1
|
Deng Z, Choi SJ, Li G, Wang X. Advancing H 2O 2 electrosynthesis: enhancing electrochemical systems, unveiling emerging applications, and seizing opportunities. Chem Soc Rev 2024; 53:8137-8181. [PMID: 39021095 DOI: 10.1039/d4cs00412d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Hydrogen peroxide (H2O2) is a highly desired chemical with a wide range of applications. Recent advancements in H2O2 synthesis center on the electrochemical reduction of oxygen, an environmentally friendly approach that facilitates on-site production. To successfully implement practical-scale, highly efficient electrosynthesis of H2O2, it is critical to meticulously explore both the design of catalytic materials and the engineering of other components of the electrochemical system, as they hold equal importance in this process. Development of promising electrocatalysts with outstanding selectivity and activity is a prerequisite for efficient H2O2 electrosynthesis, while well-configured electrolyzers determine the practical implementation of large-scale H2O2 production. In this review, we systematically summarize fundamental mechanisms and recent achievements in H2O2 electrosynthesis, including electrocatalyst design, electrode optimization, electrolyte engineering, reactor exploration, potential applications, and integrated systems, with an emphasis on active site identification and microenvironment regulation. This review also proposes new insights into the existing challenges and opportunities within this rapidly evolving field, together with perspectives on future development of H2O2 electrosynthesis and its industrial-scale applications.
Collapse
Affiliation(s)
- Zhiping Deng
- Department of Chemical and Materials Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada.
| | - Seung Joon Choi
- Department of Mechanical Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada.
| | - Ge Li
- Department of Mechanical Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada.
| | - Xiaolei Wang
- Department of Chemical and Materials Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
2
|
Jiang XY, Kwon E, Wen JC, Bedia J, Thanh BX, Ghotekar S, Lee J, Tsai YC, Ebrahimi A, Lin KYA. Direct growth of nano-worm-like Cu 2S on copper mesh as a hierarchical 3D catalyst for Fenton-like degradation of an imidazolium room-temperature ionic liquid in water. J Colloid Interface Sci 2023; 638:39-53. [PMID: 36731217 DOI: 10.1016/j.jcis.2023.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/09/2023]
Abstract
The increasing consumption of room-temperature ionic liquids (RTILs) inevitably releases RTILs into the water environment, posing serious threats to aquatic ecology due to the toxicities of RTILs. Thus, urgent needs are necessitated for developing useful processes for removing RTILs from water, and 1-butyl-3-methylimidazolium chloride (C4mimCl), the most common RTIL, would be the most representative RTIL for studying the removal of RTILs from water. As advanced oxidation processes with hydrogen peroxide (HP) are validated as useful approaches for eliminating emerging contaminants, developing advantageous heterogeneous catalysts for activating HP is the key to the successful degradation of C4mim. Herein, a hierarchical structure is fabricated by growing Cu2S on copper mesh (CSCM) utilizing CM as a Cu source. Compared to its precursor, CuO@CM, this CSCM exhibited tremendously higher catalytic activity for catalyzing HP to degrade C4mim efficiently because CSCM exhibits much more superior electrochemical properties and reactive sites, allowing CSCM to degrade C4mim rapidly. CSCM also exhibits a smaller Ea of C4mim elimination than all values in the literature. CSCM also shows a high capacity and stability for activating HP to degrade C4mim in the presence of NaCl and seawater. Besides, the mechanistic investigation of C4mim elimination by CSCM-activated HP has also been clarified and ascribed to OH and 1O2. The elimination route could also be examined and disclosed in detail through the quantum computational chemistry, confirming that CSCM is a useful catalyst for catalyzing HP to degrade RTILs.
Collapse
Affiliation(s)
- Xin-Yu Jiang
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 402, Taiwan
| | - Eilhann Kwon
- Department of Earth Resources and Environmental Engineering, Hanyang University, SeongDong-Gu, Seoul, Republic of Korea
| | - Jet-Chau Wen
- National Yunlin University of Science and Technology, Douliu, Yunlin County, Taiwan
| | - Jorge Bedia
- Chemical Engineering Department, Facultad de Ciencias, Universidad Autonoma de Madrid, Campus Cantoblanco, Madrid E-28049, Spain
| | - Bui Xuan Thanh
- Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Viet Nam
| | - Suresh Ghotekar
- Department of Chemistry, Smt. Devkiba Mohansinhji Chauhan College of Commerce & Science, University of Mumbai, Silvassa 396 230, Dadra and Nagar Haveli (UT), India
| | - Jechan Lee
- Department of Global Smart City & School of Civil, Architectural Engineering, and Landscape Architecture, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Yu-Chih Tsai
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 402, Taiwan
| | - Afshin Ebrahimi
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
3
|
Qu C, Li YG, Meng SJ, Li XH, Zhang SJ, Liang DW. Enhanced refractory organics removal by •OH and 1O 2 generated in an electro-oxidation system with cathodic Fenton-like reaction. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128923. [PMID: 35447532 DOI: 10.1016/j.jhazmat.2022.128923] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/05/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Recently, carbon nanotubes coated carbon black and polytetrafluoroethylene (CNTs-C/PTFE) gas diffusion electrode was used as an air-cathode in an electro-oxidation (EO) system for effectively generating hydrogen peroxide (H2O2) through a 2-electron oxygen reduction reaction (ORR). This ORR-EO system not only lowered applied voltage and conserved energy, but the synergistic peroxone (O3/H2O2) reaction could increase hydroxyl radicals (•OH) generation for organics elimination. However, a significant proportion of H2O2 was left in the effluent of ORR-EO, which was a loss of resources and energy. In this study, a Fenton-like reaction for in-situ H2O2 decomposition to generate active oxidation species was inserted by introducing MnO2 into the cathodic catalyst layer, and the sole MnO2/CNTs-C/PTFE air-cathode could accomplish 90% of phenol degradation. When MnO2/CNTs-C/PTFE air-cathode combined with Ti/NATO anode in an ORR-EO system, all anodic oxidation, Fenton-like reaction, and peroxone took place to successfully generate •OH and singlet oxygen (1O2). Over 95% of TOC in phenol and landfill leachate bio-effluent was effectively eliminated, with 20% energy savings compared to the ORR-EO with CNTs-C/PTFE air cathode.
