1
|
Dey S, Nagpal I, Sow P, Dey R, Chakrovorty A, Bhattacharjee B, Saha S, Majumder A, Bera M, Subbarao N, Nandi S, Hossen Molla S, Guptaroy P, Abraham SK, Khuda-Bukhsh AR, Samadder A. Morroniside interaction with poly (ADP-ribose) polymerase accentuates metabolic mitigation of alloxan-induced genotoxicity and hyperglycaemia: a molecular docking based in vitro and in vivo experimental therapeutic insight. J Biomol Struct Dyn 2024; 42:8541-8558. [PMID: 37587909 DOI: 10.1080/07391102.2023.2246585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/05/2023] [Indexed: 08/18/2023]
Abstract
The present study tends to evaluate the possible potential of bio-active Morroniside (MOR), against alloxan (ALX)-induced genotoxicity and hyperglycaemia. In silico prediction revealed the interaction of MOR with Poly (ADP-ribose) polymerase (PARP) protein which corroborated well with experimental in vitro L6 cell line and in vivo mice models. Data revealed the efficacy of MOR in the selective activation of PARP protein and modulating other stress proteins NF-κB, and TNF-α to initiate protective potential against ALX-induced genotoxicity and hyperglycaemia. Further, the strong interaction of MOR with CT-DNA (calf thymus DNA) analyzed through CD spectroscopy, UV-Vis study and ITC data revealed the concerted action of bio-factors involved in inhibiting chromosomal aberration and micronucleus formation associated with DNA damage. Finally, MOR does not play any role in microbial growth inhibition which often occurs due to hyperglycemic dysbiosis. Thus, from the overall findings, we may conclude that MOR could be a potential drug candidate for the therapeutic management of induced-hyperglycaemia and genotoxicity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sudatta Dey
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia, India
- Dum Dum Motijheel College, Kolkata, India
| | - Isha Nagpal
- John B. Little Center for Radiation Sciences, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| | - Priyanka Sow
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia, India
| | - Rishita Dey
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia, India
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research, (Affiliated to Uttarakhand Technical University), Kashipur, India
| | - Arnob Chakrovorty
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia, India
| | - Banani Bhattacharjee
- Endocrinology and Reproductive Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia, India
| | - Saikat Saha
- Parasitology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia, India
| | - Avishek Majumder
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal, India
| | - Manindranath Bera
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal, India
| | - Naidu Subbarao
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sisir Nandi
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research, (Affiliated to Uttarakhand Technical University), Kashipur, India
| | - Sabir Hossen Molla
- Parasitology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia, India
| | | | - Suresh K Abraham
- School of Life Science, Jawaharlal Nehru University, New Delhi, India
| | - Anisur Rahman Khuda-Bukhsh
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia, India
| | - Asmita Samadder
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia, India
| |
Collapse
|
2
|
Xu Z, Huang J, Wen M, Zhang X, Lyu D, Li S, Xiao H, Li M, Shen C, Huang H. Gentiopicroside ameliorates glucose and lipid metabolism in T2DM via targeting FGFR1. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155780. [PMID: 38885580 DOI: 10.1016/j.phymed.2024.155780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/07/2024] [Accepted: 05/26/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND The suppression of the fibroblast growth factor 21/fibroblast growth factor receptor 1 (FGF21/FGFR1) signaling pathway is considered as a vital factor in the type 2 diabetes mellitus (T2DM) progression. Our previous study showed that gentiopicroside (GPS), the main active compound present in Gentiana macrophylla Pall., has the capacity to control disorders related to glucose and lipid metabolism in individuals with T2DM. Nevertheless, the specific mechanism remains unclear. PURPOSE In light of the fact that the PharmMapper database suggests FGFR1 as the target of GPS, our investigation aims to determine if GPS can enhance glucose and lipid metabolism issues in T2DM by modulating the FGF21/FGFR1 signaling pathway. METHODS In this study, we used palmitic acid (PA)-induced HepG2 cells and db/db mice to investigate the function and mechanism of GPS in the FGF21/FGFR1 signaling pathway. To examine the interaction between GPS and FGFR1, researchers performed Cellular Thermal Shift Assay (CETSA) and Surface Plasmon Resonance (SPR) analysis. RESULTS The results suggest that GPS activates the traditional metabolic pathways, including PI3K/AKT and AMPK, which are the subsequent stages of the FGF21/FGFR1 pathway. This activation leads to the enhancement of glucose and lipid metabolism issues in PA-treated HepG2 cells and db/db mice. Furthermore, the depletion of FGFR1 has been noticed to oppose the stimulation of PI3K/AKT and AMPK pathways by GPS in HepG2 cells subjected to PA. Notability, our research affirms that GPS binds directly to FGFR1, hindering the ubiquitinated degradation of FGFR1 by neural precursor cells expressing developmentally decreased protein 4 (NEDD4) and ultimately promoting FGF21 signal transduction. CONCLUSION This study demonstrates that GPS targeting FGFR1 activates the PI3K/AKT and AMPK pathways, which is an important mechanism for its treatment of T2DM.
