1
|
Guo YW, Wei QH, Wei F, Liu H, Zhao HB, Wang D, Tu HL. In situ synthesis of porous Pt–Pd bimetallic structures for sweat glucose biosensing using dynamic hydrogen bubble template method. RARE METALS 2024; 43:3408-3414. [DOI: 10.1007/s12598-024-02792-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 01/03/2025]
|
2
|
Rajagopal V, Mehla S, Jones LA, Bhargava SK. Nanoengineered Cobalt Electrocatalyst for Alkaline Oxygen Evolution Reaction. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:946. [PMID: 38869572 PMCID: PMC11173492 DOI: 10.3390/nano14110946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/18/2024] [Accepted: 05/24/2024] [Indexed: 06/14/2024]
Abstract
The alkaline oxygen evolution reaction (OER) remains a bottleneck in green hydrogen production owing to its slow reaction kinetics and low catalytic efficiencies of earth abundant electrocatalysts in the alkaline OER reaction. This study investigates the OER performance of hierarchically porous cobalt electrocatalysts synthesized using the dynamic hydrogen bubble templating (DHBT) method. Characterization studies revealed that electrocatalysts synthesized under optimized conditions using the DHBT method consisted of cobalt nanosheets, and hierarchical porosity with macropores distributed in a honeycomb network and mesopores distributed between cobalt nanosheets. Moreover, X-ray photoelectron spectroscopy studies revealed the presence of Co(OH)2 as the predominant surface cobalt species while Raman studies revealed the presence of the cubic Co3O4 phase in the synthesized electrocatalysts. The best performing electrocatalyst required only 360 mV of overpotential to initiate a current density of 10 mA cm-2, exhibited a Tafel slope of 37 mV dec-1, and stable OER activity over 24 h. The DHBT method offers a facile, low cost and rapid synthesis approach for preparation for highly efficient cobalt electrocatalysts.
Collapse
Affiliation(s)
| | | | | | - Suresh K. Bhargava
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, STEM College, RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia; (V.R.); (S.M.)
| |
Collapse
|
3
|
Raj D, Scaglione F, Rizzi P. Rapid Fabrication of Fe and Pd Thin Films as SERS-Active Substrates via Dynamic Hydrogen Bubble Template Method. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:135. [PMID: 36616045 PMCID: PMC9824498 DOI: 10.3390/nano13010135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Fe and Pd thin film samples have been fabricated in a rapid fashion utilizing the versatile technique of dynamic hydrogen bubble template (DHBT) method via potentiostatic electrodeposition over a copper substrate. The morphology of the samples is dendritic, with the composition being directly proportional to the deposition time. All the samples have been tested as SERS substrates for the detection of Rhodamine 6G (R6G) dye. The samples perform very well, with the best performance shown by the Pd samples. The lowest detectable R6G concentration was found to be 10-6 M (479 μgL-1) by one of the Pd samples with the deposition time of 180 s. The highest enhancement of signals noticed in this sample can be attributed to its morphology, which is more nanostructured compared to other samples, which is extremely conducive to the phenomenon of localized surface plasmon resonance (LSPR). Overall, these samples are cheaper, easy to prepare with a rapid fabrication method, and show appreciable SERS performance.