Collapse
Affiliation(s)
- Chao Qu
- School of Space & Environment, Beihang University, Shahe Campus, Beijing 102206, China
| | - Yan-Gang Li
- Beijing Drainage Group Co. Ltd (BDG), Beijing 100044, China
| | - Shu-Juan Meng
- School of Space & Environment, Beihang University, Shahe Campus, Beijing 102206, China
| | - Xiao-Hu Li
- School of Space & Environment, Beihang University, Shahe Campus, Beijing 102206, China
| | - Shu-Jun Zhang
- Beijing Drainage Group Co. Ltd (BDG), Beijing 100044, China
| | - Da-Wei Liang
- School of Space & Environment, Beihang University, Shahe Campus, Beijing 102206, China.
| |
Collapse
|
4
|
Enhancing Ozone Oxidation of Reverse Osmosis Concentrate Using Activated Carbon-Supported Cu–Co–Mn Catalysts. Catal Letters 2022. [DOI: 10.1007/s10562-022-04064-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
5
|
Compton P, Dehkordi NR, Knapp M, Fernandez LA, Alshawabkeh AN, Larese-Casanova P. Heterogeneous Fenton-Like Catalysis of Electrogenerated H2O2 for Dissolved RDX Removal. FRONTIERS IN CHEMICAL ENGINEERING 2022; 4. [DOI: 10.3389/fceng.2022.864816] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
New insensitive high explosives pose great challenges to conventional explosives manufacturing wastewater treatment processes and require advanced methods to effectively and efficiently mineralize these recalcitrant pollutants. Oxidation processes that utilize the fundamental techniques of Fenton chemistry optimized to overcome conventional limitations are vital to provide efficient degradation of these pollutants while maintaining cost-effectiveness and scalability. In this manner, utilizing heterogeneous catalysts and in-situ generated H2O2 to degrade IHEs is proposed. For heterogeneous catalyst optimization, varying the surface chemistry of activated carbon for use as a catalyst removes precipitation complications associated with iron species in Fenton chemistry while including removal by adsorption. Activated carbon impregnated with 5% MnO2 in the presence of H2O2 realized a high concentration of hydroxyl radical formation - 140 μM with 10 mM H2O2 - while maintaining low cost and relative ease of synthesis. This AC-Mn5 catalyst performed effectively over a wide pH range and in the presence of varying H2O2 concentrations with a sufficient effective lifetime. In-situ generation of H2O2 removes the logistical and economic constraints associated with external H2O2, with hydrophobic carbon electrodes utilizing generated gaseous O2 for 2-electron oxygen reduction reactions. In a novel flow-through reactor, gaseous O2 is generated on a titanium/mixed metal oxide anode with subsequent H2O2 electrogeneration on a hydrophobic microporous-layered carbon cloth cathode. This reactor is able to electrogenerate 2 mM H2O2 at an optimized current intensity of 150 mA and over a wide range of flow rates, influent pH values, and through multiple iterations. Coupling these two optimization methods realizes the production of highly oxidative hydroxyl radicals by Fenton-like catalysis of electrogenerated H2O2 on the surface of an MnO2-impregnated activated carbon catalyst. This method incorporates electrochemically induced oxidation of munitions in addition to removal by adsorption while maintaining cost-effectiveness and scalability. It is anticipated this platform holds great promise to eliminate analogous contaminants.
Collapse
|
6
|
Li D, Yu J, Jia J, He H, Shi W, Zheng T, Ma J. Coupling electrode aeration and hydroxylamine for the enhanced Electro-Fenton degradation of organic contaminant: Improving H 2O 2 generation, Fe 3+/Fe 2+ cycle and N 2 selectivity. WATER RESEARCH 2022; 214:118167. [PMID: 35196618 DOI: 10.1016/j.watres.2022.118167] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/02/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
To improve H2O2 generation and Fe3+/Fe2+ cycle simultaneously for enhancing Electro-Fenton performance, the electrode aeration (EA) and hydroxylamine sulfate (HA) were coupled. With dimethyl phthalate (DMP) as main target contaminant, combination of HA and EA greatly accelerated the degradation of DMP and exhibited a synergy in the pH of 2.0-6.9 through promoting the key reactions, including electrochemical two-electron reduction of O2 into H2O2 and redox cycles of Fe3+/Fe2+, which then improved the generation of hydroxyl radicals (·OH). The coupling EA and HA reduced the use of HA and converted most of HA into environment-friendly N2 (60.1-62.1% of HA products), while HA/solution aeration(SA) system consumed HA rapidly and the generated N2 only accounted for 5.8-6.7% of HA products. Furthermore, compared with HA/SA and EA Electro-Fenton systems, enhancement degree of DMP degradation in HA/EA Electro-Fenton process was higher in actual waterbody than in ultrapure water. The coupling EA and HA in the Electro-Fenton process could solve the low Fe3+/Fe2+ cycle efficiency and low H2O2 production simultaneously, and improve the N2 selectivity of HA transformation, which advanced its application in practical environmental remediation.
