1
|
Yang Y, Liang H, Li L, Zheng Q, He R. Performance and applications of ZnO/pyrolusite composite particle electrode. ENVIRONMENTAL TECHNOLOGY 2024; 45:4914-4927. [PMID: 37997956 DOI: 10.1080/09593330.2023.2283408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/14/2023] [Indexed: 11/25/2023]
Abstract
In this research, we employed a synergistic three-dimensional (3D)-electrode technology in combination with a photocatalytic method to effectively treat wastewater containing chlorine derived from sulfonated phenolic resin (SMP). To modulate the band gap of single ZnO through semiconductor compounding, we successfully synthesized a ZnO/pyrolusite composite particle electrode on the surface of a pyrolusite particle electrode via a hydrothermal method. By incorporating MnO2 into pyrolusite, the ZnO band gap was modified, leading to a reduction in bandwidth of approximately 1.21 eV compared to pristine ZnO. Consequently, the light absorption range of the material was significantly broadened. Through the synergistic effect of photocatalysis, we achieved an impressive 96.45% removal rate of chemical oxygen demand (COD) in SMP wastewater, which effectively enhanced the photocatalytic performance of the material. Furthermore, our quenching experimental study confirmed the involvement of active chlorine species (ACl: Cl2, HClO, and ClO-), OH, h+, and O2- in the degradation process of SMP within the photocatalytic system constructed by the ZnO/pyrolusite composite particle electrode. The relative contributions were ranked as follows: ACl > h+ > ·OH > ·O2-.
Collapse
Affiliation(s)
- Youli Yang
- College of Chemistry & Chemical Engineering, Southwest Petroleum University, Chengdu 610500, People's Republic of China
| | - Hong Liang
- College of Chemistry & Chemical Engineering, Southwest Petroleum University, Chengdu 610500, People's Republic of China
| | - Lingli Li
- Hangzhou Yanqu Information Technology Co., Ltd, Hangzhou City, People's Republic of China
| | - Qiang Zheng
- College of Chemistry & Chemical Engineering, Southwest Petroleum University, Chengdu 610500, People's Republic of China
| | - Ran He
- College of Chemistry & Chemical Engineering, Southwest Petroleum University, Chengdu 610500, People's Republic of China
| |
Collapse
|
2
|
Zhu Q, Liu X, Xu X, Dong X, Xiang J, Fu B, Huang Y, Wang Y, Fan G, Zhang L. Mn-Co-Ce/biochar based particles electrodes for removal of COD from coking wastewater by 3D/HEFL system: Characteristics, optimization, and mechanism. ENVIRONMENTAL RESEARCH 2024; 247:118359. [PMID: 38320717 DOI: 10.1016/j.envres.2024.118359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/01/2023] [Accepted: 12/09/2023] [Indexed: 02/10/2024]
Abstract
In this work, the Mn, Co, Ce co-doped corn cob biochar (MCCBC) as catalytic particle electrodes in a three-dimensional heterogeneous electro-Fenton-like (3D-HEFL) system for the efficient degradation of coking wastewater was investigated. Various characterization methods such as SEM, EDS, XRD, XPS and electrochemical analysis were employed for the prepared materials. The results showed that the MCCBC particle electrodes had excellent electrochemical degradation performances of COD in coking wastewater, and the COD removal and degradation rates of the 3D/HEFL system were 85.35% and 0.0563 min-1 respectively. RSM optimized conditions revealed higher COD removal rate at 89.23% after 31.6 min of electrolysis. The efficient degradability and wide adaptability of the 3D/HEFL system were due to its beneficial coupling mechanism, including the synergistic effect between the system factors (3D and HEFL) as well as the synergistic interactions between the ROS (dominated by •OH and supplemented by O2•-) in the system. Moreover, the COD removal rate of MCCBC could still remain at 81.41% after 5 cycles with a lower ion leaching and a specific energy consumption of 11.28 kWh kg-1 COD. The superior performance of MCCBC, as catalytic particle electrodes showed a great potential for engineering applications for the advanced treatment of coking wastewater.
Collapse
Affiliation(s)
- Qiaoyun Zhu
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Xueling Liu
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Xiaorong Xu
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Xiaoyu Dong
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Jingjing Xiang
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Benquan Fu
- R&D Center of Wuhan Iron and Steel Company, Wuhan, 430080, China
| | - Yanjun Huang
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Yi Wang
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Guozhi Fan
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Lei Zhang
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China.
| |
Collapse
|
3
|
Xu Y, Li Q, Tang Y, Huang H, Ren H. Electrocatalytic denitrification biofilter for advanced purification of chlorophenols via ceramsite-based Ti/SnO 2-Sb particle electrode: Performance, microbial community structure and mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123594. [PMID: 38378077 DOI: 10.1016/j.envpol.2024.123594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/22/2024]
Abstract
In response to the demand for advanced purification of industrial secondary effluent, a new method has been developed for treating chlorophenol wastewater using the novel ceramsite-based Ti/SnO2-Sb particle electrodes (Ti/SnO2-Sb/CB) enhanced electrocatalytic denitrification biofilter (EDNBF-P) to achieve removal of chlorophenols (CPs), denitrification, and reduction of effluent toxicity. The results showed that significantly improved CPs and TN removal efficiency at low COD/N compared to conventional denitrification biofilter, with CPs removal rates increasing by 0.33%-59.27% and TN removal rates increasing by 12.53%-38.92%. Under the conditions of HRT = 2h, 3V voltage, charging times = 12h, and 25 °C, the concentrations of the CPs in the effluent of EDNBF-P were all below 1 mg/L, the TN concentration was below 15 mg/L, while the effluent toxicity reached the low toxicity level. Additionally, the Ti/SnO2-Sb/CB particle electrodes effectively alleviated the accumulation of NO2--N caused by applied voltage. The Silanimonas, Pseudomonas and Rhodobacter was identified as the core microorganism for denitrification and toxicity reduction. This study validated that EDNBF-P could achieve synergistic treatment of CPs and TN through electrocatalysis and microbial degradation, providing a methodological support for achieving advanced purification of chlorophenol wastewater with low COD/N in industrial applications.
Collapse
Affiliation(s)
- Yujin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Qianqian Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Yingying Tang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Hui Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China.
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| |
Collapse
|
4
|
Jin H, Xu X, Liu R, Wu X, Chen X, Chen D, Zheng X, Zhao M, Yu Y. Electro-oxidation of Ibuprofen using carbon-supported SnO x-CeO x flow-anodes: The key role of high-valent metal. WATER RESEARCH 2024; 252:121229. [PMID: 38324989 DOI: 10.1016/j.watres.2024.121229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/04/2023] [Accepted: 01/28/2024] [Indexed: 02/09/2024]
Abstract
Exploiting electrochemically active materials as flow-anodes can effectively alleviate mass transfer restriction in an electro-oxidation system. However, the electrocatalytic activity and persistence of the conventional flow-anode materials are insufficient, resulting in limited improvement in the electro-oxidation rate and efficiency. Herein, we reported a rational strategy to substantially enhance the electrocatalytic performance of flow-anodes in electro-oxidation by introducing the redox cycle of high-valent metal in a suitable carbon substrate. The characterization suggested that the SnOx-CeOx/carbon black (CB) featured well-distributed morphology, rapid charge transfer, high oxygen evolution potential, and strong water adsorption, and stood out among three kinds of SnOx-CeOx loaded carbon materials. Mechanistic analysis indicated that the redox cycle of Ce species played a key role in accelerating the electron transfer from SnOx to CB directionally and could continuously create the electron-deficient state of the SnOx, thereby sustainably triggering the generation of ·OH. All these features enabled the resulting SnOx-CeOx/CB flow-anode to accomplish a calculated maximum kinetic constant of 0.02461 1/min, a higher current efficiency of 47.1%, and a lower energy consumption of 21.3 kWh/kg COD compared with other conventional flow-anodes reported to date. Additionally, SnOx-CeOx/CB exhibited excellent stability with extremely low leaching concentrations of Sn and Ce ions. This study provides a feasible manner for efficient water decontamination using the electro-oxidation system with SnOx-CeOx/CB.
Collapse
Affiliation(s)
- Huachang Jin
- National & Local Joint Engineering Research Center of Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, China; Institute for Eco-environmental Research of Sanyang Wetland, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Xiaozhi Xu
- National & Local Joint Engineering Research Center of Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Renlan Liu
- National & Local Joint Engineering Research Center of Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Xiaobo Wu
- Ecological Environment Protection Administrative Law Enforcement Team of Rui'an City, Wenzhou, Zhejiang 325035, China
| | - Xueming Chen
- College of Environmental and Resources Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Dongzhi Chen
- National & Local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Xiangyong Zheng
- National & Local Joint Engineering Research Center of Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Min Zhao
- National & Local Joint Engineering Research Center of Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, China.
| | - Yang Yu
- National & Local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China.
| |
Collapse
|
5
|
Fang C, Xie S, Xiao T, Liu Z, Hong H, Gong S, Liu X. Pretreatment of hypersaline and high-organic wastewater with a three-dimensional electrocatalytic system: a pilot-scale study. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:562-575. [PMID: 38358489 PMCID: wst_2024_018 DOI: 10.2166/wst.2024.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The three-dimensional electrocatalytic oxidation (3DEO) is a promising electrochemical system in the treatment of refractory wastewater, but still far from large-scale applications. In this work, we prepared 146.5 Kg Ti-Sn-Sb@γ-Al2O3 particle electrodes to construct a 3DEO system for the pretreatment of hypersaline and high-organic wastewater in an industrial park sewage plant, with activated carbon particle electrodes as a comparison. The average COD removal rates of Ti-Sn-Sb@γ-Al2O3 and activated carbon-based 3DEO systems were 24.43 and 48.73%, respectively, and the energy consumption of the two 3DEO systems were 102.8 and 31.4 kWh/Kg COD, respectively. However, compared to the negligible enhancement of wastewater biodegradability in the activated carbon 3DEO system, the Ti-Sn-Sb@γ-Al2O3 3DEO system greatly improved the biochemical index (B/C) from 0.021 to 0.166 (by 690.5%). Due to its superior catalytic capacity, Ti-Sn-Sb@γ-Al2O3 outperforms activated carbon in improving biodegradability as the latter relies mainly on adsorption. The results of this work provide a 3DEO engineering practice experience on the pretreatment of hypersaline and high-organic wastewater.
