1
|
Song H, Kim T, Lee J, Yoon SJ, Kim B, Kim Y, Hong S, Khim JS. Assessment of persistent toxic substances in sediments of Gyeonggi Bay, Korea: Distributions, sources, and potential ecological risks. MARINE POLLUTION BULLETIN 2025; 213:117652. [PMID: 39923684 DOI: 10.1016/j.marpolbul.2025.117652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/31/2025] [Accepted: 02/04/2025] [Indexed: 02/11/2025]
Abstract
Persistent toxic substances (PTSs) from anthropogenic activities are a growing concern for marine ecosystems. In addition, the specific sources and ecological consequences of PTSs, particularly in coastal regions influenced by industrial and urban developments, remain insufficiently understood. This study evaluated the distribution, sources, and risks of 54 PTSs in Gyeonggi Bay. Polycyclic aromatic hydrocarbons (PAHs) ranged from 22.0 ng g-1 dw to 2710 ng g-1 dw, and alkylphenols (APs) peaked at 21,500 ng g-1 dw in source-dominated areas. Elevated levels were observed in Incheon Port and Lake Sihwa, from industrial and urban wastewater discharges. PMF modeling identified fossil fuel combustion as the main source of PAHs and natural and agriculture for metal(loid)s. Ecological risk assessments revealed significant contributions of metal(loid)s (49.1 %) and APs (39.3 %), with nonylphenols and arsenic posing the highest risks. These findings highlight the need for continuous monitoring and stricter regulations to mitigate the impacts of PTSs in marine ecosystems.
Collapse
Affiliation(s)
- Hyunseo Song
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Taewoo Kim
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Junghyun Lee
- Department of Environmental Education, Kongju National University, Gongju 32588, Republic of Korea
| | - Seo Joon Yoon
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Beomgi Kim
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Youngnam Kim
- Department of Marine Environmental Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seongjin Hong
- Department of Marine Environmental Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jong Seong Khim
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea; Center for Convergence Coastal Research, Seoul National University, Siheung-si, Gyeonggi-do 15011, Republic of Korea.
| |
Collapse
|
2
|
İnkaya E, Tokgöz E, Barlas N. In Vivo Investigation of the Effects of Nonylphenol on the Pituitary-Adrenal Axis and Pineal Gland in Male Rats. Basic Clin Pharmacol Toxicol 2025; 136:e70003. [PMID: 39887640 PMCID: PMC11783352 DOI: 10.1111/bcpt.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 02/01/2025]
Abstract
The pineal gland secretes melatonin, which regulates various physiological processes; damage to this gland disrupts these functions. This study aimed to investigate the effect of nonylphenol on the pineal gland and the pituitary-adrenal axis, which is associated with this system. The study was initiated using Wistar albino male rats on their postnatal 21st day, a critical developmental stage for endocrine regulation. Nonylphenol was administered via oral gavage at doses of 5, 25 and 125 mg/kg/day, while bisphenol-A was given at 50 mg/kg/day as a positive control. At the end of the treatment period, liver, kidney, pituitary, pineal and adrenal tissues were examined histopathologically. Hormone levels were analysed in serum samples. Significant changes in adrenocorticotropic hormone, melatonin and aldosterone levels were detected in hormone analyses. In contrast, no differences in corticosterone and glucose levels were detected. Histopathological findings showed structural changes in tissues. The effects of nonylphenol on the pituitary-adrenal axis and melatonin vary depending on the experimental protocols employed. However, it is clear that nonylphenol and bisphenol A have negative effects on the pituitary-adrenal axis, pineal gland, liver and kidney. In conclusion, future research should focus on elucidating the molecular mechanisms underlying these effects and developing environmentally friendly strategies to eliminate nonylphenol and bisphenol-A contamination.