Collapse
Affiliation(s)
- Dong Li
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jianghua Yu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Jialin Jia
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Haiyang He
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei Shi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; China Everbright Water Limited, China
| | - Tong Zheng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
7
|
Xiong P, Fan S, Song J, Dai Q. Mechanism of catalytic ozonation for elimination of methyldopa with Fe 3 O 4 @SiO 2 @CeO 2 catalyst. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:2903-2913. [PMID: 34363642 DOI: 10.1002/wer.1622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 07/06/2021] [Accepted: 07/11/2021] [Indexed: 06/13/2023]
Abstract
In this study, a magnetic nanocatalyst (Fe3 O4 @SiO2 @CeO2 ) was prepared and applied in the catalytic ozonation of methyldopa (MD). The effects of operational parameters on catalytic ozonation performance were investigated, including ozone dosage, catalyst dosage, initial MD concentration, and pH. The removal of MD was 45.2% in ozonation, whereas the efficiency was achieved to 83.0% with the addition of Fe3 O4 @SiO2 @CeO2 . The results showed that Fe3 O4 @SiO2 @CeO2 could significantly improve the catalytic ozonation performance. And the enhanced mechanism study showed that it was attributed to promotion of ozone decomposition to generate hydroxyl radical. The reaction model was explored, and the reaction rates were calculated for the MD degradation in catalytic ozonation. A higher degradation efficiency of MD in catalytic ozonation was attributed to the enhanced surface effect of the catalysts, which was confirmed by using TBA, PO4 3- , and p-BQ as scavengers of hydroxyl radical, surface reaction, and superoxide radical. The hydroxyl radical and superoxide radical played an important role in the degradation of MD. The mechanism of catalytic ozonation by Fe3 O4 @SiO2 @CeO2 was discussed via X-ray photoelectron spectroscopy (XPS) spectra and experimental data.
Collapse
Affiliation(s)
- Pan Xiong
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Siqi Fan
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Jinshan Song
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Qizhou Dai
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
8
|
Li X, Yang B, Xiao K, Duan H, Wan J, Zhao H. Targeted degradation of refractory organic compounds in wastewaters based on molecular imprinting catalysts. WATER RESEARCH 2021; 203:117541. [PMID: 34416650 DOI: 10.1016/j.watres.2021.117541] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/22/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
Efficient removal of low-concentration refractory pollutants is a crucial problem to ensuring water safety. The use of heterogeneous catalysis of molecular imprinting technology combined with traditional catalysts is a promising method to improve removal efficiency. Presently, the research into molecular imprinting targeting catalysts focuses mainly on material preparation and performance optimization. However, more researchers are investigating other applications of imprinting materials. This review provides recent progress in photocatalyst preparation, electrocatalyst, and Fenton-like catalysts synthesized by molecular imprinting. The principle and control points of target catalysts prepared by precipitation polymerization (PP) and surface molecular imprinting (S-MIP) are introduced. Also, the application of imprinted catalysts in targeted degradation of drugs, pesticides, environmental hormones, and other refractory pollutants is summarized. In addition, the reusability and stability of imprinted catalyst in water treatment are discussed, and the possible ecotoxicity risk is analyzed. Finally, we appraised the prospects, challenges, and opportunities of imprinted catalysts in the advanced oxidation process. This paper provides a reference for the targeted degradation of refractory pollutants and the preparation of targeted catalysts.
Collapse
Affiliation(s)
- Xitong Li
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China; The Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Bo Yang
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ke Xiao
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Huabo Duan
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jinquan Wan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Huazhang Zhao
- The Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
9
|
Wang N, Ma S, Zuo P, Duan J, Hou B. Recent Progress of Electrochemical Production of Hydrogen Peroxide by Two-Electron Oxygen Reduction Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100076. [PMID: 34047062 PMCID: PMC8336511 DOI: 10.1002/advs.202100076] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/17/2021] [Indexed: 05/06/2023]
Abstract
Shifting electrochemical oxygen reduction reaction (ORR) via two-electron pathway becomes increasingly crucial as an alternative/green method for hydrogen peroxide (H2 O2 ) generation. Here, the development of 2e- ORR catalysts in recent years is reviewed, in aspects of reaction mechanism exploration, types of high-performance catalysts, factors to influence catalytic performance, and potential applications of 2e- ORR. Based on the previous theoretical and experimental studies, the underlying 2e- ORR catalytic mechanism is firstly unveiled, in aspect of reaction pathway, thermodynamic free energy diagram, limiting potential, and volcano plots. Then, various types of efficient catalysts for producing H2 O2 via 2e- ORR pathway are summarized. Additionally, the catalytic active sites and factors to influence catalysts' performance, such as electronic structure, carbon defect, functional groups (O, N, B, S, F etc.), synergistic effect, and others (pH, pore structure, steric hindrance effect, etc.) are discussed. The H2 O2 electrogeneration via 2e- ORR also has various potential applications in wastewater treatment, disinfection, organics degradation, and energy storage. Finally, potential future directions and prospects in 2e- ORR catalysts for electrochemically producing H2 O2 are examined. These insights may help develop highly active/selective 2e- ORR catalysts and shape the potential application of this electrochemical H2 O2 producing method.