Collapse
Affiliation(s)
- Chengyi Fang
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China E-mail:
| | - Shiwei Xie
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China; Hubei Provincial Engineering Research Center of Urban Regeneration, Wuhan 430065, China
| | - Tian Xiao
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Zhi Liu
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Hui Hong
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Shuyi Gong
- Gongan County Jiayuan Water Affairs Co., Ltd, Jingzhou 434000, China
| | - Xixiang Liu
- Guangxi Colleges and Universities Key Laboratory of Environmental-friendly Materials and New Technology for Carbon Neutralization, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning 530105, China
| |
Collapse
|
6
|
Jamaludin NFM, Abdullah LC, Idrus S, Engliman NS, Tan JP, Jamali NS. Nickel-iron doped on granular activated carbon for efficient immobilization in biohydrogen production. BIORESOURCE TECHNOLOGY 2024; 391:129933. [PMID: 37898370 DOI: 10.1016/j.biortech.2023.129933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/11/2023] [Accepted: 10/26/2023] [Indexed: 10/30/2023]
Abstract
Nickel-iron doped granular activated carbon (GAC-N) was used to enhance immobilization in biohydrogen production. The effect of the sludge ratio to GAC-N, ranged 1:0.5-4, was studied. The optimum hydrogen yield (HY) of 1.64 ± 0.04 mol H2/mol sugar consumed and hydrogen production rate (HPR) of 45.67 ± 1.00 ml H2/L.h was achieved at a ratio of 1:1. Immobilization study was performed at 2 d HRT with a stable HY of 2.94 ± 0.16 mol H2/mol sugar consumed (HPR of 83.10 ± 4.61 ml H2/L.h), shorten biohydrogen production from 66 d to 26 d, incrementing HY by 57.30 %. The Monod model resulted in the optimum initial sugar, maximum specific growth rate, specific growth rate, and cell growth saturation coefficient at 20 g/L, 2.05 h-1, 1.98 h-1 and 6.96 g/L, respectively. The dominant bacteria identified was Thermoanaerobacterium spp. The GAC-N showed potential as a medium for immobilization to improve biohydrogen production.
Collapse
Affiliation(s)
- Nina Farhana Mohd Jamaludin
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - Luqman Chuah Abdullah
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - Syazwani Idrus
- Department of Civil Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - Nurul Sakinah Engliman
- Department of Chemical Engineering and Sustainability, Kulliyyah of Engineering, International Islamic University Malaysia (IIUM), P.O Box 10, 50728 Gombak, Kuala Lumpur, Malaysia
| | - Jian Ping Tan
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900 Sepang, Selangor, Malaysia
| | - Nur Syakina Jamali
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia; Nanomaterials Processing and Technology Laboratory, Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia.
| |
Collapse
|
7
|
Zhang Y, Gu L, Zhang Y, Yang J, Li Q, Yu S, Li C, Wei K. Energy-efficient reuse of bio-treated textile wastewater by a porous-structure electrochemical PbO2 filter: Performance and mechanism. ENVIRONMENTAL RESEARCH 2023; 231:116254. [PMID: 37245572 DOI: 10.1016/j.envres.2023.116254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/12/2023] [Accepted: 05/26/2023] [Indexed: 05/30/2023]
Abstract
In this work, a novel porous-structure electrochemical PbO2 filter (PEF-PbO2) was developed to achieve the reuse of bio-treated textile wastewater. The characterization of PEF-PbO2 confirmed that its coating has a variable pore size that increases with depth from the substrate, and the pores with a size of 5 μm account for the largest proportion. The study on the role of this unique structure illustrated that PEF-PbO2 possesses a larger electroactive area (4.09 times) than the conventional electrochemical PbO2 filter (EF-PbO2) and enhanced mass transfer (1.39 times) in flow mode. The investigation of operating parameters with a special discussion of electric energy consumption suggested that the optimal conditions were a current density of 3 mA cm-2, Na2SO4 concentration of 10 g L-1 and pH value of 3, which resulted in 99.07% and 53.3% removal of Rhodamine B and TOC, respectively, together with an MCETOC of 24.6%. A stable removal of 65.9% COD and 99.5% Rhodamine B with a low electric energy consumption of 5.19 kWh kg-1 COD under long-term reuse of bio-treated textile wastewater indicated that PEF-PbO2 was durable and energy-efficient in practical applications. Mechanism study by simulation calculation illustrated that the part of the pore of the PEF-PbO2's coating with small size (5 μm) plays an important role in this excellent performance which provides the advantage of rich ·OH concentration, short pollutant diffusion distance and high contact possibility.
Collapse
Affiliation(s)
- Yonghao Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China; Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Liankai Gu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Ying Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Jing Yang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Qian Li
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Shuyan Yu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Congju Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Kajia Wei
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
8
|
You X, Yang S, Li F, Fan Q, Liu Y, Liang W. Electrochemical degradation of azo dye using granular activated carbon electrodes loaded with bimetallic oxides. ENVIRONMENTAL TECHNOLOGY 2023; 44:2631-2647. [PMID: 35113005 DOI: 10.1080/09593330.2022.2038275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
The performance of granular activated carbon (GAC) loaded with different combinations of Fe, Co, Ni, Mn, and Ti was examined for the electrochemical degradation of an azo dye such as acid red B (AR-B). Among the bimetallic groups, the combination of Fe and Co exhibited the best degradation effect. X-ray diffraction and X-ray photoelectron spectroscopy revealed that the morphology of the catalyst is CoFe2O4, and scanning electron microscopy manifested that the catalyst is distributed on the GAC surface and holes. The initial pH, hydraulic retention time, and current intensively affected the decolourisation and degradation efficiencies of AR-B, while the electrolyte types and concentrations did not exert any considerable effect. Electron spin resonance spectroscopy indicated that strong signals of hydroxyl radicals are produced by the Fe-Co/GAC electrodes. Results from fluorescence spectroscopy and gas chromatography-mass spectrometry suggested that hydroxyl radicals preferentially attack azo bonds during the degradation of AR-B, forming a series of compounds, and these compounds are finally degraded into small molecules of organic acids, carbon dioxide, and water.
Collapse
Affiliation(s)
- Xinyu You
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing, People's Republic of China
| | - Shuai Yang
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing, People's Republic of China
| | - Feizhen Li
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing, People's Republic of China
| | - Qianlong Fan
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing, People's Republic of China
| | - Yu Liu
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing, People's Republic of China
| | - Wenyan Liang
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing, People's Republic of China
| |
Collapse
|
9
|
Xiao H, Hao Y, Wu J, Meng X, Feng F, Xu F, Luo S, Jiang B. Differentiating the reaction mechanism of three-dimensionally electrocatalytic system packed with different particle electrodes: Electro-oxidation versus electro-fenton. CHEMOSPHERE 2023; 325:138423. [PMID: 36934480 DOI: 10.1016/j.chemosphere.2023.138423] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Recently, there are still some controversial mechanisms of the 3D electrocatalytic oxidation system, which would probably confound its industrial application. From the conventional viewpoint, the Ti4O7 material may be the desired particle electrodes in the 3D system since its high oxygen evolution potential favors the production of •OH via H2O splitting reaction at the anode side of Ti4O7 particle electrodes. In fact, the incorporation of Ti4O7 particles showed phenol degradation of 88% and COD removal of 51% within 120 min, under the optimum conditions at energy consumption of 0.668 kWh g-1 COD, the performance of which was much lower than those in many previous literatures. In contrast, the prepared carbon black-polytetrafluoroethylene composite (CB-PTFE) particles with abundant oxygen-containing functional groups could yield considerable amounts of H2O2 (200 mg L-1) in the 3D reactor and achieved a complete degradation of phenol and COD removal of 80% in the presence of Fe2+, accompanying a low energy consumption of only 0.080 kWh g-1 COD. It was estimated that only 20% of Ti4O7 particles near the anode attained the potential over 2.73 V/SCE at 30 mA cm-2 based on the potential test and simulation, responsible for the low yield of •OH via the H2O splitting on Ti4O7 (1.74 × 10-14 M), and the main role of Ti4O7 particle electrodes in phenol degradation was through direct oxidation. For the CB-PTFE-based 3D system, current density of 10 mA cm-2 was sufficient for all the CB-PTFE particles to attain cathodic potential of -0.67 V/SCE, conducive to the high yield of H2O2 and •OH (9.11 × 10-14 M) in the presence of Fe2+, and the •OH-mediated indirect oxidation was mainly responsible for the phenol degradation. Generally, this study can provide a deep insight into the 3D electrocatalytic oxidation technology and help to develop the high-efficiency and cost-efficient 3D technologies for industrial application.
Collapse
Affiliation(s)
- Huiji Xiao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China
| | - Yongjie Hao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China
| | - Jingli Wu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China
| | - Xianzhe Meng
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China
| | - Fei Feng
- Shandong Tiantai Environmental Technology Co., Ltd., Jinan, PR China
| | - Fengqi Xu
- SunRui Marine Environment Engineering Company Ltd, Qingdao, 266033, PR China
| | - Siyi Luo
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China
| | - Bo Jiang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China.
| |
Collapse
|
10
|
Man S, Yin Z, Zhou S, Pameté E, Xu L, Bao H, Yang W, Mo Z, Presser V, Li X. Novel Sb-SnO 2 Electrode with Ti 3+ Self-Doped Urchin-Like Rutile TiO 2 Nanoclusters as the Interlayer for the Effective Degradation of Dye Pollutants. CHEMSUSCHEM 2023; 16:e202201901. [PMID: 36524753 DOI: 10.1002/cssc.202201901] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Stable and efficient SnO2 electrodes are very promising for effectively degrading refractory organic pollutants in wastewater treatment. In this regard, we firstly prepared Ti3+ self-doped urchin-like rutile TiO2 nanoclusters (TiO2-x NCs) on a Ti mesh substrate by hydrothermal and electroreduction to serve as an interlayer for the deposition of Sb-SnO2 . The TiO2-x NCs/Sb-SnO2 anode exhibited a high oxygen evolution potential (2.63 V vs. SCE) and strong ⋅OH generation ability for the enhanced amount of absorbed oxygen species. Thus, the degradation results demonstrated its good rhodamine B (RhB), methylene blue (MB), alizarin yellow R (AYR), and methyl orange (MO) removal performance, with the rate constant increased 5.0, 1.9, 1.9, and 4.7 times, respectively, compared to the control Sb-SnO2 electrode. RhB and AYR degradation mechanisms are also proposed based on the results of high-performance liquid chromatography coupled with mass spectrometry and quenching experiments. More importantly, this unique rutile interlayer prolonged the anode lifetime sixfold, given its good lattice match with SnO2 and the three-dimensional concave-convex structure. Consequently, this work paves a new way for designing the crystal form and structure of the interlayers to obtain efficient and stable SnO2 electrodes for addressing dye wastewater problems.
