1
|
Zhang R, Hao L, Cheng K, Xin B, Sun J, Guo J. Research progress of electrically-enhanced membrane bioreactor (EMBR) in pollutants removal and membrane fouling alleviation. CHEMOSPHERE 2023; 331:138791. [PMID: 37105306 DOI: 10.1016/j.chemosphere.2023.138791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/11/2023] [Accepted: 04/24/2023] [Indexed: 05/19/2023]
Abstract
Membrane bioreactor (MBR), as a biological unit for wastewater treatment, has been proven to have the advantages of simple structure and high pollutant removal rate. However, membrane fouling limits its wide application, and it is crucial to adopt effective membrane fouling control methods. As a new type of membrane fouling control technology, electrically-enhanced MBR (EMBR) has attracted more interest recently. It uses the driving force of electric field to make pollutants flocculate or move away from the membrane surface to achieve the purpose of inhibiting membrane fouling. This paper expounds the configuration of EMBR in recent years, including the location of membrane components, the way of electric field application and the selection of electrode and membrane materials, and provides the latest development information in various aspects. The enhanced effect of electric field on the removal of comprehensive and refractory pollutants is outlined in detail. And from the perspective of sludge properties (EPS, SMP, sludge particle size, zeta potential and microbial activity), the influence of electric field on sludge characteristics and the relationship between the changes of sludge properties in EMBR and membrane fouling are discussed. Moreover, the electrochemical mechanisms of electric field alleviating membrane fouling are elucidated from electrophoresis, electrostatic repulsion, electroflocculation, electroosmosis, and electrochemical oxidation, and the regeneration and stability of EMBR are assessed. The existing challenges and future research directions are also proposed. This review could provide theoretical guidance and further studies for subsequent topic, and promoting the wide engineering applications of EMBR.
Collapse
Affiliation(s)
- Rong Zhang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Water and Environment Chang'an University, Xi'an, 710054, PR China.
| | - Liying Hao
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Water and Environment Chang'an University, Xi'an, 710054, PR China.
| | - Kai Cheng
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Water and Environment Chang'an University, Xi'an, 710054, PR China.
| | - Beiyu Xin
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Water and Environment Chang'an University, Xi'an, 710054, PR China.
| | - Junqi Sun
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Water and Environment Chang'an University, Xi'an, 710054, PR China.
| | - Jifeng Guo
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Water and Environment Chang'an University, Xi'an, 710054, PR China.
| |
Collapse
|
2
|
Moghiseh Z, Xiao Y, Kalantar M, Barati B, Ghahrchi M. Role of bio-electrochemical technology for enzyme activity stimulation in high-consumption pharmaceuticals biodegradation. 3 Biotech 2023; 13:119. [PMID: 37025753 PMCID: PMC10070591 DOI: 10.1007/s13205-023-03539-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
Active pharmaceutical ingredients (APIs) and their intermediate residues have recently been considered a serious concern. Among technologies, bio-electrochemical technologies (BETs) have stimulated the production of bio-electrical energy. This review aims to examine the benefit and mechanism of BETs on the degradation of high-consumption pharmaceutical compounds, including antibiotic, anti-inflammatory, and analgesic drugs, and the stimulation of enzymes induced in a bioreactor. Moreover, intermediates and the proposed pathways of pharmaceutical compound biodegradation in BETs are to be explained in this review. According to studies performed exclusively, the benefit of BETs is using bio-electroactive microbes to mineralize recalcitrant pharmaceutical contaminants by promoting enzyme activity and energy. Since BETs use the electron transfer chain between bio-anode/-cathode and pharmaceuticals, the enzyme activity is essential in the oxidation and reduction of phenolic rings of drugs and the ineffective detoxification of effluent from the treatment plant. This study is suggested a vital and influential role of BETs in mineralizing and enzyme induction in bioreactors. Eventually, a content of future developments or outlooks of BETs are propounded to improve the pharmaceutical industries' wastewater problems.