Collapse
Affiliation(s)
- Zhanchi Xu
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratoty for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou 510801, China
| | - Jucun Huang
- Hubei NO.3 People's Hospital of Jianghan University, Wuhan 430033, China
| | - Min Wen
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratoty for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xuting Zhang
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratoty for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Dongxin Lyu
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratoty for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shanshan Li
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratoty for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Haiming Xiao
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratoty for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Min Li
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratoty for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Cuangpeng Shen
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Heqing Huang
- Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou 510801, China.
| |
Collapse
|
3
|
Kelidari M, Abedi F, Hayes AW, Jomehzadeh V, Karimi G. The protective effects of protocatechuic acid against natural and chemical toxicants: cellular and molecular mechanisms. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5597-5616. [PMID: 38607443 DOI: 10.1007/s00210-024-03072-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/26/2024] [Indexed: 04/13/2024]
Abstract
Protocatechuic acid (PCA) is a water-soluble polyphenol compound that is extracted from certain fruits and plants or obtained from glucose fermentation. Several in vivo and in vitro studies have determined that PCA has protective effects against the toxicity of natural and chemical toxicants. We searched these articles in PubMed, Google Scholar, and Scopus with appropriate keywords from inception up to August 2023. Forty-nine studies were found about protective effects of PCA against drug toxicity, metal toxicity, toxins, chemical toxicants, and some other miscellaneous toxicants. PCA indicates these protective effects by suppression of oxidative stress, inflammation, and apoptosis. PCA reduces reactive oxygen/nitrogen species (RONS) and enhances the level of antioxidant parameters mainly through the activation of the Nrf-2 signaling pathway. PCA also decreases the levels of inflammatory mediators via downregulating the TLR-4-mediated IKBKB/NF-κB and MAPK/Erk signaling pathways. In addition, PCA inhibits apoptosis by lowering the expression of Bax, caspase-3, and caspase-9 along with enhancing the level of the antiapoptotic protein Bcl-2. Further evaluation, especially in humans, is necessary to confirm PCA as a potential therapeutic approach to intervene in such toxicities.
Collapse
Affiliation(s)
- Mahdieh Kelidari
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farshad Abedi
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- College of Public Health, University of South Florida, Tampa, FL, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Vahid Jomehzadeh
- Department of Surgery, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Dey R, Dey S, Sow P, Chakrovorty A, Bhattacharjee B, Nandi S, Samadder A. Novel PLGA-encapsulated-nanopiperine promotes synergistic interaction of p53/PARP-1/Hsp90 axis to combat ALX-induced-hyperglycemia. Sci Rep 2024; 14:9483. [PMID: 38664520 PMCID: PMC11045756 DOI: 10.1038/s41598-024-60208-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
The present study predicts the molecular targets and druglike properties of the phyto-compound piperine (PIP) by in silico studies including molecular docking simulation, druglikeness prediction and ADME analysis for prospective therapeutic benefits against diabetic complications. PIP was encapsulated in biodegradable polymer poly-lactide-co-glycolide (PLGA) to form nanopiperine (NPIP) and their physico-chemical properties were characterized by AFM and DLS. ∼ 30 nm sized NPIP showed 86.68% encapsulation efficiency and - 6 mV zeta potential, demonstrated great interactive stability and binding with CT-DNA displaying upsurge in molar ellipticity during CD spectroscopy. NPIP lowered glucose levels in peripheral circulation by > 65 mg/dL compared to disease model and improved glucose influx in alloxan-induced in vivo and in vitro diabetes models concerted with 3-folds decrease in ROS production, ROS-induced DNA damage and 27.24% decrease in nuclear condensation. The 25% increase in % cell viability and inhibition in chromosome aberration justified the initiation of p53 and PARP DNA repairing protein expression and maintenance of Hsp90. Thus, the experimental study corroborated well with in silico predictions of modulating the p53/PARP-1/Hsp90 axis, with predicted dock score value of - 8.72, - 8.57, - 8.76 kcal/mol respectively, validated docking-based preventive approaches for unravelling the intricacies of molecular signalling and nano-drug efficacy as therapeutics for diabetics.
