflammatory pathways, oxidative, fibrotic, and autophagic processes triggered by renal glucose overload. This study shows that OM has a reno-protective effect against DN in rats by inhibiting the AGE/PKC, TLR4/P38-MAPK, and SIRT-1 autophagic signaling pathways.
Collapse
|
6
|
Yu Q, Yang S, Li Z, Zhu Y, Li Z, Zhang J, Li C, Feng F, Wang W, Zhang Q. The relationship between endoplasmic reticulum stress and autophagy in apoptosis of BEAS-2B cells induced by cigarette smoke condensate. Toxicol Res (Camb) 2021; 10:18-28. [PMID: 33613969 DOI: 10.1093/toxres/tfaa095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/02/2020] [Accepted: 11/16/2020] [Indexed: 12/23/2022] Open
Abstract
Cigarette smoke (CS) is one of the severe risk factors for the development of the pulmonary disease. However, the underlying mechanisms, especially the CS-induced the human bronchial epithelial cells (BEAS-2B) apoptosis related to endoplasmic reticulum stress (ERS) and autophagy, remains to be studied. This study aims to investigate the relationship between ERS and autophagy in apoptosis induced by CS condensate (CSC). BEAS-2B cells were stimulated with 0.02, 0.04 and 0.08 mg/ml CSC for 24 h to detect the ERS, autophagy and apoptosis. Then, ERS and autophagy of BEAS-2B cells were inhibited, respectively, by using 4-PBA and 3-MA, and followed by CSC treatment. The results showed that CSC decreased cell viability, increased cell apoptosis, elevated cleaved-caspase 3/pro-caspase 3 ratio and Bax expressions, but decreased Bcl-2 expressions. The GRP78 and CHOP expressions and LC3-II/LC3-I ratio were dose-dependently increased. The structure of the endoplasmic reticulum was abnormal and the number of autolysosomes was increased in BEAS-2B cells after CSC stimulation. The LC3-II/LC3-I ratio was decreased after ERS inhibition with 4-PBA, but GRP78 and CHOP expressions were enhanced after autophagy inhibition with 3-MA. CSC-induced apoptosis was further increased, Bax expressions and cleaved-caspase 3/pro-caspase 3 ratio were improved, but Bcl-2 expressions were decreased after 3-MA or 4-PBA treatment. In conclusion, the study indicates that ERS may repress apoptosis of BEAS-2B cells induced by CSC via activating autophagy, but autophagy relieves ERS in a negative feedback. This study provides better understanding and experimental support on the underlying mechanisms of pulmonary disease stimulated by CS.
Collapse
Affiliation(s)
- Qi Yu
- Department of Toxicology, College of Public Health, Zhengzhou University, 100 Kexue Ave, Zhongyuan District, Zhengzhou 450001, China
| | - Sa Yang
- Department of Toxicology, College of Public Health, Zhengzhou University, 100 Kexue Ave, Zhongyuan District, Zhengzhou 450001, China
| | - Zhongqiu Li
- Department of Toxicology, College of Public Health, Zhengzhou University, 100 Kexue Ave, Zhongyuan District, Zhengzhou 450001, China
| | - Yonghang Zhu
- Department of Toxicology, College of Public Health, Zhengzhou University, 100 Kexue Ave, Zhongyuan District, Zhengzhou 450001, China
| | - Zhenkai Li
- Department of Toxicology, College of Public Health, Zhengzhou University, 100 Kexue Ave, Zhongyuan District, Zhengzhou 450001, China
| | - Jiatong Zhang
- Department of Disease Control and Prevention, Hospital of Zhengzhou University, 100 Kexue Ave, Zhongyuan District, Zhengzhou 450001, China
| | - Chunyang Li
- Department of Toxicology, College of Public Health, Zhengzhou University, 100 Kexue Ave, Zhongyuan District, Zhengzhou 450001, China
| | - Feifei Feng
- Department of Toxicology, College of Public Health, Zhengzhou University, 100 Kexue Ave, Zhongyuan District, Zhengzhou 450001, China
| | - Wei Wang
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, 100 Kexue Ave, Zhongyuan District, Zhengzhou 450001, China
| | - Qiao Zhang
- Department of Toxicology, College of Public Health, Zhengzhou University, 100 Kexue Ave, Zhongyuan District, Zhengzhou 450001, China
| |
Collapse
|
7
|
Albashir AAD. Renin-Angiotensin-Aldosterone System (RAAS) Inhibitors and Coronavirus Disease 2019 (COVID-19). South Med J 2021; 114:51-56. [PMID: 33398362 PMCID: PMC7769064 DOI: 10.14423/smj.0000000000001200] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2020] [Indexed: 01/10/2023]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the virus responsible for the coronavirus disease 2019 (COVID-19) pandemic. The angiotensin-converting enzyme 2 (ACE2) has been proven to be used by SARS-CoV-2 for host cell entry. Considering that angiotensin receptor blockers and ACE inhibitors (ACEIs) upregulate the expression of ACE2 in animal studies, there may be a concern about whether these drugs may increase COVID-19 susceptibility and severity. Recently, there has been a debate among clinicians about whether to continue or to stop ACEIs and angiotensin receptor blockers in the context of COVID-19. Also, some media outlets and health systems have called for the discontinuation of these drugs in the context of suspected COVID-19. This has necessitated an urgent release of guidance on the use of such medications in COVID-19 patients. To date, multiple theories relating to the pure effects of renin-angiotensin-aldosterone system (RAAS) inhibitors on COVID-19 infections have been postulated. Favorable effects include blocking the ACE2 receptors, preventing viral entry into the heart and lungs, and protecting against lung injury in COVID-19. Adverse effects include a possible retrograde feedback mechanism that upregulates ACE2 receptors. This review provides greater insight into the role of the RAAS axis in acute lung injury and the effects of RAAS inhibitors on SARS-CoVs. The hypothesis that RAAS inhibitors facilitate viral insertion and the alternative hypothesis of the beneficial role of these drugs are discussed. Up-to-date published data concerning the RAAS inhibitors and COVID-19 are summarized.
Collapse
|
8
|
Zi J, Han Q, Gu S, McGrath M, Kane S, Song C, Ge Z. Targeting NAT10 Induces Apoptosis Associated With Enhancing Endoplasmic Reticulum Stress in Acute Myeloid Leukemia Cells. Front Oncol 2020; 10:598107. [PMID: 33425753 PMCID: PMC7793641 DOI: 10.3389/fonc.2020.598107] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 11/09/2020] [Indexed: 12/29/2022] Open
Abstract
N-acetyltransferase 10 (NAT10) has oncogenic properties in many tumors through its role in different cellular biological processes. NAT10 is also a potential biomarker in acute myeloid leukemia (AML); however, the mechanisms underlying NAT10’s contribution to disease states and the effect of targeting NAT10 as a therapeutic target remain unclear. NAT10 was found to be highly expressed in patients with AML, and increased NAT10 expression was associated with poor outcomes. Additionally, targeting NAT10 via the shRNA knockdown and its pharmacotherapeutic inhibitor resulted in inhibition of cell proliferation, induction of cell cycle arrest in the G1 phase, and apoptosis in AML cells. Moreover, NAT10 induces cell cycle arrest by decreasing expression of CDK2, CDK4, CyclinD1, Cyclin E while simultaneously increasing the expression of p16 and p21. Targeting NAT10 induces ER stress through the increased expression of GRP78 and the cleavage of caspase 12, which are classical markers of ER stress. This triggered the Unfolded Protein Response (UPR) pathway by consequently increasing IRE1, CHOP, and PERK expression, all of which play crucial roles in the UPR pathway. Targeting NAT10 also activated the classical apoptotic pathway through the upregulation of the Bax/bak and the concurrent downregulation of Bcl-2. In summary, our data indicate that targeting NAT10 promotes ER stress, triggers the UPR pathway, and activates the Bax/Bcl-2 axis in AML cells. Our results thus indicate a novel mechanism underlying the induction of NAT10 inhibition-mediated apoptosis and reveal the potential for the therapeutic effect of a NAT10 specific inhibitor in AML.
Collapse
Affiliation(s)
- Jie Zi
- Department of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Institute of Hematology Southeast University, Nanjing, China
| | - Qi Han
- Department of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Institute of Hematology Southeast University, Nanjing, China
| | - Siyu Gu
- Department of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Institute of Hematology Southeast University, Nanjing, China
| | - Mary McGrath
- Department of Pediatrics, Pennsylvania State University Medical College, Hershey, PA, United States
| | - Shriya Kane
- Department of Pediatrics, Pennsylvania State University Medical College, Hershey, PA, United States.,Georgetown University School of Medicine, Washington, DC, United States
| | - Chunhua Song
- Department of Pediatrics, Pennsylvania State University Medical College, Hershey, PA, United States
| | - Zheng Ge
- Department of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Institute of Hematology Southeast University, Nanjing, China
| |
Collapse
|
9
|
Zhao XY, Yu TT, Liu S, Liu YJ, Liu JJ, Qin J. Effect of liraglutide on endoplasmic reticulum stress in the renal tissue of type 2 diabetic rats. World J Diabetes 2020; 11:611-621. [PMID: 33384768 PMCID: PMC7754169 DOI: 10.4239/wjd.v11.i12.611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/28/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Liraglutide is a glucagon-like peptide 1 receptor agonist analog that has been found to have a therapeutic effect in diabetes. In addition to its ability to treat diabetes, liraglutide has beneficial effects on the cardiovascular system and kidney as well as other beneficial effects, but its specific mechanism is not clear. In this study, a rat model of type 2 diabetes was established by administration of a high-sugar, high-fat diet combined with low-dose streptozotocin (STZ) to observe the effect of liraglutide on the kidneys of type 2 diabetes rats and the possible underlying mechanisms.
AIM To explore whether liraglutide has a protective effect on type 2 diabetic rat kidneys and the underlying mechanisms.
METHODS Eight-week-old male Sprague-Dawley rats were randomly divided into a control group, model group, low-dose liraglutide group, and high-dose liraglutide group. Control rats were fed a standard diet, while model group and intervention group rats were fed high-sugar, high-fat feed for 1 mo and then intraperitoneally injected with 40 mg/kg STZ to induce type 2 diabetes. The low-dose and high-dose intervention groups received 100 µg/kg and 200 µg/kg liraglutide, respectively, once daily by subcutaneous injection. The control and model groups were given an equivalent volume of physiological saline for 8 wk. Pathological changes in renal tissues were observed by hematoxylin and eosin staining and periodic acid-Schiff staining, and GRP78 and caspase-12 expression was detected by Western blot and reverse transcription-polymerase chain reaction (RT-PCR).
RESULTS Western blot analysis showed that GRP78 and caspase-12 protein expression in kidney tissue was significantly higher in model rats than in normal rats and lower in the liraglutide-treated groups than in the model group, with a more significant decrease being observed in the high-dose group than in the low-dose group. RT-PCR showed that the mRNA expression of GRP78 and caspase-12 was higher in model rats than in control rats and lower in the liraglutide-treated groups than in the model group, with the high-dose group exhibiting a more significant decrease than the low-dose group.
CONCLUSION Liraglutide may delay the progression of diabetic nephropathy by reducing endoplasmic reticulum stress and protect the kidneys in a dose-dependent manner.
Collapse
Affiliation(s)
- Xuan-Ye Zhao
- Department of Endocrinology, Shanxi Provincial People's Hospital, Taiyuan 030012, Shanxi Province, China
| | - Ting-Ting Yu
- Department of Endocrinology, Shanxi Provincial People's Hospital, Taiyuan 030012, Shanxi Province, China
| | - Sheng Liu
- Department of Endocrinology, Shanxi Provincial People's Hospital, Taiyuan 030012, Shanxi Province, China
| | - Yao-Ji Liu
- Department of Endocrinology, Shanxi Provincial People's Hospital, Taiyuan 030012, Shanxi Province, China
| | - Jing-Jin Liu
- Department of Endocrinology, Shanxi Provincial People's Hospital, Taiyuan 030012, Shanxi Province, China
| | - Jie Qin
- Department of Endocrinology, Shanxi Provincial People's Hospital, Taiyuan 030012, Shanxi Province, China
| |
Collapse
|
10
|
Osman A, Benameur T, Korashy HM, Zeidan A, Agouni A. Interplay between Endoplasmic Reticulum Stress and Large Extracellular Vesicles (Microparticles) in Endothelial Cell Dysfunction. Biomedicines 2020; 8:E409. [PMID: 33053883 PMCID: PMC7599704 DOI: 10.3390/biomedicines8100409] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/26/2020] [Accepted: 10/03/2020] [Indexed: 12/19/2022] Open
Abstract
Upon increased demand for protein synthesis, accumulation of misfolded and/or unfolded proteins within the endoplasmic reticulum (ER), a pro-survival response is activated termed unfolded protein response (UPR), aiming at restoring the proper function of the ER. Prolonged activation of the UPR leads, however, to ER stress, a cellular state that contributes to the pathogenesis of various chronic diseases including obesity and diabetes. ER stress response by itself can result in endothelial dysfunction, a hallmark of cardiovascular disease, through various cellular mechanisms including apoptosis, insulin resistance, inflammation and oxidative stress. Extracellular vesicles (EVs), particularly large EVs (lEVs) commonly referred to as microparticles (MPs), are membrane vesicles. They are considered as a fingerprint of their originating cells, carrying a variety of molecular components of their parent cells. lEVs are emerging as major contributors to endothelial cell dysfunction in various metabolic disease conditions. However, the mechanisms underpinning the role of lEVs in endothelial dysfunction are not fully elucidated. Recently, ER stress emerged as a bridging molecular link between lEVs and endothelial cell dysfunction. Therefore, in the current review, we summarized the roles of lEVs and ER stress in endothelial dysfunction and discussed the molecular crosstalk and relationship between ER stress and lEVs in endothelial dysfunction.