Collapse
Affiliation(s)
- Nan Wang
- Key Laboratory of Marine Environmental Corrosion and Bio‐FoulingInstitute of OceanologyChinese Academy of Sciences7 Nanhai RoadQingdao266071China
- Center for Ocean Mega‐ScienceChinese Academy of Sciences7 Nanhai RoadQingdao266071China
- Open Studio for Marine Corrosion and ProtectionPilot National Laboratory for Marine Science and Technology (Qingdao)1 Wenhai RoadQingdao266237China
| | - Shaobo Ma
- MITT Key Laboratory of Critical Materials Technology for New Energy Conversion and StorageSchool of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbin150001China
| | - Pengjian Zuo
- MITT Key Laboratory of Critical Materials Technology for New Energy Conversion and StorageSchool of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbin150001China
| | - Jizhou Duan
- Key Laboratory of Marine Environmental Corrosion and Bio‐FoulingInstitute of OceanologyChinese Academy of Sciences7 Nanhai RoadQingdao266071China
- Center for Ocean Mega‐ScienceChinese Academy of Sciences7 Nanhai RoadQingdao266071China
- Open Studio for Marine Corrosion and ProtectionPilot National Laboratory for Marine Science and Technology (Qingdao)1 Wenhai RoadQingdao266237China
| | - Baorong Hou
- Key Laboratory of Marine Environmental Corrosion and Bio‐FoulingInstitute of OceanologyChinese Academy of Sciences7 Nanhai RoadQingdao266071China
- Center for Ocean Mega‐ScienceChinese Academy of Sciences7 Nanhai RoadQingdao266071China
- Open Studio for Marine Corrosion and ProtectionPilot National Laboratory for Marine Science and Technology (Qingdao)1 Wenhai RoadQingdao266237China
| |
Collapse
|
10
|
Cai Y, Li J, Qu G, Ren N, Zou H, Hu Y, Qiu W. Research on dynamics and mechanism of treatment on phenol simulated wastewater by the ultrasound cooperated electro-assisted micro-electrolysis. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:1243-1253. [PMID: 33559298 DOI: 10.1002/wer.1533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/25/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
In the research, the ultrasound was introduced to the electric-assisted micro-electrolysis system to improve the treatment efficiency of phenol simulated wastewater. The results showed that the phenol removal efficiency was significantly enhanced by the electric-assisted micro-electrolysis method in the presence of ultrasound, which could reach 88.61% under the initial value of pH 4, an iron dosage of 50 g/L, a mass ratio of iron/carbon of 1:1, and the initial phenol concentration of 100 mg/L. The degradation kinetics of phenol was in accordance with a second-order kinetic model. The synergistic effect of the ultrasonic and electric-assisted micro-electrolysis method was obvious with a synergistic factor at 98.02%. The degradation mechanism of phenol was that the treatment could effectively destroy the benzene ring structure of phenol in the liquid phase with ring-opening reaction and small molecules substances generated. PRACTITIONER POINTS: The article was the pretreatment of coking wastewater. First, the synergistic effects between ultrasound and electrochemical method through the removal ratio of phenol were found. Second, it was showed that the initial pH and applied intensity of voltage had the effects on removal ratio of phenol by the UEME method. Third, the synergy factor (Syn ) between ultrasonic and electrochemical method was 98.02%. Finally, the mechanism of the UEME degradation of phenol was researched. The technology could effectively improve the biodegradability of coking wastewater and provide conditions for subsequent biochemical treatment. So, we thought this article was suitable for the journal.
Collapse
Affiliation(s)
- Yingying Cai
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, Yunnan, China
| | - Junyan Li
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, Yunnan, China
| | - Guangfei Qu
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, Yunnan, China
| | - Nanqi Ren
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, Yunnan, China
- School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Hongmei Zou
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, Yunnan, China
| | - Yinghui Hu
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, Yunnan, China
| | - Weixia Qiu
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, Yunnan, China
| |
Collapse
|
11
|
Xie W, Song C, Ren W, Zhang J, Chen L, Sun J. Reduction-oxidation series coupling degradation of chlorophenols in Pd-Catalytic Electro-Fenton system. CHEMOSPHERE 2021; 274:129654. [PMID: 33545583 DOI: 10.1016/j.chemosphere.2021.129654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/28/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Organochlorine pesticides are widespread in soils, sediments and even in groundwater, causing great concern to human health because of its toxicity and carcinogenic effects. The remarkable mineralization and lowered toxicity are particularly important during the removal of organochlorine pesticides. In this study, Pd/CeO2 was prepared and employed as a bifunctional catalyst, to construct the reduction-oxidation series coupling Electro-Fenton (EF) system. The removal of chlorophenols (CPs) reached over 95% within 10 min at pH 3.0 and a current density of 25 mA/cm2 in Pd/CeO2-EF system. The second-order rate constant of CPs degradation was 10.28 L mmol-1min-1 in Pd/CeO2-EF system, which was 29 times as fast as the sum of electrolysis with Pd/CeO2 (0.24 L mmol-1min-1) and EF (0.11 L mmol-1min-1). Dehydrochlorination by Pd [H] contributed to the removal of CPs in Pd/CeO2-EF system. The generated reactive oxygen species, mainly OH was also confirmed by ESR to contribute to the removal of CPs. The reduction-oxidation series coupling degradation of CPs in Pd/CeO2-EF system increased the TOC removal to 70% in 360 min. The analysis of intermediate products further revealed the reductive and oxidative products in Pd/CeO2-EF. Moreover, the system of Pd/CeO2-EF exhibited an excellent performance treatment for CPs in actual groundwater. This study provides a new stratagem to eliminate organochlorine pesticides in groundwater environments rapidly and thoroughly.