Collapse
|
4
|
Arshad F, Tahir A, Haq TU, Munir A, Hussain I, Sher F. Bubbles Templated Interconnected Porous Metallic Materials: Synthesis, Surface Modification, and their Electrocatalytic Applications for Water Splitting and Alcohols Oxidation. ChemistrySelect 2022. [DOI: 10.1002/slct.202202774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Farhan Arshad
- Department of Chemistry & Chemical Engineering Syed Babar Ali School of Science & Engineering Lahore University of Management Sciences (LUMS) DHA Lahore 54792 Pakistan
| | - Aleena Tahir
- Department of Chemistry & Chemical Engineering Syed Babar Ali School of Science & Engineering Lahore University of Management Sciences (LUMS) DHA Lahore 54792 Pakistan
| | - Tanveer Ul Haq
- Department of Chemistry College of Sciences University of Sharjah P.O. Box 27272 Sharjah, UAE
| | - Akhtar Munir
- Department of Chemistry University of Sialkot Sialkot 51040 Pakistan
| | - Irshad Hussain
- Department of Chemistry & Chemical Engineering Syed Babar Ali School of Science & Engineering Lahore University of Management Sciences (LUMS) DHA Lahore 54792 Pakistan
| | - Falak Sher
- Department of Chemistry & Chemical Engineering Syed Babar Ali School of Science & Engineering Lahore University of Management Sciences (LUMS) DHA Lahore 54792 Pakistan
| |
Collapse
|
5
|
Vesztergom S, Dutta A, Rahaman M, Kiran K, Zelocualtecatl Montiel I, Broekmann P. Hydrogen Bubble Templated Metal Foams as Efficient Catalysts of CO
2
Electroreduction. ChemCatChem 2020. [DOI: 10.1002/cctc.202001145] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Soma Vesztergom
- Department of Chemistry and Biochemistry University of Bern Freiestraße 3 Bern 3012 Switzerland
- Department of Physical Chemistry Eötvös Loránd University Pázmány Péter sétány 1/A Budapest 1117 Hungary
| | - Abhijit Dutta
- Department of Chemistry and Biochemistry University of Bern Freiestraße 3 Bern 3012 Switzerland
| | - Motiar Rahaman
- Department of Chemistry and Biochemistry University of Bern Freiestraße 3 Bern 3012 Switzerland
| | - Kiran Kiran
- Department of Chemistry and Biochemistry University of Bern Freiestraße 3 Bern 3012 Switzerland
| | | | - Peter Broekmann
- Department of Chemistry and Biochemistry University of Bern Freiestraße 3 Bern 3012 Switzerland
| |
Collapse
|
6
|
Nikolić ND, Živković PM, Elezović N, Lačnjevac U. Optimization of process of the honeycomb-like structure formation by the regime of reversing current (RC) in the second range. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-020-04658-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Hierarchical Nanoporous Sn/SnO x Systems Obtained by Anodic Oxidation of Electrochemically Deposited Sn Nanofoams. NANOMATERIALS 2020; 10:nano10030410. [PMID: 32110900 PMCID: PMC7152847 DOI: 10.3390/nano10030410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 02/22/2020] [Accepted: 02/23/2020] [Indexed: 01/13/2023]
Abstract
A simple two-step electrochemical method for the fabrication of a new type of hierarchical Sn/SnOx micro/nanostructures is proposed for the very first time. Firstly, porous metallic Sn foams are grown on Sn foil via hydrogen bubble-assisted electrodeposition from an acidulated tin chloride electrolyte. As-obtained metallic foams consist of randomly distributed dendrites grown uniformly on the entire metal surface. The estimated value of pore diameter near the surface is ~35 µm, while voids with a diameter of ~15 µm appear in a deeper part of the deposit. Secondly, a layer of amorphous nanoporous tin oxide (with a pore diameter of ~60 nm) is generated on the metal surface by its anodic oxidation in an alkaline electrolyte (1 M NaOH) at the potential of 4 V for various durations. It is confirmed that if only optimal conditions are applied, the dendritic morphology of the metal foam does not change significantly, and an open-porous structure is still preserved after anodization. Such kinds of hierarchical nanoporous Sn/SnOx systems are superhydrophilic, contrary to those obtained by thermal oxidation of metal foams which are hydrophobic. Finally, the photoelectrochemical activity of the nanostructured metal/metal oxide electrodes is also presented.
Collapse
|
8
|
Sayeed MA, O'Mullane AP. Electrodeposition at Highly Negative Potentials of an Iron-Cobalt Oxide Catalyst for Use in Electrochemical Water Splitting. Chemphyschem 2019; 20:3112-3119. [PMID: 31250515 DOI: 10.1002/cphc.201900498] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/25/2019] [Indexed: 11/06/2022]
Abstract
Earth-abundant transition metal-based catalysts have been extensively investigated for their applicability in water electrolysers to enable overall water splitting to produce clean hydrogen and oxygen. In this study a Fe-Co based catalyst is electrodeposited in 30 seconds under vigorous hydrogen evolution conditions to produce a high surface area material that is active for both the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER). This catalyst can achieve high current densities of 600 mAcm-2 at an applied potential of 1.6 V (vs RHE) in 1 M NaOH with a Tafel slope value of 48 mV dec-1 for the OER. In addition, the HER can be facilitated at current densities as high as 400 mA cm-2 due to the large surface area of the material. The materials were found to be predominantly amorphous but did contain crystalline regions of CoFe2 O4 which became more evident after the OER indicating interesting compositional and structural changes that occur to the catalyst after an electrocatalytic reaction. This rapid method of creating a bimetallic oxide electrode for both the HER and OER could possibly be adopted to other bimetallic oxide systems suitable for electrochemical water splitting.