Collapse
Affiliation(s)
- Shuaishuai Man
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
- INM - Leibniz Institute for New Materials, 66123, Saarbrücken, Germany
| | - Zehao Yin
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Shanbin Zhou
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Emmanuel Pameté
- INM - Leibniz Institute for New Materials, 66123, Saarbrücken, Germany
| | - Lei Xu
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Hebin Bao
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Wenjing Yang
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Zhihong Mo
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Volker Presser
- INM - Leibniz Institute for New Materials, 66123, Saarbrücken, Germany
- Department of Materials Science and Engineering, Saarland University, 66123, Saarbrücken, Germany
- Saarene - Saarland Center for Energy Materials and Sustainability, Saarland University, Campus D4 2, 66123, Saarbrücken, Germany
| | - Xueming Li
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| |
Collapse
|
11
|
Yang Z, Liu S, Tang Y, Zhou Y, Xiao L. Enhancement of excess sludge dewatering by three-dimensional electro-Fenton process based on sludge biochar. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130438. [PMID: 36446313 DOI: 10.1016/j.jhazmat.2022.130438] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Deep dewatering of waste activated sludge (WAS) is still a challenge due to high content of bound water and non-Newton fluid properties of sludge flocs. Electro-Fenton (EF) can enhance sludge dewaterability, however, low pH needed in homogeneous EF and fine flocs after EF conditioning influenced deep dewatering of sludge and the subsequent resource recovery disposal. In this study, a three dimension electro-Fenton (3D-EF) using Fe modified sludge biochar (Fe@SBC) as particle electrode, heterogeneous Fenton catalyst and skeleton builder for deep dewatering of sludge under neutral pH was proposed. Fe@SBC obtained at 800 °C exhibited high capacity of H2O2 electrogeneration and activation due to high conductivity and content of 2e-ORR selectivity functional groups. With promoted generation of H2O2 and hydroxyl radical (•OH), 3D-EF with Fe@SBC showed higher decomposition of bound extracellular polymeric substances (EPS) and disintegration of cells in sludge flocs, resulting in releasing bound and intracellular water into free water. Compared with EF, 3D-EF with Fe@SBC800 had higher ability in breaking macromolecules of protein and polysaccharide, as well as removing -COOH and -NH2 groups in EPS, which could facilitate release of bound water trapped in EPS and self-coagulation of fine flocs. During subsequent filtering process, Fe@SBC could enhance sludge filterability as skeleton builder. A synergetic effect of strong oxidation and physical conditioning were proposed in 3D-EF sludge dewaterability with Fe@SBC, and the improved oxidation by Fe@SBC was supposed to play the major role.
Collapse
Affiliation(s)
- Zongcai Yang
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse, Nanjing University Xianlin Campus, Nanjing 210023, China
| | - Shulei Liu
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse, Nanjing University Xianlin Campus, Nanjing 210023, China
| | - Yuqiong Tang
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse, Nanjing University Xianlin Campus, Nanjing 210023, China
| | - Yingping Zhou
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse, Nanjing University Xianlin Campus, Nanjing 210023, China
| | - Lin Xiao
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse, Nanjing University Xianlin Campus, Nanjing 210023, China.
| |
Collapse
|
12
|
Yang Z, Yang S, Shiqiao Y, Yuanhong D. Enhanced Rhodamine B degradation by GAC/Mn-Sn particles electrodes. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:1552-1570. [PMID: 37001165 DOI: 10.2166/wst.2023.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Rhodamine B (RhB) wastewater could be degraded by a three-dimensional electrolytic reactor with surface-modified titanium anodes, and a variety of materials had been tried to prepare for particles electrodes to enhance its removal effects, among them, granular activated carbon (GAC) with large specific surface areas and stable chemical properties was selected as particles materials and coated by manganese oxidation (Mn) as the main active ingredient. The experimental results showed that 98.3% of RhB and 60.7% of chemical oxygen demand were removed respectively, and the RhB wastewater's biodegradability was improved either. On the superficial sites of GAC/Mn-Sn particles, hydroxyl radicals were generated, and some absorbed RhB molecular was initially decolored by hypochlorite removing the two ethyl groups on both sides of the molecular, then oxidized by hydroxyl, and continually decomposed by these strong oxidants into a variety of intermediates.
Collapse
Affiliation(s)
- Zhang Yang
- School of Environmental and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China E-mail:
| | - Song Yang
- School of Environmental and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China E-mail:
| | - Yang Shiqiao
- School of Environmental and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China E-mail:
| | - Ding Yuanhong
- School of Environmental and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China E-mail:
| |
Collapse
|
13
|
Ren Y, Wang J, Qu G, Ren N, Lu P, Chen X, Wang Z, Yang Y, Hu Y. Study on the mechanism of high effective mineralization of Rhodamine B in three dimensional electrochemical system with γ-Fe2O3@CNTs particle electrodes. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
14
|
Jiang Z, Wang Y, Yu H, Yao N, Shen J, Li Y, Zhang H, Bai X. Efficient degradation of N-nitrosopyrrolidine using CoFe-LDH/AC particle electrode via heterogeneous Fenton-like reaction. CHEMOSPHERE 2023; 313:137446. [PMID: 36464019 DOI: 10.1016/j.chemosphere.2022.137446] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
With the rapid development of drinking water disinfection technology, extensive attentions are paid to the nitrogenous disinfection by-products (N-DBPs) that has strong carcinogenicity, thus their degradation becomes important for the health of human beings. In this work, for the first time, CoFe-LDH material used as particle electrode is proposed to treat trace N-nitrosopyrrolidine (NPYR) in a three-dimensional aeration electrocatalysis reactor (3DAER). The factors on the degradation efficiency and energy consumption of NPYR are systematically investigated, and the results of radical quenching experiments show that the degradation of NPYR is completed by combining with ·OH, ·O2and direct oxidation together. CoFe-LDH particle electrode plays a vital role in generating ·OH via heterogeneous ‾Fenton-like reaction. Moreover, the adsorbed saturated CoFe-LDH particle electrode can be regenerated by electrochemical action to induce further recycle adsorption and form in-situ electrocatalysis. This work pave a way for the removal of NPYR with high efficiency, low energy conservation and environmental protection.
Collapse
Affiliation(s)
- Zhuwu Jiang
- School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, 350000, China.
| | - Yuchang Wang
- School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, 350000, China
| | - Hai Yu
- School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, 350000, China
| | - Ning Yao
- School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, 350000, China
| | - Jyunhong Shen
- School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, 350000, China
| | - Yan Li
- School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, 350000, China
| | - HongYu Zhang
- School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, 350000, China
| | - Xue Bai
- School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, 350000, China.
| |
Collapse
|
15
|
Zhang S, Tan M, Du S, Leng W, Wu D. Base-metal oxide semiconductor electrodes for PPCP degradation: Ti-doped α-Fe 2O 3 for sulfosalicylic acid oxidation as an example. CHEMOSPHERE 2023; 313:137354. [PMID: 36435321 DOI: 10.1016/j.chemosphere.2022.137354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/14/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Sulfosalicylic acid is a typical pharmaceutical and personal care product with high toxicity, environmental persistence, and low biodegradability. Electrochemical oxidation has been demonstrated to be a promising way for hazardous organics treatment, but it is severely limited by the high cost and resource shortage of electrode materials. Base-metal oxide semiconductor anodes have the merits of low cost, diversity, and tunable energy levels for charge transfer, and thus may be alternatives to the electrodes for wastewater treatment. Herein, we found that Ti-doped α-Fe2O3, as an example, could be efficient for sulfosalicylic acid oxidation, reaching comparable faraday efficiency of sulfosalicylic acid to that of the boron-doped diamond electrode. Ti-doped electrodes exhibited both higher removal rates and current efficiency compared to the undoped. This could be mainly ascribed to the enhanced charge transfer rate constant. Kinetic analysis shows that the apparent reaction order, in terms of sulfosalicylic acid in bulk solution, depended on applied potential and pollutant concentration. Mechanism study shows that the oxidation of sulfosalicylic acid was mainly through indirect pathway. Moreover, the oxidation products were determined and the oxidation mechanism was proposed. This study may open a door to employ base-metal oxide semiconductor anodes for the efficient treatment of organic wastewater.
Collapse
Affiliation(s)
- Shuchi Zhang
- College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Mengyu Tan
- College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Shuwen Du
- College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Wenhua Leng
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Donglei Wu
- College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
16
|
New Magnetically Assembled Electrode Consisting of Magnetic Activated Carbon Particles and Ti/Sb-SnO2 for a More Flexible and Cost-Effective Electrochemical Oxidation Wastewater Treatment. Catalysts 2022. [DOI: 10.3390/catal13010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Magnetic activated carbon particles (Fe3O4/active carbon composites) as auxiliary electrodes (AEs) were fixed on the surface of Ti/Sb-SnO2 foil by a NdFeB magnet to form a new magnetically assembled electrode (MAE). Characterizations including cyclic voltammetry, Tafel analysis, and electrochemical impedance spectroscopy were carried out. The electrochemical oxidation performances of the new MAE towards different simulated wastewaters (azo dye acid red G, phenol, and lignosulfonate) were also studied. Series of the electrochemical properties of MAE were found to be varied with the loading amounts of AEs. The electrochemical area as well as the number of active sites increased significantly with the AEs loading, and the charge transfer was also facilitated by these AEs. Target pollutants’ removal of all simulated wastewaters were found to be enhanced when loading appropriate amounts of AEs. The accumulation of intermediate products was also determined by the AEs loading amount. This new MAE may provide a landscape of a more cost-effective and flexible electrochemical oxidation wastewater treatment (EOWT).