Collapse
Affiliation(s)
- Wenjing Xie
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, Hubei Province, PR China; College of Resource and Environmental Science, South-Central University for Nationalities, Wuhan, 430074, PR China
| | - Chencheng Song
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, Hubei Province, PR China; College of Resource and Environmental Science, South-Central University for Nationalities, Wuhan, 430074, PR China
| | - Wei Ren
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, Hubei Province, PR China; College of Resource and Environmental Science, South-Central University for Nationalities, Wuhan, 430074, PR China
| | - Jingyi Zhang
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, Hubei Province, PR China; College of Resource and Environmental Science, South-Central University for Nationalities, Wuhan, 430074, PR China
| | - Lei Chen
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, Hubei Province, PR China; College of Resource and Environmental Science, South-Central University for Nationalities, Wuhan, 430074, PR China
| | - Jie Sun
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, Hubei Province, PR China; College of Resource and Environmental Science, South-Central University for Nationalities, Wuhan, 430074, PR China.
| |
Collapse
|
12
|
Chen J, Wan J, Gong Y, Xu K, Zhang H, Chen L, Liu J, Liu C. Effective electro-Fenton-like process for phenol degradation on cerium oxide hollow spheres encapsulated in porous carbon cathode derived from skimmed cotton. CHEMOSPHERE 2021; 270:128661. [PMID: 33109361 DOI: 10.1016/j.chemosphere.2020.128661] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
The uniform size cerium dioxide hollow spheres which were prepared by the SiO2 hard template method were loaded on microporous porous carbon obtained by carbonization derived from skimmed cotton (CSC) for electro-Fenton-like degradation of phenol. The microstructures of CSC/CeO2 composite materials were characterized utilizing XRD, BET, XPS, SEM, and TEM. The electrochemical performance of the CSC/CeO2 cathodes was studied through cyclic voltammetry and electrochemical impedance spectroscopy. The prepared CSC has a hollow tubular structure, and cerium dioxide is evenly loaded on the surface of the CSC in the form of uniform-sized hollow spheres. The CSC/CeO2 materials have a great specific surface area (287.73 m2 g-1) and a uniform poresize. The electrochemical performance analysis demonstrated that the redox ability of the material greatly was improved by loading CeO2 on the porous carbon surface of the skimmed cotton. The load ratio of cerium dioxide hollow spheres affects the structure and properties of CSC/CeO2 materials. Ce3+ and Ce4+ were co-existed in CSC/CeO2, which promoted the generation of H2O2 and .OH, and improved the catalytic activity of composite materials. The degradation efficiency of phenol reached 97.6% in 120 min, and the CSC/CeO2 cathode manifested excellent stability after being experimented 20 times. CSC/CeO2 composite material has great practical value in the treatment of phenolic wastewater and has promise for further application.
Collapse
Affiliation(s)
- Jie Chen
- School of Chemistry and Material Science, Heilongjiang University, Xuefu Road 74, Harbin, 150080, China
| | - Jiafeng Wan
- School of Chemistry and Material Science, Heilongjiang University, Xuefu Road 74, Harbin, 150080, China.
| | - Yuguo Gong
- School of Chemistry and Material Science, Heilongjiang University, Xuefu Road 74, Harbin, 150080, China
| | - Ke Xu
- School of Chemistry and Material Science, Heilongjiang University, Xuefu Road 74, Harbin, 150080, China
| | - Huidi Zhang
- School of Chemistry and Material Science, Heilongjiang University, Xuefu Road 74, Harbin, 150080, China
| | - Lina Chen
- School of Chemistry and Material Science, Heilongjiang University, Xuefu Road 74, Harbin, 150080, China
| | - Jinqiao Liu
- School of Chemistry and Material Science, Heilongjiang University, Xuefu Road 74, Harbin, 150080, China
| | - Chuntao Liu
- School of Chemistry and Material Science, Heilongjiang University, Xuefu Road 74, Harbin, 150080, China.
| |
Collapse
|
13
|
Lv XY, Jin GP, Yuan DK, Ding YF, Long PX. Improving generation of H 2O 2 and •OH at copper hexacyanocobaltate/graphene/ITO composite electrode for degradation of levofloxacin in photo-electro-Fenton process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:17636-17647. [PMID: 33400121 DOI: 10.1007/s11356-020-11883-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
In this work, copper hexacyanocobaltate was electro-deposited at amino-graphene-coated indium-tin-oxide glass to form multifunctional heterogeneous catalyst (CuCoG/ITO), which was confirmed by field emission scanning microscope, infrared spectra, X-ray diffraction, and electro-chemistry techniques. A novel heterogeneous photo-electro-Fenton-like system was established using CuCoG/ITO as an air-diffusion electrode, in which hydrogen peroxide (H2O2) and hydroxyl radical (•OH) could be simultaneously generated by air O2 reduction. The productive rate of •OH could reached to 70.5 μmol h-1 at - 0.8 V with 300 W visible light irradiation at pH 7.0, 0.1 M PBS. Levofloxacin could be quickly degraded at CuCoG/ITO during heterogeneous photo-electro-Fenton process in neutral media with a first-order kinetic constant of 0.49 h-1.
Collapse
Affiliation(s)
- Xiao-Yuan Lv
- Anhui Key Lab of Controllable Chemical Reaction & Material Chemical Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Guan-Ping Jin
- Anhui Key Lab of Controllable Chemical Reaction & Material Chemical Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Ding-Kun Yuan
- Anhui Key Lab of Controllable Chemical Reaction & Material Chemical Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yan-Feng Ding
- Anhui Key Lab of Controllable Chemical Reaction & Material Chemical Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Peng-Xing Long
- Anhui Key Lab of Controllable Chemical Reaction & Material Chemical Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
14
|
Sodhi KK, Kumar M, Balan B, Dhaulaniya AS, Shree P, Sharma N, Singh DK. Perspectives on the antibiotic contamination, resistance, metabolomics, and systemic remediation. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-020-04003-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
AbstractAntibiotics have been regarded as the emerging contaminants because of their massive use in humans and veterinary medicines and their persistence in the environment. The global concern of antibiotic contamination to different environmental matrices and the emergence of antibiotic resistance has posed a severe impact on the environment. Different mass-spectrometry-based techniques confirm their presence in the environment. Antibiotics are released into the environment through the wastewater steams and runoff from land application of manure. The microorganisms get exposed to the antibiotics resulting in the development of antimicrobial resistance. Consistent release of the antibiotics, even in trace amount into the soil and water ecosystem, is the major concern because the antibiotics can lead to multi-resistance in bacteria which can cause hazardous effects on agriculture, aquaculture, human, and livestock. A better understanding of the correlation between the antibiotic use and occurrence of antibiotic resistance can help in the development of policies to promote the judicious use of antibiotics. The present review puts a light on the remediation, transportation, uptake, and antibiotic resistance in the environment along with a novel approach of creating a database for systemic remediation, and metabolomics for the cleaner and safer environment.