Collapse
Affiliation(s)
- E. N. İnkaya
- Department of Biology, Faculty of ScienceHacettepe UniversityAnkaraTurkey
| | - E. Tokgöz
- Department of Biology, Faculty of ScienceHacettepe UniversityAnkaraTurkey
| | - N. Barlas
- Department of Biology, Faculty of ScienceHacettepe UniversityAnkaraTurkey
| |
Collapse
|
3
|
Gambino I, Terzaghi E, Baldini E, Bergna G, Palmisano G, Di Guardo A. Microcontaminants and microplastics in water from the textile sector: a review and a database of physicochemical properties, use in the textile process, and ecotoxicity data for detected chemicals. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025; 27:297-319. [PMID: 39820688 DOI: 10.1039/d4em00639a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Microcontaminants (MCs) and microplastics (MPs) originating from the textile sector are today receiving a great deal of attention due to potential environmental concerns. Environmental pressures and impacts related to the textile system include not only the use of resources (e.g., water) but also the release of a wide variety of pollutants. This review's main objective is to highlight the presence of textile MCs and MPs in water, in their full path from textile factories (from raw materials to the final product) to wastewater treatment plants (WWTPs), and finally to the receiving surface waters. Their environmental fate and ecotoxicity were also addressed. Overall, more than 500 compounds were found, many of which are so called "contaminants of environmental concern" such as per- and polyfluoroalkyl substances (PFAS) and alkylphenol compounds. A database of physicochemical properties, ecotoxicity, and place of detection (specific textile process, WWTP, surface water or sediment) (classification by several international agencies) was compiled for the chemical detected. Preliminary risk assessment was conducted for those MCs for which the reported environmental concentrations exceeded the Predicted No Effect Concentration (PNEC). These chemicals were some nonylphenols, nonylphenol ethoxylates and organophosphate esters. Among MPs, polyester and nylon fibres were the most abundant. The highest concentration of MPs was reported in sludge (about 1.4 × 106 MPs per kg) compared to wastewater and surface water which showed MP concentrations at least two orders of magnitude lower. The role of transboundary contamination due to the release of chemicals from imported textile products was also assessed.
Collapse
Affiliation(s)
- Isabella Gambino
- Environmental Modelling Group, Department of Science and High Technology (DiSAT), University of Insubria, Como, 22100, Italy.
| | - Elisa Terzaghi
- Environmental Modelling Group, Department of Science and High Technology (DiSAT), University of Insubria, Como, 22100, Italy.
| | | | | | - Giovanni Palmisano
- Environmental Modelling Group, Department of Science and High Technology (DiSAT), University of Insubria, Como, 22100, Italy.
| | - Antonio Di Guardo
- Environmental Modelling Group, Department of Science and High Technology (DiSAT), University of Insubria, Como, 22100, Italy.
| |
Collapse
|
4
|
Samanta A, Biswas S, Ghosh S, Banerjee S, Dam B, Maitra S. Maternal exposure to chronic, low-dose nonylphenol in zebrafish: Disruption of ovarian health, reproductive function, and embryogenesis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124169. [PMID: 39842349 DOI: 10.1016/j.jenvman.2025.124169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/07/2025] [Accepted: 01/15/2025] [Indexed: 01/24/2025]
Abstract
Nonylphenol (NP), a non-ionic surfactant and potent endocrine disruptor, is known for its environmental persistence, biotic accumulation potential and toxicity. Nonetheless, mechanisms underlying NP modulation of female fertility with potential impact on embryogenesis in the unexposed offspring remain elusive. This study investigates the effects and toxic mechanisms of maternal exposure to NP at varying concentrations (50 and 100 μg/L) on zebrafish (Danio rerio), specifically focusing on ovarian health, reproductive parameters, and early developmental potential in the F1 generation. Our findings indicate a higher accumulation of NP in the ovaries compared to muscle tissue. Further, chronic (28 days) NP exposure promotes ovarian reactive oxygen species (ROS) accumulation, activates the MAPK (JNK, p38 MAPK, ERK1/2) pathways, AP-1 induction, and elevated expression of pro-inflammatory cytokines (Tnf-α, Il-1β, Il-6) triggering inflammation. Besides, heightened follicular atresia in NP-treated ovaries relates to increased Bax/Bcl2 ratio, cleaved caspase 3 and Parp1 activation prompting apoptosis. While it showed higher affinity to zebrafish ERα (in silico analysis), NP exposure in vivo promotes a robust increase in ovarian ERα but abrogated ERβ expression and a significant alteration in fshr and lhcgr transcripts. While attenuated StAR and P450 aromatase expression at both mRNA and protein levels and reduced igf3 expression reveal impaired ovarian microenvironment, NP-induced dysregulated NO/NOS/cyclooxygenase signaling and attenuation of hCG-induced p34cdc2 activation and oocyte maturation correspond well with decreased fecundity and fertilization efficiency. Intriguingly, maternal exposure to NP resulted in delayed embryogenesis, developmental aberrations, and reduced hatching rates in the unexposed offspring, risking F1 generation. Collectively, this study provides mechanistic insights into the detrimental influence of maternal exposure to NP on ovarian dysfunction, reproductive insufficiency and embryotoxicity.