Collapse
|
17
|
Kim JG, Kim HB, Lee S, Kwon EE, Baek K. Mechanistic investigation into flow-through electrochemical oxidation of sulfanilamide for groundwater using a graphite anode. CHEMOSPHERE 2022; 307:136106. [PMID: 35988764 DOI: 10.1016/j.chemosphere.2022.136106] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/28/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
The technical effectiveness/merit of electrochemical oxidation (EO) has been recognized. Nonetheless, its practical application to groundwater remediation has not been fully implemented due to several technical challenges. To overcome the technical incompleteness, this study adopted a graphite anode in the flow-through system and studied the mechanistic roles of a graphite anode. To this end, groundwater contaminated with sulfanilamide was remediated by means of EO, and sulfanilamide oxidation was quantitatively determined in this study. Approximately 60% of sulfanilamide was degraded at the anode zone, and such observation offered that the removal of sulfanilamide was not closely related with current variations (10-100 mA). However, this study delineated that sulfanilamide removal is contingent on the flow speed. For example, the removal of sulfanilamide was lowered from 59 to 25% owing to a short contact time when the flow velocity was increased from 0.14 to 0.55 cm/min. This study also delineated that a shorter anode-cathode distance could offer a favorable chance to enhance the removal of sulfanilamide even under an identical current. A shorter distance could offer a chance to save energy due to the lower voltage operation. This study also offered that chloride (Cl-) and sulfate (SO42-) electrolytes served a crucial role in the generation of active species. In contrast, bicarbonate (HCO3-) and synthetic groundwater electrolytes impeded the oxidation rate because HCO3- scavenged the other active species. In an effort to seek the oxidation mechanisms of a graphite anode, scavenger, cyclic voltammetry test, and electron https://en.wikipedia.org/wiki/Electron_paramagnetic_resonanceparamagnetic resonance (EPR) analysis were done. From a series of the tests, it was inferred that a graphite anode did not directly affect the generation of the active species. Thus, the prevalence of the oxygenated functional groups on an anode surface could be the main mechanism in sulfanilamide removal due to the enhanced electron transfer.
Collapse
Affiliation(s)
- Jong-Gook Kim
- Department of Environment & Energy (BK21 FOUR), Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo, 54896, Republic of Korea; Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo, 54896, Republic of Korea
| | - Hye-Bin Kim
- Department of Environment & Energy (BK21 FOUR), Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo, 54896, Republic of Korea; Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo, 54896, Republic of Korea
| | - Sumin Lee
- Department of Environment & Energy (BK21 FOUR), Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo, 54896, Republic of Korea; Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo, 54896, Republic of Korea
| | - Eilhann E Kwon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, Republic of Korea
| | - Kitae Baek
- Department of Environment & Energy (BK21 FOUR), Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo, 54896, Republic of Korea; Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo, 54896, Republic of Korea; School of Civil/Environmental/Resource and Energy Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo, 54896, Republic of Korea.
| |
Collapse
|
18
|
Hu Z, Guo C, Wang P, Guo R, Liu X, Tian Y. Electrochemical degradation of methylene blue by Pb modified porous SnO 2 anode. CHEMOSPHERE 2022; 305:135447. [PMID: 35753421 DOI: 10.1016/j.chemosphere.2022.135447] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
A significant number of pollutants in wastewater can be electrocatalytically oxidized by SnO2-Sb, a relatively inactive electrode. However, the arduous process of environmental remediation due to poor electrochemical performance and short service life of the traditional Ti/SnO2-Sb electrode. In this work the SnO2 electrode with a micron-sized sphere structure was prepared by in-situ hydrothermal. The results of the study that the electrode (Pb-10%) synthesized from the precursor solution in which the Pb:Sn molar ratio is 10% exhibits excellent electrooxidation properties. Impressiveing, the Pb-10% electrode displayed the small charge transfer resistance (10.71 Ω) and the high oxygen evolution potential (2.26 V vs. SCE). Thus, the electrochemical degradation experiment demonstrates that 100 mg L-1 MB was degraded by Pb-10% electrode under the condition of initial pH = 5, and the decolorization rate reached 94.6%. Moreover, the influence of different parameters such as Pb doping amount, initial pH value of solution, initial concentration of MB and inorganic ions on degradation efficiency were also explored, in turn the practical application of electrodes in the field of purifying water resources is optimized. It is worth noting that the service life of the optimized electrode (100 mA cm-2, 0.5 M H2SO4, 90 h) is about 12 times longer than that of the bare electrode (Sn-Sb). Therefore, the high-performance Ti/SnO2-Sb electrode prepared in this work possesses vast application prospects in the electrocatalytic oxidation.
Collapse
Affiliation(s)
- Zhenyu Hu
- School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Chao Guo
- School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Peng Wang
- School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Rui Guo
- School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China.
| | - Xuanwen Liu
- School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China.
| | - Ye Tian
- The First Hospital of Qinhuangdao, 066099, China
| |
Collapse
|
19
|
Cai D, Tao E, Yang S, Ma Z, Li Y, Liu L, Wang D, Qian J. Effect of mixed-phase TiO2 doped with Ca2+ on charge transfer at the TiO2/graphene interface. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Su Y, Muller KR, Yoshihara-Saint H, Najm I, Jassby D. Nitrate Removal in an Electrically Charged Granular-Activated Carbon Column. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16597-16606. [PMID: 34874719 DOI: 10.1021/acs.est.1c02152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nitrate removal from groundwater remains a challenge. Here, we report on the development of a flow-through, electrically charged, granular-activated carbon (GAC)-filled column, which effectively removes nitrate. In this system, the GAC functioned as an anode, while a titanium sheet acted as a cathode. The high removal rate of nitrate was achieved through a combination of electrosorption and electrochemical transformation to N2. The column could be readily regenerated in situ by reversing the polarity of the applied potential. We demonstrate that in the presence of chloride, the mechanism responsible for the observed nitrate removal involves a combination of electroadsorption of nitrate to the anodically charged GAC, electroreduction of nitrate to ammonium, and the oxidation of ammonium to N2 gas by reactive chlorine and other oxidative radicals (with nearly 100% N2 selectivity). Given the ubiquitous presence of chloride in groundwater, this method represents a ready, green, and sustainable treatment process with significant potential for the remediation of contaminated groundwater.
Collapse
Affiliation(s)
- Yiming Su
- Department of Civil and Environmental Engineering, University of California, Los Angeles, California 90095, United States
| | - Katherine R Muller
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Hira Yoshihara-Saint
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Issam Najm
- Department of Civil and Environmental Engineering, University of California, Los Angeles, California 90095, United States
| | - David Jassby
- Department of Civil and Environmental Engineering, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
21
|
Sun W, Liu D, Zhang M. Application of electrode materials and catalysts in electrocatalytic treatment of dye wastewater. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-021-2108-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Jiang Z, Cheng Z, Yan C, Zhang X, Tian Y, Zhang X, Quan X. Simultaneous Removal of Nitrogen and Refractory Organics from a Biologically Treated Leachate by Pulse Electrochemical Oxidation in a Multi-channel Flow Reactor. ACS OMEGA 2021; 6:25539-25550. [PMID: 34632211 PMCID: PMC8495886 DOI: 10.1021/acsomega.1c03567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Electrochemical oxidation (EO) is often used in the advanced treatment of refractory wastewater. However, in a conventional EO process of direct-current (DC) power supply, oxide layers often form on the anodes, which not only hinder the oxidation reaction on them but also cause higher energy consumption. In this paper, a biologically treated leachate (BTL) of municipal solid waste (MSW) was comparably treated by EO with DC (DC-EO), monopulse (MP-EO), and double pulse (DP-EO) power source models in a home-made multi-channel flow reactor. The effects of process parameters of current density (I A), superficial liquid velocity (U L), pulse frequency (f P), duty ratio (R D), and so forth on the removal efficiency of chemical oxygen demand (COD) (RECOD), total organic carbon (TOC) (RETOC), and total nitrogen (TN) (RETN) were investigated simultaneously. Average energy consumption () and organic composition of the treated effluent of DC-EO and MP-EO were also compared comprehensively, and a new mechanism of MP-EO has been proposed accordingly. Under optimal conditions, 2 L of BTL was treated by MP-EO for 180 min, and the RECOD, RETOC, and RETN could reach as high as 80, 30, and 80%, respectively. Compared with DC-EO, the of MP-EO is reduced by 69.27%. Besides, the kinds of organic matter in the treated effluent of MP-EO are reduced from 53 in the BTL to 11, which is much less than in the DC-EO process of 29 kinds. Therefore, the MP-EO process exhibits excellent removal performance of organics and TN and economic prospects in the treatment of refractory organic wastewater.
Collapse
Affiliation(s)
- Zhanghao Jiang
- School
of Chemistry and Chemical Engineering, Chongqing
University of Technology, Chongqing 400054, China
| | - Zhiliang Cheng
- School
of Chemistry and Chemical Engineering, Chongqing
University of Technology, Chongqing 400054, China
- Engineering
Research Center for Waste Oil Recovery Technology and Equipment, Ministry
of Education, Chongqing Technology and Business
University, Chongqing 400067, China
| | - Chaoqun Yan
- School
of Chemistry and Chemical Engineering, Chongqing
University of Technology, Chongqing 400054, China
| | - Xuan Zhang
- School
of Chemistry and Chemical Engineering, Chongqing
University of Technology, Chongqing 400054, China
| | - Yijuan Tian
- School
of Chemistry and Chemical Engineering, Chongqing
University of Technology, Chongqing 400054, China
| | - Xianming Zhang
- Engineering
Research Center for Waste Oil Recovery Technology and Equipment, Ministry
of Education, Chongqing Technology and Business
University, Chongqing 400067, China
| | - Xuejun Quan
- School
of Chemistry and Chemical Engineering, Chongqing
University of Technology, Chongqing 400054, China
| |
Collapse
|
23
|
Ma J, Gao M, Shi H, Ni J, Xu Y, Wang Q. Progress in research and development of particle electrodes for three-dimensional electrochemical treatment of wastewater: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:47800-47824. [PMID: 34296412 DOI: 10.1007/s11356-021-13785-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/30/2021] [Indexed: 06/13/2023]
Abstract
A three-dimensional (3D) electrochemical technology is regarded as a very effective industrial wastewater treatment method as it has high treatment efficiency, high current efficiency, and low energy consumption, and especially can completely mineralize nonbiodegradable organic pollutants. The core of the 3D electrochemical technology is a particle electrode, and the particle electrode plays several important roles for removing pollutants during the electrochemical reaction process. Many types of particle electrodes have been developed and used for different types of wastewater treatment. In this paper, a comprehensive review on the research and development of particle electrodes of the 3D electrochemical reactors for wastewater treatment is conducted. Specifically, the role that the particle electrode plays during the 3D electrochemical treatment of wastewater is thoroughly investigated and systematized. In addition, the different types of particle electrodes used in the 3D electrochemical wastewater treatment are classified into several types according to the presence or absence of a catalyst and the main components of the particle electrode or carrier. Also, focusing on the recent research results, the structural characteristics, performance, advantages and defects, and the role of catalyst components of each particle electrodes are evaluated. Finally, the direction and prospect of future research on the particle electrode is presented.