Collapse
Affiliation(s)
- Rishita Dey
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research (Affiliated to Veer Madho Singh Bhandari Uttarakhand Technical University), Kashipur, 244713, India
| | - Sudatta Dey
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Priyanka Sow
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Arnob Chakrovorty
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Banani Bhattacharjee
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Sisir Nandi
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research (Affiliated to Veer Madho Singh Bhandari Uttarakhand Technical University), Kashipur, 244713, India.
| | - Asmita Samadder
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India.
| |
Collapse
|
5
|
Samadder A, Bhattacharjee B, Dey S, Chakrovorty A, Dey R, Sow P, Tarafdar D, Biswas M, Nandi S. Enhanced Drug Carriage Efficiency of Curcumin-Loaded PLGA Nanoparticles in Combating Diabetic Nephropathy via Mitigation of Renal Apoptosis. J Pharmacopuncture 2024; 27:1-13. [PMID: 38560336 PMCID: PMC10978441 DOI: 10.3831/kpi.2024.27.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/23/2023] [Accepted: 12/18/2023] [Indexed: 04/04/2024] Open
Abstract
Objectives The Curcuma-derived diferuloylmethane compound CUR, loaded on Poly (lactide-co-glycolic) acid (PLGA) nanoparticles was utilized to combat DN-induced renal apoptosis by selectively targeting and modulating Bcl2. Methods Upon in silico molecular docking and screening study CUR was selected as the core phytocompound for nanoparticle formulation. PLGA-nano-encapsulated-curcumin (NCUR) were synthesized following standard solvent displacement method. The NCUR were characterized for shape, size and other physico-chemical properties by Atomic Force Microscopy (AFM), Dynamic Light Scattering (DLS) and Fourier-Transform Infrared (FTIR) Spectroscopy studies. For in vivo validation of nephro-protective effects, Mus musculus were pre-treated with CUR at a dose of 50 mg/kg b.w. and NCUR at a dose of 25 mg/kg b.w. (dose 1), 12.5 mg/kg b.w (dose 2) followed by alloxan administration (100 mg/kg b.w) and serum glucose levels, histopathology and immunofluorescence study were conducted. Results The in silico study revealed a strong affinity of CUR towards Bcl2 (dock score -10.94 Kcal/mol). The synthesized NCUR were of even shape, devoid of cracks and holes with mean size of ~80 nm having -7.53 mV zeta potential. Dose 1 efficiently improved serum glucose levels, tissue-specific expression of Bcl2 and reduced glomerular space and glomerular sclerosis in comparison to hyperglycaemic group. Conclusion This study essentially validates the potential of NCUR to inhibit DN by reducing blood glucose level and mitigating glomerular apoptosis by selectively promoting Bcl2 protein expression in kidney tissue.