Collapse
Affiliation(s)
- Zohreh Moghiseh
- Department of Environmental Health Engineering, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran
| | - Yong Xiao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021 People’s Republic of China
| | - Mojtaba Kalantar
- Department of Occupational Health, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran
| | - Barat Barati
- Department of Radiologic Technology, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran
| | - Mina Ghahrchi
- Department of Environmental Health Engineering, Torbat Jam Faculty of Medical Sciences, Torbat Jam, Iran
| |
Collapse
|
3
|
Wu ZY, Xu J, Wu L, Ni BJ. Three-dimensional biofilm electrode reactors (3D-BERs) for wastewater treatment. BIORESOURCE TECHNOLOGY 2022; 344:126274. [PMID: 34737054 DOI: 10.1016/j.biortech.2021.126274] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Three-dimensional biofilm electrode reactors (3D-BERs) are highly efficient in refractory wastewater treatment. In comparison to conventional bio-electrochemical systems, the filled particle electrodes act as both electrodes and microbial carriers in 3D-BERs. This article reviews the conception and basic mechanisms of 3D-BERs, as well as their current development. The advantages of 3D-BERs are illustrated with an emphasis on the synergy of electricity and microorganisms. Electrode materials utilized in 3D-BERs are systematically summarized, especially the critical particle electrodes. The configurations of 3D-BERs and their integration with wastewater treatment reactors are introduced. Operational parameters and the adaptation of 3D-BERs to varieties of wastewater are discussed. The prospects and challenges of 3D-BERs for wastewater treatment are then presented, and the future research directions are proposed. We believe that this timely review will help to attract more attentions on 3D-BERs investigation, thus promoting the potential application of 3D-BERs in wastewater treatment.
Collapse
Affiliation(s)
- Zhen-Yu Wu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Juan Xu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, No. 20 Cuiniao Road, ChenJiazhen, Shanghai 202162, China.
| | - Lan Wu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
4
|
Hou R, Gan L, Guan F, Wang Y, Li J, Zhou S, Yuan Y. Bioelectrochemically enhanced degradation of bisphenol S: mechanistic insights from stable isotope-assisted investigations. iScience 2021; 24:102014. [PMID: 33490921 PMCID: PMC7809511 DOI: 10.1016/j.isci.2020.102014] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/03/2020] [Accepted: 12/24/2020] [Indexed: 12/04/2022] Open
Abstract
Electroactive microbes is the driving force for the bioelectrochemical degradation of organic pollutants, but the underlying microbial interactions between electrogenesis and pollutant degradation have not been clearly identified. Here, we combined stable isotope-assisted metabolomics (SIAM) and 13C-DNA stable isotope probing (DNA-SIP) to investigate bisphenol S (BPS) enhanced degradation by electroactive mixed-culture biofilms (EABs). Using SIAM, six 13C fully labeled transformation products were detected originating via hydrolysis, oxidation, alkylation, or aromatic ring-cleavage reactions from 13C-BPS, suggesting hydrolysis and oxidation as the initial and key degradation pathways for the electrochemical degradation process. The DNA-SIP results further displayed high 13C-DNA accumulation in the genera Bacteroides and Cetobacterium from the EABs and indicated their ability in the assimilation of BPS or its metabolites. Collectively, network analysis showed that the collaboration between electroactive microbes and BPS assimilators played pivotal roles the improvement in bioelectrochemically enhanced BPS degradation.
Collapse
Affiliation(s)
- Rui Hou
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Lin Gan
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Fengyi Guan
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yi Wang
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Jibing Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, School of Resources and Environment, Fujian Agriculture and Forestry, Fuzhou 350000, China
| | - Yong Yuan
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
5
|
Czinnerová M, Vološčuková O, Marková K, Ševců A, Černík M, Nosek J. Combining nanoscale zero-valent iron with electrokinetic treatment for remediation of chlorinated ethenes and promoting biodegradation: A long-term field study. WATER RESEARCH 2020; 175:115692. [PMID: 32199189 DOI: 10.1016/j.watres.2020.115692] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/29/2020] [Accepted: 03/03/2020] [Indexed: 06/10/2023]
Abstract
Nanoscale zero-valent iron (nZVI) is recognized as a powerful tool for the remediation of groundwater contaminated by chlorinated ethenes (CEs). This long-term field study explored nZVI-driven degradation of CEs supported by electrokinetic (EK) treatment, which positively affects nZVI longevity and migration, and its impact on indigenous bacteria. In particular, the impact of combined nZVI-EK treatment on organohalide-respiring bacteria, ethenotrophs and methanotrophs (all capable of CE degradation) was assessed using molecular genetic markers detecting Dehalococcoides spp., Desulfitobacterium spp., the reductive dehalogenase genes vcrA and bvcA and ethenotroph and methanotroph functional genes. The remediation treatment resulted in a rapid decrease of the major pollutant cis-1,2-dichloroethene (cDCE) by 75% in the affected area, followed by an increase in CE degradation products methane, ethane and ethene. The newly established geochemical conditions in the treated aquifer not only promoted growth of organohalide-respiring bacteria but also allowed for the concurrent presence of vinyl chloride- and cDCE-oxidizing methanotrophs and (especially) ethenotrophs, which proliferated preferentially in the vicinity of an anode where low levels of oxygen were produced. The nZVI treatment resulted in a temporary negative impact on indigenous bacteria in the application well close to the cathode; but even there, the microbiome was restored within 15 days. The nZVI-EK treatment proved highly effective in reducing CE contamination and creating a suitable environment for subsequent biodegradation by changing groundwater conditions, promoting transport of nutrients and improving CE availability to soil and groundwater bacteria.