Collapse
Affiliation(s)
- Jinsong Ma
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
- Department of Electrical Engineering, Kim Chaek University of Technology, Kyogu dong 60, Central District, Pyongyang, Democratic People's Republic of Korea
| | - Ming Gao
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
- Beijing Key Laboratory on Disposal and Resource Recovery of Industry Typical Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Huimin Shi
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Jin Ni
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Yuansheng Xu
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Qunhui Wang
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China.
- Beijing Key Laboratory on Disposal and Resource Recovery of Industry Typical Pollutants, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
24
|
Ma D, Yi H, Lai C, Liu X, Huo X, An Z, Li L, Fu Y, Li B, Zhang M, Qin L, Liu S, Yang L. Critical review of advanced oxidation processes in organic wastewater treatment. CHEMOSPHERE 2021; 275:130104. [PMID: 33984911 DOI: 10.1016/j.chemosphere.2021.130104] [Citation(s) in RCA: 206] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 05/19/2023]
Abstract
With the development of industrial society, organic wastewater produced by industrial manufacturing has caused many environmental problems. The vast majority of organic pollutants in water bodies are persistent in the environment, posing a threat to human and animal health. Therefore, efficient treatment methods for highly concentrated organic wastewater are urgently needed. Advanced oxidation processes (AOPs) are widely noticed in the area of treating organic wastewater. Compared with other chemical methods, AOPs have the characteristics of high oxidation efficiency and no secondary pollution. In this paper, the mechanisms, advantages, and limitations of AOPs are comprehensively reviewed. Besides, the basic principles of combining different AOPs to enhance the treatment efficiency are described. Furthermore, the applications of AOPs in various wastewater treatments, such as oily wastewater, dyeing wastewater, pharmaceutical wastewater, and landfill leachate, are also presented. Finally, we conclude that the main direction in the future of AOPs are the modification of catalysts and the optimization of operating parameters, with the challenges focusing on industrial applications.
Collapse
Affiliation(s)
- Dengsheng Ma
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Huan Yi
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China.
| | - Xigui Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Xiuqin Huo
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Ziwen An
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Ling Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Yukui Fu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Bisheng Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Mingming Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Lei Qin
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Shiyu Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Lu Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| |
Collapse
|
25
|
Asgari G, Seid-Mohammadi A, Rahmani A, Samadi MT, Salari M, Alizadeh S, Nematollahi D. Diuron degradation using three-dimensional electro-peroxone (3D/E-peroxone) process in the presence of TiO 2/GAC: Application for real wastewater and optimization using RSM-CCD and ANN-GA approaches. CHEMOSPHERE 2021; 266:129179. [PMID: 33307415 DOI: 10.1016/j.chemosphere.2020.129179] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/28/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
The present study investigates the efficiency of a three-dimensional electro-peroxone (3D/E-peroxone) reactor filled with TiO2-GAC in removing diuron from aqueous solution and in the remediation of real pesticide wastewater. The behavior of the system in terms of the effect of independent variables on diuron was investigated and optimized by RSM-CCD and ANN-GA methods. Both approaches proved to have a very good performance in the modeling of the process and determined the optimum condition of the independent variables as follows: initial pH = 10, applied current = 500 mA, supporting electrolyte = 0.07 M, ozone concentration = 10 mg L-1, and reaction time = 10 min. The 3D/E-peroxone process achieved a synergistic effect in diuron abatement and reduced significantly energy consumption, as compared to its individual components. H2O2 concentration generated in the electrolysis system was notably increased in the presence of TiO2-GAC microparticles. The BOD5/COD ratio of the real pesticide wastewater increased from 0.049 to 0.571 within 90 min treatment. Giving to the considerable enhancement of the biodegradability of the wastewater, this study strongly suggests that the 3D/E-peroxone process can be considered as a promising pretreatment step before a biological treatment process to produce intermediates which are more easily degradable by microorganisms.
Collapse
Affiliation(s)
- Ghorban Asgari
- Social Determinants of Health Research Center (SDHRC), Department of Environmental Health Engineering, School of Public Health, Hamadan University of Medical Science, Hamadan, Iran; Department of Environmental Health Engineering, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abdolmotaleb Seid-Mohammadi
- Department of Environmental Health Engineering, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Rahmani
- Department of Environmental Health Engineering, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Taghi Samadi
- Department of Environmental Health Engineering, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mehdi Salari
- Department of Environmental Health Engineering, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Saber Alizadeh
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | | |
Collapse
|
26
|
Deng Y, Zhu X, Chen N, Feng C, Wang H, Kuang P, Hu W. Review on electrochemical system for landfill leachate treatment: Performance, mechanism, application, shortcoming, and improvement scheme. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:140768. [PMID: 32726696 DOI: 10.1016/j.scitotenv.2020.140768] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/26/2020] [Accepted: 07/03/2020] [Indexed: 05/21/2023]
Abstract
Landfill leachate is a type of complex organic wastewater, which can easily cause serious negative impacts on the human health and ecological environment if disposed improperly. Electrochemical technology provides an efficient approach to effectively reduce the pollutants in landfill leachate. In this review, the electrochemical standalone processes (electrochemical oxidation, electrochemical reduction, electro-coagulation, electro-Fenton process, three-dimensional electrode process, and ion exchange membrane electrochemical process) and the electrochemical integrated processes (electrochemical-advanced oxidation process (AOP) and biological electrochemical process) for landfill leachate treatment are summarized, which include the performance, mechanism, application, existing problems, and improvement schemes such as cost-effectiveness. The main objective of this review is to help researchers understand the characteristics of electrochemical treatment of landfill leachate and to provide a useful reference for the design of the process and reactor for the harmless treatment of landfill leachate.
Collapse
Affiliation(s)
- Yang Deng
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Xu Zhu
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Nan Chen
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China.
| | - Chuanping Feng
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China.
| | - Haishuang Wang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Peijing Kuang
- College of Environment and Resources, Dalian Minzu University, Dalian 116600, China
| | - Weiwu Hu
- China University of Geosciences (Beijing), Journal Center, Beijing 100083, China
| |
Collapse
|
27
|
Ye W, Zhang W, Hu X, Yang S, Liang W. Efficient electrochemical-catalytic reduction of nitrate using Co/AC 0.9-AB 0.1 particle electrode. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 732:139245. [PMID: 32408042 DOI: 10.1016/j.scitotenv.2020.139245] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/07/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
In this work, a composite particle electrode (Co/ACx-ABy) was proposed using cobalt as the catalyst, active carbon (AC) as the carrier, and acetylene black (AB) as the conductor. The proposed particle electrodes were applied in a continuous three-dimensional (3D) electrochemical reactor. Based upon the removal efficiency of total nitrogen (TN) and the corresponding energy consumption, the optimum mass ratio of AC to AB was determined to be 0.9:0.1. Scanning electron microscopy (SEM) and energy dispersive system (EDS)-mapping revealed the presence of metal particles on the surface of Co/AC0.9-AB0.1 electrode. Furthermore, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses showed that Co/AC0.9-AB0.1 contained three valence states of Co, namely Co0, Co2+, and Co3+. Additionally, batch experiments showed that 95% of TN removal was achieved under the current of 0.4 A, pH of 7, hydraulic retention time (HRT) of 60 min and the initial TN of 20 mg/L. The addition of Cl- was obviously beneficial to the removal of TN, whereas HCO3-, PO43-, CO32-, and dissolved organic matter (DOM) inhibited the removal of TN. The cyclic voltammetry (CV) curve and the atomic H detected by electron spin resonance (ESR) demonstrated that nitrate was directly reduced by Co0 ions and indirectly reduced by H radicals.
Collapse
Affiliation(s)
- Wenjian Ye
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing 100083, China
| | - Wenwen Zhang
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing 100083, China
| | - Xinxin Hu
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing 100083, China
| | - Shuai Yang
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing 100083, China
| | - Wenyan Liang
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
28
|
A Comparison of the Mechanism of TOC and COD Degradation in Rhodamine B Wastewater by a Recycling-Flow Two- and Three-dimensional Electro-Reactor System. WATER 2020. [DOI: 10.3390/w12071853] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dye wastewater, as a kind of refractory wastewater (with a ratio of biochemical oxygen demand (BOD) and chemical oxygen demand (COD) of less than 0.3), still needs advanced treatments in order to reach the discharge standard. In this work, the recycling-flow three-dimensional (3D) electro-reactor system was designed for degrading synthetic rhodamine B (RhB) wastewater as dye wastewater (100 mg/L). After 180 min of degradation, the removal of total organic carbon (TOC) and chemical oxygen demand (COD) of RhB wastewater were both approximately double the corresponding values in the recycling-flow two-dimensional (2D) electro-reactor system. Columnar granular activated carbon (CGAC), as micro-electrodes packed between anodic and cathodic electrodes in the recycling-flow 3D electro-reactor system, generated an obviously characteristic peak of anodic catalytic oxidation, increased the mass transfer rate and electrochemically active surface area (EASA) by 40%, and rapidly produced 1.52 times more hydroxyl radicals (·OH) on the surface of CGAC electrodes, in comparison to the recycling-flow 2D electro-reactor system. Additionally, the recycling-flow 3D electro-reactor system can maintain higher current efficiency (CE) and lower energy consumption (Es).