Collapse
Affiliation(s)
- Aisha Osman
- Department of Pharmaceutical Sciences, College of Pharmacy, QU health, Qatar University, Doha 2713, Qatar; (A.O.); (H.M.K.)
| | - Tarek Benameur
- Department of Biomedical Sciences, College of Medicine, King Faisal University, P.O. Box 400, Al Ahsa 31982, Saudi Arabia;
| | - Hesham M. Korashy
- Department of Pharmaceutical Sciences, College of Pharmacy, QU health, Qatar University, Doha 2713, Qatar; (A.O.); (H.M.K.)
| | - Asad Zeidan
- Department of Basic Medical Sciences, College of Medicine, QU health, Qatar University, Doha 2713, Qatar;
| | - Abdelali Agouni
- Department of Pharmaceutical Sciences, College of Pharmacy, QU health, Qatar University, Doha 2713, Qatar; (A.O.); (H.M.K.)
| |
Collapse
|
11
|
Zhao G, Sun H, Zhang T, Liu JX. Copper induce zebrafish retinal developmental defects via triggering stresses and apoptosis. Cell Commun Signal 2020; 18:45. [PMID: 32169084 PMCID: PMC7071659 DOI: 10.1186/s12964-020-00548-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 03/06/2020] [Indexed: 02/07/2023] Open
Abstract
Background The disorder of copper homeostasis is linked with disease and developmental defects, and excess copper_nanoparticles (CuNPs) and ion (Cu2+) will induce developmental malformation and disease in organisms. However, little knowledge is available regarding its potential regulation mechanisms, and little study links excess copper with retinal developmental malformation and disease. Methods Embryos were stressed with copper (CuNPs and Cu2+), and cell proliferation and apoptosis assays, reactive oxygen species (ROS) and endoplasmic reticulum (ER) signaling detections, and genetic mutants cox17−/− and atp7a−/− application, were used to evaluate copper induced retinal developmental malformation and the underlying genetic and biological regulating mechanisms. Results Copper reduced retinal cells and down-regulated expression of retinal genes, damaged the structures of ER and mitochondria in retinal cells, up-regulated unfold protein responses (UPR) and ROS, and increased apoptosis in copper-stressed retinal cells. The copper induced retinal defects could be significantly neutralized by ROS scavengers reduced Glutathione (GSH) & N-acetylcysteine (NAC) and ER stress inhibitor 4- phenylbutyric acid (PBA). Blocking the transportation of copper to mitochondria, or to trans-Golgi network and to be exported into plasma, by deleting gene cox17 or atp7a, could alleviate retinal developmental defects in embryos under copper stresses. Conclusions This is probably the first report to reveal that copper nanoparticles and ions induce retinal developmental defects via upregulating UPR and ROS, leading to apoptosis in zebrafish embryonic retinal cells. Integrated function of copper transporter (Cox17 and Atp7a) is necessary for copper induced retinal defects. Graphical abstract ![]()
Collapse
Affiliation(s)
- Guang Zhao
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - HaoJie Sun
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ting Zhang
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing-Xia Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
12
|
Li R, Liu T, Shi J, Luan W, Wei X, Yu J, Mao H, Liu P. ROR2 induces cell apoptosis via activating IRE1α/JNK/CHOP pathway in high-grade serous ovarian carcinoma in vitro and in vivo. J Transl Med 2019; 17:428. [PMID: 31878941 PMCID: PMC6933631 DOI: 10.1186/s12967-019-02178-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 12/12/2019] [Indexed: 12/15/2022] Open
Abstract
Background Epithelial ovarian cancer (EOC) is the most lethal cancer in female genital tumors. New disease markers and novel therapeutic strategies are urgent to identify considering the current status of treatment. Receptor tyrosine kinases family plays critical roles in embryo development and disease progression. However, ambivalent research conclusions of ROR2 make its role in tumor confused and the underlying mechanism is far from being understood. In this study, we sought to clarify the effects of ROR2 on high-grade serous ovarian carcinoma (HGSOC) cells and reveal the mechanism. Methods Immunohistochemistry assay and western-blot assay were used to detect proteins expression. ROR2 overexpression adenovirus and Lentivirus were used to create ROR2 overexpression model in vitro and in vivo, respectively. MTT assay, colony formation assay and transwell assay were used to measure the proliferation, invasion and migration ability of cancer cells. Flow cytometry assay was used to detect cell apoptosis rate. Whole transcriptome analysis was used to explore the differentially expressed genes between ROR2 overexpression group and negative control group. SiRNA targeted IRE1α was used to knockdown IRE1α. Kira6 was used to inhibit phosphorylation of IRE1α. Results Expression of ROR2 was significantly lower in HGSOC tissues compared to normal fallopian tube epithelium or ovarian surface epithelium tissues. In HGSOC cohort, patients with advanced stages or positive lymph nodes were prone to express lower ROR2. Overexpression of ROR2 could repress the proliferation of HGSOC cells and induce cell apoptosis. RNA sequencing analysis indicated that ROR2 overexpression could induce unfold protein response. The results were also confirmed by upregulation of BIP and phosphorylated IRE1α. Furthermore, pro-death factors like CHOP, phosphorylated JNK and phosphorylated c-Jun were also upregulated. IRE1α knockdown or Kira6 treatment could reverse the apoptosis induced by ROR2 overexpression. Finally, tumor xenograft experiment showed ROR2 overexpression could significantly repress the growth rate and volume of transplanted tumors. Conclusions Taken together, ROR2 downregulation was associated with HGSOC development and progression. ROR2 overexpression could repress cell proliferation and induce cell apoptosis in HGSOC cells. And the underlying mechanism might be the activation of IRE1α/JNK/CHOP pathway induced by ROR2.
Collapse
Affiliation(s)
- Rui Li
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Tianfeng Liu
- Department of Gynecology and Obstetrics, Linyi People's Hospital, 27 Jiefang Road, Linyi, 276003, Shandong, People's Republic of China
| | - Juanjuan Shi
- Department of Gynecology and Obstetrics, Affiliated Tengzhou Center People's Hospital of Jining Medical University, 181 Xing Tan Road, Tengzhou, 277599, Shandong, People's Republic of China
| | - Wenqing Luan
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Xuan Wei
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Jiangtao Yu
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Hongluan Mao
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China.
| | - Peishu Liu
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China.
| |
Collapse
|
13
|
Naiel S, Carlisle RE, Lu C, Tat V, Dickhout JG. Endoplasmic reticulum stress inhibition blunts the development of essential hypertension in the spontaneously hypertensive rat. Am J Physiol Heart Circ Physiol 2019; 316:H1214-H1223. [DOI: 10.1152/ajpheart.00523.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Essential hypertension is the leading cause of premature death worldwide. However, hypertension’s cause remains uncertain. endoplasmic reticulum (ER) stress has recently been associated with hypertension, but it is unclear whether ER stress causes hypertension. To clarify this question, we examined if ER stress occurs in blood vessels before the development of hypertension and if ER stress inhibition would prevent hypertension development. We used the spontaneously hypertensive rat (SHR) as a model of human essential hypertension and the Wistar-Kyoto (WKY) rat as its normotensive control. Resistance arteries collected from young rats determined that ER stress was present in SHR vessels before the onset of hypertension. To assess the effect of ER stress inhibition on hypertension development, another subset of rats were treated with 4-phenylbutyric acid (4-PBA; 1 g·kg−1·day−1) for 8 wk from 5 wk of age. Blood pressure was measured via radiotelemetry and compared with untreated SHR and WKY rats. Mesenteric resistance arteries were collected and assessed for structural and functional changes associated with hypertension. Systolic and diastolic blood pressures were significantly lower in the 4-PBA-treated SHR groups than in untreated SHRs. Additionally, 4-PBA significantly decreased the media-to-lumen ratio and ER stress marker expression, improved vasodilatory response, and reduced contractile responses in resistance arteries from SHRs. Overall, ER stress inhibition blunted the development of hypertension in the SHR. These data add evidence to the hypothesis that a component of hypertension in the SHR is caused by ER stress. NEW & NOTEWORTHY In this study, 4-phenylbutyric acid’s (4-PBA’s) molecular chaperone capability was used to inhibit endoplasmic reticulum (ER) stress in the small arteries of young spontaneously hypertensive rats (SHRs) and reduce their hypertension. These effects are likely mediated through 4-PBA's effects to reduce resistant artery contractility and increase nitric oxide-mediated endothelial vasodilation through a process preventing endothelial dysfunction. Overall, ER stress inhibition blunted the development of hypertension in this young SHR model. This suggests that a component of the increase in blood pressure found in SHRs is due to ER stress. However, it is important to note that inhibition of ER stress was not able to fully restore the blood pressure to normal, suggesting that a component of hypertension may not be due to ER stress. This study points to the inhibition of ER stress as an important new physiological pathway to lower blood pressure, where other known approaches may not achieve blood pressure-lowering targets.
Collapse
Affiliation(s)
- Safaa Naiel
- Department of Medicine, Hamilton Centre for Kidney Research, McMaster University and St. Joseph’s Healthcare Hamilton, Hamilton, Ontario, Canada
| | - Rachel E. Carlisle
- Department of Medicine, Hamilton Centre for Kidney Research, McMaster University and St. Joseph’s Healthcare Hamilton, Hamilton, Ontario, Canada
| | - Chao Lu
- Department of Medicine, Hamilton Centre for Kidney Research, McMaster University and St. Joseph’s Healthcare Hamilton, Hamilton, Ontario, Canada
| | - Victor Tat
- Department of Medicine, Hamilton Centre for Kidney Research, McMaster University and St. Joseph’s Healthcare Hamilton, Hamilton, Ontario, Canada
| | - Jeffrey G. Dickhout
- Department of Medicine, Hamilton Centre for Kidney Research, McMaster University and St. Joseph’s Healthcare Hamilton, Hamilton, Ontario, Canada
| |
Collapse
|
14
|
Maamoun H, Abdelsalam SS, Zeidan A, Korashy HM, Agouni A. Endoplasmic Reticulum Stress: A Critical Molecular Driver of Endothelial Dysfunction and Cardiovascular Disturbances Associated with Diabetes. Int J Mol Sci 2019; 20:ijms20071658. [PMID: 30987118 PMCID: PMC6480154 DOI: 10.3390/ijms20071658] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/25/2019] [Accepted: 03/29/2019] [Indexed: 12/12/2022] Open
Abstract
Physical inactivity and sedentary lifestyle contribute to the widespread epidemic of obesity among both adults and children leading to rising cases of diabetes. Cardiovascular disease complications associated with obesity and diabetes are closely linked to insulin resistance and its complex implications on vascular cells particularly endothelial cells. Endoplasmic reticulum (ER) stress is activated following disruption in post-translational protein folding and maturation within the ER in metabolic conditions characterized by heavy demand on protein synthesis, such as obesity and diabetes. ER stress has gained much interest as a key bridging and converging molecular link between insulin resistance, oxidative stress, and endothelial cell dysfunction and, hence, represents an interesting drug target for diabetes and its cardiovascular complications. We reviewed here the role of ER stress in endothelial cell dysfunction, the primary step in the onset of atherosclerosis and cardiovascular disease. We specifically focused on the contribution of oxidative stress, insulin resistance, endothelial cell death, and cellular inflammation caused by ER stress in endothelial cell dysfunction and the process of atherogenesis.
Collapse
Affiliation(s)
- Hatem Maamoun
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Abbaseyya, Cairo 11566, Egypt.
| | - Shahenda S Abdelsalam
- Department of Pharmaceutical Sciences, College of Pharmacy, QU health, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Asad Zeidan
- Department of Basic Sciences, College of Medicine, QU health, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Hesham M Korashy
- Department of Pharmaceutical Sciences, College of Pharmacy, QU health, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Abdelali Agouni
- Department of Pharmaceutical Sciences, College of Pharmacy, QU health, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
15
|
Feng SQ, Zong SY, Liu JX, Chen Y, Xu R, Yin X, Zhao R, Li Y, Luo TT. VEGF Antagonism Attenuates Cerebral Ischemia/Reperfusion-Induced Injury via Inhibiting Endoplasmic Reticulum Stress-Mediated Apoptosis. Biol Pharm Bull 2019; 42:692-702. [PMID: 30828041 DOI: 10.1248/bpb.b18-00628] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endoplasmic reticulum (ER) stress-mediated apoptosis pathway is considered to play a vital role in mediating stroke and other cerebrovascular diseases. Previous studies have showed that vascular endothelial growth factor (VEGF) antagonism reduced cerebral ischemic-reperfusion (CI/R) damage, but whether attenuation of ER stress-induced apoptosis is contributing to its mechanisms remains elusive. Our study aimed to investigate the protective effect of VEGF antagonism on CI/R-induced injury. First, oxygen-glucose deprivation and re-oxygenation (OGD/R) BEND3 cell model was constructed to estimate small interfering RNA (siRNA)-VEGF on damage of endothelial cells. Next, in animal model, CI/R mice were induced by middle cerebral artery occlusion (MCAO) for 2 h followed by 24 h reperfusion to investigate cerebral tissue damage. For treatment group, mice received 100 µg/kg anti-VEGF antibodies at 30 min before MCAO, followed by 24 h reperfusion. Our findings demonstrated that pre-administration of siRNA-VEGF before OGD/R changed the biological characteristics of BEND3 cells, reversed the levels of X-box binding protein-1 (XBP-1) and glucose-regulated protein 78 (GRP78), showing siRNA-VEGF attenuated, at least in part, the oxidative damage in OGD/R cell by down-regulating ER stress. In mice experiment, pre-administration of anti-VEGF antibody reduced the brain infarct volume and edema extent and improved neurological scores outcome of CI/R injury mice. Pathological and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) staining results also confirmed this protective effect. The expressions of VEGF, CATT/EBP homologous protein (CHOP), inositol requiring enzyme 1α (IRE-1α), and cleaved-caspase12 and c-jun N-terminal kinase (JNK) phosphorylation were also prominently decreased. These results suggested that inhibition of endogenous VEGF attenuates CI/R-induced injury via inhibiting ER stress-mediated apoptosis.