Collapse
Affiliation(s)
- Marie Czinnerová
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 7, CZ-46117, Liberec, Czech Republic; Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentská 2, CZ-46117, Liberec, Czech Republic
| | - Ondřejka Vološčuková
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 7, CZ-46117, Liberec, Czech Republic
| | - Kristýna Marková
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 7, CZ-46117, Liberec, Czech Republic
| | - Alena Ševců
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 7, CZ-46117, Liberec, Czech Republic
| | - Miroslav Černík
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 7, CZ-46117, Liberec, Czech Republic
| | - Jaroslav Nosek
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 7, CZ-46117, Liberec, Czech Republic.
| |
Collapse
|
6
|
Tu L, Hou Y, Yuan G, Yu Z, Qin S, Yan Y, Zhu H, Lin H, Chen Y, Wang S. Bio-photoelectrochemcial system constructed with BiVO 4/RGO photocathode for 2,4-dichlorophenol degradation: BiVO 4/RGO optimization, degradation performance and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:121917. [PMID: 31879103 DOI: 10.1016/j.jhazmat.2019.121917] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/24/2019] [Accepted: 12/15/2019] [Indexed: 06/10/2023]
Abstract
A single-chamber bio-photoelectrochemical system (BPES) constructed with BiVO4/reduced graphene oxide (RGO) photocathode was proposed for 2,4-dichlorophenol (2,4-DCP) degradation under simulated solar irradiation. The BiVO4/RGO (B/G) composites were synthesized, optimized and characterized by various techniques to analyze their physico-chemical and photocatalytic properties. Results showed that B/G (5 wt% - 9 h - 150 °C) exhibited the best photocatalytic activity for 2,4-DCP degradation, which was 1.5 times of that of BiVO4, due to its better light absorption, faster electrons transfer, and more efficient photo-generated e- - h+ separation. Reactive species trapping experiments revealed that ·OH was the main radical leading to 2,4-DCP degradation, and h+ also influenced 2,4-DCP removal. The 2,4-DCP (20 mg/L) removal rate and current output from the illuminated BPES were much higher than those of the unilluminated reactor (68.5 % vs. 41.8 %, 60.31 A/m3 vs. 40.07 A/m3) in 24 h, and the cathode potential was more negative, indicating that photocathode catalytic process was favorable to pollutants degradation and energy generation. Intermediates of 2,4-DCP degradation in the BPES were identified, and accordingly, possible degradation pathway and mechanism were proposed. This research advanced the development of efficient photocathode and mechanism of recalcitrant wastewater treatment in the BPES.
Collapse
Affiliation(s)
- Lingli Tu
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Yanping Hou
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China
| | - Guiyun Yuan
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Zebin Yu
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Shanming Qin
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Yimin Yan
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Hongxiang Zhu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China; College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; Guangxi Bossco Environmental Protection Technology Co., Ltd, 12 Kexin Road, Nanning 530007, China
| | - Hongfei Lin
- Guangxi Bossco Environmental Protection Technology Co., Ltd, 12 Kexin Road, Nanning 530007, China
| | - Yongli Chen
- Guangxi Bossco Environmental Protection Technology Co., Ltd, 12 Kexin Road, Nanning 530007, China
| | - Shuangfei Wang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China; College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; Guangxi Bossco Environmental Protection Technology Co., Ltd, 12 Kexin Road, Nanning 530007, China.