Collapse
Affiliation(s)
- Md Abu Sayeed
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
| | - Anthony P O'Mullane
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
| |
Collapse
|
9
|
Zhao X, Ren H, Luo L. Gas Bubbles in Electrochemical Gas Evolution Reactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:5392-5408. [PMID: 30888828 DOI: 10.1021/acs.langmuir.9b00119] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Electrochemical gas evolution reactions are of vital importance in numerous electrochemical processes including water splitting, chloralkaline process, and fuel cells. During gas evolution reactions, gas bubbles are vigorously and constantly forming and influencing these processes. In the past few decades, extensive studies have been performed to understand the evolution of gas bubbles, elucidate the mechanisms of how gas bubbles impact gas evolution reactions, and exploit new bubble-based strategies to improve the efficiency of gas evolution reactions. In this feature article, we summarize the classical theories as well as recent advancements in this field and provide an outlook on future research topics.
Collapse
Affiliation(s)
- Xu Zhao
- Department of Chemistry , Wayne State University , Detroit , Michigan 48202 , United States
| | - Hang Ren
- Department of Chemistry and Biochemistry , Miami University , Oxford , Ohio 45056 , United States
| | - Long Luo
- Department of Chemistry , Wayne State University , Detroit , Michigan 48202 , United States
| |
Collapse
|
10
|
Boukhchina S, Akrout H, Berling D, Bousselmi L. Highly efficient modified lead oxide electrode using a spin coating/electrodeposition mode on titanium for electrochemical treatment of pharmaceutical pollutant. CHEMOSPHERE 2019; 221:356-365. [PMID: 30641377 DOI: 10.1016/j.chemosphere.2019.01.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 06/09/2023]
Abstract
In this study, Ti/TiO2/PbO2 anodes consisting of a PbO2 coating growth on the TiO2 interlayer deposited on titanium substrates were prepared combining different deposition technics: electrochemical method using anodization (Anod), electrodeposition (EL), and sol gel spin coating (SG). Different kinds of anodes have been tested for the removal of ampicillin, a pharmaceutical pollutant, from water. The structure and the surface morphology of the prepared multiple coatings were characterized by scanning electron microscopy and Energy-Dispersive X-ray spectroscopy respectively. Electrochemical impedance spectroscopy was also investigated in order to study the electrocatalytic activity of the anodes. The performance of the electrodes was evaluated through high performance liquid chromatography and chemical oxygen demand (COD) measurements. It was noticed that ampicillin could be mineralized by anodic oxidation process using Ti/TiO2/PbO2 anodes. The best results were obtained for Ti/TiO2SG/PbO2EL as anode with a 64% of COD removal after 300 min of treatment and a fast decrease in the amount of ampicillin was reached after almost one hour. Experimental results demonstrate that Ti/TiO2SG/PbO2EL anode presents the best ability for the degradation of ampicillin through anodic oxidation compared to the Ti/TiO2SG/PbO2SG and Ti/TiO2Anod/PbO2EL electrodes.
Collapse
Affiliation(s)
- Sahar Boukhchina
- Laboratory of Wastewaters and Environment, Center of Water Researches and Technologies (CERTE) Technopark of Borj Cédria, PB 273, Soliman 8020, Tunisia; National Institute of Applied Sciences and Technology (INSAT), Tunisia.
| | - Hanene Akrout
- Laboratory of Wastewaters and Environment, Center of Water Researches and Technologies (CERTE) Technopark of Borj Cédria, PB 273, Soliman 8020, Tunisia.
| | - Dominique Berling
- Université de Haute Alsace, Institute of Materials Science of Mulhouse (IS2M) UMR 7361, F-68100 Mulhouse, France; Université de Strasbourg, France.
| | - Latifa Bousselmi
- Laboratory of Wastewaters and Environment, Center of Water Researches and Technologies (CERTE) Technopark of Borj Cédria, PB 273, Soliman 8020, Tunisia.