Collapse
Affiliation(s)
- Shu-Qing Feng
- Department of Ultrasound, The First People's Hospital of Yunnan Province.,Department of Ultrasound, The Affiliated Hospital of Kunming University of Science and Technology
| | - Shao-Yun Zong
- Department of Ultrasound, The First People's Hospital of Yunnan Province.,Department of Ultrasound, The Affiliated Hospital of Kunming University of Science and Technology
| | - Jia-Xin Liu
- Medical School of Kunming University of Science and Technology
| | - Yang Chen
- Department of Ultrasound, The First People's Hospital of Yunnan Province.,Department of Ultrasound, The Affiliated Hospital of Kunming University of Science and Technology
| | - Rong Xu
- Department of Ultrasound, The First People's Hospital of Yunnan Province.,Department of Ultrasound, The Affiliated Hospital of Kunming University of Science and Technology
| | - Xin Yin
- Department of Ultrasound, The First People's Hospital of Yunnan Province.,Department of Ultrasound, The Affiliated Hospital of Kunming University of Science and Technology
| | - Rong Zhao
- Yunnan province Hospital of Traditional Chinese Medical
| | - Ying Li
- Department of Rehabilitation, The First People's Hospital of Yunnan Province.,Department of Rehabilitation, The Affiliated Hospital of Kunming University of Science and Technology
| | - Ting-Ting Luo
- Department of Ultrasound, The First People's Hospital of Yunnan Province.,Department of Ultrasound, The Affiliated Hospital of Kunming University of Science and Technology
| |
Collapse
|
16
|
SLC3A2 is a novel endoplasmic reticulum stress-related signaling protein that regulates the unfolded protein response and apoptosis. PLoS One 2018; 13:e0208993. [PMID: 30592731 PMCID: PMC6310261 DOI: 10.1371/journal.pone.0208993] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 11/28/2018] [Indexed: 01/16/2023] Open
Abstract
Endoplasmic reticulum (ER) stress results from imbalances in unfolded/misfolded proteins, contributing to a wide variety of human diseases. To better understand the mechanisms involved in the cellular response to ER stress in cardiomyocytes, we previously conducted a genome-wide screening in an in vitro ER stress model of rat cardiomyocytes, which highlighted amino acid transporter heavy chain, member 2 (SLC3A2) as an important factor in ER stress. In the present study, we characterized the role of SLC3A2 during the unfolded protein response (UPR), as one of the primary pathways activated during ER stress. First, we confirmed the induction of Slc3a2 mRNA expression following treatment with various ER stress inducers in rat cardiomyocytes (H9C2) and neural cells (PC12). Knockdown of Slc3a2 expression with small interfering RNA (siRNA) revealed that the encoded protein functions upstream of three important UPR proteins: ATF4, ATF6, and XBP1. siRNA-mediated knockdown of both SLC3A2 and mammalian target of rapamycin 1 (mTOR1) revealed that mTOR1 acts as a mediator between SLC3A2 and the UPR. RNA sequencing was then performed to gain a more thorough understanding of the function of SLC3A2, which identified 23 highly differentially regulated genes between the control and knockdown cell lines, which were related to the UPR and amino acid transport. Notably, flow cytometry further showed that SLC3A2 inhibition also enhanced the apoptosis of rat cardiomyocytes. Taken together, these results highlight SLC3A2 as a complex, multifunctional signaling protein that acts upstream of well-known UPR proteins with anti-apoptotic properties, suggesting its potential as a therapeutic target for ER stress-related diseases.
Collapse
|
17
|
Yang W, Zhang J, Shi L, Ji S, Yang X, Zhai W, Zong H, Qian Y. Protective effects of tanshinone IIA on SH-SY5Y cells against oAβ 1-42-induced apoptosis due to prevention of endoplasmic reticulum stress. Int J Biochem Cell Biol 2018; 107:82-91. [PMID: 30578955 DOI: 10.1016/j.biocel.2018.12.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 12/06/2018] [Accepted: 12/18/2018] [Indexed: 12/31/2022]
Abstract
Endoplasmic reticulum (ER) stress caused by β-amyloid protein (Aβ) may play an important role in the pathogenesis of Alzheimer disease (AD). Our previous data have indicated that tanshinone IIA (tan IIA) protected primary neurons from Aβ induced neurotoxicity. To further explore the neuroprotection of tan IIA, here we study the effects of tan IIA on the ER stress response in oligomeric Aβ1-42 (oAβ1-42)-induced SH-SY5Y cell injury. Our data showed that tan IIA pretreatment could increase cell viability and inhibit apoptosis caused by oAβ1-42. Furthermore, tan IIA markedly suppressed ER dilation and prevented oAβ1-42-induced abnormal expression of glucose regulated protein 78 (GRP78), initiation factor 2α (eIF2α), activating transcription factor 6 (ATF6), as well as inhibited the activation of C/EBP homologous protein (CHOP) and c-Jun N-terminal kinase (JNK) pathways. Moreover, tan IIA ameliorated oAβ1-42-induced Bcl-2/Bax ratio reduction, prevented cytochrome c translocation into cytosol from mitochondria, reduced oAβ1-42-induced cleavage of caspase-9 and caspase-3, suppressed caspase-3/7 activity, and increased mitochondrial membrane potential (MMP) and ATP content. Meanwhile, oAβ1-42-induced cell apoptosis and activation of ER stress can also be attenuated by the inhibitor of ER stress 4-phenylbutyric acid (4-PBA). Taken together, these data indicated that tan IIA protects SH-SY5Y cells against oAβ1-42-induced apoptosis through attenuating ER stress, modulating CHOP and JNK pathways, decreasing the expression of cytochrome c, cleaved caspase-9 and cleaved caspase-3, as well as increasing the ratio of Bcl-2/Bax, MMP and ATP content. Our results strongly suggested that tan IIA may be effective in treating AD associated with ER stress.
Collapse
Affiliation(s)
- Weina Yang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, China
| | - Jianshui Zhang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, China
| | - Lili Shi
- Department of Human Anatomy, Xi'an Medical University, 1 Xinwang road, Xi'an, 710021, China
| | - Shengfeng Ji
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, China
| | - Xiaohua Yang
- Key Laboratory of Ministry of Health for Forensic Sciences, School of Forensic Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, China
| | - Wanying Zhai
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, China
| | - Hangfan Zong
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, China
| | - Yihua Qian
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, China.
| |
Collapse
|
18
|
Pandey VK, Mathur A, Kakkar P. Emerging role of Unfolded Protein Response (UPR) mediated proteotoxic apoptosis in diabetes. Life Sci 2018; 216:246-258. [PMID: 30471281 DOI: 10.1016/j.lfs.2018.11.041] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 02/07/2023]
Abstract
Endoplasmic reticulum (ER) is a crucial single membrane organelle that acts as a quality control system for cellular proteins as it is intricately involved in their synthesis, folding and trafficking to the respective targets. Type 2 diabetes is characterized by enhanced blood glucose level that promotes insulin resistance and hampers cellular glucose metabolism. Hyperglycemia provokes mitochondrial ROS production and glycation of proteins which exert a tremendous load on ER for conventional refolding of misfolded/unfolded and nascent proteins that perturb ER homeostasis resulting in apoptotic cell death. Impairment in ER functions is suspected to be through specific ER membrane-bound proteins known as Unfolded Protein Response (UPR) sensor proteins. Conformational changes in these proteins induce oligomerization and cross-autophosphorylation which facilitate processes required for the restoration of ER homeostatic imbalance. Multiple studies have reported the involvement of UPR mediated autophagy and apoptotic pathways in the progression of metabolic disorders including diabetes, cardiac ischemia/reperfusion injury and hypoxia-mediated cell death. In this review, the involvement of UPR pathways in the progression of diabetes associated complications have been addressed, which underscores molecular crosstalks during neuropathy, nephropathy, hepatic injury and retinopathy. A better understanding of these molecular interventions may reveal advanced therapeutic approaches for preventing diabetic comorbidities. The article also highlights the importance of phytochemicals that are emerging as novel ER stress inhibitors and are being explored for targeted interaction in preventing cell death responses during diabetes.
Collapse
Affiliation(s)
- Vivek Kumar Pandey
- Herbal Research Laboratory, Food, Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan 31, M.G Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Toxicology Research, Lucknow 226001, Uttar Pradesh, India
| | - Alpana Mathur
- Herbal Research Laboratory, Food, Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan 31, M.G Marg, Lucknow 226001, Uttar Pradesh, India; Babu Banarasi Das University, Lucknow, Uttar Pradesh, India
| | - Poonam Kakkar
- Herbal Research Laboratory, Food, Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan 31, M.G Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Toxicology Research, Lucknow 226001, Uttar Pradesh, India.
| |
Collapse
|
19
|
Jaikumkao K, Pongchaidecha A, Chueakula N, Thongnak LO, Wanchai K, Chatsudthipong V, Chattipakorn N, Lungkaphin A. Dapagliflozin, a sodium-glucose co-transporter-2 inhibitor, slows the progression of renal complications through the suppression of renal inflammation, endoplasmic reticulum stress and apoptosis in prediabetic rats. Diabetes Obes Metab 2018; 20:2617-2626. [PMID: 29923295 DOI: 10.1111/dom.13441] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 06/05/2018] [Accepted: 06/15/2018] [Indexed: 12/13/2022]
Abstract
AIM To evaluate the renoprotective roles of dapagliflozin in prediabetic rats in order to elucidate the effects of this sodium-glucose co-transporter-2 (SGLT2) inhibitor on the renal complications associated with metabolic dysfunction in diet-induced obesity. METHODS Obesity was induced by feeding a high-fat diet (HFD) to male Wistar rats for 16 weeks. HFD-fed rats were treated with dapagliflozin (1 mg/kg/d) or metformin (30 mg/kg/d) by oral gavage for 4 weeks after insulin resistance had been established. The metabolic characteristics and renal function associated with lipid accumulation, inflammation, fibrosis, endoplasmic reticulum (ER) stress and apoptosis in the renal tissue were examined. RESULTS The results showed that HFD-fed rats developed both obesity and impaired renal function, along with increased renal triglyceride accumulation. Importantly, dapagliflozin had greater efficacy in improving renal function and reducing both body weight and visceral fat accumulation than metformin treatment. Dapagliflozin and metformin were found to have similar effects regarding the suppression of renal triglycerides, superoxide dismutase (SOD) expression and malondialdehyde (MDA) levels, subsequently leading to a decrease in renal inflammation and fibrosis. Renal ER stress and apoptosis were increased in HFD-fed rats and were effectively reduced after administration of dapagliflozin. The expression of renal SGLT2 was not affected by administration of dapagliflozin or metformin. CONCLUSION Collectively, these findings indicate that dapagliflozin exerts renoprotective effects by alleviating obesity-induced renal inflammation, fibrosis, ER stress, apoptosis and lipid accumulation in the prediabetic condition.
Collapse
Affiliation(s)
- Krit Jaikumkao
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Anchalee Pongchaidecha
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nuttawud Chueakula
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - La-Ongdao Thongnak
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Keerati Wanchai
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- School of Medicine, Mae Fah Luang University, Chiang Rai, Thailand
| | | | - Nipon Chattipakorn
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Research and Training Centre, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Anusorn Lungkaphin
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Centre for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
20
|
Probiotic Lactobacillus paracasei HII01 protects rats against obese-insulin resistance-induced kidney injury and impaired renal organic anion transporter 3 function. Clin Sci (Lond) 2018; 132:1545-1563. [DOI: 10.1042/cs20180148] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 07/04/2018] [Accepted: 07/05/2018] [Indexed: 01/24/2023]
Abstract
The relationship between gut dysbiosis and obesity is currently acknowledged to be a health topic which causes low-grade systemic inflammation and insulin resistance and may damage the kidney. Organic anion transporter 3 (Oat3) has been shown as a transporter responsible for renal handling of gut microbiota products which are involved in the progression of metabolic disorder. The present study investigated the effect of probiotic supplementation on kidney function, renal Oat3 function, inflammation, endoplasmic reticulum (ER) stress, and apoptosis in obese, insulin-resistant rats. After 12 weeks of being provided with either a normal or a high-fat diet (HF), rats were divided into normal diet (ND); ND treated with probiotics (NDL); HF; and HF treated with probiotic (HFL). Lactobacillus paracasei HII01 1 × 108 colony forming unit (CFU)/ml was administered to the rats daily by oral gavage for 12 weeks. Obese rats showed significant increases in serum lipopolysaccharide (LPS), plasma lipid profiles, and insulin resistance. Renal Oat 3 function was decreased along with kidney dysfunction in HF-fed rats. Obese rats also demonstrated the increases in inflammation, ER stress, apoptosis, and gluconeogenesis in the kidneys. These alterations were improved by Lactobacillus paracasei HII01 treatment. In conclusion, probiotic supplementation alleviated kidney inflammation, ER stress, and apoptosis, leading to improved kidney function and renal Oat3 function in obese rats. These benefits involve the attenuation of hyperlipidemia, systemic inflammation, and insulin resistance. The present study also suggested the idea of remote sensing and signaling system between gut and kidney by which probiotic might facilitate renal handling of gut microbiota products through the improvement of Oat3 function.