| |
Collapse
|
7
|
Zhao ZQ, Shen XL, Zheng TC, Lv L, Su Y, Ghulam A. Aerobic degradation of 2- and 3-fluoroaniline in mixed culture systems and microbial community analysis. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2019; 55:305-317. [PMID: 31707907 DOI: 10.1080/10934529.2019.1688044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 06/10/2023]
Abstract
Among three monofluoroanilines, 2-fluoroaniline (2-FA) and 3-fluoroaniline (3-FA) exhibit relatively poor biodegradability. This work examined their degradation characteristics in a mixed culture system and also analyzed the microorganism community. After acclimation for 58 d and 43 d, the high removal efficiency of 100% of 2-FA and 95.3% of 3-FA was obtained by adding 25 mg L-1 of 2-FA or 3-FA to the two reactors, respectively. In addition, the high defluorination rates of 2-FA and 3-FA were observed to be 87.0% and 89.3%, respectively. The degradation kinetics showed that the maximum specific degradation rates of 2-FA and 3-FA were (21.23 ± 0.91) mg FA (g•VSS·h)-1, and (11.75 ± 0.99) mg FA (g•VSS·h)-1, respectively. PCR-DGGE analysis revealed that the unique bacteria degrading 2-FA were mainly composed of six genera (Novosphingobium, Bradyrhizobium, Aquaspirillum, Aminobacter, Ochrobactrum, and Labrys), and five genera that degraded 3-FA (Ochrobactrum, Aquaspirillum, Lachnobacterium, Bradyrhizobium, and Variovorax). Analysis of the key catabolic enzyme activities indicated that the simultaneous hydroxylation and dehalogenation were involved in monooxygenase elimination of 2-FA and conversion of 3-FA to 4-fluorocatechol by dioxygenase, indicating that enriched mixed cultures were effective to metabolize 2-FA or 3-FA by unconventional pathways to prevent the accumulation of toxic metabolites.
Collapse
Affiliation(s)
- Zhi-Qing Zhao
- College of Chemical & Material Engineering, Quzhou University, Quzhou, P.R. China
- College of Environment & Resource Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Xiao-Li Shen
- College of Chemical & Material Engineering, Quzhou University, Quzhou, P.R. China
| | - Tu-Cai Zheng
- College of Chemical & Material Engineering, Quzhou University, Quzhou, P.R. China
| | - Liang Lv
- College of Chemical & Material Engineering, Quzhou University, Quzhou, P.R. China
| | - Yao Su
- Department of Agroenvironmental Engineering, Environmental Resources and Soil Fertilizer Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Abbas Ghulam
- Department of Chemical Engineering, University of Gujrat, Gujrat, Pakistan
| |
Collapse
|
8
|
Hou R, Luo X, Liu C, Zhou L, Wen J, Yuan Y. Enhanced degradation of triphenyl phosphate (TPHP) in bioelectrochemical systems: Kinetics, pathway and degradation mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:113040. [PMID: 31421579 DOI: 10.1016/j.envpol.2019.113040] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 08/09/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
Triphenyl phosphate (TPHP) is one of the major organophosphate esters (OPEs) with increasing consumption. Considering its largely distribution and high toxicity in aquatic environment, it is important to explore an efficient treatment for TPHP. This study aimed to investigate the accelerated degradation of TPHP in a three-electrode single chamber bioelectrochemical system (BES). Significant increase of degradation efficiency of TPHP in the BES was observed compared with open circuit and abiotic controls. The one-order degradation rates of TPHP (1.5 mg L-1) were increased with elevating sodium acetate concentrations and showed the highest value (0.054 ± 0.010 h-1) in 1.0 g L-1 of sodium acetate. This result indicated bacterial metabolism of TPHP was enhanced by the application of micro-electrical field and addition acetate as co-substrates. TPHP could be degraded into diphenyl phosphate (DPHP), hydroxyl triphenyl phosphate (OH-TPHP) and three byproducts. DPHP was the most accumulated degradation product in BES, which accounted more than 35.5% of the initial TPHP. The composition of bacterial community in BES electrode was affected by the acclimation by TPHP, with the most dominant bacteria of Azospirillum, Petrimonas, Pseudomonas and Geobacter at the genera level. Moreover, it was found that the acute toxic effect of TPHP to Vibrio fischeri was largely removed after the treatment, which revealed that BES is a promising technology to remove TPHP threaten in aquatic environment.