Collapse
|
15
|
Zhou P, Wan J, Wang X, Chen J, Gong Y, Xu K, Liu C. Preparation and electrochemical property of TiO2/porous carbon composite cathode derived from waste tea leaves for electrocatalytic degradation of phenol. J APPL ELECTROCHEM 2021. [DOI: 10.1007/s10800-020-01527-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Li D, Zheng T, Liu Y, Hou D, Yao KK, Zhang W, Song H, He H, Shi W, Wang L, Ma J. A novel Electro-Fenton process characterized by aeration from inside a graphite felt electrode with enhanced electrogeneration of H 2O 2 and cycle of Fe 3+/Fe 2. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122591. [PMID: 32298862 DOI: 10.1016/j.jhazmat.2020.122591] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
A novel Electro-Fenton process characterized by aeration from inside a graphite felt electrode with enhanced generation of H2O2 and cycle of Fe3+/Fe2+ was proposed. The new type of Electro-Fenton process was used to degrade organic pollutants via graphite felt electrode aeration (GF-EA). The H2O2 concentration by GF-EA could reach 152-169 mg/L in a wide pH range (3-10), which was much higher than that achieved by graphite felt using solution aeration (GF-SA, 37-113 mg/L). For the degradation of nitrobenzene (NB), benzoic acid (BA), bisphenol A (BPA), and sulfamethoxazole (SMX) at pH 5.5, the percentage degradation by GF-EA could reach 55%, 56%, 80%, and 60% higher than those obtained by GF-SA, respectively. The solution TOC removal by GF-EA were enhanced by 29-51% relative to GF-SA. Mechanism analysis showed both OH and ferryl species were involved in the reaction system, and the amounts of OH and dissolved iron species in GF-EA group were 7.7 times and 4-8 times higher than those in GF-SA group, respectively. Besides, the mass transfer rate of GF-EA system was 5.4 times higher than that of GF-SA system. High amounts of H2O2, dissolved iron species and OH were attributed to the enhanced mass transfer of O2 and the solution.
Collapse
Affiliation(s)
- Dong Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Tong Zheng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Yulei Liu
- School of Environment and Civil Engineering, Research Center for Eco-environment Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Ding Hou
- School of Civil Engineering, Harbin Institute of Technology, Harbin, 150090, China
| | - Keyi Kang Yao
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, 21218, United States
| | - Wei Zhang
- School of Environmental and Material Engineering, Yantai University, Yantai, 264005, China
| | - Haoran Song
- School of Environment and Civil Engineering, Research Center for Eco-environment Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Haiyang He
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Wei Shi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China; China Everbright Water Limited, China
| | - Lu Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
17
|
Zhou P, Wan J, Wang X, Chen J, Gong Y, Xu K. Three-Dimensional Hierarchical Porous Carbon Cathode Derived from Waste Tea Leaves for the Electrocatalytic Degradation of Phenol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:12914-12926. [PMID: 31525935 DOI: 10.1021/acs.langmuir.9b02017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Tea leaves have been explored as an economically viable and environmentally friendly source of biomass carbon. Tea leaf porous carbon (TPC) with a three-dimensional (3D) structure was prepared by a potassium hydroxide pretreatment and high-temperature calcination method, and the preparation process was simple and self-templating. The prepared TPC has a large specific surface area (1620.05 m2 g-1), three-dimensional multilayer pore structure, uniform pore size, and high oxygen content (15.51%). Both the calcination temperature and the activation level have an effect on the structure and performance of the TPC. The TPC electrode can generate a large amount of hydrogen peroxide in the initial stage of the degradation process, thereby increasing the amount of hydroxyl radicals generated and removing organic pollutants. Therefore, phenol was used to test the degradation effects and evaluate the degradation performance of TPC. Under suitable degradation conditions, TPC-800-2 showed a 95.41% degradation rate after 120 min of degradation, which is superior to that of other calcination temperatures and activation levels. The removal efficiency of chemical oxygen demand after 180 min was 90.0% and showed good stability after being used 20 times. Our work illustrates that a simple, high-performance self-templating synthetic strategy for producing novel 3D-TPC from biomass sources can play a significant role in the actual wastewater treatment of other biomass materials.