| |
Collapse
|
11
|
Berkesi K, Živković PM, Elezović N, Lačnjevac U, Hristoforou E, Nikolić ND. Mechanism of formation of the honeycomb-like structures by the regime of the reversing current (RC) in the second range. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2018.12.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Hussain G, O'Mullane AP, Silvester DS. Modification of Microelectrode Arrays with High Surface Area Dendritic Platinum 3D Structures: Enhanced Sensitivity for Oxygen Detection in Ionic Liquids. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E735. [PMID: 30227681 PMCID: PMC6163947 DOI: 10.3390/nano8090735] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/14/2018] [Accepted: 09/14/2018] [Indexed: 11/29/2022]
Abstract
Electrochemical gas sensors are often used for identifying and quantifying redox-active analyte gases in the atmosphere. However, for amperometric sensors, the current signal is usually dependent on the electroactive surface area, which can become small when using microelectrodes and miniaturized devices. Microarray thin-film electrodes (MATFEs) are commercially available, low-cost devices that give enhanced current densities compared to mm-sized electrodes, but still give low current responses (e.g., less than one nanoamp), when detecting low concentrations of gases. To overcome this, we have modified the surface of the MATFEs by depositing platinum into the recessed holes to create arrays of 3D structures with high surface areas. Dendritic structures have been formed using an additive, lead acetate (Pb(OAc)₂) into the plating solution. One-step and two-step depositions were explored, with a total deposition time of 300 s or 420 s. The modified MATFEs were then studied for their behavior towards oxygen reduction in the room temperature ionic liquid (RTIL) [N8,2,2,2][NTf₂]. Significantly enhanced currents for oxygen were observed, ranging from 9 to 16 times the current of the unmodified MATFE. The highest sensitivity was obtained using a two-step deposition with a total time of 420 s, and both steps containing Pb(OAc)₂. This work shows that commercially-available microelectrodes can be favorably modified to give significantly enhanced analytical performances.
Collapse
Affiliation(s)
- Ghulam Hussain
- Curtin Institute for Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth 6845, Australia.
| | - Anthony P O'Mullane
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), Brisbane, Queensland 4001, Australia.
| | - Debbie S Silvester
- Curtin Institute for Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth 6845, Australia.
| |
Collapse
|
13
|
Li C, Iqbal M, Lin J, Luo X, Jiang B, Malgras V, Wu KCW, Kim J, Yamauchi Y. Electrochemical Deposition: An Advanced Approach for Templated Synthesis of Nanoporous Metal Architectures. Acc Chem Res 2018; 51:1764-1773. [PMID: 29984987 DOI: 10.1021/acs.accounts.8b00119] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Well-constructed porous materials take an essential role in a wide range of applications, including energy conversion and storage systems, electrocatalysis, photocatalysis, and sensing. Although the tailored design of various nanoarchitectures has made substantial progress, simpler preparation methods are compelled to meet large-scale production requirements. Recently, advanced electrochemical deposition techniques have had a significant impact in terms of precise control upon the nanoporous architecture (i.e., pore size, surface area, pore structure, etc.), enabling access to a wide range of compositions. In this Account, we showcase the uniqueness of electrochemical deposition techniques, detail their implementation toward the synthesis of novel nanoporous metals, and finally outline the future research directions. Nanoporous metallic structures are attractive in that they can provide high surface area and large pore volume, easing mass transport of reactants and providing high accessibility to catalytically active metal surface. The great merit of the electrochemical deposition approach does not only lie in its versatility, being applicable to a wide range of compositions, but also in the nanoscale precision it affords when it comes to crystal growth control, which cannot be easily achieved by other bottom-up or top-down approaches. In this Account, we describe the significant progress made in the field of nanoporous metal designed through electrochemical deposition approaches using hard templates (i.e., porous silica, 3D templates of polymer and silica colloids) and soft templates (i.e., lyotropic liquid crystals, polymeric micelles). In addition, we will point out how it accounts for precise control over the crystal growth and describe the unique physical and chemical properties emerging from these novel materials. Up to date, our group has reported the synthesis of several nanoporous metals and alloys (e.g., Cu, Ru, Rh, Pd, Pt, Au, and their corresponding alloys) under various conditions through electrochemical deposition, while investigating their various potential applications. The orientation of the channel structure, the composition, and the nanoporosity can be easily controlled by selecting the appropriate surfactants or block copolymers. The inherent properties of the final product, such as framework crystallinity, catalytic activity, and resistance to oxidation, are depending on both the composition and pore structure, which in turn require suitable electrochemical conditions. This Account is divided into three main sections: (i) a history of electrochemical deposition using hard and soft templates, (ii) a description of the important mechanisms involved in the preparation of nanoporous materials, and (iii) a conclusion and future perspectives. We believe that this Account will promote a deeper understanding of the synthesis of nanoporous metals using electrochemical deposition methods, thus enabling new pathways to control nanoporous architectures and optimize their performance toward promising applications such as catalysis, energy storage, sensors, and so forth.