Collapse
Affiliation(s)
- Rui Hou
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaoshan Luo
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Chuangchuang Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Lihua Zhou
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Junlin Wen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yong Yuan
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
9
|
Wang X, Wan G, Shi L, Gao X, Zhang X, Li X, Zhao J, Sha B, Huang Z. Direct micro-electric stimulation alters phenanthrene-degrading metabolic activities of Pseudomonas sp. strain DGYH-12 in modified bioelectrochemical system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:31449-31462. [PMID: 31478172 PMCID: PMC6828628 DOI: 10.1007/s11356-019-05670-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 06/03/2019] [Indexed: 05/23/2023]
Abstract
Bioelectrochemical systems (BESs) have great potential for treating wastewater containing polycyclic aromatic hydrocarbons (PAHs); however, detailed data on cell physiological activities in PAH biodegradation pathways stimulated by BESs are still lacking. In this paper, a novel BES device was assembled to promote the growth of Pseudomonas sp. DGYH-12 in phenanthrene (PHE) degradation. The results showed that in the micro-electric field (0.2 V), cell growth rate and PHE degradation efficiency were 22% and 27.2% higher than biological control without electric stimulation (BC), respectively. The extracellular polymeric substance (EPS) concentration in BES (39.38 mg L-1) was higher than control (33.36 mg L-1); moreover, the membrane permeability and ATPase activities were also enhanced and there existing phthalic acid and salicylic acid metabolic pathways in the strain. The degradation genes nahAc, pcaH, and xylE expression levels were upregulated by micro-electric stimulation. This is the first study to analyze the physiological and metabolic effect of micro-electric stimulation on a PHE-degrading strain in detail and systematically.
Collapse
Affiliation(s)
- Xingbiao Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Guilong Wan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Liuyang Shi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Xiaolong Gao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Xiaoxia Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Xiaoguang Li
- Binzhou Engineering Technology Research Center for High Salt Wastewater Treatment (chips) of Befar Group, Binzhou, Shandong Province, 256602, People's Republic of China
| | - Jianfang Zhao
- Binzhou Engineering Technology Research Center for High Salt Wastewater Treatment (chips) of Befar Group, Binzhou, Shandong Province, 256602, People's Republic of China
| | - Beibei Sha
- Binzhou Engineering Technology Research Center for High Salt Wastewater Treatment (chips) of Befar Group, Binzhou, Shandong Province, 256602, People's Republic of China
| | - Zhiyong Huang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.
| |
Collapse
|
10
|
Zhao ZQ, Zheng TC, Zhang WJ, Shen XL, Lv L, Li YM. Degradation of 3-fluoroanilne by Rhizobium sp. JF-3. Biodegradation 2019; 30:433-445. [PMID: 31240422 DOI: 10.1007/s10532-019-09885-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/19/2019] [Indexed: 01/07/2023]
Abstract
The interest of fluoroanilines in the environment is due to their extensive applications in industry and their low natural biodegradability. A pure bacterial strain capable of degrading 3-fluoroaniline (3-FA) as the sole source of carbon and energy was isolated from a sequencing batch reactor operating for the treatment of 3-FA. The strain (designated as JF-3) was identified by 16S rRNA gene analysis as a member of the genus Rhizobium. When grown in 3-FA medium at concentrations of 100-700 mg/L, strain JF-3 almost completely removed 3-FA within 72 h. However, the obvious cell growth inhibition was observed in cultures treated with 3-FA concentrations greater than 500 mg/L. The degradation kinetics of 3-FA were consistent with Haldane's model with the maximum degradation rate as 67.66 mg/(g dry cell h). The growth kinetics of strain JF-3 followed Andrew's model with the maximum growth rate as 30.87 h-1. Also, strain JF-3 was able to degrade 4-fluoroaniline, aniline, and catechol, but hardly grew on 2-fluoroaniline, 2,4-dfluoroaniline, 2,3,4-trifluoroaniline, 3-fluorocatechol, and 4-fluorocatechol. Additionally, it was able to grow over a wide pH range (pH 6-10), and also showed tolerance to salinity with lower than 1.0%. This result, in combination with the enzyme assays and analysis of metabolite intermediates, indicated an unconventional pathway for 3-fluoroaniline metabolism that involved conversion to 3-aminophenol and resorcinol by monooxygenase, and which was subsequently metabolized via the ortho-cleavage pathway. To our knowledge, this is the first report on the utilization of 3-FA as a growth substrate by Rhizobium sp.