Collapse
Affiliation(s)
- Anwesha Samanta
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Subhasri Biswas
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Sandip Ghosh
- Microbiology Laboratory, Department of Botany, Visva-Bharati University, Santiniketan, 731235, India
| | - Sambuddha Banerjee
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Bomba Dam
- Microbiology Laboratory, Department of Botany, Visva-Bharati University, Santiniketan, 731235, India
| | - Sudipta Maitra
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India.
| |
Collapse
|
5
|
Calvez V, Puca P, Di Vincenzo F, Del Gaudio A, Bartocci B, Murgiano M, Iaccarino J, Parand E, Napolitano D, Pugliese D, Gasbarrini A, Scaldaferri F. Novel Insights into the Pathogenesis of Inflammatory Bowel Diseases. Biomedicines 2025; 13:305. [PMID: 40002718 PMCID: PMC11853239 DOI: 10.3390/biomedicines13020305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Inflammatory bowel diseases (IBDs), encompassing Crohn's disease and ulcerative colitis, are complex chronic disorders characterized by an intricate interplay between genetic predisposition, immune dysregulation, gut microbiota alterations, and environmental exposures. This review aims to synthesize recent advances in IBD pathogenesis, exploring key mechanisms and potential avenues for prevention and personalized therapy. A comprehensive literature search was conducted across major bibliographic databases, selecting the most recent and impactful studies on IBD pathogenesis. The review integrates findings from multi-omics analyses, single-cell transcriptomics, and longitudinal cohort studies, focusing on immune regulation, gut microbiota dynamics, and environmental factors influencing disease onset and progression. Immune dysregulation, including macrophage polarization (M1 vs. M2) and Th17 activation, emerges as a cornerstone of IBD pathogenesis. Dysbiosis, as a result of reduced alpha and beta diversity and overgrowth of harmful taxa, is one of the main contributing factors in causing inflammation in IBD. Environmental factors, including air and water pollutants, maternal smoking, and antibiotic exposure during pregnancy and infancy, significantly modulate IBD risk through epigenetic and microbiota-mediated mechanisms. While recent advances have supported the development of new therapeutic strategies, deeply understanding the complex dynamics of IBD pathogenesis remains challenging. Future efforts should aim to reduce the burden of disease with precise, personalized treatments and lower the incidence of IBD through early-life prevention and targeted interventions addressing modifiable risk factors.
Collapse
Affiliation(s)
- Valentin Calvez
- IBD Unit, UOC CEMAD Medicina Interna e Gastroenterologia, Centro Malattie dell’Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche Addominali ed Endocrino Metaboliche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (V.C.); (P.P.); (D.N.); (D.P.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.D.V.); (A.D.G.); (B.B.); (M.M.); (J.I.); (E.P.); (A.G.)
| | - Pierluigi Puca
- IBD Unit, UOC CEMAD Medicina Interna e Gastroenterologia, Centro Malattie dell’Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche Addominali ed Endocrino Metaboliche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (V.C.); (P.P.); (D.N.); (D.P.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.D.V.); (A.D.G.); (B.B.); (M.M.); (J.I.); (E.P.); (A.G.)
| | - Federica Di Vincenzo
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.D.V.); (A.D.G.); (B.B.); (M.M.); (J.I.); (E.P.); (A.G.)
| | - Angelo Del Gaudio
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.D.V.); (A.D.G.); (B.B.); (M.M.); (J.I.); (E.P.); (A.G.)
| | - Bianca Bartocci
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.D.V.); (A.D.G.); (B.B.); (M.M.); (J.I.); (E.P.); (A.G.)
| | - Marco Murgiano
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.D.V.); (A.D.G.); (B.B.); (M.M.); (J.I.); (E.P.); (A.G.)
| | - Jacopo Iaccarino
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.D.V.); (A.D.G.); (B.B.); (M.M.); (J.I.); (E.P.); (A.G.)
| | - Erfan Parand
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.D.V.); (A.D.G.); (B.B.); (M.M.); (J.I.); (E.P.); (A.G.)
| | - Daniele Napolitano
- IBD Unit, UOC CEMAD Medicina Interna e Gastroenterologia, Centro Malattie dell’Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche Addominali ed Endocrino Metaboliche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (V.C.); (P.P.); (D.N.); (D.P.)
| | - Daniela Pugliese
- IBD Unit, UOC CEMAD Medicina Interna e Gastroenterologia, Centro Malattie dell’Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche Addominali ed Endocrino Metaboliche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (V.C.); (P.P.); (D.N.); (D.P.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.D.V.); (A.D.G.); (B.B.); (M.M.); (J.I.); (E.P.); (A.G.)