Collapse
|
21
|
Cardoso VG, Gonçalves GL, Costa-Pessoa JM, Thieme K, Lins BB, Casare FAM, de Ponte MC, Camara NOS, Oliveira-Souza M. Angiotensin II-induced podocyte apoptosis is mediated by endoplasmic reticulum stress/PKC-δ/p38 MAPK pathway activation and trough increased Na +/H + exchanger isoform 1 activity. BMC Nephrol 2018; 19:179. [PMID: 30005635 PMCID: PMC6043975 DOI: 10.1186/s12882-018-0968-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 06/26/2018] [Indexed: 11/12/2022] Open
Abstract
Background Angiotensin II (Ang II) contributes to the progression of renal diseases associated with proteinuria and glomerulosclerosis mainly by inducing podocyte apoptosis. In the present study, we investigated whether the chronic effects of Ang II via AT1 receptor (AT1R) would result in endoplasmic reticulum (ER) stress/PKC-delta/p38 MAPK stimulation, and consequently podocyte apoptosis. Methods Wistar rats were treated with Ang II (200 ng·kg−1·min−1, 42 days) and or losartan (10 mg·kg−1·day−1, 14 days). Immortalized mouse podocyte were treated with 1 μM Ang II and/or losartan (1 μM) or SB203580 (0.1 μM) (AT1 receptor antagonist and p38 MAPK inhibitor) for 24 h. Kidney sections and cultured podocytes were used to evaluate protein expression by immunofluorescence and immunoblotting. Apoptosis was evaluated by flow cytometry and intracellular pH (pHi) was analyzed using microscopy combined with the fluorescent probe BCECF/AM. Results Compared with controls, Ang II via AT1R increased chaperone GRP 78/Bip protein expression in rat glomeruli (p < 0.001) as well as in podocyte culture (p < 0.01); increased phosphorylated eIf2-α (p < 0.05), PKC-delta (p < 0.01) and p38 MAPK (p < 0.001) protein expression. Furthermore, Ang II induced p38 MAPK-mediated late apoptosis and increased the Bax/Bcl-2 ratio (p < 0.001). Simultaneously, Ang II via AT1R induced p38 MAPK-NHE1-mediated increase of pHi recovery rate after acid loading. Conclusion Together, our results indicate that Ang II-induced podocyte apoptosis is associated with AT1R/ER stress/PKC-delta/p38 MAPK axis and enhanced NHE1-mediated pHi recovery rate.
Collapse
Affiliation(s)
- Vanessa Gerolde Cardoso
- Laboratory of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, 05508-900, Brazil
| | - Guilherme Lopes Gonçalves
- Laboratory of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, 05508-900, Brazil
| | - Juliana Martins Costa-Pessoa
- Laboratory of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, 05508-900, Brazil
| | - Karina Thieme
- Laboratory of Carbohydrates and Radioimmunoassays (LIM-18), Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Bruna Bezerra Lins
- Laboratory of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, 05508-900, Brazil
| | - Fernando Augusto Malavazzi Casare
- Laboratory of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, 05508-900, Brazil
| | - Mariana Charleaux de Ponte
- Laboratory of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, 05508-900, Brazil
| | - Niels Olsen Saraiva Camara
- Laboratory for Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Maria Oliveira-Souza
- Laboratory of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, 05508-900, Brazil.
| |
Collapse
|
22
|
Long M, Chen X, Wang N, Wang M, Pan J, Tong J, Li P, Yang S, He J. Proanthocyanidins Protect Epithelial Cells from Zearalenone-Induced Apoptosis via Inhibition of Endoplasmic Reticulum Stress-Induced Apoptosis Pathways in Mouse Small Intestines. Molecules 2018; 23:molecules23071508. [PMID: 29933637 PMCID: PMC6099583 DOI: 10.3390/molecules23071508] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/17/2018] [Accepted: 06/19/2018] [Indexed: 12/20/2022] Open
Abstract
This study evaluated the protective effect of proanthocyanidins (PCs) on reducing apoptosis in the mouse intestinal epithelial cell model MODE-K exposed to zearalenone (ZEA) through inhibition of the endoplasmic reticulum stress (ERS)-induced apoptosis pathway. Our results showed that PCs could reduce the rate of apoptosis in MODE-K cells exposed to ZEA (p < 0.01). PCs significantly increased the ZEA-induced antioxidant protective effects on the enzymes superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and on the content of GSH. PCs also significantly decreased the ZEA-induced increase in the content of malondialdehyde (MDA). The analysis indicated that ZEA increased both mRNA and protein expression levels of C/EBP homologous protein (CHOP), GRP78, c-Jun N-terminal kinase (JNK), and cysteinyl aspartate specific proteinase 12 (caspase-12) (p < 0.05), which are related to the ERS-induced apoptosis pathway. ZEA decreased levels of the pro-apoptotic related protein Bcl-2 (p < 0.05) and increased the anti-apoptotic related protein Bax (p < 0.05). Co-treatment with PCs was also shown to significantly reverse the expression levels of these proteins in MODE-K cells. The results demonstrated that PCs could protect MODE-K cells from oxidative stress and apoptosis induced by ZEA. The underlying mechanism may be that PCs can alleviate apoptosis in mouse intestinal epithelial cells by inhibition of the ERS-induced apoptosis pathway.
Collapse
Affiliation(s)
- Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Xinliang Chen
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Nan Wang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Mingyang Wang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Jiawen Pan
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Jingjing Tong
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Peng Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Shuhua Yang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Jianbin He
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
23
|
Teng J, Liu M, Su Y, Li K, Sui N, Wang S, Li L, Sun Y, Wang Y. Down-regulation of GRP78 alleviates lipopolysaccharide-induced acute kidney injury. Int Urol Nephrol 2018; 50:2099-2107. [PMID: 29915879 DOI: 10.1007/s11255-018-1911-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 06/07/2018] [Indexed: 10/14/2022]
Abstract
PURPOSE Acute kidney injury (AKI) is accompanied with life-threatening sepsis. It is necessary to develop effective therapy agent or strategy for treating AKI. LPS is a primary pathogenic factor that induces sepsis. Glucose-regulated protein 78 (GRP78) is closely related to cell injuries. The objective of this study was to examine the role of GRP78 in LPS-induced AKI. METHODS Cell counting kit-8 (CCK-8) assay and flow cytometry (FCM) were respectively performed to assess the cell viability and apoptosis. Available commercial kits were used to detect the reactive oxygen species (ROS) contents and the activity of oxidative indicators. The expressions of the relevant factors were determined by real-time PCR (RT-PCR) and Western blot. RESULTS The results showed that the expression of GRP78 was apparently increased by LPS treatment, and that the down-regulation of GRP78 by small RNA interference improved the proliferation ability of renal cells in comparison to LPS group. The LPS-induced immune response and oxidative stress was alleviated by the depletion of GRP78. Moreover, the LPS-induced apoptosis was reduced in the GRP78 group by regulating the expression of mitochondrial apoptosis (Bcl-2, Bax) and endoplasmic reticulum (ER) stress (CHOP, caspase-12)-associated proteins. In addition, the protective role of GRP78 reduction was partly related to the balance of NF-κB/IκB. CONCLUSIONS Down-regulation of GRP78 attenuated LPS-induced AKI through inhibiting immune response/oxidative stress-associated apoptosis.
Collapse
Affiliation(s)
- Jinlong Teng
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mingjun Liu
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuan Su
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Kun Li
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Na Sui
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shibo Wang
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Liandi Li
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yunbo Sun
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yongbin Wang
- Department of Emergency Medicine, The Affiliated hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China.
| |
Collapse
|
24
|
Gao Z, Liu G, Hu Z, Shi W, Chen B, Zou P, Li X. Grape seed proanthocyanidins protect against streptozotocin‑induced diabetic nephropathy by attenuating endoplasmic reticulum stress‑induced apoptosis. Mol Med Rep 2018; 18:1447-1454. [PMID: 29901130 PMCID: PMC6072170 DOI: 10.3892/mmr.2018.9140] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 05/11/2018] [Indexed: 01/16/2023] Open
Abstract
Diabetic nephropathy (DN) is by far the most common cause of end-stage renal disease (ESRD) in industrial countries, accounting for ~45% of all new ESRD cases in the United States. Grape seed proanthocyanidin extracts (GSPE) are powerful antioxidants, with an antioxidant ability 50-fold greater than that of vitamin E and 20-fold greater than that of vitamin C. The present study investigated whether GSPE can protect against streptozotocin (STZ)-induced DN and aimed to elucidate a possible mechanism. Male Sprague Dawley rats were randomly divided into three groups: Control group (N), diabetes mellitus group (DM) injected with 40 mg/kg STZ, and the GSPE treatment group (intragastric administration of 250 mg/kg/day GSPE for 16 weeks after diabetes was induced in the rats). Blood and kidney samples were collected after treatment. The renal pathological changes were determined with periodic acid-Schiff (PAS) staining, while the protein expression levels of glucose-regulated protein 78 (GRP78), phosphorylated-extracellular signal-regulated kinase (p-ERK) and Caspase-12 were determined by western blotting and immunohistochemical staining. Apoptosis was determined with a terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay. Compared with the DM group, the GSPE group had no significant changes in the blood urea nitrogen (BUN) level and serum creatinine (Scr) level, but showed a significant decline in the renal index (RI) level and 24-h urinary albumin level (P<0.05). The histopathology results indicated very little pathological damage in the GSPE group. Compared with the DM group, the GSPE group had a significantly reduced number of TUNEL-positive cells (P<0.05), and the GSPE group had an obvious reduction in the protein expression of GRP78, p-ERK, and Caspase-12 (P<0.05). In this study, the results indicated that GSPE can protect renal function and attenuate endoplasmic reticulum stress-induced apoptosis via the Caspase-12 pathway in STZ-induced DN.
Collapse
Affiliation(s)
- Zhaoli Gao
- Department of Nephrology, Shandong University Qi Lu Hospital Qing‑Dao, Qingdao, Shandong 266000, P.R. China
| | - Guangyi Liu
- Department of Nephrology, Shandong University Qi Lu Hospital, Jinan, Shandong 250012, P.R. China
| | - Zhao Hu
- Department of Nephrology, Shandong University Qi Lu Hospital, Jinan, Shandong 250012, P.R. China
| | - Weiwei Shi
- Department of Ultrasound, Jinan Central Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Binbin Chen
- Department of Nephrology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Peimei Zou
- Department of Nephrology, Peking Union Medical College Hospital, Beijing 100000, P.R. China
| | - Xianhua Li
- Department of Nephrology, Shandong University Qi Lu Hospital, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
25
|
Lei X, Lei L, Zhang Z, Cheng Y. Diazoxide inhibits of ER stress‑mediated apoptosis during oxygen‑glucose deprivation in vitro and cerebral ischemia‑reperfusion in vivo. Mol Med Rep 2018; 17:8039-8046. [PMID: 29693708 PMCID: PMC5983977 DOI: 10.3892/mmr.2018.8925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 06/21/2017] [Indexed: 11/08/2022] Open
Abstract
Neuroprotective strategies using diazoxide (DZX) have been demonstrated to limit ischemia/reperfusion (I/R)-induced injury and cell apoptosis. In type 2 diabetes mellitus, DZX has been reported to improve β-cell function and reduce their apoptosis, through suppressing endoplasmic reticulum (ER) stress. However, the effects of DZX on ER stress during I/R-induced neuronal apoptosis in the hippocampus remains to be elucidated. In the present study, pretreatment of hippocampal neurons with DZX was revealed to inhibit oxygen-glucose deprivation (OGD)-stimulated apoptosis in vitro and to alleviate I/R-induced hippocampal injury and behavioral deficits in rats in vivo. Furthermore, OGD and I/R were demonstrated to induce ER stress via upregulating the expression of ER stress-associated proteins, including C/EBP homologous protein, 78 kDa glucose-regulated protein and caspase-12, whereas the exogenous administration of DZX effectively downregulated ER stress-associated protein expression following OGD and I/R. In addition, DZX was revealed to significantly increase the protein expression of B-cell lymphoma (Bcl)-2 and suppress the expression of caspase-3 and Bcl-2-associated X protein. These findings suggested that DZX may protect cells against apoptosis via regulating the expression of ER stress-associated proteins in vitro and in vivo, thus enhancing the survival of hippocampal cells. The present results suggested a novel mechanism that may underlie the protective effect of DZX administration in the central nervous system.