Collapse
Affiliation(s)
- Cuiling Li
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Muhammad Iqbal
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Jianjian Lin
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiliang Luo
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Bo Jiang
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Victor Malgras
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Kevin C.-W. Wu
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Jeonghun Kim
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yusuke Yamauchi
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, South Korea
| |
Collapse
|
14
|
Sanzò G, Taurino I, Puppo F, Antiochia R, Gorton L, Favero G, Mazzei F, Carrara S, De Micheli G. A bimetallic nanocoral Au decorated with Pt nanoflowers (bio)sensor for H 2O 2 detection at low potential. Methods 2017; 129:89-95. [PMID: 28600228 DOI: 10.1016/j.ymeth.2017.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 04/13/2017] [Accepted: 06/03/2017] [Indexed: 10/19/2022] Open
Abstract
In this work, we have developed for the first time a method to make novel gold and platinum hybrid bimetallic nanostructures differing in shape and size. Au-Pt nanostructures were prepared by electrodeposition in two simple steps. The first step consists of the electrodeposition of nanocoral Au onto a gold substrate using hydrogen as a dynamic template in an ammonium chloride solution. After that, the Pt nanostructures were deposited onto the nanocoral Au organized in pores. Using Pt (II) and Pt (IV), we realized nanocoral Au decorated with Pt nanospheres and nanocoral Au decorated with Pt nanoflowers, respectively. The bimetallic nanostructures showed better capability to electrochemically oxidize hydrogen peroxide compared with nanocoral Au. Moreover, Au-Pt nanostructures were able to lower the potential of detection and a higher performance was obtained at a low applied potential. Then, glucose oxidase was immobilized onto the bimetallic Au-Pt nanostructure using cross-linking with glutaraldehyde. The biosensor was characterized by chronoamperometry at +0.15V vs. Ag pseudo-reference electrode (PRE) and showed good analytical performances with a linear range from 0.01 to 2.00mM and a sensitivity of 33.66µA/mMcm2. The good value of Kmapp (2.28mM) demonstrates that the hybrid nanostructure is a favorable environment for the enzyme. Moreover, the low working potential can minimize the interference from ascorbic acid and uric acid as well as reducing power consumption to effect sensing. The simple procedure to realize this nanostructure and to immobilize enzymes, as well as the analytical performances of the resulting devices, encourage the use of this technology for the development of biosensors for clinical analysis.
Collapse
Affiliation(s)
- Gabriella Sanzò
- Laboratory of Integrated Systems, EPFL - École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; Biosensors Laboratory, Department of Chemistry Drug Technologies, Sapienza University of Rome, P.le Aldo Moro, 5-00185 Roma, Italy
| | - Irene Taurino
- Laboratory of Integrated Systems, EPFL - École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Francesca Puppo
- Laboratory of Integrated Systems, EPFL - École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Riccarda Antiochia
- Biosensors Laboratory, Department of Chemistry Drug Technologies, Sapienza University of Rome, P.le Aldo Moro, 5-00185 Roma, Italy
| | - Lo Gorton
- Department of Analytical Chemistry/Biochemistry, P.O. Box 124, 221 00 Lund, Sweden
| | - Gabriele Favero
- Biosensors Laboratory, Department of Chemistry Drug Technologies, Sapienza University of Rome, P.le Aldo Moro, 5-00185 Roma, Italy
| | - Franco Mazzei
- Biosensors Laboratory, Department of Chemistry Drug Technologies, Sapienza University of Rome, P.le Aldo Moro, 5-00185 Roma, Italy
| | - Sandro Carrara
- Laboratory of Integrated Systems, EPFL - École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Giovanni De Micheli
- Laboratory of Integrated Systems, EPFL - École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
15
|
Zhang J, Chen J, Jiang Y, Zhou F, Zhong J, Wang G, Kiani M, Wang R. Facile synthesis of flower-like platinum nanostructures as an efficient electrocatalyst for methanol electro-oxidation. J Colloid Interface Sci 2016; 479:64-70. [DOI: 10.1016/j.jcis.2016.06.050] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/19/2016] [Accepted: 06/21/2016] [Indexed: 11/28/2022]
|
16
|
Preparation of dendritic bismuth film electrodes and their application for detection of trace Pb (II) and Cd (II). Chin J Chem Eng 2016. [DOI: 10.1016/j.cjche.2015.08.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Yuan L, Jiang L, Zhang T, Wang G, Wang S, Bao X, Sun G. Electrochemically synthesized freestanding 3D nanoporous silver electrode with high electrocatalytic activity. Catal Sci Technol 2016. [DOI: 10.1039/c6cy01174h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrochemically synthesized nanoporous silver displays superior activity in oxygen reduction reaction mainly benefiting from its good mass transport ability.