| | - Antonio Gasbarrini
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.D.V.); (A.D.G.); (B.B.); (M.M.); (J.I.); (E.P.); (A.G.)
| | - Franco Scaldaferri
- IBD Unit, UOC CEMAD Medicina Interna e Gastroenterologia, Centro Malattie dell’Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche Addominali ed Endocrino Metaboliche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (V.C.); (P.P.); (D.N.); (D.P.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.D.V.); (A.D.G.); (B.B.); (M.M.); (J.I.); (E.P.); (A.G.)
| |
Collapse
|
6
|
Wang B, Zhang N, Dai L, Zhang Y, Yin S, Yang X. Nonylphenol promotes epithelial-mesenchymal transition in colorectal cancer cells by upregulating miR-151a-3p. Discov Oncol 2025; 16:63. [PMID: 39832042 PMCID: PMC11747012 DOI: 10.1007/s12672-025-01805-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
Nonylphenol (NP) is a common environmental contaminant and endocrine disruptor. Our previous research demonstrated that NP could promote the proliferation and epithelial-mesenchymal transition (EMT) of colorectal cancer (CRC) cells; however, the specific mechanism remains unclear. miRNA sequencing revealed that NP upregulated the expression levels of microRNA(miR)-151a-3p in CRC. Analysis of The Cancer Genome Atlas (TCGA) data revealed increased expression levels of miR-151a-3p in CRC tissues. The present experiments showed that NP could activate the WNT/β-catenin signaling pathway, and promoted the migration and invasion of CRC cells by increasing the expression levels of miR-151a-3p. Through bioinformatics analysis and dual-luciferase reporter assays, Fyn-related kinase (FRK) was identified as a target gene of miR-151a-3p. Knockdown of FRK promoted NP-induced EMT in CRC cells and activated the WNT/β-catenin signaling pathway, while overexpression had the opposite effect. In summary, the present study demonstrated that NP could inhibit FRK expression via miR-151a-3p, activate the WNT/β-catenin signaling pathway, and promote EMT in CRC cells.
Collapse
Affiliation(s)
- Biao Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563006, Guizhou, People's Republic of China
| | - Nianjie Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563006, Guizhou, People's Republic of China
| | - Lin Dai
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563006, Guizhou, People's Republic of China
| | - Yuanwei Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563006, Guizhou, People's Republic of China
| | - Shuo Yin
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563006, Guizhou, People's Republic of China
| | - Xuefeng Yang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563006, Guizhou, People's Republic of China.
| |
Collapse
|
7
|
Elewa HS, Salama DA, Hikal MS, El Hamid MFA, Eid MH, Khalil FMA, Albadrani MS, Abdelaal K, El-Tokhy AI. Protective effects of resveratrol and naringenin against nonylphenol-induced oxidative stress in rats. AMB Express 2025; 15:7. [PMID: 39779659 PMCID: PMC11711685 DOI: 10.1186/s13568-024-01788-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/13/2024] [Indexed: 01/11/2025] Open
Abstract
Nonylphenol (NP) is a ubiquitous environmental endocrine disrupting chemical and oxidative stress inducer in biological systems. Resveratrol (RES) and Naringenin (NG) are phytochemicals possessing antioxidant properties and estrogenic activity. This study was conducted to investigate the toxicity of NP and the mitigating effects of RES and NG on NP toxicity in rats. Thirty male rats were classified into 5 groups as follows: 1- Normal control (NC), 2- Dimethyl sulfoxide (DMSO) group, 3- NP group, 4- NP + RES and 5- NP + NG. Results revealed that NP treatment significantly decreased the activities of superoxide dismutase, Catalase, Glutathione peroxidase and Glutathione content in blood, liver and kidney compared to NC and DMSO groups. Conversely, activity of Glutathione-s-transferase was significantly elevated in blood and decreased in liver and kidney. Moreover, significant escalation was observed in the levels of Malondialdehyde. Also, NP treatment led to a significant decrease in serum total testosterone and testis weight, accompanied with concurrent elevation in estradiol level compared to NC and DMSO groups. All the recorded effects induced by NP treatment were effectively countered by co-treatment with RES or NG. In addition, molecular docking studies were carried out to reveal the interactions between NP, RES, NG and estrogen receptor beta which provide a possible mechanism for their potential estrogenic activity. Overall, our study gives a deeper understanding of the toxic effect of NP on antioxidant capacity and endocrine functions as well as the potential therapeutic utility of RES and NG in alleviating these adverse effects.