Collapse
Affiliation(s)
- Zhi-Qing Zhao
- College of Chemical & Material Engineering, Quzhou University, Quzhou, 324000, People's Republic of China. .,College of Environment & Resource Sciences, Zhejiang University, Hangzhou, People's Republic of China.
| | - Tu-Cai Zheng
- College of Chemical & Material Engineering, Quzhou University, Quzhou, 324000, People's Republic of China
| | - Wen-Jing Zhang
- Institute of Environmental Planning, Ministry of Environmental Protection, Beijing, 100012, People's Republic of China
| | - Xiao-Li Shen
- College of Chemical & Material Engineering, Quzhou University, Quzhou, 324000, People's Republic of China
| | - Liang Lv
- College of Chemical & Material Engineering, Quzhou University, Quzhou, 324000, People's Republic of China
| | - Yan-Mei Li
- Engineering Division, Department of Mine, Metallurgy and Geology Engineering, University of Guanajuato, Guanajuato, Gto, 36000, Mexico
| |
Collapse
|
11
|
Xu Y, Ge T, Ma H, Ding X, Zhang X, Liu Q. Rh-Pd-alloy catalyzed electrochemical hydrodefluorination of 4-fluorophenol in aqueous solutions. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.03.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
12
|
Huang W, Chen J, Hu Y, Zhang L. Enhancement of Congo red decolorization by membrane-free structure and bio-cathode in a microbial electrolysis cell. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2017.12.055] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Wang Y, Zhang X, Feng H, Liang Y, Shen D, Long Y, Zhou Y, Dai Q. Biocatalysis mechanism for p-fluoronitrobenzene degradation in the thermophilic bioelectrocatalysis system: Sequential combination of reduction and oxidation. CHEMOSPHERE 2016; 159:44-49. [PMID: 27268793 DOI: 10.1016/j.chemosphere.2016.05.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 05/21/2016] [Accepted: 05/26/2016] [Indexed: 06/06/2023]
Abstract
To verify the potentially synthetic anodic and cathodic biocatalysis mechanism in bioelectrocatalysis systems (BECSs), a single-chamber thermophilic bioelectrocatalysis system (R3) was operated under strictly anaerobic conditions using the biocathode donated dual-chamber (R1) and bioanode donated dual-chamber (R2) BECSs as controls. Direct bioelectrocatalytic oxidation was found to be infeasible while bioelectrocatalytic reduction was the dominant process for p-Fluoronitrobenzene (p-FNB) removal, with p-FNB removal of 0.188 mM d(-1) in R1 and 0.182 mM d(-1) in R3. Cyclic voltammetry experiments confirmed that defluorination in the BECSs was an oxidative metabolic process catalyzed by bioanodes following the reductive reaction, which explained the 0.034 mM d(-1) defluorination in R3, but negligible defluorination in controls. Taken together, these results revealed a sequentially combined reduction and oxidation mechanism in the thermophilic BECS for p-FNB removal. Moreover, the enrichment of Betaproteobacteria and uniquely selected Bacilli in R3 were probably functional populations for p-FNB degradation.
Collapse
Affiliation(s)
- Yanfeng Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China
| | - Xueqin Zhang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China
| | - Huajun Feng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China.
| | - Yuxiang Liang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China
| | - Dongsheng Shen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China
| | - Yuyang Long
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China
| | - Yuyang Zhou
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China
| | - Qizhou Dai
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| |
Collapse
|
14
|
Zhou Y, Huang H, Shen D. Multi-substrate biodegradation interaction of 1, 4-dioxane and BTEX mixtures by Acinetobacter baumannii DD1. Biodegradation 2016; 27:37-46. [PMID: 26749222 DOI: 10.1007/s10532-015-9753-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 12/22/2015] [Indexed: 10/22/2022]
Abstract
This study evaluated substrate interactions during the aerobic biodegradation of 1, 4-dioxane and BTEX mixtures by a pure culture, Acinetobacter baumannii DD1, which is capable of utilizing 1, 4-dioxane for growth. A. baumannii DD1 could utilize BTEX as a sole carbon source, but could not utilize m-xylene and p-xylene. In binary mixtures, there was a lag of about 14 h before the degradation of BTE, and 1, 4-dioxane only started to be utilized when BTE was completely degraded by 1, 4-dioxane-grown DD1. Furthermore, the biodegradation rate of 1, 4-dioxane decreased from 73.33 to 40.74 mg/(h g dry weight) after the biodegradation of benzene. 1, 4-dioxane could not be degraded after the biodegradation of o-xylene in 80 h. DD1 could also not degrade m-xylene and p-xylene coexisting with 1, 4-dioxane. The ability of DD1 to degrade BTEX occurred in the following order: benzene > ethylbenzene > toluene > o-xylene > m-xylene = p-xylene. The biodegradation of 1, 4-dioxane was not activated in the mixture with o-xylene, primarily because of the accumulation of the specific toxic intermediate, 2, 3-dimethylphenol. The lag in BTE degradation was presumably because of the induction of enzymes necessary for BTE degradation. Additionally, SDS-PAGE analysis demonstrated that there were different proteins during the degradation of benzene and 1, 4-dioxane.