Collapse
Affiliation(s)
- Xiaofeng Lei
- Department of Neurology Medicine, Tianjin 4th Center Hospital, Tianjin, Hebei 300052, P.R. China
| | - Lijian Lei
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Zhiqing Zhang
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Yan Cheng
- Department of Neurology Medicine, Tianjin Medical University General Hospital, Tianjin, Hebei 300052, P.R. China
| |
Collapse
|
26
|
Liu W, Liu K, Zhang S, Shan L, Tang J. Tetramethylpyrazine Showed Therapeutic Effects on Sepsis-Induced Acute Lung Injury in Rats by Inhibiting Endoplasmic Reticulum Stress Protein Kinase RNA-Like Endoplasmic Reticulum Kinase (PERK) Signaling-Induced Apoptosis of Pulmonary Microvascular Endothelial Cells. Med Sci Monit 2018; 24:1225-1231. [PMID: 29488473 PMCID: PMC5841188 DOI: 10.12659/msm.908616] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Acute lung injury (ALI) is a life-threatening complication of sepsis. Tetramethylpyrazine (TMP) has been used in the clinical treatment of vascular diseases. The aim of this study was to investigate the therapeutic effects and possible involved mechanisms on ALI. Material/Methods Cecal ligation and puncture (CLP) was used to establish a sepsis model in rats. TMP at various dosages were administrated to rats using a intragastric method. Animal survival rate was calculated. The lung functions were evaluated by lung weight/dry weight ratio (W/D), PaO2, dynamic compliance (DC), and airway resistance index (ARI). Pulmonary microvascular endothelial cells (PMVECs) were isolated from lungs harvested from rats with sepsis. TUNEL assay was used to detect apoptosis. Protein expression and phosphorylation levels were assessed by western blotting. Results TMP administration increased the survival rate of septic rats. TMP also decreased W/D and DC, but increased PaO2 and ARI in septic rats. Moreover, PMVECs apoptosis was inhibited in septic rats that received TMP treatment. The expression levels of GRP78, ATF4, caspase-12, active caspase-3, as well as the phosphorylation levels of PERK and eIF2α were suppressed in PMVECs isolated from TMP-treated septic rats. Conclusions TMP alleviated sepsis-induced ALI by suppressing PMVECs apoptosis via PERK/eIF2α/ATF4/CHOP apoptotic signaling in endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Wensheng Liu
- Department of Critical Care Medicine, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Kaizhong Liu
- Department of Critical Care Medicine, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Shu Zhang
- Department of Critical Care Medicine, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Lihong Shan
- Department of Critical Care Medicine, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Jiangfeng Tang
- Department of Critical Care Medicine, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
27
|
Resveratrol suppresses hyperglycemia-induced activation of NF-κB and AP-1 via c-Jun and RelA gene regulation. Med J Islam Repub Iran 2018; 32:10. [PMID: 30159261 PMCID: PMC6108266 DOI: 10.14196/mjiri.32.10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Indexed: 01/06/2023] Open
Abstract
Background: Resveratrol (RSV) provides several important biological functions in wide variety of cells. In this study, we investigated the molecular mechanisms underlying anti-inflammatory effect of RSV on HepG2 cells by assessing the gene expression of RelA and c-Jun- subunits of NF-κB and AP-1 transcription factors.
Methods: HepG2 cells were settled in a serum- free medium with high concentrations of glucose (30 mM) and insulin (1 µM) overnight and were then incubated with RSV (5, 10, and 20 µM) for 24 and 48 hours. Real time quantitative polymerase chain reaction (qRT-PCR) was used to determine RelA and c-Jun expression.
Results: RSV diminished hyperglycemia/hyperinsulinemia stimulated expression of c-Jun dose- dependently after 24 and 48 hours (p<0.05). In addition, RelA gene expression was decreased dose-dependently in all RSV doses after 48-hour incubation (p<0.05). Our results indicated that RSV may reduce NF-κB and AP-1 activity via RelA and c-Jun gene regulation.
Conclusion: The findings of the present study demonstrated that RSV may be considered as a preventative and therapeutic agent for antagonizing inflammation in Hepatocellular carcinoma (HCC).
Collapse
|
28
|
Pan L, Hong Z, Yu L, Gao Y, Zhang R, Feng H, Su L, Wang G. Shear stress induces human aortic endothelial cell apoptosis via interleukin‑1 receptor‑associated kinase 2‑induced endoplasmic reticulum stress. Mol Med Rep 2017; 16:7205-7212. [PMID: 28944871 PMCID: PMC5865847 DOI: 10.3892/mmr.2017.7524] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 05/12/2017] [Indexed: 02/05/2023] Open
Abstract
Atherosclerosis is characterized by localized lesions distributed in the arterial tree due to the shear stress produced by blood flow. Endothelial cells are directly affected by alterations in blood flow. Dysfunction and injury to endothelial cells has been hypothesized to initiate the pathological processes of atherosclerosis. The present study aimed to investigate the mechanism of shear stress-induced endothelial cellular apoptosis. Shear stress was generated using an artificial device to mimic the impact of disturbed blood flow on cultured human aortic endothelial cells (HAECs). Cellular apoptosis was assessed using a terminal deoxynucleotidyl transferase dUTP nick end labeling assay; an ELISA assay was used to detect the produced interleukin (IL)-1β; specific small interfering (si)RNA was used to knockdown the expression of interleukin-1 receptor-associated kinase 2 (IRAK2) in HAECs and the expression levels of 78 kDa glucose-regulated protein, DNA damage-inducible transcript 3 protein (CHOP), IRAK2 and IL-1β were evaluated using western blotting. The results of the present study demonstrated that artificial shear stress induced endoplasmic reticulum (ER) stress, IL-1β production and apoptosis in HAECs in a time-dependent manner. The inhibition of ER stress, and treatment with interleukin-1 receptor antagonist protein and siRNA against IRAK2 attenuated shear stress-induced CHOP signaling-mediated cellular apoptosis. Therefore, overproduction of IL-1β exacerbated shear stress-induced ER stress-mediated apoptosis via the IRAK2/CHOP signaling pathway in endothelial cells.
Collapse
Affiliation(s)
- Longfei Pan
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Zhou Hong
- Department of Emergency Medicine, The Fifth Hospital of Xi'an, Xi'an, Shaanxi 710082, P.R. China
| | - Lei Yu
- Department of Basic Medicine, Xi'an Medical College, Xi'an, Shaanxi 710068, P.R. China
| | - Yanxia Gao
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Rui Zhang
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Hui Feng
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Lijuan Su
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Gang Wang
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
29
|
Protective effects of a G. lucidum proteoglycan on INS-1 cells against IAPP-induced apoptosis via attenuating endoplasmic reticulum stress and modulating CHOP/JNK pathways. Int J Biol Macromol 2017; 106:893-900. [PMID: 28893685 DOI: 10.1016/j.ijbiomac.2017.08.089] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 08/03/2017] [Accepted: 08/14/2017] [Indexed: 01/09/2023]
Abstract
Fudan-Yueyang-G. lucidum (FYGL) is a water-soluble macromolecular proteoglycan extracted from Ganoderma lucidum which has been used for health promotion for a long time in China. The aim of this study was to investigate the protective effects of FYGL on INS-1 rat insulinoma beta cells against IAPP-induced cell apoptosis, as well as the underlying mechanisms. The results showed that apoptotic cells were significantly increased when incubated with islet amyloid polypeptide (IAPP). However, cytotoxicity of IAPP was significantly attenuated by co-incubation of the cells with FYGL. The results of RT-PCR showed that mRNA expression of caspase-3, caspase-12 and C/EBP homologous protein (CHOP) in IAPP-treated cells were inhibited by FYGL. Moreover, FYGL significantly prevented the IAPP-induced abnormal expression of inositol-requiring protein-1α (IRE1α), protein kinase RNA (PKR)-like ER kinase (PERK), activating transcription factor 6 (ATF6), as well as suppressed the activation of CHOP and c-Jun N-terminal kinase (JNK). Taken together, our results suggest that FYGL protects INS-1 pancreatic beta cells against IAPP-induced apoptosis through attenuating endoplasmic reticulum stress (ERS) and modulating CHOP/JNK pathways.
Collapse
|
30
|
Nam DH, Han JH, Lim JH, Park KM, Woo CH. CHOP Deficiency Ameliorates ERK5 Inhibition-Mediated Exacerbation of Streptozotocin-Induced Hyperglycemia and Pancreatic β-Cell Apoptosis. Mol Cells 2017; 40:457-465. [PMID: 28681594 PMCID: PMC5547215 DOI: 10.14348/molcells.2017.2296] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 05/14/2017] [Accepted: 06/06/2017] [Indexed: 11/27/2022] Open
Abstract
Streptozotocin (STZ)-induced murine models of type 1 diabetes have been used to examine ER stress during pancreatic β-cell apoptosis, as this ER stress plays important roles in the pathogenesis and development of the disease. However, the mechanisms linking type 1 diabetes to the ER stress-modulating anti-diabetic signaling pathway remain to be addressed, though it was recently established that ERK5 (Extracellular-signal-regulated kinase 5) contributes to the pathogeneses of diabetic complications. This study was undertaken to explore the mechanism whereby ERK5 inhibition instigates pancreatic β-cell apoptosis via an ER stress-dependent signaling pathway. STZ-induced diabetic WT and CHOP deficient mice were i.p. injected every 2 days for 6 days under BIX02189 (a specific ERK5 inhibitor) treatment in order to evaluate the role of ERK5. Hyperglycemia was exacerbated by co-treating C57BL/6J mice with STZ and BIX02189 as compared with mice administered with STZ alone. In addition, immunoblotting data revealed that ERK5 inhibition activated the unfolded protein response pathway accompanying apoptotic events, such as, PARP-1 and caspase-3 cleavage. Interestingly, ERK5 inhibition-induced exacerbation of pancreatic β-cell apoptosis was inhibited in CHOP deficient mice. Moreover, transduction of adenovirus encoding an active mutant form of MEK5α, an upstream kinase of ERK5, inhibited STZ-induced unfolded protein responses and β-cell apoptosis. These results suggest that ERK5 protects against STZ-induced pancreatic β-cell apoptosis and hyperglycemia by interrupting the ER stress-mediated apoptotic pathway.
Collapse
Affiliation(s)
- Dae-Hwan Nam
- Department of Pharmacology and Smart-aging Convergence Research Center, Yeungnam University College of Medicine, Daegu 42415,
Korea
- Predictive Model Research Center, Korea Institute of Toxicology, Korea Research Institute of Chemical Technology, Daejeon 34114,
Korea
| | - Jung-Hwa Han
- Department of Pharmacology and Smart-aging Convergence Research Center, Yeungnam University College of Medicine, Daegu 42415,
Korea
| | - Jae Hyang Lim
- Department of Microbiology, Ewha Womans University School of Medicine, Seoul 03760,
Korea
| | - Kwon Moo Park
- Department of Anatomy, Kyungpook National University School of Medicine, Daegu 41566,
Korea
| | - Chang-Hoon Woo
- Department of Pharmacology and Smart-aging Convergence Research Center, Yeungnam University College of Medicine, Daegu 42415,
Korea
| |
Collapse
|
31
|
Sarvani C, Sireesh D, Ramkumar KM. Unraveling the role of ER stress inhibitors in the context of metabolic diseases. Pharmacol Res 2017; 119:412-421. [PMID: 28237513 DOI: 10.1016/j.phrs.2017.02.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/16/2017] [Accepted: 02/20/2017] [Indexed: 02/05/2023]
Abstract
ER stress is provoked by the accumulation of unfolded and misfolded proteins in the ER lumen leading to perturbations in ER homeostasis. ER stress activates a signaling cascade called the Unfolded Protein Response (UPR) which triggers a set of transcriptional and translational events that restore ER homeostasis, promoting cell survival and adaptation. If this adaptive response fails, a terminal UPR program commits such cells to apoptosis. Existing preclinical and clinical evidence testify that prolonged ER stress escalates the risk of several metabolic disorders including diabetes, obesity and dyslipidemia. There have been considerable efforts to develop small molecules that are capable of ameliorating ER stress. Few naturally occurring and synthetic molecules have already been demonstrated for their efficacy in abrogating ER stress in both in vitro and in vivo models of metabolic disorders. This review provides a broad overview of the molecular mechanisms of inhibition of ER stress and its association with various metabolic diseases.
Collapse
Affiliation(s)
- Chodisetty Sarvani
- SRM Research Institute, SRM University, Kattankulathur 603 203, Tamilnadu, India
| | - Dornadula Sireesh
- SRM Research Institute, SRM University, Kattankulathur 603 203, Tamilnadu, India
| | | |
Collapse
|
32
|
Obakan-Yerlikaya P, Arisan ED, Coker-Gurkan A, Adacan K, Ozbey U, Somuncu B, Baran D, Palavan-Unsal N. Calreticulin is a fine tuning molecule in epibrassinolide-induced apoptosis through activating endoplasmic reticulum stress in colon cancer cells. Mol Carcinog 2017; 56:1603-1619. [PMID: 28112451 DOI: 10.1002/mc.22616] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 12/29/2016] [Accepted: 01/20/2017] [Indexed: 12/26/2022]
Abstract
Epibrassinolide (EBR), a member of brassinostreoids plant hormones with cell proliferation promoting role in plants, is a natural polyhydroxysteroid with structural similarity to steroid hormones of vertebrates. EBR has antiproliferative and apoptosis-inducing effect in various cancer cells. Although EBR has been shown to affect survival and mitochondria-mediated apoptosis pathways in a p53-independent manner, the exact molecular targets of EBR are still under investigation. Our recent SILAC (Stable Isotope Labeling by Amino Acids in Cell Culture) data showed that the most significantly altered protein after EBR treatment was calreticulin (CALR). CALR, a chaperone localized in endoplasmic reticulum (ER) lumen, plays role in protein folding and buffering Ca2+ ions. The alteration of CALR may cause ER stress and unfolded protein response correspondingly the induction of apoptosis. Unfolded proteins are conducted to 26S proteasomal degradation following ubiquitination. Our study revealed that EBR treatment caused ER stress and UPR by altering CALR expression causing caspase-dependent apoptosis in HCT 116, HT29, DLD-1, and SW480 colon cancer cells. Furthermore, 48 h EBR treatment did not caused UPR in Fetal Human Colon cells (FHC) and Mouse Embryonic Fibroblast cells (MEF). In addition our findings showed that HCT 116 colon cancer cells lacking Bax and Puma expression still undergo UPR and related apoptosis. CALR silencing and rapamycin co-treatment prevented EBR-induced UPR and apoptosis, whereas 26S proteasome inhibition further increased the effect of EBR in colon cancer cells. All these findings showed that EBR is an ER stress and apoptotic inducer in colon cancer cells without affecting non-malignant cells.