Collapse
Affiliation(s)
- Haitham S Elewa
- Biochemistry Department, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Dawlat A Salama
- Biochemistry Department, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Mohamed S Hikal
- Biochemistry Department, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | | | - Mohamed H Eid
- Institute of Environmental Management, Faculty of Earth Science, University of Miskolc, Miskolc- Egyetemváros, 3515, Hungary.
- Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 65211, Egypt.
| | - Fatma M A Khalil
- Applied College, Unit of health specialties, basic sciences and their applications, King Khalid University, Mohayil, Abha, Asir, 61421, Saudi Arabia
| | - Muayad S Albadrani
- Department of Family and Community Medicine and Medical Education, College of Medicine, Taibah University, Al-Madinah Al-Munawara, 42353, Saudi Arabia
| | - Khaled Abdelaal
- Plant Pathology and Biotechnology Lab, Faculty of Agriculture, EPCRS Excellence Center, Kafrelsheikh University, Kafr el-Sheikh, 33516, Egypt
| | - Ahmed I El-Tokhy
- Plant Protection Department, Faculty of Agriculture, Beni-Suef University, Beni-Suef, 62511, Egypt
| |
Collapse
|
8
|
Romanelli AM, Montefusco A, Sposito S, Scafuri B, Caputo I, Paolella G. In Vitro Investigation of Biological and Toxic Effects of 4-Octylphenol on Human Cells. Int J Mol Sci 2024; 25:13032. [PMID: 39684746 DOI: 10.3390/ijms252313032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Alkylphenols are byproducts of anthropogenic activities that widely contaminate waters, soils and air; among them, the most represented are 4-nonylphenol (4-NP) and 4-octylphenol (4-OP). These compounds tend to bioaccumulate in animal and plant tissues and also represent a risk to human health. Indeed, humans are constantly exposed to alkylphenols through ingestion of contaminated water and food, inhalation and dermal absorption. In the present work, we characterized the cytotoxic ability of 4-OP towards several human cell lines, representing the potential main targets in the human body, also comparing its effect with that of 4-NP and of a mixture of both 4-OP and 4-NP in a range of concentrations between 1 and 100 μM. Viability assays demonstrated that each cell type had a peculiar sensitivity to 4-OP and that, in some cases, a combination of the two alkylphenols displayed a higher cytotoxic activity with respect to the single compound. Then, we focused our attention on a liver cell line (HepG2) in which we observed that 4-OP increased cell death and also caused interference with protective physiological cell processes, such as the unfolded protein response, autophagy and the antioxidant response. Finally, our experimental data were compared and correlated with ADMET properties originating from an in silico analysis. Altogether, our findings highlight a possible contribution of this pollutant to deregulation of the normal homeostasis in human liver cells.
Collapse
Affiliation(s)
| | - Antonio Montefusco
- Department of Chemistry and Biology, University of Salerno, 84084 Fisciano, Italy
| | - Silvia Sposito
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84084 Fisciano, Italy
| | - Bernardina Scafuri
- Department of Chemistry and Biology, University of Salerno, 84084 Fisciano, Italy
| | - Ivana Caputo
- Department of Chemistry and Biology, University of Salerno, 84084 Fisciano, Italy
- European Laboratory for the Investigation of Food-Induced Diseases (ELFID), University of Salerno, 84084 Fisciano, Italy
| | - Gaetana Paolella
- Department of Chemistry and Biology, University of Salerno, 84084 Fisciano, Italy
| |
Collapse
|
9
|
Nas B, Dolu T, Ateş H, Dinç S, Kara M, Argun ME, Yel E. Occurrence, distribution, and fate evaluation of endocrine disrupting compounds in three wastewater treatment plants with different treatment technologies in Türkiye. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175869. [PMID: 39214356 DOI: 10.1016/j.scitotenv.2024.175869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/20/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Nowadays, two of the endocrine disrupting compounds (EDCs) in the group of alkylphenols (APs), nonylphenol (4-NP) and octylphenol (4-t-OP), have attracted great scientific and regulatory attention mainly due to concerns about their aquatic toxicity and endocrine disrupting activity. This paper investigated the occurrence, distribution behavior, fate, and removal of 4-NP and 4-t-OP in liquid and solid phases of three full-scale wastewater treatment plants (WWTPs) with different treatment technologies comparatively. In this context, (i) advanced biological WWTP, (ii) wastewater stabilization pond (WSP), and (iii) constructed