Collapse
Affiliation(s)
- Peng Zhou
- School of Chemistry and Material Science , Heilongjiang University , Xuefu Road 74 , Harbin 150080 , China
| | - Jiafeng Wan
- School of Chemistry and Material Science , Heilongjiang University , Xuefu Road 74 , Harbin 150080 , China
| | - Xirui Wang
- School of Chemistry and Material Science , Heilongjiang University , Xuefu Road 74 , Harbin 150080 , China
| | - Jie Chen
- School of Chemistry and Material Science , Heilongjiang University , Xuefu Road 74 , Harbin 150080 , China
| | - Yuguo Gong
- School of Chemistry and Material Science , Heilongjiang University , Xuefu Road 74 , Harbin 150080 , China
| | - Ke Xu
- School of Chemistry and Material Science , Heilongjiang University , Xuefu Road 74 , Harbin 150080 , China
| |
Collapse
|
18
|
Kuang C, Xu Y, Lai W, Xie G, Pan Z, Zheng L, Talawar MP, Ling J, Ye S, Zhou X. Novel electrodes for cathode electro-Fenton oxidation coupled with anodic oxidation system for advanced treatment of livestock wastewater. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134605] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Tian SQ, Wang L, Liu YL, Yang T, Huang ZS, Wang XS, He HY, Jiang J, Ma J. Enhanced Permanganate Oxidation of Sulfamethoxazole and Removal of Dissolved Organics with Biochar: Formation of Highly Oxidative Manganese Intermediate Species and in Situ Activation of Biochar. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:5282-5291. [PMID: 30985102 DOI: 10.1021/acs.est.9b00180] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Sulfamethoxazole (SMX) is a broad-spectrum antibiotic and was largely used in breeding industry. The reaction rate of SMX with KMnO4 is slow, and the adsorption efficiency of biochar for SMX was inferior (less than 11% in 30 min). By adding biochar powder into SMX solution with the addition of permanganate, the oxidation ratio of SMX surged to 97% in 30 min, and over 58% of the total organic carbon (TOC) was simultaneously removed. KMnO4 interacted with biochar and resulted in the formation of highly oxidative intermediate manganese species, which transformed SMX into hydrolysis products, oxygen-transfer products, and self-coupling products. Brunauer-Emmett-Teller (BET) analysis showed that surface area, total pore volume, and micropore volume of biochar increased by 32.1%, 36.4%, and 80.6%, respectively, after reaction process. This in situ activation of biochar with KMnO4 enhanced its adsorption capacity and led to great improvement of TOC removal. Besides KMnO4 oxidation, biochar also enhanced TOC removal in Mn(III) oxidation (KMnO4+ bisulfite) and ozonization of SMX. Considering that KMnO4 could react with biochar and result in the formation of intermediate manganese species, while biochar can be simultaneously activated and exhibit high capacity for organic adsorption, the combination of biochar with the chemical/advanced oxidation could be a promising process for the removal of environmental pollutants.
Collapse
Affiliation(s)
- Shi-Qi Tian
- State Key Laboratory of Urban Water Resource and Environment, School of Environment , Harbin Institute of Technology , Harbin 150090 , China
| | - Lu Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment , Harbin Institute of Technology , Harbin 150090 , China
| | - Yu-Lei Liu
- Technology R & D Center for Environmental Engineering , Dongguan University of Technology , Dongguan 523808 , China
| | - Tao Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment , Harbin Institute of Technology , Harbin 150090 , China
| | - Zhuang-Song Huang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment , Harbin Institute of Technology , Harbin 150090 , China
| | - Xian-Shi Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment , Harbin Institute of Technology , Harbin 150090 , China
| | - Hai-Yang He
- State Key Laboratory of Urban Water Resource and Environment, School of Environment , Harbin Institute of Technology , Harbin 150090 , China
| | - Jin Jiang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment , Harbin Institute of Technology , Harbin 150090 , China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment , Harbin Institute of Technology , Harbin 150090 , China
| |
Collapse
|
20
|
Li D, Sun T, Wang L, Wang N. Enhanced electro-catalytic generation of hydrogen peroxide and hydroxyl radical for degradation of phenol wastewater using MnO2/Nano-G|Foam-Ni/Pd composite cathode. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.06.075] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Li D, Guo X, Song H, Sun T, Wan J. Preparation of RuO 2-TiO 2/Nano-graphite composite anode for electrochemical degradation of ceftriaxone sodium. JOURNAL OF HAZARDOUS MATERIALS 2018; 351:250-259. [PMID: 29550559 DOI: 10.1016/j.jhazmat.2018.03.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 03/05/2018] [Accepted: 03/06/2018] [Indexed: 06/08/2023]
Abstract
Graphite-like material is widely used for preparing various electrodes for wastewater treatment. To enhance the electrochemical degradation efficiency of Nano-graphite (Nano-G) anode, RuO2-TiO2/Nano-G composite anode was prepared through the sol-gel method and hot-press technology. RuO2-TiO2/Nano-G composite was characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy and N2 adsorption-desorption. Results showed that RuO2, TiO2 and Nano-G were composited successfully, and RuO2 and TiO2 nanoparticles were distributed uniformly on the surface of Nano-G sheet. Specific surface area of RuO2-TiO2/Nano-G composite was higher than that of TiO2/Nano-G composite and Nano-G. Electrochemical performances of RuO2-TiO2/Nano-G anode were investigated by cyclic voltammetry, electrochemical impedance spectroscopy. RuO2-TiO2/Nano-G anode was applied to electrochemical degradation of ceftriaxone. The generation of hydroxyl radical (OH) was measured. Results demonstrated that RuO2-TiO2/Nano-G anode displayed enhanced electrochemical degradation efficiency towards ceftriaxone and yield of OH, which is derived from the synergetic effect between RuO2, TiO2 and Nano-G, which enhance the specific surface area, improve the electrochemical oxidation activity and lower the charge transfer resistance. Besides, the possible degradation intermediates and pathways of ceftriaxone sodium were identified. This study may provide a viable and promising prospect for RuO2-TiO2/Nano-G anode towards effective electrochemical degradation of antibiotics from wastewater.