Collapse
Affiliation(s)
- Asmita Samadder
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, India
| | - Banani Bhattacharjee
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, India
| | - Sudatta Dey
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, India
| | - Arnob Chakrovorty
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, India
| | - Rishita Dey
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, India
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research, Veer Madho Singh Bhandari Uttarakhand Technical University, Kashipur, India
| | - Priyanka Sow
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, India
| | - Debojyoti Tarafdar
- Department of Chemistry, Chanchal College, Affiliated to The University of Gour Banga, West Bengal, India
| | - Maharaj Biswas
- Endocrinology and Reproductive Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, India
| | - Sisir Nandi
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research, Veer Madho Singh Bhandari Uttarakhand Technical University, Kashipur, India
| |
Collapse
|
6
|
Bhattacharjee B, Chakrovorty A, Biswas M, Samadder A, Nandi S. To Explore the Putative Molecular Targets of Diabetic Nephropathy and their Inhibition Utilizing Potential Phytocompounds. Curr Med Chem 2024; 31:3752-3790. [PMID: 37211853 DOI: 10.2174/0929867330666230519112312] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/17/2023] [Accepted: 03/31/2023] [Indexed: 05/23/2023]
Abstract
BACKGROUND This review critically addresses the putative molecular targets of Diabetic Nephropathy (DN) and screens effective phytocompounds that can be therapeutically beneficial, and highlights their mechanistic modalities of action. INTRODUCTION DN has become one of the most prevalent complications of clinical hyperglycemia, with individual-specific variations in the disease spectrum that leads to fatal consequences. Diverse etiologies involving oxidative and nitrosative stress, activation of polyol pathway, inflammasome formation, Extracellular Matrix (ECM) modifications, fibrosis, and change in dynamics of podocyte functional and mesangial cell proliferation adds up to the clinical complexity of DN. Current synthetic therapeutics lacks target-specific approach, and is associated with the development of inevitable residual toxicity and drug resistance. Phytocompounds provides a vast diversity of novel compounds that can become an alternative therapeutic approach to combat the DN. METHODS Relevant publications were searched and screened from research databases like GOOGLE SCHOLAR, PUBMED and SCISEARCH. Out of 4895 publications, the most relevant publications were selected and included in this article. RESULT This study critically reviews over 60 most promising phytochemical and provides with their molecular targets, that can be of pharmacological significance in context to current treatment and concomitant research in DN. CONCLUSION This review highlights those most promising phytocompounds that have the potential of becoming new safer naturally-sourced therapeutic candidates and demands further attention at clinical level.
Collapse
Affiliation(s)
- Banani Bhattacharjee
- Endocrinology and Reproductive Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Arnob Chakrovorty
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, 741235, India
| | - Maharaj Biswas
- Endocrinology and Reproductive Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Asmita Samadder
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, 741235, India
| | - Sisir Nandi
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research, Affiliated to Uttarakhand Technical University, Kashipur, 244713, India
| |
Collapse
|
7
|
Sasikala S, Minu Jenifer M, Velavan K, Sakthivel M, Sivasamy R, Fenwick Antony ER. Predicting the relationship between pesticide genotoxicity and breast cancer risk in South Indian women in in vitro and in vivo experiments. Sci Rep 2023; 13:9712. [PMID: 37322018 PMCID: PMC10272204 DOI: 10.1038/s41598-023-35552-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/19/2023] [Indexed: 06/17/2023] Open
Abstract
Breast cancer is the third most common cancer in women after skin and lung cancer. Pesticides are of interest in etiologic studies of breast cancer because many pesticides mimic estrogen, a known breast cancer risk factor. In this study, we discerned the toxic role of the pesticides atrazine, dichlorvos, and endosulfan in inducing breast cancer. Various experimental studies, such as biochemical profiling of pesticide-exposed blood samples, comet assays, karyotyping analysis, pesticide and DNA interaction analysis by molecular docking, DNA cleavage, and cell viability assays, have been carried out. Biochemical profiling showed an increased level of blood sugar, WBC, hemoglobin, and blood urea in the patient exposed to pesticides for more than 15 years. The comet assay for DNA damage performed on patients exposed to pesticides and pesticide-treated blood samples revealed more DNA damage at the 50 ng concentration of all three pesticides. Karyotyping analysis showed enlargements in the heterochromatin region and 14pstk+, and 15pstk+in the exposed groups. In molecular docking analysis, atrazine had the highest glide score (- 5.936) and glide energy (- 28.690), which reveals relatively high binding capability with the DNA duplex. The DNA cleavage activity results showed that atrazine caused higher DNA cleavage than the other two pesticides. Cell viability was the lowest at 50 ng/ml (72 h). Statistical analysis performed using SPSS software unveiled a positive correlation (< 0.05) between pesticide exposure and breast cancer. Our findings support attempts to minimize pesticide exposure.