Collapse
Affiliation(s)
- YuYang Zhou
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China.,Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Huanlin Huang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China.,Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Dongsheng Shen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China. .,Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou, 310012, China.
| |
Collapse
|
15
|
Feng H, Liang Y, Guo K, Long Y, Cong Y, Shen D. Addition of nitrite enhances the electrochemical defluorination of 2-fluoroaniline. JOURNAL OF HAZARDOUS MATERIALS 2015; 300:607-614. [PMID: 26266896 DOI: 10.1016/j.jhazmat.2015.06.071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/26/2015] [Accepted: 06/30/2015] [Indexed: 06/04/2023]
Abstract
This study introduces a novel approach that uses the interaction of pollutants with added nitrite to produce diazonium salts, which cause in situ self-assembly of the pollutants on carbon electrodes, to improve their 2-fluoroaniline (2-FA) defluorination and removal performance. The 2-FA degradation performance, electrode properties, electrochemical properties and degradation pathway were investigated. The reactor containing NO2(-) achieved a 2-FA removal efficiency of 90.1% and a defluorination efficiency of 38% within 48 h, 1.4 and 2.3 times higher than the corresponding results achieved without NO2(-), respectively. The residual NO2(-) was less than 0.5mg/L in the reactor containing added NO2(-), which would not cause serious secondary pollution. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) results proved that the carbon anode surface was successfully modified with benzene polymer, and electrochemical tests confirmed that the electrochemical activity of the modified anode was enhanced significantly. The C-F bond was weakened by the effect of the positive charge of the benzenediazonium groups, and the high electrochemical activity of the carbon anode enhanced the electrochemical performance of the system to accelerate defluorination. Thus, the present electrical method involving nitrite nitrogen is very promising for the treatment of wastewater containing fluoroaniline compounds.
Collapse
Affiliation(s)
- Huajun Feng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China; Laboratory of Microbial Ecology and Technology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Yuxiang Liang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China
| | - Kun Guo
- Laboratory of Microbial Ecology and Technology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Yuyang Long
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China
| | - Yanqing Cong
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China.
| | - Dongsheng Shen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China
| |
Collapse
|
16
|
|
17
|
Feng H, Zhang X, Guo K, Vaiopoulou E, Shen D, Long Y, Yin J, Wang M. Electrical stimulation improves microbial salinity resistance and organofluorine removal in bioelectrochemical systems. Appl Environ Microbiol 2015; 81:3737-44. [PMID: 25819966 PMCID: PMC4421048 DOI: 10.1128/aem.04066-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/17/2015] [Indexed: 11/20/2022] Open
Abstract
Fed batch bioelectrochemical systems (BESs) based on electrical stimulation were used to treat p-fluoronitrobenzene (p-FNB) wastewater at high salinities. At a NaCl concentration of 40 g/liter, p-FNB was removed 100% in 96 h in the BES, whereas in the biotic control (BC) (absence of current), p-FNB removal was only 10%. By increasing NaCl concentrations from 0 g/liter to 40 g/liter, defluorination efficiency decreased around 40% in the BES, and in the BC it was completely ceased. p-FNB was mineralized by 30% in the BES and hardly in the BC. Microorganisms were able to store 3.8 and 0.7 times more K(+) and Na(+) intracellularly in the BES than in the BC. Following the same trend, the ratio of protein to soluble polysaccharide increased from 3.1 to 7.8 as the NaCl increased from 0 to 40 g/liter. Both trends raise speculation that an electrical stimulation drives microbial preference toward K(+) and protein accumulation to tolerate salinity. These findings are in accordance with an enrichment of halophilic organisms in the BES. Halobacterium dominated in the BES by 56.8% at a NaCl concentration of 40 g/liter, while its abundance was found as low as 17.5% in the BC. These findings propose a new method of electrical stimulation to improve microbial salinity resistance.