Collapse
|
29
|
Zhang N, Bu J, Meng Y, Wan J, Yuan L, Peng X. Degradation of p‐aminophenol wastewater using Ti‐Si‐Sn‐Sb/GAC particle electrodes in a three‐dimensional electrochemical oxidation reactor. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5612] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Na Zhang
- College of Chemistry and Chemical Engineering of Hunan Normal University Changsha 410081 China
| | - Jiaqi Bu
- College of Chemistry and Chemical Engineering of Hunan Normal University Changsha 410081 China
| | - Yong Meng
- College of Chemistry and Chemical Engineering of Hunan Normal University Changsha 410081 China
- National & Local Joint Engineering Laboratory for New Petro‐chemical Materials and Fine Utilization of Resources Changsha 410081 China
- Key Laboratory of Sustainable Resources Processing and Advanced Materials of Hunan Province College Changsha 410081 China
- Research Center of Resource Recycling Complex TechnologyHunan Normal University Changsha 410081 China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Hunan Normal University), Ministry of Education Changsha 410081 China
| | - Jia Wan
- College of Chemistry and Chemical Engineering of Hunan Normal University Changsha 410081 China
| | - Lu Yuan
- College of Chemistry and Chemical Engineering of Hunan Normal University Changsha 410081 China
- National & Local Joint Engineering Laboratory for New Petro‐chemical Materials and Fine Utilization of Resources Changsha 410081 China
- Key Laboratory of Sustainable Resources Processing and Advanced Materials of Hunan Province College Changsha 410081 China
- Research Center of Resource Recycling Complex TechnologyHunan Normal University Changsha 410081 China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Hunan Normal University), Ministry of Education Changsha 410081 China
| | - Xin Peng
- College of Chemistry and Chemical Engineering of Hunan Normal University Changsha 410081 China
- National & Local Joint Engineering Laboratory for New Petro‐chemical Materials and Fine Utilization of Resources Changsha 410081 China
- Key Laboratory of Sustainable Resources Processing and Advanced Materials of Hunan Province College Changsha 410081 China
- Research Center of Resource Recycling Complex TechnologyHunan Normal University Changsha 410081 China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Hunan Normal University), Ministry of Education Changsha 410081 China
| |
Collapse
|
30
|
Ghanbarlou H, Pedersen NL, Nikbakht Fini M, Muff J. Synergy optimization for the removal of dye and pesticides from drinking water using granular activated carbon particles in a 3D electrochemical reactor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:22206-22213. [PMID: 32086734 DOI: 10.1007/s11356-020-08022-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 02/06/2020] [Indexed: 06/10/2023]
Abstract
The combination of adsorption on particulate materials and electrochemical oxidation in 3D electrochemical systems is potentially a very efficient process for the treatment of micropollutants in water. This paper presents results on the use of granular activated carbon as particulate material in the process and treatment of the dye 4-nitrosodimethylaniline and pesticides MCPA (2-methyl-4-chlorophenoxyacetic acid), MCPP (2-methyl-4-chlorophenoxypropionic acid), and the pesticide transformation product BAM (2,6-dichloro-benzamide) in drinking water. 4-nitrosodimethylaniline was used to investigate influential factors as loading of GAC in a batch electrochemical setup and strength of the electric field in a flow cell recirculation batch setup. Results showed that compared to previous studies in distilled water, only additive effects were found in batch setup, and higher electric field strength was needed in the flow cell setup to achieve slight synergy (~ 5%). Reasons were likely due to the indirect oxidation pathways mediated by the anodic chloride oxidation induced by the content of chloride in the drinking water. On MCPA, MCPP and BAM synergies from 28 to 38% were measured in the batch setup, but in the flow cell, results ranged from additive effects (~ 0%) up to 70%. Considering the low price and widespread availability of granular activated carbon, the gain in process removal rates achieved in the combined 3D electrochemical reactor is of interest compared to the individual processes.
Collapse
Affiliation(s)
- Hosna Ghanbarlou
- Chemical Engineering Department, Amirkabir University of Technology, Tehran, 15875-4413, Iran
| | - Nikoline L Pedersen
- Department of Chemistry and Bioscience, Section of Chemical Engineering, Aalborg University, Niels Bohrs Vej 8, DK-6700, Esbjerg, Denmark
| | - Mahdi Nikbakht Fini
- Department of Chemistry and Bioscience, Section of Chemical Engineering, Aalborg University, Niels Bohrs Vej 8, DK-6700, Esbjerg, Denmark
| | - Jens Muff
- Department of Chemistry and Bioscience, Section of Chemical Engineering, Aalborg University, Niels Bohrs Vej 8, DK-6700, Esbjerg, Denmark.
| |
Collapse
|
31
|
Shao D, Zhang Y, Lyu W, Zhang X, Tan G, Xu H, Yan W. A modular functionalized anode for efficient electrochemical oxidation of wastewater: Inseparable synergy between OER anode and its magnetic auxiliary electrodes. JOURNAL OF HAZARDOUS MATERIALS 2020; 390:122174. [PMID: 31999960 DOI: 10.1016/j.jhazmat.2020.122174] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/16/2020] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Oxygen evolution reaction (OER) anodes, (e.g., IrO2) are well-known inefficient catalysts for electrochemical oxidation (EO) of refractory organics in wastewater due to the high energy consumption via OER. However, in this study this kind of anode participated in a very effective EO process via a specific modular anode architecture. Traces of magnetic Fe3O4/Sb-SnO2 particles as auxiliary electrodes (AEs) were attracted on the surface of the two-dimensional (2D) Ti/IrO2-Ta2O5 by a NdFeB magnet, and thereby constituted a new magnetically assembled electrode (MAE). MAE could be renewed by recycling its AEs. The electrochemical properties as well as the EO performances of the MAE could be regulated by adjusting the loading amount of AEs. Results showed that even a small amount of AEs could increase surface roughness and offer massive effective active sites. When removing color of azo dye Acid Red G, the optimal MAE exhibited ∼1100 % and ∼500 % higher efficiencies than 2D Ti/IrO2-Ta2O5 and 2D Ti/Sb-SnO2, respectively. The superiority of the MAE was also applicable in degrading phenol. The synergy between Ti/IrO2-Ta2O5 and magnetic Sb-SnO2 particles was therefore discussed.
Collapse
Affiliation(s)
- Dan Shao
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Yuanyuan Zhang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Wei Lyu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xinlei Zhang
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Guoqiang Tan
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Hao Xu
- Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Wei Yan
- Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
32
|
Photocatalytic degradation of 2,4-dichlorophenoxyacetic acid using Fe3O4@TiO2/Cu2O magnetic nanocomposite stabilized on granular activated carbon from aqueous solution. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04124-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
33
|
Electrochemical Oxidation of an Organic Dye Adsorbed on Tin Oxide and Antimony Doped Tin Oxide Graphene Composites. Catalysts 2020. [DOI: 10.3390/catal10020263] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Electrochemical regeneration suffers from low regeneration efficiency due to side reactions like oxygen evolution, as well as oxidation of the adsorbent. In this study, electrically conducting nanocomposites, including graphene/SnO2 (G/SnO2) and graphene/Sb-SnO2 (G/Sb-SnO2) were successfully synthesized and characterized using nitrogen adsorption, scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. Thereafter, the adsorption and electrochemical regeneration performance of the nanocomposites were tested using methylene blue as a model contaminant. Compared to bare graphene, the adsorption capacity of the new composites was ≥40% higher, with similar isotherm behavior. The adsorption capacity of G/SnO2 and G/Sb-SnO2 were effectively regenerated in both NaCl and Na2SO4 electrolytes, requiring as little charge as 21 C mg−1 of adsorbate for complete regeneration, compared to >35 C mg−1 for bare graphene. Consecutive loading and anodic electrochemical regeneration cycles of the nanocomposites were carried out in both NaCl and Na2SO4 electrolytes without loss of the nanocomposite, attaining high regeneration efficiencies (ca. 100%).
Collapse
|
34
|
Sharif F, Roberts EPL. Anodic electrochemical regeneration of a graphene/titanium dioxide composite adsorbent loaded with an organic dye. CHEMOSPHERE 2020; 241:125020. [PMID: 31614314 DOI: 10.1016/j.chemosphere.2019.125020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/25/2019] [Accepted: 09/29/2019] [Indexed: 06/10/2023]
Abstract
A nanocomposite of graphene and titanium dioxide (G/TiO2) was prepared using the sol-gel method for use in an electrochemical adsorption/regeneration process. The effect of annealing temperature on electrochemical characteristics of the nanocomposites was investigated by cyclic voltammetry and constant current electrochemical regeneration, using methylene blue (MB) as the adsorbate. The G/TiO2 could be regenerated more rapidly and with less corrosion than the bare graphene. The G/TiO2 annealed at 400 °C had a higher proportion of anatase phase TiO2 (ca. 7% rutile TiO2) compared to that annealed at 500 °C (ca. 40% rutile TiO2). Cyclic voltammetry indicated that the G/TiO2 annealed at 400 °C had a higher activity for MB oxidation than the nanocomposite annealed at 500 °C. Similarly, the regeneration of MB loaded G/TiO2 annealed at 400 °C was much faster than for the nanocomposite annealed at 500 °C. Complete regeneration of the G/TiO2 annealed at 400 °C was obtained after an electrochemical charge of 21 C per mg of adsorbate. The G/TiO2 annealed at 400 °C was regenerated in half the time required for the bare graphene. TEM studies showed that the bare graphene was rapidly corroded, while corrosion was not observed for the G/TiO2 nanocomposites.
Collapse
Affiliation(s)
- Farbod Sharif
- University of Calgary, Department of Chemical and Petroleum Engineering, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Edward P L Roberts
- University of Calgary, Department of Chemical and Petroleum Engineering, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
35
|
|
36
|
Meng HS, Chen C, Yan ZR, Li XY, Xu J, Sheng GP. Co-doping polymethyl methacrylate and copper tailings to improve the performances of sludge-derived particle electrode. WATER RESEARCH 2019; 165:115016. [PMID: 31470283 DOI: 10.1016/j.watres.2019.115016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 08/09/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
Three-dimensional electrochemical reactor (3DER) is a highly efficient technology for refractory wastewater treatment. Particle electrodes filled between anode and cathode are the core units of 3DER, determining the treatment efficiency of wastewater. However, particle electrodes deactivation due to catalytic sites coverage seriously impedes the continuous operation of 3DER. In this work, granular sludge carbon (GSC) particle electrodes being resistant to deactivation are fabricated by pyrolyzing the mixture of waste sludge, polymethyl methacrylate (PMMA), and copper tailings, whose performances are evaluated by degrading rhodamine B (RhB) wastewater in a continuous-flow 3DER. Results indicate that hierarchical-pore structure comprising macro-, meso-, and micropores is developed in GSC-10-CTs by doping 10 g PMMA and 5 g copper tailings into 100 g waste sludge. PMMA contributes to construct macropores, which is essential for the mass transfer of RhB into GSC particle electrodes of centimeter-size. Copper tailings promote the formation of meso- and micro-pores in GSCs, as well as improving the electrochemical properties. Consequently, GSC-10-CTs packed 3DER exhibits the highest removal efficiency and lowest energy consumption for RhB treatment. In addition, the compressive strength of GSC-10-CTs is enhanced by copper tails, that is crucial to fill into 3DER as particle electrodes. The high-efficient and cost-effective GSC-10-CTs fabricated by waste materials have the potential of substituting commercial granular activated carbon catalysts in the future, consequently promoting the application of 3DER in wastewater treatment.