Collapse
Affiliation(s)
- S Sasikala
- Molecular Genetics and Cancer Biology Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, 641 046, India
| | - M Minu Jenifer
- Molecular Genetics and Cancer Biology Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, 641 046, India
| | - K Velavan
- Erode Cancer Center Hospital, Perundurai Road, Thindal, Erode, Tamil Nadu, 638012, India
| | - M Sakthivel
- Department of Statistics, Bharathiar University, Coimbatore, Tamil Nadu, 641 046, India
| | - R Sivasamy
- Molecular Genetics and Cancer Biology Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, 641 046, India.
| | - E R Fenwick Antony
- Molecular Genetics and Cancer Biology Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, 641 046, India
| |
Collapse
|
8
|
Exploring the inhibitory mechanisms of indazole compounds against SAH/MTAN-mediated quorum sensing utilizing QSAR and docking. Drug Target Insights 2022; 16:54-68. [PMID: 36582781 PMCID: PMC9788832 DOI: 10.33393/dti.2022.2512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
The world is under the great threat of antimicrobial resistance (AMR) leading to premature deaths. Microorganisms can produce AMR via quorum sensing mechanisms utilizing S-adenosyl homocysteine/methylthioadenosine nucleosidase (SAH/MTAN) biosynthesis. But there is no specific drug developed to date to stop SAH/MTAN, which is a crucial target for the discovery of anti-quorum sensing compound. It has been shown that indazole compounds cause inhibition of SAH/MTAN-mediated quorum sensing, but the biochemical mechanisms have not yet been explored. Therefore, in this original research, an attempt has been made to explore essential structural features of these compounds by quantitative structure-activity relationship (QSAR) and molecular docking of indazole compounds having inhibition of SAH/MTAN-mediated quorum sensing. The validated QSAR predicted five essential descriptors and molecular docking helps to identify the active binding amino acid residues involved in ligand-receptor interactions that are responsible for producing the quorum sensing inhibitory mechanisms of indazole compounds against SAH/MTAN-mediated AMR.
Collapse
|
9
|
Praveena R, Balasankar A, Aruchamy K, Oh T, Polisetti V, Ramasundaram S, Anbazhakan K. Structural Activity and HAD Inhibition Efficiency of Pelargonidin and Its Glucoside-A Theoretical Approach. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228016. [PMID: 36432125 PMCID: PMC9696994 DOI: 10.3390/molecules27228016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
Abstract
Anthocyanins are an important pharmaceutical ingredient possessing diet regulatory, antioxidant, anticancer, antidiabetic, anti-obesity, antimicrobial, and anti-inflammatory properties. Pelargonidin is an important anthocyanin-based orange-red flavonoid compound used in drugs for treating hypoglycemia, retinopathy, skeletal myopathy, etc. The main sources of pelargonidin are strawberries and food products with red pigmentation. There is a lack of evidence for supporting its use as an independent supplement. In the present study, pelargonidin and pelargonidin-3-O-glucoside are studied for their structural properties using quantum chemical calculations based on density functional theory. The results confirmed that the parent compound and its glycosylated derivative acted as good electron donors. Electrostatic potential, frontier molecular orbitals, and molecular descriptor analyses also substantiated their electron donating properties. Furthermore, based on the probability, a target prediction was performed for pelargonidin and pelargonidin-3-O-glucoside. Hydroxyacyl-coenzyme A dehydrogenase was chosen as an enzymatic target of interest, since the presence work focuses on glucuronidated compounds and their efficacy over diabetes. Possible interactions between these compounds and a target with nominable binding energies were also evaluated. Further, the structural stability of these two compounds were also analyzed using a molecular dynamics simulation.
Collapse
Affiliation(s)
- Rangasamy Praveena
- Department of Chemistry, Bannari Amman Institute of Technology, Sathyamangalam 638401, India
| | | | - Kanakaraj Aruchamy
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Taehwan Oh
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Veerababu Polisetti
- Wallenberg Wood Science Center, Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
- Correspondence: (V.P.); (S.R.); (K.A.)
| | - Subramaniyan Ramasundaram
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
- Correspondence: (V.P.); (S.R.); (K.A.)
| | - Kandasamy Anbazhakan
- Department of Physics, Gobi Arts & Science College, Gobichettipalayam 638453, India
- Correspondence: (V.P.); (S.R.); (K.A.)