Collapse
Affiliation(s)
- Pinar Obakan-Yerlikaya
- Department of Molecular Biology and Genetics, Istanbul Kultur University, Ataköy Campus, Istanbul, Turkey
| | - Elif Damla Arisan
- Department of Molecular Biology and Genetics, Istanbul Kultur University, Ataköy Campus, Istanbul, Turkey
| | - Ajda Coker-Gurkan
- Department of Molecular Biology and Genetics, Istanbul Kultur University, Ataköy Campus, Istanbul, Turkey
| | - Kaan Adacan
- Department of Molecular Biology and Genetics, Istanbul Kultur University, Ataköy Campus, Istanbul, Turkey
| | - Utku Ozbey
- Department of Molecular Biology and Genetics, Istanbul Kultur University, Ataköy Campus, Istanbul, Turkey
| | - Berna Somuncu
- Department of Molecular Biology and Genetics, Istanbul Kultur University, Ataköy Campus, Istanbul, Turkey
| | - Didem Baran
- Department of Molecular Biology and Genetics, Istanbul Kultur University, Ataköy Campus, Istanbul, Turkey
| | - Narcin Palavan-Unsal
- Department of Molecular Biology and Genetics, Istanbul Kultur University, Ataköy Campus, Istanbul, Turkey
| |
Collapse
|
33
|
Anti-Fibrotic Effect of Losartan, an Angiotensin II Receptor Blocker, Is Mediated through Inhibition of ER Stress via Up-Regulation of SIRT1, Followed by Induction of HO-1 and Thioredoxin. Int J Mol Sci 2017; 18:ijms18020305. [PMID: 28146117 PMCID: PMC5343841 DOI: 10.3390/ijms18020305] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 01/23/2017] [Indexed: 12/25/2022] Open
Abstract
Endoplasmic reticulum (ER) stress is increasingly identified as modulator of fibrosis. Losartan, an angiotensin II receptor blocker, has been widely used as the first choice of treatment in chronic renal diseases. We postulated that anti-fibrotic effect of losartan is mediated through inhibition of ER stress via SIRT1 (silent mating type information regulation 2 homolog 1) hemeoxygenase-1 (HO-1)/thioredoxin pathway. Renal tubular cells, tunicamycin (TM)-induced ER stress, and unilateral ureteral obstruction (UUO) mouse model were used. Expression of ER stress was assessed by Western blot analysis and immunohistochemical stain. ER stress was induced by chemical ER stress inducer, tunicamycin, and non-chemical inducers such as TGF-β, angiotensin II, high glucose, and albumin. Losartan suppressed the TM-induced ER stress, as shown by inhibition of TM-induced expression of GRP78 (glucose related protein 78) and p-eIF2α (phosphospecific-eukaryotic translation initiation factor-2α), through up-regulation of SIRT1 via HO-1 and thioredoxin. Losartan also suppressed the ER stress by non-chemical inducers. In both animal models, losartan reduced the tubular expression of GRP78, which were abolished by pretreatment with sirtinol (SIRT1 inhibitor). Sirtinol also blocked the inhibitory effect of losartan on the UUO-induced renal fibrosis. These findings provide new insights into renoprotective effects of losartan and suggest that SIRT1, HO-1, and thioredoxin may be potential pharmacological targets in kidney diseases under excessive ER stress condition.
Collapse
|
34
|
Xie RJ, Han B, Yang T, Yang Q. Activation of Caspase12, a key molecule in endoplasmic reticulum stress related apoptosis pathway, induces apoptosis of hepatocytes in rats with hepatic fibrosis. Shijie Huaren Xiaohua Zazhi 2016; 24:2470-2477. [DOI: 10.11569/wcjd.v24.i16.2470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To observe the change of activity of Caspase12, a key signaling molecule in endoplasmic reticulum stress related apoptosis pathway, and to explore its role in the apoptosis of hepatocytes in rats with hepatic fibrosis.
METHODS: Wistar rats were randomly divided into a 4 wk control group, an 8 wk control group, a 4 wk hepatic fibrosis group and an 8 wk hepatic fibrosis group. Rats of hepatic fibrosis groups received subcutaneous injections of 40% CCl4 twice a week at doses of 0.3 mL/100 g. Expression of GRP78, GRP94 and Caspase12 genes in hepatic tissue was detected by RT-PCR. The expression of GRP78, GRP94, procaspase12 and activated Caspase12 proteins was determined by Western blot. The apoptosis of hepatocytes was evaluated by TUNEL assay.
RESULTS: Expression of GRP78, GRP94 and Caspase12 mRNAs in the 4 wk hepatic fibrosis group was significantly higher than that in the 4 wk control group. In the 8 wk hepatic fibrosis group, expression of GRP78, GRP94 and Caspase12 mRNAs was also elevated obviously. Western blot analysis revealed that expression of GRP78, GRP94, procaspase12 and activated Caspase12 proteins was increased obviously in the liver in the 4 wk hepatic group. Compared with the 8 wk control group, expression of GRP78, GRP94, procaspase12 and activated Caspase12 proteins was elevated obviously in the 8 wk hepatic group. The apoptosis of hepatocytes in the 4 wk and 8 wk hepatic fibrosis groups was significantly higher than that in the control groups.
CONCLUSION: Activation of Caspase12, a key signaling molecule in endoplasmic reticulum stress related apoptosis pathway, may mediate the apoptosis of hepatocytes in rats with hepatic fibrosis.
Collapse
|
35
|
Murugan D, Lau YS, Lau WC, Mustafa MR, Huang Y. Angiotensin 1-7 Protects against Angiotensin II-Induced Endoplasmic Reticulum Stress and Endothelial Dysfunction via Mas Receptor. PLoS One 2015; 10:e0145413. [PMID: 26709511 PMCID: PMC4692500 DOI: 10.1371/journal.pone.0145413] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 12/03/2015] [Indexed: 02/07/2023] Open
Abstract
Angiotensin 1–7 (Ang 1–7) counter-regulates the cardiovascular actions of angiotensin II (Ang II). The present study investigated the protective effect of Ang 1–7 against Ang II-induced endoplasmic reticulum (ER) stress and endothelial dysfunction. Ex vivo treatment with Ang II (0.5 μM, 24 hours) impaired endothelium-dependent relaxation in mouse aortas; this harmful effect of Ang II was reversed by co-treatment with ER stress inhibitors, l4-phenylbutyric acid (PBA) and tauroursodeoxycholic acid (TUDCA) as well as Ang 1–7. The Mas receptor antagonist, A779, antagonized the effect of Ang 1–7. The elevated mRNA expression of CHOP, Grp78 and ATF4 or protein expression of p-eIF2α and ATF6 (ER stress markers) in Ang II-treated human umbilical vein endothelial cells (HUVECs) and mouse aortas were blunted by co-treatment with Ang 1–7 and the latter effect was reversed by A779. Furthermore, Ang II-induced reduction in both eNOS phosphorylation and NO production was inhibited by Ang 1–7. In addition, Ang 1–7 decreased the levels of ER stress markers and augmented NO production in HUVECs treated with ER stress inducer, tunicamycin. The present study provides new evidence for functional antagonism between the two arms of the renin-angiotensin system in endothelial cells by demonstrating that Ang 1–7 ameliorates Ang II-stimulated ER stress to raise NO bioavailability, and subsequently preserves endothelial function.
Collapse
Affiliation(s)
- Dharmani Murugan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
- * E-mail: (YH); (DM)
| | - Yeh Siang Lau
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Wai Chi Lau
- Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Mohd Rais Mustafa
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Yu Huang
- Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
- * E-mail: (YH); (DM)
| |
Collapse
|
36
|
Li C, Lin Y, Luo R, Chen S, Wang F, Zheng P, Levi M, Yang T, Wang W. Intrarenal renin-angiotensin system mediates fatty acid-induced ER stress in the kidney. Am J Physiol Renal Physiol 2015; 310:F351-63. [PMID: 26672616 DOI: 10.1152/ajprenal.00223.2015] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 12/11/2015] [Indexed: 12/27/2022] Open
Abstract
Obesity-related kidney disease is related to caloric excess promoting deleterious cellular responses. Accumulation of saturated free fatty acids in tubular cells produces lipotoxicity involving significant cellular dysfunction and injury. The objectives of this study were to elucidate the role of renin-angiotensin system (RAS) activation in saturated fatty acid-induced endoplasmic reticulum (ER) stress in cultured human proximal tubule epithelial cells (HK2) and in mice fed with a high-fat diet. Treatment with saturated fatty acid palmitic acid (PA; 0.8 mM) for 24 h induced ER stress in HK2, leading to an unfolded protein response as reflected by increased expressions of the ER chaperone binding immunoglobulin protein (BiP) and proapoptotic transcription factor C/EBP homologous protein (CHOP) protein as evaluated by immunoblotting. PA treatment also induced increased protein expression of inositol requiring protein 1α (IRE1α), phosphorylated eukaryotic initiation factor-α (eIF2α), and activating transcription factor 4 (ATF4) as well as activation of caspase-3. PA treatment was associated with increased angiotensin II levels in cultured medium. The angiotensin II type 1 receptor (AT1R) blocker valsartan or renin inhibitor aliskiren dramatically suppressed PA-induced upregulation of BiP, CHOP, IRE1α, p-eIF2α, and ATF4 in HK2 cells. In contrast, valsartan or aliskiren did not prevent ER stress induced by tunicamycin. C57BL/6 mice fed with a high-fat diet for 14 wk exhibited increased protein expressions of BiP and CHOP compared with control mice, which were significantly attenuated by the valsartan treatment. Increased angiotensin II levels in serum and urine were observed in mice fed with a high-fat diet when compared with controls. It is suggested that the intrarenal RAS activation may play an important role in diabetic kidney injury via mediating ER stress induced by saturated fatty acid.
Collapse
Affiliation(s)
- Chunling Li
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yu Lin
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Renfei Luo
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shaoming Chen
- Department of Orthopedics, The 5th Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Feifei Wang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China;
| | - Peili Zheng
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Moshe Levi
- Department of Medicine, Division of Hypertension and Renal Diseases, University of Colorado Denver, Aurora, Colorado; and
| | - Tianxin Yang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Department of Medicine, Division of Renal Diseases and Hypertension, University of Utah, Salt Lake City, Utah
| | - Weidong Wang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
37
|
Ganoderma lucidum polysaccharide peptide prevents renal ischemia reperfusion injury via counteracting oxidative stress. Sci Rep 2015; 5:16910. [PMID: 26603550 PMCID: PMC4658483 DOI: 10.1038/srep16910] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 10/21/2015] [Indexed: 12/03/2022] Open
Abstract
Ganoderma lucidum polysaccharide peptide (GLPP) scavenges oxygen free radicals
that are a key factor in the pathogenesis of renal ischemia reperfusion injury
(RIRI). The aim of this study was to determine whether GLPP could attenuate RIRI by
counteracting the oxidative stress. The mechanism involved was assessed by an in
vivo mouse RIRI model and an in vitro hypoxia/reoxygenation model,
and tunicamycin-stimulated NRK-52E cells were used to explore the GLPP-mediated
alleviation of ER stress. Experimental results showed that renal dysfunction and
morphological damage were reduced in GLPP-treated group. The imbalance of redox
status was reversed and production of ROS was reduced by GLPP. RIRI-induced
mitochondrial- and ER stress-dependent apoptosis were dramatically inhibited in
GLPP-treated group. Intriguingly, JNK activation in the kidney with RIRI or
hypoxia/reoxygenation was inhibited by GLPP. These results suggest that the
protective effect of GLPP against RIRI may be due to reducing oxidative stress,
alleviating the mitochondrial and ER stress-dependent apoptosis caused by excessive
ROS.
Collapse
|
38
|
Wang H, Hu XX, Lu H. Changes of TRB3 and CHOP expression in nonalcoholic fatty liver disease in rats. Shijie Huaren Xiaohua Zazhi 2015; 23:4636-4642. [DOI: 10.11569/wcjd.v23.i29.4636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the changes of Tribbles related protein 3 (TRB3) and CCAAT/enhancer-binding protein homologous protein (CHOP) expression in nonalcoholic fatty liver disease (NAFLD) in rats.
METHODS: Thirty Wistar rats were randomly divided into a normal control group and an NAFLD group. The rats of the NAFLD group were given a high-fat, high-glucose diet for 16 weeks to induce NAFLD, while the normal control group was given an ordinary diet. The levels of total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL) and high-density lipoprotein (HDL) were detected with an automatic biochemical analyzer. The expression of TRB3 and CHOP mRNAs in the liver was detected by real-time quantitative PCR. The expression of TRB3 and CHOP proteins in liver tissue was detected by immunohistochemistry. Cell apoptosis was detected by flow cytometry.
RESULTS: The levels of TC, TG, and LDL in the NAFLD group were significantly higher than those in the normal control group (P < 0.05), while the level of HDL was lower than that in the normal control group (P < 0.05). Compared with the normal group, levels of TRB3 and CHOP mRNAs and proteins in the NAFLD group were significantly increased (mRNA: P < 0.05 or P < 0.01; protein: P < 0.01). Flow cytometry analysis showed that the apoptosis in the NAFLD group was higher than that in the normal control group.
CONCLUSION: The changes of TRB3 and CHOP expression may play important roles in the development of NAFLD.
Collapse
|
39
|
Wang H, Hu XX, Lu H. Change of protein kinase R-like endoplasmic reticulum kinase/eukaryotic translation initiator factor-2α signaling pathway in nonalcoholic fatty liver disease in rats. Shijie Huaren Xiaohua Zazhi 2015; 23:4155-4161. [DOI: 10.11569/wcjd.v23.i26.4155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To observe the change of the protein kinase R-like endoplasmic reticulum kinase/eukaryotic translation initiator factor-2α (PERK/eIF-2α) signaling pathway in nonalcoholic fatty liver disease (NAFLD) and to discuss the possible clinical significance.