Collapse
Affiliation(s)
- Hui-Shan Meng
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Chen Chen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Zi-Run Yan
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Xiu-Yan Li
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Juan Xu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China; Institute of Eco-Chongming (IEC), No.20 Cuiniao Road, ChenJiazhen, Shanghai, 202162, China.
| | - Guo-Ping Sheng
- CAS Key Laboratory of Urban Pollutant Conversion, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
37
|
Gui L, Peng J, Li P, Peng R, Yu P, Luo Y. Electrochemical degradation of dye on TiO 2 nanotube array constructed anode. CHEMOSPHERE 2019; 235:1189-1196. [PMID: 31561310 DOI: 10.1016/j.chemosphere.2019.06.170] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/21/2019] [Accepted: 06/22/2019] [Indexed: 05/23/2023]
Abstract
A high oxygen evolution potential (2.6V) and conductivity of Ti/TiO2 NTs/Ta2O5-PbO2 anode was fabricated by mixed metal oxide. A well-aligned TiO2 nanotubes was successfully prepared by using 1-butyl-3-methylimidazolium tetrafluoroborate as the electrolyte. The surface structure of anodes were characterized by scanning electron microscope, X-ray diffraction and energy dispersive X-ray spectroscopy. During the electrochemical degradation experiments, the effects of different anodes, current density, initial pH value and concentration were discussed. The results showed that co-doped Ta2O5 coating is an effective method to improve the surface morphology and the electrochemical characterization of Ti/TiO2 NTs/PbO2. At the initial pH value of 3 and current density of 12 mA cm-2, the removal rates of Acid Orange 7 and total organic carbon with Ti/TiO2 NTs/Ta2O5-PbO2 anode were almost 100% and 98.3%. Comparing with Ti/PbO2 anode at the same charge consumption (3 A h L-1), the instantaneous current efficiency of the Ti/TiO2 NTs/Ta2O5-PbO2 anode and Ti/TiO2 NTs/PbO2 anode increased by 40.0% and 27.1%, respectively. The highest rate of k.OH on Ti/TiO2 NTs/Ta2O5-PbO2 anode was 12.4 μmol (L min)-1. The organic dyes are oxidized into CO2 and H2O by .OH radical. The reaction process and mechanism during the electrochemical degradation were discussed.
Collapse
Affiliation(s)
- Lin Gui
- College of Chemistry & Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Jianghua Peng
- Xinjiang Energy Co., LTD, Wulumuqi, 830000, People's Republic of China
| | - Peng Li
- Xinjiang Energy Co., LTD, Wulumuqi, 830000, People's Republic of China
| | - Ruichao Peng
- College of Chemistry & Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| | - Ping Yu
- College of Chemistry & Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| | - Yunbai Luo
- College of Chemistry & Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| |
Collapse
|
38
|
Li H, Ma H, Liu T, Ni J, Wang Q. An excellent alternative composite modifier for cathode catalysts prepared from bacterial cellulose doped with Cu and P and its utilization in microbial fuel cell. BIORESOURCE TECHNOLOGY 2019; 289:121661. [PMID: 31234073 DOI: 10.1016/j.biortech.2019.121661] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/14/2019] [Accepted: 06/16/2019] [Indexed: 06/09/2023]
Abstract
In this study, bacterial cellulose doped with phosphorus and copper via freeze-drying and high-temperature pyrolysis was used to prepare MFC cathode catalysts. After a series of characterization, the synthesized catalyst showed a three-dimensional network with a specific surface area of 580.09 m2/g. Due to the doping of Cu and P, more active sites were induced in the pores of bacterial cellulose and subsequently improved catalytic activity. The prepared catalyst was coated on the air cathode surface of the MFC to obtain the maximum output power and current density of 1177.31 mW/m2 and 6.73 A/m2, respectively, which were higher than those of Pt (1044.93 mW/m2 and 6.02 A/m2). This work aimed to improve bioelectrical generation in MFC and find alternative commercial Pt catalysts.
Collapse
Affiliation(s)
- Huiyu Li
- Department of Environmental Engineering, University of Science and Technology Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Hongzhi Ma
- Department of Environmental Engineering, University of Science and Technology Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China; Tianjin Sunenergy Sega Environmental Science & Technology Co. Ltd, Tianjin 300380, China.
| | - Ting Liu
- Department of Environmental Engineering, University of Science and Technology Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Jin Ni
- Department of Environmental Engineering, University of Science and Technology Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Qunhui Wang
- Department of Environmental Engineering, University of Science and Technology Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| |
Collapse
|
39
|
Hong L, Yang Q, Liying Z, Yingyan C, Bing W. Investigation of a novel pyrolusite particle electrode effects in the chlorine-containing wastewater. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2018; 78:1427-1437. [PMID: 30427782 DOI: 10.2166/wst.2018.414] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Research on three-dimensional electrode system mainly focuses on the material of plate electrode and catalytic activity, and minimal attention is provided to particle electrode. Pyrolusite was prepared as a novel particle electrode with high active chlorine (ACl) yield. The particle electrode was characterised by scanning electrode microscopy (SEM), X-ray diffraction (XRD), X-ray fluorescence (XRF) and electrochemical properties. Results show that the intended pyrolusite particle electrode was prepared successfully. These pyrolusite particle electrodes were applied to degrade sulphonated phenolic resin in chlorine-containing wastewater and displayed an excellent catalytic activity. A total of 68.76 mg/L ACl was produced, and the CODCr removal rate was 49.55%. These results indicated that pyrolusite particle electrode is much more effective than the reference material, that is, granular activated carbon. Furthermore, the product of electrolytic process was characterised by gas chromatography-mass spectrometry (GC-MS) and ultraviolet visible spectrometry (UV-vis). The enhanced mechanism was proposed that the high degradation efficiency could be ascribed to the increase of ACl.
Collapse
Affiliation(s)
- Liang Hong
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China E-mail:
| | - Qiu Yang
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China E-mail:
| | - Zhao Liying
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China E-mail:
| | - Chen Yingyan
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China E-mail:
| | - Wang Bing
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China E-mail:
| |
Collapse
|
40
|
Electrochemical degradation of Azo-dye Acid Violet 7 using BDD anode: effect of flow reactor configuration on cell hydrodynamics and dye removal efficiency. J APPL ELECTROCHEM 2018. [DOI: 10.1007/s10800-018-1257-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
41
|
Chen A, Xia S, Pan H, Xi J, Qin H, Lu H, Ji Z. A promising Ti/SnO2 anodes modified by Nb/Sb co-doping. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.07.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
Ji J, Li XY, Xu J, Yang XY, Meng HS, Yan ZR. Zn-Fe-rich granular sludge carbon (GSC) for enhanced electrocatalytic removal of bisphenol A (BPA) and Rhodamine B (RhB) in a continuous-flow three-dimensional electrode reactor (3DER). Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.07.203] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Facile hydrothermal synthesis of carbon dots (CDs) doped ZnFe2O4/TiO2 hybrid materials with high photocatalytic activity. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2017.10.049] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
44
|
Sun S, Diao P, Feng C, Ungureanu EM, Tang Y, Hu B, Hu Q. Nickel-foam-supported β-Ni(OH)2 as a green anodic catalyst for energy efficient electrooxidative degradation of azo-dye wastewater. RSC Adv 2018; 8:19776-19785. [PMID: 35540961 PMCID: PMC9080785 DOI: 10.1039/c8ra03039a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 05/11/2018] [Indexed: 11/21/2022] Open
Abstract
Electrochemical oxidative degradation (EOD) is a particularly promising technique for removing organic pollutants from wastewater. However, due to the high overpotential of EOD in conventional anode materials, the energy cost of EOD is usually very high, which greatly promotes the search for highly active, stable, and energy-efficient anodic catalysts. Herein, we demonstrated that nickel-foam-supported (NF-supported) β-Ni(OH)2 (NF/β-Ni(OH)2) prepared via a facile hydrothermal method could be used as an energy efficient anode for EOD. The as-prepared 3D porous NF/β-Ni(OH)2 exhibited high activity toward the electrochemical oxidation of methyl orange (MO) in the low potential region (<1.07 V vs. SCE). This property differs greatly from those of the conventional anode materials that require a high positive potential to keep them active for EOD, making NF/β-Ni(OH)2 an energy-efficient and active anode material for EOD. With an oxidation current density of 0.25 mA cm−2, the decolorization of MO was completed within 30 min, and the COD removal after 3h of reaction was 63.0%. The normalized energy consumption for the 3 h degradation of MO was 22.2 kW h (kg COD)−1, which is only a fraction of (or even one tenth of) the values reported in the literature. Moreover, NF/β-Ni(OH)2 had a good stability and recyclability for EOD. No activity decay was observed during 10 h of EOD and the COD removal remained almost unchanged after four consecutive reaction cycles. We demonstrated experimentally that the NF/β-Ni(OH)2 anode could generate large amounts of hydroxyl radicals and that the oxidation of MO by hydroxyl radicals was the main mechanism during EOD. We believe that this work opens a new avenue for developing highly active and energy-efficient anode materials that can work in the low potential region for EOD. A novel NF/β-Ni(OH)2 catalyst for energy efficient electrochemical degradation of methyl orange was fabricated via a facile hydrothermal method.![]()
Collapse
Affiliation(s)
- Shan Sun
- School of Materials Science and Engineering
- Beihang University
- Beijing 100191
- P. R. China
| | - Peng Diao
- School of Materials Science and Engineering
- Beihang University
- Beijing 100191
- P. R. China
| | - Cuiyun Feng
- School of Materials Science and Engineering
- Beihang University
- Beijing 100191
- P. R. China
| | - Eleonora-Mihaela Ungureanu
- Department of Physical Chemistry and Electrochemistry
- Faculty of Applied Chemistry and Materials Science
- University Politehnica of Bucharest
- Romania
| | - Yi Tang
- Southern University of Science and Technology
- Shenzhen
- P. R. China
| | - Bin Hu