| |
Collapse
|
10
|
Dey S, Samadder A, Nandi S. Current Role of Nanotechnology Used in Food Processing Industry to Control Food Additives and Exploring Their Biochemical Mechanisms. Curr Drug Targets 2021; 23:513-539. [PMID: 34915833 DOI: 10.2174/1389450123666211216150355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/25/2021] [Accepted: 09/02/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND With the advent of food additives centuries ago, the human race has found ways to improve and maintain the safety of utility, augment the taste, color, texture, nutritional value, and appearance of the food. Since the 19th century, when the science behind food spoilage was discerned, the use of food additives in food preservation has been increasing worldwide and at a fast pace to get along with modern lifestyles. Although food additives are thought to be used to benefit the food market, some of them are found to be associated with several health issues at an alarming rate. Studies are still going on regarding the mechanisms by which food additives affect public health. Therefore, an attempt has been made to find out the remedies by exploiting technologies that may convey new properties of food additives that can only enhance the quality of food without having any systemic side effects. Thus, this review focuses on the applications of nanotechnology in the production of nano-food additives and evaluates its success regarding reduction in the health-related hazards collaterally maintaining the food nutrient value. METHODOLOGY A thorough literature study was performed using scientific databases like PubMed, Science Direct, Scopus, Web of Science for determining the design of the study, and each article was checked for citation and referred to formulate the present review article. CONCLUSION Nanotechnology can be applied in the food processing industry to control the unregulated use of food additives and to intervene in the biochemical mechanisms at a cellular and physiological level for the ensuring safety of food products. The prospective of nano-additive of chemical origin could be useful to reduce risks of hazards related to human health that are caused majorly due to the invasion of food contaminants (either intentional or non-intentional) into food, though this area still needs scientific validation. Therefore, this review provides comprehensive knowledge on different facets of food contaminants and also serves as a platform of ideas for encountering health risk problems about the design of improved versions of nano-additives.
Collapse
Affiliation(s)
- Sudatta Dey
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia-741235. India
| | - Asmita Samadder
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia-741235. India
| | - Sisir Nandi
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research (GIPER) (Affiliated to Uttarakhand Technical University). Kashipur-244713. India
| |
Collapse
|
11
|
Bingham JT, Etz BD, DuClos JM, Vyas S. Structure and Reactivity of Alloxan Monohydrate in the Liquid Phase. J Org Chem 2021; 86:14553-14562. [PMID: 34582209 DOI: 10.1021/acs.joc.1c01389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alloxan is an important toxic glucose analogue used to induce diabetes in lab test animals. Once regarded as a "problem structure," the condensed-phase structure of anhydrous alloxan has largely been settled, but literature inconsistencies remain for the structure of the typically employed reagent alloxan monohydrate. Due to the criticality of structure-function relationships, we have used 1H/13C{1H} NMR, IR spectroscopy, as well as quantum mechanical (QM) calculations to probe the liquid-phase structure and reactivity of alloxan monohydrate. In protic solvents (D2O and acetic acid-d4), hydration at the C5 carbonyl of alloxan monohydrate occurs quantitatively to form the C5 gem-diol (5,5'-dihydroxybarbituric acid). In the aprotic solvent dimethyl sulfoxide (DMSO)-d6, there exists a mixture of the C5 gem-diol and planar tetraketo form of alloxan monohydrate. QM calculations explain the solvent-dependent hydration reactivity, where a solvent-assisted H-atom transfer mechanism lowers the activation energy of water addition at the C5 carbonyl by ∼16 or 27 kcal/mol in water or acetic acid, respectively, compared to the unassisted hydration reaction. Prompt recrystallization of alloxan monohydrate from boiling water does not alter the structure of the reagent. These findings probe the exact structure of alloxan monohydrate to guide future research efforts in biological sciences and in organic synthesis.
Collapse
Affiliation(s)
- Jacob T Bingham
- Department of Chemistry, Colorado School of Mines, 1012 14th Street, Golden, Colorado 80401, United States
| | - Brian D Etz
- Department of Chemistry, Colorado School of Mines, 1012 14th Street, Golden, Colorado 80401, United States
| | - Julie M DuClos
- Department of Chemistry, Colorado School of Mines, 1012 14th Street, Golden, Colorado 80401, United States
| | - Shubham Vyas
- Department of Chemistry, Colorado School of Mines, 1012 14th Street, Golden, Colorado 80401, United States
| |
Collapse
|