METHODS: Thirty Wistar rats were randomly and equally divided into two groups: a normal control group (group 1) and an NAFLD group (group 2). NAFLD was induced by feeding a high-fat, high-glucose diet for 16 wk, and group 1 was given an ordinary diet at the same time. Serum levels of total cholesterol (TC), triglyeride (TG), low-density lipoprotein (LDL) and high-density lipoprotein (HDL) were measured in all rats. The mRNA expression of PERK, eIF-2α, C/EBP homology protein (CHOP) and glucose regulated protein 78 kDa (GRP78) in the liver was detected by real-time PCR, while Western blot was used to detect the expression of p-PERK, p-eIF-2α, CHOP and GRP78 proteins. Cell apoptosis was tested by flow cytometry.
RESULTS: Levels of TC, TG, and LDL in group 1 were significantly higher than those in group 2 (P < 0.05), but the level of HDL was significantly lower in group 1 (P < 0.05). Compared with group 1, the expression of p-PERK, p-eIF-2α, CHOP and GRP78 protein in group 2 was significantly increased (P < 0.05), and the expression of PERK, eIF-2α, CHOP and GRP78 mRNAs was also significantly elevated in group 2 (P < 0.05 or P < 0.01). Flow cytometry analysis suggested that apoptosis in group 2 was increased.
CONCLUSION: The PERK/eIF-2α signaling pathway is involved in the development and progression of NAFLD, which may cause endoplasmic reticulum stress and induce apoptosis.
Collapse
|
40
|
Wang H, Liu Z, Gou Y, Qin Y, Xu Y, Liu J, Wu JZ. Apoptosis and necrosis induced by novel realgar quantum dots in human endometrial cancer cells via endoplasmic reticulum stress signaling pathway. Int J Nanomedicine 2015; 10:5505-12. [PMID: 26357474 PMCID: PMC4560518 DOI: 10.2147/ijn.s83838] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Realgar (AS4S4) has been used in traditional medicines for malignancy, but the poor water solubility is still a major hindrance to its clinical use. Realgar quantum dots (RQDs) were therefore synthesized with improved water solubility and bioavailability. Human endometrial cancer JEC cells were exposed to various concentrations of RQDs to evaluate their anticancer effects and to explore mechanisms by the MTT assay, transmission electron microscopy (TEM), flow cytometry, real-time reverse transcriptase polymerase chain reaction (RT-PCR) and Western blot analysis. Results revealed that the highest photoluminescence quantum yield of the prepared RQDs was up to approximately 70%, with the average size of 5.48 nm. RQDs induced antipro-liferative activity against JEC cells in a concentration-dependent manner. In light microscopy and TEM examinations, RQDs induced vacuolization and endoplasmic reticulum (ER) dilation in JEC cells in a concentration-dependent manner. ER stress by RQDs were further confirmed by increased expression of GADD153 and GRP78 at both mRNA and protein levels. ER stress further led to JEC cell apoptosis and necrosis, as evidenced by flow cytometry and mitochondrial membrane potential detection. Our findings demonstrated that the newly synthesized RQDs were effective against human endometrial cancer cells. The underlying mechanism appears to be, at least partly, due to ER stress leading to apoptotic cell death and necrosis.
Collapse
Affiliation(s)
- Huan Wang
- Research Center for Medicine and Biology, Zunyi Medical College, Zunyi, People's Republic of China ; Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical College, Zunyi, People's Republic of China ; Department of Microbiolog, Zunyi Medical College, Zunyi, People's Republic of China y
| | - Zhengyun Liu
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical College, Zunyi, People's Republic of China
| | - Ying Gou
- Department of Microbiolog, Zunyi Medical College, Zunyi, People's Republic of China y
| | - Yu Qin
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical College, Zunyi, People's Republic of China
| | - Yaze Xu
- Pharmacy School, Zunyi Medical College, Zunyi, People's Republic of China
| | - Jie Liu
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical College, Zunyi, People's Republic of China
| | - Jin-Zhu Wu
- Department of Chemistry, School of Science, Harbin Institute of Technology, Harbin, People's Republic of China
| |
Collapse
|
41
|
Ha TS, Park HY, Seong SB, Ahn HY. Angiotensin II induces endoplasmic reticulum stress in podocyte, which would be further augmented by PI3-kinase inhibition. Clin Hypertens 2015; 21:13. [PMID: 26893923 PMCID: PMC4750790 DOI: 10.1186/s40885-015-0018-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 03/10/2015] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Angiotensin II (Ang II) contributes to the pathological process of vascular structures, including renal glomeruli by hemodynamic and nonhemodynamic direct effects. On renal effects, Ang II plays an important role in the development of proteinuria and glomerulosclerosis by the modification of podocyte molecules and cell survival. In the present study, we investigated the effect of Ang II on endoplasmic reticulum (ER) stress in podocytes. METHODS We cultured mouse podocytes with increasing doses of Ang II and evaluated ER stress markers by Western blotting. RESULTS Ang II increased Bip protein, an ER chaperone, in a dose-dependent manner at 24 h, which was ameliorated by losartan, an angiotensin II type 1 receptor antagonist. Ang II also increased ER stress markers, such as phospho-PERK, phospho-eIF2α, and ATF4 proteins of podocyte, significantly in a dose-dependent manner at 24 h. Increased phospho-PERK and ATF4 proteins were further augmented by phosphoinositide 3 (PI3)-kinase inhibitor, LY294002, which suggested that Ang II could induce podocyte ER stress of PERK-eIF2α-ATF4 axis via PI3-kinase pathway. DISCUSSION These studies suggest that Ang II could induce podocyte ER stress of PERK-eIF2α-ATF4 axis via PI3-kinase pathway, which would contribute to the development of podocyte injury induced by Ang II, and the augmentation of PI3-kinase would be a therapeutic target.
Collapse
Affiliation(s)
- Tae-Sun Ha
- Department of Pediatrics, College of Medicine, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, 361-240 South Korea
| | - Hye-Young Park
- Department of Pediatrics, College of Medicine, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, 361-240 South Korea
| | - Su-Bin Seong
- Department of Pediatrics, College of Medicine, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, 361-240 South Korea
| | - Hee Yul Ahn
- Department of Pharmacology, College of Medicine, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, 361-240 South Korea
| |
Collapse
|
42
|
Cunard R. Endoplasmic Reticulum Stress in the Diabetic Kidney, the Good, the Bad and the Ugly. J Clin Med 2015; 4:715-40. [PMID: 26239352 PMCID: PMC4470163 DOI: 10.3390/jcm4040715] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/31/2015] [Indexed: 02/06/2023] Open
Abstract
Diabetic kidney disease is the leading worldwide cause of end stage kidney disease and a growing public health challenge. The diabetic kidney is exposed to many environmental stressors and each cell type has developed intricate signaling systems designed to restore optimal cellular function. The unfolded protein response (UPR) is a homeostatic pathway that regulates endoplasmic reticulum (ER) membrane structure and secretory function. Studies suggest that the UPR is activated in the diabetic kidney to restore normal ER function and viability. However, when the cell is continuously stressed in an environment that lies outside of its normal physiological range, then the UPR is known as the ER stress response. The UPR reduces protein synthesis, augments the ER folding capacity and downregulates mRNA expression of genes by multiple pathways. Aberrant activation of ER stress can also induce inflammation and cellular apoptosis, and modify signaling of protective processes such as autophagy and mTORC activation. The following review will discuss our current understanding of ER stress in the diabetic kidney and explore novel means of modulating ER stress and its interacting signaling cascades with the overall goal of identifying therapeutic strategies that will improve outcomes in diabetic nephropathy.
Collapse
Affiliation(s)
- Robyn Cunard
- Research Service and Division of Nephrology-Hypertension, Veterans Affairs San Diego Healthcare System, Veterans Medical Research Foundation, San Diego, CA 92161, USA.
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
43
|
Jiang Q, Yuan Y, Zhou J, Wu Y, Zhou Q, Gui S, Wang Y. Apoptotic events induced by high glucose in human hepatoma HepG2 cells involve endoplasmic reticulum stress and MAPK's activation. Mol Cell Biochem 2014; 399:113-22. [PMID: 25296712 DOI: 10.1007/s11010-014-2238-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 10/01/2014] [Indexed: 12/11/2022]
Abstract
To investigate whether endoplasmic reticulum (ER) stress participates in the induction of apoptosis in HepG2 cells exposed to high glucose and explore its probable mechanism. A series of experiments were performed following HepG2 cells treated with different concentrations of glucose for 48 h. The apoptosis was detected by means of Hoechst staining and flow cytometry. Caspase-3 activity assay was performed by measuring the pNA (p-nitroaniline) to indirectly reveal the catalytic activity of caspase-3. The expression levels of apoptosis-, ER stress-associated proteins and MAPKs were analyzed by western blot. To further characterize the molecular mechanisms, the effects of antioxidant alpha-lipoic acid (ALA) and specific inhibitors for JNK and p38 (SP600125 and SB203580, respectively) were examined by Hoechst staining, immunofluorescence, and western blot. After HepG2 cells were incubated with high glucose for 48 h, both Hoechst staining and flow cytometry analyses unveiled the apoptosis of HepG2 cells. Caspase-3 activity assay revealed that the activity of caspase-3 was enhanced. Western blot showed an enhancement of pro-caspase-9 degradation, a reduction of Bcl-2/Bax ratio, a decrease in GRP78 expression, and increases in CHOP and p47/phox levels. In addition, western blot analysis presented that phosphorylation of p38 and JNK was triggered and that the expression of ASK1 was elevated. In the case of the contributions of oxidative stress and the MAPK signaling pathways, all ALA, SP600125 and SB203580 were able to largely rescue high glucose-induced apoptosis. High glucose induced the apoptosis in HepG2 cells through the activation of ASK1-p38/JNK pathway mediated by ER stress and oxidative stress.
Collapse
Affiliation(s)
- Qiaoling Jiang
- Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
44
|
Yuan D, Wan JZ, Deng LL, Zhang CC, Dun YY, Dai YW, Zhou ZY, Liu CQ, Wang T. Chikusetsu saponin V attenuates MPP+-induced neurotoxicity in SH-SY5Y cells via regulation of Sirt1/Mn-SOD and GRP78/caspase-12 pathways. Int J Mol Sci 2014; 15:13209-22. [PMID: 25073091 PMCID: PMC4159789 DOI: 10.3390/ijms150813209] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 06/05/2014] [Accepted: 06/16/2014] [Indexed: 11/23/2022] Open
Abstract
Studies have shown that saponins from Panax japonicus (SPJ) possess neuroprotective effects. However, whether Chikusetsu saponin V (CsV), the most abundant member of SPJ, can exert neuroprotective effects against 1-methyl-4-phenylpyridinium ion (MPP+)-induced cytotoxicity is not known. In this study, we aimed to investigate the neuroprotective effects of CsV on MPP+-induced cytotoxicity in human neuroblastoma SH-SY5Y cells and explore its possible mechanisms. Our results show that CsV attenuates MPP+-induced cytotoxicity, inhibits ROS accumulation, and increases mitochondrial membrane potential dose-dependently. We also found that levels of Sirt1 protein and Mn-SOD mRNA significantly decreased in MPP+-treated group but were restored with CsV treatment in a dose-dependent manner. Furthermore, GRP78 protein and Caspase-12 mRNA levels were elevated by MPP+ exposure but reversed by CsV treatment. CsV inhibited the MPP+-induced downregulation of Bcl-2 and up-regulation of Bax in a dose-dependent manner and, thus, increased the ratio of Bcl-2/Bax. Overall, these results suggest that Sirt1/Mn-SOD and GRP78/Caspase-12 pathways might be involved in the CsV-mediated neuroprotective effects.
Collapse
Affiliation(s)
- Ding Yuan
- Department of Pharmacology, College of Medical Science, China Three Gorges University, Yichang 443002, China.
| | - Jing-Zhi Wan
- Department of Pharmacology, College of Medical Science, China Three Gorges University, Yichang 443002, China.
| | - Li-Li Deng
- Department of Pharmacology, College of Medical Science, China Three Gorges University, Yichang 443002, China.
| | - Chang-Cheng Zhang
- Department of Pharmacology, College of Medical Science, China Three Gorges University, Yichang 443002, China.
| | - Yao-Yan Dun
- Department of Pharmacology, College of Medical Science, China Three Gorges University, Yichang 443002, China.
| | - Yan-Wen Dai
- Department of Pharmacology, College of Medical Science, China Three Gorges University, Yichang 443002, China.
| | - Zhi-Yong Zhou
- Department of Pharmacology, College of Medical Science, China Three Gorges University, Yichang 443002, China.
| | - Chao-Qi Liu
- Institute of Molecular Biology, China Three Gorges University, Yichang 443002, China.
| | - Ting Wang
- Department of Pharmacology, College of Medical Science, China Three Gorges University, Yichang 443002, China.
| |
Collapse
|
45
|
Komers R, Xu B, Fu Y, McClelland A, Kantharidis P, Mittal A, Cohen HT, Cohen DM. Transcriptome-based analysis of kidney gene expression changes associated with diabetes in OVE26 mice, in the presence and absence of losartan treatment. PLoS One 2014; 9:e96987. [PMID: 24827579 PMCID: PMC4020814 DOI: 10.1371/journal.pone.0096987] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 04/14/2014] [Indexed: 12/24/2022] Open
Abstract
Diabetes is among the most common causes of end-stage renal disease, although its pathophysiology is incompletely understood. We performed next-generation sequencing-based transcriptome analysis of renal gene expression changes in the OVE26 murine model of diabetes (age 15 weeks), relative to non-diabetic control, in the presence and absence of short-term (seven-day) treatment with the angiotensin receptor blocker, losartan (n = 3-6 biological replicates per condition). We detected 1438 statistically significant changes in gene expression across conditions. Of the 638 genes dysregulated in diabetes relative to the non-diabetic state, >70% were downregulation events. Unbiased functional annotation of genes up- and down-regulated by diabetes strongly associated (p<1 × 10(-8)) with terms for oxidative stress and for endoplasmic reticulum stress/protein folding. Most of the individual gene products up- or down-regulated with diabetes were unaffected by losartan treatment; however, of the gene products dysregulated in diabetes and influenced by losartan treatment, the vast majority of changes were in the direction of amelioration rather than exacerbation of the diabetic dysregulation. This group of losartan-protected genes associated strongly with annotation terms for endoplasmic reticulum stress, heat shock proteins, and chaperone function, but not oxidative stress; therefore, the losartan-unaffected genes suggest avenues for additional therapeutic opportunity in diabetes. Interestingly, the gene product most highly upregulated by diabetes (>52-fold), encoded by the cationic amino acid transporter Slc7a12, and the gene product most highly downregulated by diabetes (>99%)--encoded by the "pseudogene" Gm6300--are adjacent in the murine genome, are members of the SLC7 gene family, and are likely paralogous. Therefore, diabetes activates a near-total genetic switch between these two paralogs. Other individual-level changes in gene expression are potentially relevant to diabetic pathophysiology, and novel pathways are suggested. Genes unaffected by diabetes alone but exhibiting increased renal expression with losartan produced a signature consistent with malignant potential.