Collapse
Affiliation(s)
- Lizhi Yuan
- Fuel Cell & Battery Division
- Dalian National Laboratory for Clean Energy
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
| | - Luhua Jiang
- Fuel Cell & Battery Division
- Dalian National Laboratory for Clean Energy
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
| | - Tianran Zhang
- Fuel Cell & Battery Division
- Dalian National Laboratory for Clean Energy
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
| | - Guoxiong Wang
- State Key Laboratory of Catalysis
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Suli Wang
- Fuel Cell & Battery Division
- Dalian National Laboratory for Clean Energy
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
| | - Xinhe Bao
- State Key Laboratory of Catalysis
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Gongquan Sun
- Fuel Cell & Battery Division
- Dalian National Laboratory for Clean Energy
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
| |
Collapse
|
18
|
Taurino I, Sanzó G, Mazzei F, Favero G, De Micheli G, Carrara S. Fast synthesis of platinum nanopetals and nanospheres for highly-sensitive non-enzymatic detection of glucose and selective sensing of ions. Sci Rep 2015; 5:15277. [PMID: 26515434 PMCID: PMC4626773 DOI: 10.1038/srep15277] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/21/2015] [Indexed: 11/09/2022] Open
Abstract
Novel methods to obtain Pt nanostructured electrodes have raised particular interest due to their high performance in electrochemistry. Several nanostructuration methods proposed in the literature use costly and bulky equipment or are time-consuming due to the numerous steps they involve. Here, Pt nanostructures were produced for the first time by one-step template-free electrodeposition on Pt bare electrodes. The change in size and shape of the nanostructures is proven to be dependent on the deposition parameters and on the ratio between sulphuric acid and chloride-complexes (i.e., hexachloroplatinate or tetrachloroplatinate). To further improve the electrochemical properties of electrodes, depositions of Pt nanostructures on previously synthesised Pt nanostructures are also performed. The electroactive surface areas exhibit a two order of magnitude improvement when Pt nanostructures with the smallest size are used. All the biosensors based on Pt nanostructures and immobilised glucose oxidase display higher sensitivity as compared to bare Pt electrodes. Pt nanostructures retained an excellent electrocatalytic activity towards the direct oxidation of glucose. Finally, the nanodeposits were proven to be an excellent solid contact for ion measurements, significantly improving the time-stability of the potential. The use of these new nanostructured coatings in electrochemical sensors opens new perspectives for multipanel monitoring of human metabolism.
Collapse
Affiliation(s)
- Irene Taurino
- Laboratory of Integrated Systems, EPFL - École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Gabriella Sanzó
- Laboratory of Integrated Systems, EPFL - École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Department of Chemistry and Drug Technologies, Sapienza University of Rome, Italy
| | - Franco Mazzei
- Department of Chemistry and Drug Technologies, Sapienza University of Rome, Italy
| | - Gabriele Favero
- Department of Chemistry and Drug Technologies, Sapienza University of Rome, Italy
| | - Giovanni De Micheli
- Laboratory of Integrated Systems, EPFL - École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sandro Carrara
- Laboratory of Integrated Systems, EPFL - École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
19
|
Zhu C, Du D, Eychmüller A, Lin Y. Engineering Ordered and Nonordered Porous Noble Metal Nanostructures: Synthesis, Assembly, and Their Applications in Electrochemistry. Chem Rev 2015; 115:8896-943. [DOI: 10.1021/acs.chemrev.5b00255] [Citation(s) in RCA: 502] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Chengzhou Zhu
- School
of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164-2920, United States
| | - Dan Du
- School
of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164-2920, United States
- Key
Laboratory of Pesticide and Chemical Biology of the Ministry of Education,
College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | | | - Yuehe Lin
- School
of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164-2920, United States
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
20
|
Plowman BJ, Jones LA, Bhargava SK. Building with bubbles: the formation of high surface area honeycomb-like films via hydrogen bubble templated electrodeposition. Chem Commun (Camb) 2015; 51:4331-46. [PMID: 25649756 DOI: 10.1039/c4cc06638c] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
While the evolution of hydrogen gas is often a troublesome process accompanying electrodeposition, this feature can be exploited to template the growth of highly porous surfaces. This process, known as the dynamic hydrogen bubble template (DHBT) method, can be utilised to create a wide range of macroporous films with nanostructured pore walls. This feature article presents an overview of the status of the DHBT technique, highlighting preparation techniques and emerging applications.