Collapse
Affiliation(s)
- Dong Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Chemistry, Chemical Engineering and Materials, Department of Environmental Science and Engineering, Heilongjiang University, Harbin 150080, China.
| | - Xiaolei Guo
- School of Chemistry, Chemical Engineering and Materials, Department of Environmental Science and Engineering, Heilongjiang University, Harbin 150080, China
| | - Haoran Song
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tianyi Sun
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jiafeng Wan
- School of Chemistry, Chemical Engineering and Materials, Department of Environmental Science and Engineering, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
22
|
Tang B, Du J, Feng Q, Zhang J, Wu D, Jiang X, Dai Y, Zou J. Enhanced generation of hydroxyl radicals on well-crystallized molybdenum trioxide/nano-graphite anode with sesame cake-like structure for degradation of bio-refractory antibiotic. J Colloid Interface Sci 2018; 517:28-39. [DOI: 10.1016/j.jcis.2018.01.098] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/22/2018] [Accepted: 01/26/2018] [Indexed: 10/18/2022]
|
23
|
Jin T, Wan J, Dai C, Qu S, Shao J, Ma F. A simple method to prepare high specific surface area reed straw activated carbon cathodes for in situ generation of H2O2 and ·OH for phenol degradation in wastewater. J APPL ELECTROCHEM 2018. [DOI: 10.1007/s10800-018-1162-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
24
|
Luo L, Zou D, Lu D, Xin B, Zhou M, Zhai X, Ma J. Heterogeneous catalytic ozonation of ciprofloxacin in aqueous solution using a manganese-modified silicate ore. RSC Adv 2018; 8:33534-33541. [PMID: 35548116 PMCID: PMC9086485 DOI: 10.1039/c8ra06880a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 09/11/2018] [Indexed: 11/21/2022] Open
Abstract
Manganese-modified silicate ore showed remarkable catalytic oxidation activity for ciprofloxacin degradation and the corresponding mechanism was revealed.
Collapse
Affiliation(s)
- Lisha Luo
- Key Laboratory of Ministry of Education for Groundwater Resources and Environment
- College of New Energy and Environment
- Jilin University
- Changchun 130000
- P. R. China
| | - Donglei Zou
- Key Laboratory of Ministry of Education for Groundwater Resources and Environment
- College of New Energy and Environment
- Jilin University
- Changchun 130000
- P. R. China
| | - Dongwei Lu
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin 150090
- P. R. China
| | - Bingjing Xin
- Jilin Institute of Chemical Technology
- P. R. China
| | - Ming Zhou
- Jilin Institute of Chemical Technology
- P. R. China
| | - Xuedong Zhai
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin 150090
- P. R. China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin 150090
- P. R. China
| |
Collapse
|
25
|
Guo X, Wan J, Yu X, Lin Y. Study on preparation of SnO 2-TiO 2/Nano-graphite composite anode and electro-catalytic degradation of ceftriaxone sodium. CHEMOSPHERE 2016; 164:421-429. [PMID: 27599008 DOI: 10.1016/j.chemosphere.2016.08.117] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/24/2016] [Accepted: 08/25/2016] [Indexed: 06/06/2023]
Abstract
In order to improve the electro-catalytic activity and catalytic reaction rate of graphite-like material, Tin dioxide-Titanium dioxide/Nano-graphite (SnO2-TiO2/Nano-G) composite was synthesized by a sol-gel method and SnO2-TiO2/Nano-G electrode was prepared in hot-press approach. The composite was characterized by X-ray photoelectron spectroscopy, fourier transform infrared, Raman, N2 adsorption-desorption, scanning electrons microscopy, transmission electron microscopy and X-ray diffraction. The electrochemical performance of the SnO2-TiO2/Nano-G anode electrode was investigated via cyclic voltammetry and electrochemical impedance spectroscopy. The electro-catalytic performance was evaluated by the degradation of ceftriaxone sodium and the yield of ·OH radicals in the reaction system. The results demonstrated that TiO2, SnO2 and Nano-G were composited successfully, and TiO2 and SnO2 particles dispersed on the surface and interlamination of the Nano-G uniformly. The specific surface area of SnO2 modified anode was higher than that of TiO2/Nano-G anode and the degradation rate of ceftriaxone sodium within 120 min on SnO2-TiO2/Nano-G electrode was 98.7% at applied bias of 2.0 V. The highly efficient electro-chemical property of SnO2-TiO2/Nano-G electrode was attributed to the admirable conductive property of the Nano-G and SnO2-TiO2/Nano-G electrode. Moreover, the contribution of reactive species ·OH was detected, indicating the considerable electro-catalytic activity of SnO2-TiO2/Nano-G electrode.
Collapse
Affiliation(s)
- Xiaolei Guo
- Department of Environmental Science and Engineering, Heilongjiang University, Harbin, 150080, PR China
| | - Jiafeng Wan
- Department of Environmental Science and Engineering, Heilongjiang University, Harbin, 150080, PR China; Key Laboratory of Chemical Engineering Process & Technology for High-efficiency Conversion, College of Heilongjiang Province, Harbin, 150080, PR China.
| | - Xiujuan Yu
- Department of Environmental Science and Engineering, Heilongjiang University, Harbin, 150080, PR China; Key Laboratory of Chemical Engineering Process & Technology for High-efficiency Conversion, College of Heilongjiang Province, Harbin, 150080, PR China.
| | - Yuhui Lin
- Department of Environmental Science and Engineering, Heilongjiang University, Harbin, 150080, PR China
| |
Collapse
|
26
|
Lin Y, Yu J, Xing Z, Guo X, Yu X, Tang B, Zou J. Enhanced generation of H 2 O 2 and radicals on Co 9 S 8 /partly-graphitized carbon cathode for degradation of bio-refractory organic wastewater. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.07.136] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|