Collapse
Affiliation(s)
- Huajun Feng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, China Laboratory of Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| | - Xueqin Zhang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China
| | - Kun Guo
- Laboratory of Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| | - Eleni Vaiopoulou
- Laboratory of Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| | - Dongsheng Shen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, China
| | - Yuyang Long
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, China
| | - Jun Yin
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, China
| | - Meizhen Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, China
| |
Collapse
|
18
|
Zhang X, Shen D, Feng H, Wang Y, Li N, Han J, Long Y. Cooperative role of electrical stimulation on microbial metabolism and selection of thermophilic communities for p-fluoronitrobenzene treatment. BIORESOURCE TECHNOLOGY 2015; 189:23-29. [PMID: 25864027 DOI: 10.1016/j.biortech.2015.03.147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 03/29/2015] [Accepted: 03/30/2015] [Indexed: 06/04/2023]
Abstract
A novel thermophilic bioelectrochemical system (TBES) based on electrical stimulation was established for the enhanced treatment of p-fluoronitrobenzene (p-FNB) wastewater. p-FNB removal rate constant in the TBES was 78.6% higher than that of the mesophilic BES (MBES), the elevation of which owing to high-temperature overtook the rate improvement of 50.8% in the electrocatalytic system (ECS). Additionally, an overwhelming mineralization efficiency of 91.96% ± 5.70% was obtained in the TBES. The superiority of TBES was attributed to the integrated role of electrical stimulation and high-temperature. Electrical stimulation provided an alternative for the microbial growth independent energy requirements, compensating insufficient energy support from p-FNB metabolism under the high-temperature stress. Besides, electrical stimulation facilitated microbial community evolution to form specific thermophilic biocatalysis. The uniquely selected thermophilic microorganisms including Coprothermobacter sp. and other ones cooperated to enhance p-FNB mineralization.
Collapse
Affiliation(s)
- Xueqin Zhang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Dongsheng Shen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China
| | - Huajun Feng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China
| | - Yanfeng Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Na Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China
| | - Jingyi Han
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Yuyang Long
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China.
| |
Collapse
|
19
|
Zhang X, Feng H, Liang Y, Zhao Z, Long Y, Fang Y, Wang M, Yin J, Shen D. The relief of microtherm inhibition for p-fluoronitrobenzene mineralization using electrical stimulation at low temperatures. Appl Microbiol Biotechnol 2015; 99:4485-94. [DOI: 10.1007/s00253-014-6357-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 12/17/2014] [Accepted: 12/20/2014] [Indexed: 10/24/2022]
|
20
|
Shen D, Zhang X, Feng H, Zhang K, Wang K, Long Y, Wang M, Wang Y. Stimulative mineralization of p-fluoronitrobenzene in biocathode microbial electrolysis cell with an oxygen-limited environment. BIORESOURCE TECHNOLOGY 2014; 172:104-111. [PMID: 25247250 DOI: 10.1016/j.biortech.2014.08.120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 08/26/2014] [Accepted: 08/27/2014] [Indexed: 06/03/2023]
Abstract
p-Fluoronitrobenzene (p-FNB) is a toxic compound and tends to accumulate in the environment. p-FNB can be effectively removed and defluorinated in a single-chamber bioelectrochemical system (BES). To verify the suppositionally integrated reductive and oxidative metabolism mechanism in the BES, an oxygen-limited environment was used, with pure oxygen and nitrogen environments used as two controls. Under the oxygen-limited condition, the most excellent performance was achieved. The defluorination rate and mineralization efficiency were 0.0132h(-1) and 72.99±5.68% after 96h, with 75.4% of fluorine in the form of the fluoride ion. This resulted from the unique environment that allowed conventionally integrated reductive and oxidative catabolism. Moreover, the oxidation-reduction potential (ORP) had a significant effect on microbial communities, which was also an important reason for performance diversity. These results provide a new method for complete p-FNB treatment and a control strategy by ORP regulation for optimal system performance.
Collapse
Affiliation(s)
- Dongsheng Shen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China
| | - Xueqin Zhang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Huajun Feng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China.
| | - Kun Zhang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Kun Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Yuyang Long
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China
| | - Meizhen Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China
| | - Yanfeng Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| |
Collapse
|