Collapse
Affiliation(s)
- Blake J Plowman
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Applied Sciences, RMIT University, GPO Box 2476V, Melbourne, VIC 3001, Australia.
| | | | | |
Collapse
|
21
|
Wang X, Sun Y, Hu J, Li YJ, Yeung ES. Electrochemical fabrication of Hydrangea macrophylla flower-like Pt hierarchical nanostructures and their properties for methanol electrooxidation. RSC Adv 2015. [DOI: 10.1039/c4ra10595h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hydrangea macrophylla flower-like Pt hierarchical nanostructures were fabricated by a one-step current-directed growth method and exhibited better electrocatalytic activity and extremely strong stability toward methanol oxidation.
Collapse
Affiliation(s)
- Xia Wang
- State Key Lab of Chemo/Biosensing and Chemometrics
- School of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- China
| | - Yue Sun
- State Key Lab of Chemo/Biosensing and Chemometrics
- School of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- China
| | - Jun Hu
- State Key Lab of Chemo/Biosensing and Chemometrics
- School of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- China
| | - Yong-Jun Li
- State Key Lab of Chemo/Biosensing and Chemometrics
- School of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- China
| | - Edward S. Yeung
- State Key Lab of Chemo/Biosensing and Chemometrics
- School of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- China
| |
Collapse
|
22
|
Zhang J, Baró MD, Pellicer E, Sort J. Electrodeposition of magnetic, superhydrophobic, non-stick, two-phase Cu-Ni foam films and their enhanced performance for hydrogen evolution reaction in alkaline water media. NANOSCALE 2014; 6:12490-12499. [PMID: 25117618 DOI: 10.1039/c4nr03200d] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Two-phase Cu-Ni magnetic metallic foams (MMFs) with tunable composition have been prepared by electrodeposition taking advantage of hydrogen co-evolution as a source of porosity. It is observed that Ni tends to deposit inside the porous network defined by the Cu building blocks. Contact angle measurements reveal that the prepared porous films show a remarkable superhydrophobicity (contact angle values larger than 150°) and a non-sticking property to aqueous droplets. This behavior is predominately ascribed to the morphology of the films - hierarchical micro/nanoporosity, wall thickness, and spatial arrangement. The electrochemical activity and stability towards hydrogen evolution reaction of the Cu-Ni MMFs has been investigated by cyclic voltammetry in 1 M KOH at 298 K, and the optimal Ni content is found to be 15 at%. Furthermore, all the foam-like films exhibit ferromagnetic behaviour due to the presence of the Ni-rich phase, with coercivity values ranging from 114 Oe to 300 Oe. From the technological point of view, the Cu-Ni MMFs are promising candidates for magnetically-actuated micro/nano-electromechanical systems (MEMS/NEMS) and micro/nanorobotic platforms with a large surface-area to volume ratio or in magnetic sensors or separators.
Collapse
Affiliation(s)
- J Zhang
- Departament de Física, Facultat de Ciències, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain.
| | | | | | | |
Collapse
|
23
|
Plowman BJ, Abdelhamid ME, Ippolito SJ, Bansal V, Bhargava SK, O’Mullane AP. Electrocatalytic and SERS activity of Pt rich Pt-Pb nanostructures formed via the utilisation of in-situ underpotential deposition of lead. J Solid State Electrochem 2014. [DOI: 10.1007/s10008-014-2622-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Najdovski I, O’Mullane AP. The effect of electrode material on the electrochemical formation of porous copper surfaces using hydrogen bubble templating. J Electroanal Chem (Lausanne) 2014. [DOI: 10.1016/j.jelechem.2014.03.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Najdovski I, Selvakannan PR, O'Mullane AP. Electrochemical formation of Cu/Ag surfaces and their applicability as heterogeneous catalysts. RSC Adv 2014. [DOI: 10.1039/c3ra47557c] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
26
|
Guerrero M, Pané S, Nelson BJ, Baró MD, Roldán M, Sort J, Pellicer E. 3D hierarchically porous Cu-BiOCl nanocomposite films: one-step electrochemical synthesis, structural characterization and nanomechanical and photoluminescent properties. NANOSCALE 2013; 5:12542-12550. [PMID: 24172868 DOI: 10.1039/c3nr03491g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Three-dimensional (3D) hierarchically porous composite Cu-BiOCl films have been prepared by a facile one-step galvanostatic electrodeposition process from acidic electrolytic solutions containing Cu(ii) and Bi(iii) chloride salts and Triton X-100. The films show spherical, micron-sized pores that spread over the whole film thickness. In turn, the pore walls are made of randomly packed BiOCl nanoplates that are assembled leaving micro-nanopore voids beneath. It is believed that Cu grows within the interstitial spaces between the hydrogen bubbles produced from the reduction of H(+) ions. Then, the BiOCl sheets accommodate in the porous network defined by the Cu building blocks. The presence of Cu tends to enhance the mechanical stability of the composite material. The resulting porous Cu-BiOCl films exhibit homogeneous and stable-in-time photoluminescent response arising from the BiOCl component that spreads over the entire 3D porous structure, as demonstrated by confocal scanning laser microscopy. A broad-band emission covering the entire visible range, in the wavelength interval 450-750 nm, is obtained. The present work paves the way for the facile and controlled preparation of a new generation of photoluminescent membranes.