- Southern University of Science and Technology
- Shenzhen
- P. R. China
| | - Qing Hu
- Southern University of Science and Technology
- Shenzhen
- P. R. China
| |
Collapse
|
45
|
Yang K, Lin H, Liang S, Xie R, Lv S, Niu J, Chen J, Hu Y. A reactive electrochemical filter system with an excellent penetration flux porous Ti/SnO2–Sb filter for efficient contaminant removal from water. RSC Adv 2018; 8:13933-13944. [PMID: 35539342 PMCID: PMC9079889 DOI: 10.1039/c8ra00603b] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 03/26/2018] [Indexed: 11/21/2022] Open
Abstract
Tubular porous Ti/SnO2–Sb filters with excellent penetration flux (∼61.94 m3 m−2 h−1 bar−1) and electrochemical activity were prepared by a sol–gel method using low-cost porous titanium filters as the substrates. The porous Ti/SnO2–Sb filters were used as anodic reactive electrochemical membranes to develop reactive electrochemical filter systems, by combining membrane filtration technology with the electrooxidation process, for water treatment. A convection-enhanced rate constant of 4.35 × 10−4 m s−1 was achieved for Fe(CN)64− oxidation, which approached the kinetic limit and is the highest reported in an electrochemical system. The electrooxidative performance of the reactive electrochemical filter system was evaluated with 50 mg L−1 rhodamine B (RhB). The results showed that the reactive electrochemical filter system in flow-through mode resulted in an 8.6-fold enhancement in RhB oxidation as compared to those in flow-by mode under the same experimental conditions. A normalized rate constant of 5.76 × 10−4 m s−1 for RhB oxidation was observed at an anode potential of 3.04 V vs. SCE, which is much higher than that observed in a reactive electrochemical filter system with carbon nanotubes and/or Ti4O7 (1.7 × 10−5–1.4 × 10−4 m s−1). The electrical energy per order degradation (EE/O) for RhB was as low as 0.28 kW h m−3 in flow-through mode, with a relatively short residence time of 9.8 min. The overall mineralization current efficiency (MCE) was calculated to be 83.6% with ∼99% RhB removal and ∼51% TOC removal. These results illustrate that this reactive electrochemical filter system is expected to be a promising method for water treatment. An energy-efficient reactive electrochemical filter system was developed using porous Ti/SnO2–Sb filters as anodic reactive electrochemical membranes.![]()
Collapse
Affiliation(s)
- Kui Yang
- School of Environment and Energy
- South China University of Technology
- Guangzhou 510006
- P. R. China
- School of Environment and Civil Engineering
| | - Hui Lin
- School of Environment and Civil Engineering
- Dongguan University of Technology
- Dongguan 523808
- P. R. China
| | | | - Ruzhen Xie
- College of Architecture and Environment
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Sihao Lv
- School of Environment and Civil Engineering
- Dongguan University of Technology
- Dongguan 523808
- P. R. China
| | - Junfeng Niu
- School of Environment and Civil Engineering
- Dongguan University of Technology
- Dongguan 523808
- P. R. China
| | - Jie Chen
- School of Environment and Civil Engineering
- Dongguan University of Technology
- Dongguan 523808
- P. R. China
| | - Yongyou Hu
- School of Environment and Energy
- South China University of Technology
- Guangzhou 510006
- P. R. China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters
| |
Collapse
|
46
|
Li XY, Xu J, Cheng JP, Feng L, Shi YF, Ji J. TiO2-SiO2/GAC particles for enhanced electrocatalytic removal of acid orange 7 (AO7) dyeing wastewater in a three-dimensional electrochemical reactor. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2017.06.058] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
47
|
Wang L, Kong Y, Wei D, Yang S, Chen Q, Kong Y, Li P, Ting YP, Ong CN. Toward the Quantitative Evaluation of an Activated Carbon Particle Electrode Performance in a Packed-Bed System. ChemElectroChem 2017. [DOI: 10.1002/celc.201700513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lizhang Wang
- Department of Environmental Engineering, China University of Mining and Technology, School of Environment Science and Spatial Informatics; University of Mining and Technology; Xuzhou City, Jiangsu 221116 PR China
- NUS Environmental Research Institute, National University of Singapore, NUS Environmental Research Institute; National University of Singapore; 5A Engineering Drive 1 117411 Singapore
| | - Yan Kong
- Department of Environmental Engineering, China University of Mining and Technology, School of Environment Science and Spatial Informatics; University of Mining and Technology; Xuzhou City, Jiangsu 221116 PR China
| | - Dongyang Wei
- South China Institute of Environmental Sciences; Ministry of Environmental Protection (MEP) of PR China; Guangzhou City, Guangdong 510655 PR China
| | - Shengxiang Yang
- Department of Environmental Engineering, China University of Mining and Technology, School of Environment Science and Spatial Informatics; University of Mining and Technology; Xuzhou City, Jiangsu 221116 PR China
| | - Qing Chen
- Department of Environmental Engineering, China University of Mining and Technology, School of Environment Science and Spatial Informatics; University of Mining and Technology; Xuzhou City, Jiangsu 221116 PR China
| | - Ying Kong
- Department of Environmental Engineering, China University of Mining and Technology, School of Environment Science and Spatial Informatics; University of Mining and Technology; Xuzhou City, Jiangsu 221116 PR China
| | - Peng Li
- School of Water Resource & Environmental Engineering; East China Institute of Technology; Nanchang 330013 PR China
| | - Yen-Peng Ting
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 117585 Singapore
| | - Choon Nam Ong
- NUS Environmental Research Institute, National University of Singapore, NUS Environmental Research Institute; National University of Singapore; 5A Engineering Drive 1 117411 Singapore
| |
Collapse
|
48
|
Li P, Liu Z, Wang X, Guo Y, Wang L. Enhanced decolorization of methyl orange in aqueous solution using iron-carbon micro-electrolysis activation of sodium persulfate. CHEMOSPHERE 2017; 180:100-107. [PMID: 28391148 DOI: 10.1016/j.chemosphere.2017.04.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/01/2017] [Accepted: 04/03/2017] [Indexed: 06/07/2023]
Abstract
Reactivity of sodium persulfate (PS) in the decolorization of methyl orange (MO) in aqueous solution using an iron-carbon micro-electrolysis (ICE) method was investigated. The effects of sodium persulfate doses, pH, Fe-to-C mass ratios, initial MO concentration as well as the reaction temperature were comprehensively studied in batch experiments. The ICE-PS coupled process was more suitable for wide ranges of pH, initial MO concentration and reaction temperature, accompanied by the reduction of Fe compared ICE. The MO removal efficiency improved substantially by ICE-PS technique, 76.03% for ICE and 91.27% for ICE-PS at experimental conditions of pH 3.0, Fe-to-C mass ratio 3:1, PS addition 10 mM and initial MO concentration 0.61 mM. Furthermore, the biodegradability index (BI) dramatically increased from 0.26 to 0.65. The binary hydroxyl and sulfate radicals that non-selectively degrade MO to the derivatives with small molecules are ascribed to ICE-PS method as detected by the UV-vis spectra. The PS activation resource was Fe2+ through the hydroxyl radical quenching reaction by the additive tert-butanol (TBA). This study provides an in-depth theoretical understanding of the development and wide commercial application of the ICE technology to refractory industrial dye wastewater treatment.
Collapse
Affiliation(s)
- Peng Li
- State Key Laboratory Breeding Base of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, PR China; School of Water Resource & Environmental Engineering, East China University of Technology, Nanchang City 330013, PR China.
| | - Zhipeng Liu
- School of Water Resource & Environmental Engineering, East China University of Technology, Nanchang City 330013, PR China
| | - Xuegang Wang
- State Key Laboratory Breeding Base of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, PR China; School of Water Resource & Environmental Engineering, East China University of Technology, Nanchang City 330013, PR China
| | - Yadan Guo
- State Key Laboratory Breeding Base of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, PR China; School of Water Resource & Environmental Engineering, East China University of Technology, Nanchang City 330013, PR China
| | - Lizhang Wang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221008, PR China
| |
Collapse
|
49
|
Hu L, Deng G, Lu W, Lu Y, Zhang Y. Peroxymonosulfate activation by Mn 3 O 4 /metal-organic framework for degradation of refractory aqueous organic pollutant rhodamine B. CHINESE JOURNAL OF CATALYSIS 2017. [DOI: 10.1016/s1872-2067(17)62875-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
50
|
Bai H, He P, Pan J, Chen J, Chen Y, Dong F, Li H. Boron-doped diamond electrode: Preparation, characterization and application for electrocatalytic degradation of m-dinitrobenzene. J Colloid Interface Sci 2017; 497:422-428. [PMID: 28314147 DOI: 10.1016/j.jcis.2017.03.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/25/2017] [Accepted: 03/02/2017] [Indexed: 10/20/2022]
Abstract
Boron-doped diamond (BDD) electrode was successfully prepared via microwave plasma chemical vapor deposition method and it was used in electrocatalytic degradation of m-dinitrobenzene (m-DNB). The electrocatalytic degradation efficiency of m-DNB was evaluated under different experimental parameters including current density, temperature, pH, Na2SO4 concentration and initial m-DNB concentration. Under optimal parameters, degradation efficiency of m-DNB reached up to 82.7% after 150min. The degradation process of m-DNB was fitted well with pseudo first-order kinetics. Moreover, UV and HPLC analyses implied that m-DNB was totally destroyed and mineralized after 240min degradation, and the proposed mechanism during the electrocatalytic degradation process was analyzed. All these results demonstrated that BDD electrode possessed excellent electrocatalytic property and showed a great potential application in wastewater treatment.
Collapse
Affiliation(s)
- Hongmei Bai
- School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Ping He
- School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China.
| | - Jing Pan
- School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Jingchao Chen
- School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Yang Chen
- School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Faqing Dong
- Key Laboratory of Solid Waste Treatment and Resource Recycle of Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Hong Li
- National Engineering Research Center for Municipal Wastewater Treatment and Reuse, Mianyang 621000, Sichuan, China
| |
Collapse
|