Collapse
Affiliation(s)
- Radko Komers
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health & Science University, Portland, Oregon
- Portland V. A. Medical Center, Portland, Oregon, United States of America
| | - Bei Xu
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health & Science University, Portland, Oregon
- Portland V. A. Medical Center, Portland, Oregon, United States of America
| | - Yi Fu
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health & Science University, Portland, Oregon
- Portland V. A. Medical Center, Portland, Oregon, United States of America
| | - Aaron McClelland
- JDRF Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Phillip Kantharidis
- JDRF Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Amit Mittal
- Nephrology Section, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Herbert T. Cohen
- Nephrology Section, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - David M. Cohen
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health & Science University, Portland, Oregon
- Portland V. A. Medical Center, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
46
|
Gao Z, Liu G, Hu Z, Li X, Yang X, Jiang B, Li X. Grape seed proanthocyanidin extract protects from cisplatin-induced nephrotoxicity by inhibiting endoplasmic reticulum stress-induced apoptosis. Mol Med Rep 2014; 9:801-7. [PMID: 24399449 PMCID: PMC3926513 DOI: 10.3892/mmr.2014.1883] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 12/16/2013] [Indexed: 12/13/2022] Open
Abstract
Cisplatin (CP) is used as an antineoplastic drug in the clinic, but its nephrotoxicity limits its use. Grape seed proanthocyanidin extract (GSPE) is a powerful antioxidant. In this study, we investigated whether GSPE can prevent CP-induced nephrotoxicity and explored the underlying mechanism. Male C57/BL6 mice were randomly divided into four groups: control group (N), CP group (C), receiving an intraperitoneal (ip) injection of 20 mg/kg CP, GSPE group (G), receiving an intragastric (ig) dose of 500 mg/kg GSPE, and CP+GSPE group (C+G), where ig administration of GSPE was performed 30 min prior to ip injection of CP, followed by an additional ig administration of GSPE 72 h later. Blood and kidney samples were collected 120 h after treatment. The pathological changes in the kidney were examined by periodic acid-Schiff (PAS) staining, while the protein levels of glucose-regulated protein 78 (GRP78), phosphorylated‑extracellular signal-regulated kinase (p-ERK) and caspase-12 were examined by western blotting and immunohistochemical staining. Apoptosis was examined by a terminal deoxynucleotidyl transferase dUTP nick‑end labeling (TUNEL) assay. Compared to the CP group, the CP+GSPE group had a significant decrease in the level of blood urea nitrogen (BUN), serum creatinine (Scr) and reduced renal index (RI) (P<0.05), and showed limited histopathological damage. The number of TUNEL-positive cells was significantly reduced in the CP+GSPE group compared to the CP group (P<0.05), and the protein expression of GRP78, p-ERK and caspase-12 was significantly reduced in the CP+GSPE group (P<0.05). We conclude that GSPE can protect the renal function from CP-induced nephrotoxicity and can attenuate the endoplasmic reticulum (ER) stress‑induced apoptosis via regulation of the caspase-12 pathway.
Collapse
Affiliation(s)
- Zhaoli Gao
- Department of Nephrology, Qi Lu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Guangyi Liu
- Department of Nephrology, Qi Lu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Zhao Hu
- Department of Nephrology, Qi Lu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xing Li
- Department of Nephrology, Qi Lu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xiangdong Yang
- Department of Nephrology, Qi Lu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Bei Jiang
- Department of Nephrology, Qi Lu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xianhua Li
- Department of Nephrology, Qi Lu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
47
|
Yuan L, Lu CL, Wang Y, Li Y, Li XY. Ang (1-7) protects islet endothelial cells from palmitate-induced apoptosis by AKT, eNOS, p38 MAPK, and JNK pathways. J Diabetes Res 2014; 2014:391476. [PMID: 24804268 PMCID: PMC3996957 DOI: 10.1155/2014/391476] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/06/2014] [Accepted: 02/06/2014] [Indexed: 11/28/2022] Open
Abstract
This study aimed to explore the effect of angiotensin (1-7) (Ang (1-7)) on palmitate-induced apoptosis in islet endothelial cells and the mechanism of action. MS-1 cells were treated with palmitate in the presence or absence of Ang (1-7). The percentage of apoptotic cells was determined by DNA fragmentation and flow cytometry. Reactive oxygen species (ROS) production was measured using a Reactive Oxygen Species Assay Kit. Expression of AKT, eNOS, C-Jun N-terminal kinase (JNK), and p38 was detected by western blotting. Compared with palmitate treated group, palmitate-induced apoptosis was decreased in MS-1 cells which were preincubated with Ang (1-7) (P < 0.05). Palmitate decreased the phosphorylation of AKT and eNOS, and Ang (1-7) increased the phosphorylation of these kinases (P < 0.05), with a concomitant reduction in MS-1 cells apoptosis. Ang (1-7) also inhibited the palmitate-induced ROS production and attenuated the apoptosis-related signaling molecule JNK and p38 activation (all P < 0.05). PI3K/AKT, eNOS, p38 MAPK, and JNK inhibitors blocked the antilipoapoptosis of Ang (1-7) (all P < 0.05). Our findings suggest that Ang (1-7) reduces palmitate-induced islet endothelial cells apoptosis. AKT/eNOS/NO signaling and JNK and p38 pathway are involved in the Ang (1-7)-mediated modulation of islet endothelial cells lipoapoptosis.
Collapse
Affiliation(s)
- Li Yuan
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- *Li Yuan:
| | - Chun-Li Lu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ying Wang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yang Li
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiao-Ya Li
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
48
|
Cao Y, Tao L, Shen S, Xiao J, Wu H, Li B, Wu X, Luo W, Xiao Q, Hu X, Liu H, Nie J, Lu S, Yuan B, Han Z, Xiao B, Yang Z, Li X. Cardiac ablation of Rheb1 induces impaired heart growth, endoplasmic reticulum-associated apoptosis and heart failure in infant mice. Int J Mol Sci 2013; 14:24380-98. [PMID: 24351823 PMCID: PMC3876117 DOI: 10.3390/ijms141224380] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 11/25/2013] [Accepted: 12/03/2013] [Indexed: 11/19/2022] Open
Abstract
Ras homologue enriched in brain 1 (Rheb1) plays an important role in a variety of cellular processes. In this study, we investigate the role of Rheb1 in the post-natal heart. We found that deletion of the gene responsible for production of Rheb1 from cardiomyocytes of post-natal mice resulted in malignant arrhythmias, heart failure, and premature death of these mice. In addition, heart growth impairment, aberrant metabolism relative gene expression, and increased cardiomyocyte apoptosis were observed in Rheb1-knockout mice prior to the development of heart failure and arrhythmias. Also, protein kinase B (PKB/Akt) signaling was enhanced in Rheb1-knockout mice, and removal of phosphatase and tensin homolog (Pten) significantly prolonged the survival of Rheb1-knockouts. Furthermore, signaling via the mammalian target of rapamycin complex 1 (mTORC1) was abolished and C/EBP homologous protein (CHOP) and phosphorylation levels of c-Jun N-terminal kinase (JNK) were increased in Rheb1 mutant mice. In conclusion, this study demonstrates that Rheb1 is important for maintaining cardiac function in post-natal mice via regulation of mTORC1 activity and stress on the endoplasmic reticulum. Moreover, activation of Akt signaling helps to improve the survival of mice with advanced heart failure. Thus, this study provides direct evidence that Rheb1 performs multiple important functions in the heart of the post-natal mouse. Enhancing Akt activity improves the survival of infant mice with advanced heart failure.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Apoptosis
- Arrhythmias, Cardiac/etiology
- Arrhythmias, Cardiac/metabolism
- Arrhythmias, Cardiac/pathology
- Cells, Cultured
- Endoplasmic Reticulum/metabolism
- Heart/growth & development
- Heart/physiopathology
- Heart Failure/etiology
- Heart Failure/metabolism
- Heart Failure/pathology
- JNK Mitogen-Activated Protein Kinases/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Monomeric GTP-Binding Proteins/deficiency
- Monomeric GTP-Binding Proteins/genetics
- Monomeric GTP-Binding Proteins/metabolism
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Neuropeptides/deficiency
- Neuropeptides/genetics
- Neuropeptides/metabolism
- PTEN Phosphohydrolase/metabolism
- Phosphoric Monoester Hydrolases/metabolism
- Phosphorylation
- Proto-Oncogene Proteins c-akt/metabolism
- Ras Homolog Enriched in Brain Protein
Collapse
Affiliation(s)
- Yunshan Cao
- Department of Cardiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; E-Mails: (Y.C.); (L.T.); (S.S.); (J.X.); (H.W.); (B.L.); (X.W.); (H.L.); (Z.H.)
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China; E-Mails: (W.L.); (Q.X.); (X.H.); (J.N.); (S.L.); (B.Y.)
| | - Lichan Tao
- Department of Cardiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; E-Mails: (Y.C.); (L.T.); (S.S.); (J.X.); (H.W.); (B.L.); (X.W.); (H.L.); (Z.H.)
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China; E-Mails: (W.L.); (Q.X.); (X.H.); (J.N.); (S.L.); (B.Y.)
| | - Shutong Shen
- Department of Cardiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; E-Mails: (Y.C.); (L.T.); (S.S.); (J.X.); (H.W.); (B.L.); (X.W.); (H.L.); (Z.H.)
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China; E-Mails: (W.L.); (Q.X.); (X.H.); (J.N.); (S.L.); (B.Y.)
| | - Junjie Xiao
- Department of Cardiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; E-Mails: (Y.C.); (L.T.); (S.S.); (J.X.); (H.W.); (B.L.); (X.W.); (H.L.); (Z.H.)
- Regeneration Lab and Experimental Center of Life sciences, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Hang Wu
- Department of Cardiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; E-Mails: (Y.C.); (L.T.); (S.S.); (J.X.); (H.W.); (B.L.); (X.W.); (H.L.); (Z.H.)
| | - Beibei Li
- Department of Cardiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; E-Mails: (Y.C.); (L.T.); (S.S.); (J.X.); (H.W.); (B.L.); (X.W.); (H.L.); (Z.H.)
| | - Xiangqi Wu
- Department of Cardiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; E-Mails: (Y.C.); (L.T.); (S.S.); (J.X.); (H.W.); (B.L.); (X.W.); (H.L.); (Z.H.)
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China; E-Mails: (W.L.); (Q.X.); (X.H.); (J.N.); (S.L.); (B.Y.)
| | - Wen Luo
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China; E-Mails: (W.L.); (Q.X.); (X.H.); (J.N.); (S.L.); (B.Y.)
| | - Qi Xiao
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China; E-Mails: (W.L.); (Q.X.); (X.H.); (J.N.); (S.L.); (B.Y.)
| | - Xiaoshan Hu
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China; E-Mails: (W.L.); (Q.X.); (X.H.); (J.N.); (S.L.); (B.Y.)
| | - Hailang Liu
- Department of Cardiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; E-Mails: (Y.C.); (L.T.); (S.S.); (J.X.); (H.W.); (B.L.); (X.W.); (H.L.); (Z.H.)
| | - Junwei Nie
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China; E-Mails: (W.L.); (Q.X.); (X.H.); (J.N.); (S.L.); (B.Y.)
| | - Shuangshuang Lu
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China; E-Mails: (W.L.); (Q.X.); (X.H.); (J.N.); (S.L.); (B.Y.)
| | - Baiyin Yuan
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China; E-Mails: (W.L.); (Q.X.); (X.H.); (J.N.); (S.L.); (B.Y.)
| | - Zhonglin Han
- Department of Cardiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; E-Mails: (Y.C.); (L.T.); (S.S.); (J.X.); (H.W.); (B.L.); (X.W.); (H.L.); (Z.H.)
| | - Bo Xiao
- The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; E-Mail:
| | - Zhongzhou Yang
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China; E-Mails: (W.L.); (Q.X.); (X.H.); (J.N.); (S.L.); (B.Y.)
- Authors to whom correspondence should be addressed; E-Mails: or (X.L.); (Z.Y.); Tel.: +86-25-8371-4511-6325 (X.L.); Fax: +86-25-8367-3396 (X.L.)
| | - Xinli Li
- Department of Cardiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; E-Mails: (Y.C.); (L.T.); (S.S.); (J.X.); (H.W.); (B.L.); (X.W.); (H.L.); (Z.H.)
- Authors to whom correspondence should be addressed; E-Mails: or (X.L.); (Z.Y.); Tel.: +86-25-8371-4511-6325 (X.L.); Fax: +86-25-8367-3396 (X.L.)
| |
Collapse
|