Collapse
Affiliation(s)
- Miguel Guerrero
- Departament de Física, Facultat de Ciències, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain.
| | | | | | | | | | | | | |
Collapse
|
27
|
Li Y, Zhao Y, Pan GB, Liu ZH, Xu GL, Xu K. Preparation of platinum nanoparticles on n-GaN(0001) substrate by means of electrodeposition. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.10.066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
28
|
Mahajan M, Bhargava SK, O’Mullane AP. Electrochemical formation of porous copper 7,7,8,8-tetracyanoquinodimethane and copper 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane honeycomb surfaces with superhydrophobic properties. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2012.09.068] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
29
|
WU C, WU KB. Preparation of Electrochemical Sensor Based on Morphology-Controlled Platinum Nanoparticles for Determination of Chemical Oxygen Demand. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2013. [DOI: 10.1016/s1872-2040(13)60654-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
Niu X, Zhao H, Chen C, Lan M. Enhancing the Electrocatalytic Activity of Pt-Pd Catalysts by Introducing Porous Architectures. ChemCatChem 2013. [DOI: 10.1002/cctc.201200658] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
31
|
Xiong L, Huang YX, Liu XW, Sheng GP, Li WW, Yu HQ. Three-dimensional bimetallic Pd–Cu nanodendrites with superior electrochemical performance for oxygen reduction reaction. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2012.10.162] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
32
|
Plowman BJ, Najdovski I, Pearson A, O'Mullane AP. Decoration of active sites to create bimetallic surfaces and its implication for electrochemical processes. Faraday Discuss 2013; 164:199-218. [DOI: 10.1039/c3fd00015j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Najdovski I, Selvakannan PR, Bhargava SK, O'Mullane AP. Formation of nanostructured porous Cu-Au surfaces: the influence of cationic sites on (electro)-catalysis. NANOSCALE 2012; 4:6298-6306. [PMID: 22842864 DOI: 10.1039/c2nr31409f] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The fabrication of nanostructured bimetallic materials through electrochemical routes offers the ability to control the composition and shape of the final material that can then be effectively applied as (electro)-catalysts. In this work a clean and transitory hydrogen bubble templating method is employed to generate porous Cu-Au materials with a highly anisotropic nanostructured interior. Significantly, the co-electrodeposition of copper and gold promotes the formation of a mixed bimetallic oxide surface which does not occur at the individually electrodeposited materials. Interestingly, the surface is dominated by Au(I) oxide species incorporated within a Cu(2)O matrix which is extremely effective for the industrially important (electro)-catalytic reduction of 4-nitrophenol. It is proposed that an aurophilic type of interaction takes place between both oxidized gold and copper species which stabilizes the surface against further oxidation and facilitates the binding of 4-nitrophenol to the surface and increases the rate of reaction. An added benefit is that very low gold loadings are required typically less than 2 wt% for a significant enhancement in performance to be observed. Therefore the ability to create a partially oxidized Cu-Au surface through a facile electrochemical route that uses a clean template consisting of only hydrogen bubbles should be of benefit for many more important reactions.
Collapse
Affiliation(s)
- Ilija Najdovski
- School of Applied Sciences, RMIT University, GPO Box 2476V, Melbourne, VIC 3001, Australia
| | | | | | | |
Collapse
|
34
|
Liu J, Cao L, Huang W, Li Z. Direct electrodeposition of PtPd alloy foams comprised of nanodendrites with high electrocatalytic activity for the oxidation of methanol and ethanol. J Electroanal Chem (Lausanne) 2012. [DOI: 10.1016/j.jelechem.2012.09.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|