wetland (CW) were utilized. In all three investigated WWTPs, the concentrations of 4-NP (219.9-19,354.4 ng/L) in raw wastewater were higher than those of 4-t-OP (13.9-2822.4 ng/L). Within the scope of annual average removal efficiencies, 4-NP was treated highly in advanced biological WWTP (93.5 %), while it was almost not treated in WSP (3.1 %) and treated with negative removal (<0 %) in CW. While 4-t-OP was treated at a similar removal rate (93.5 %) to 4-NP in advanced biological WWTP, it was treated moderately in WSP (52.5 %) and very poorly in CW (12.4 %). It has been determined that the most important removal mechanism of both 4-NP and 4-t-OP in WWTPs is biodegradation, followed by sorption onto sewage sludge. According to the mass balance performed in advanced biological WWTP, the biodegradation rates for 4-NP and 4-t-OP were found to be 70.4 % and 86.6 %, respectively, while the sorption onto sewage sludge were determined to be 23.3 % and 6.8 %. One of the critical findings obtained within the scope of the study is that while the concentrations of both metabolites, especially 4-NP, in wastewater and sewage sludge, decreased considerably under aerobic conditions, on the contrary, their concentrations increased significantly under anaerobic conditions. Both compounds were detected at higher concentrations in primary sludge compared to secondary sludge in advanced biological WWTP, while in WSP, they were determined at higher concentrations in anaerobic stabilization pond sludge compared to facultative stabilization pond sludge. Besides, it was also determined that the sorption behavior of these alkylphenols is much more dominant than desorption.
Collapse
Affiliation(s)
- B Nas
- Department of Environmental Engineering, Konya Technical University, Konya, Türkiye; Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, USA.
| | - T Dolu
- Department of Environmental Engineering, Konya Technical University, Konya, Türkiye.
| | - H Ateş
- Department of Environmental Engineering, Konya Technical University, Konya, Türkiye.
| | - S Dinç
- Çumra School of Applied Sciences, Selçuk University, Konya, Türkiye.
| | - M Kara
- Çumra Vocational High School, Selçuk University, Konya, Türkiye.
| | - M E Argun
- Department of Environmental Engineering, Konya Technical University, Konya, Türkiye.
| | - E Yel
- Department of Environmental Engineering, Konya Technical University, Konya, Türkiye.
| |
Collapse
|
10
|
Zhang X, Guo W, Du L, Yue J, Wang B, Li J, Wang S, Xia J, Wu Z, Zhao X, Gao Y. Deciphering the role of nonylphenol adsorption in soil by microplastics with different polarities and ageing processes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117254. [PMID: 39486245 DOI: 10.1016/j.ecoenv.2024.117254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024]
Abstract
In the soil environment, microplastics (MPs) commonly coexist with organic pollutants such as nonylphenol (NP), affecting the migration of NP through adsorption/desorption. However, few studies have focused on the interaction between NP and MPs in soil, especially for MPs of different types and ageing characteristics. In this study, non-polar polypropylene (PP) and polar polyamide (PA) MPs were aged either photochemically (144 h) or within soil (60 days), then used to determine the effect of 5 % MPs on the adsorption behaviour of NP (0.1-4.0 mg/L) in soil. Results showed that both ageing processes significantly promoted the conversion of -CH3 groups to C-O and CO on the surface of PPMPs, while PAMPs exhibited amide groups changes and a reduction in average particle size due to ageing. Additionally, both ageing processes promoted the adsorption of NP by soil containing PPMPs, due to an increase in oxygen-containing functional groups and specific surface area. In contrast, the NP adsorption capacity of soil containing PAMPs decreased by 15.4 % following photochemical ageing due to hydrolysis of amide groups, but increased by 21.15 % after soil ageing due to reorganization of amide groups, respectively. The soil-PAMPs systems exhibited a stronger affinity for NP compared to the soil-PPMPs systems, which was primarily attributed to the dominant role of hydrogen bonding. NP was found to be distributed mainly on soil particles in the soil-PPMPs systems, while it tended to be adsorbed by MPs in the soil-PAMPs systems, especially in the soil aged MPs system. This study provides a comprehensive analysis of the complex effects of MPs on coexisting pollutants in soil environments, highlighting the effect of MP characteristics on the adsorption of organic pollutants, which is essential for understanding the transport behaviour of organic pollutants.
Collapse
Affiliation(s)
- Xinyou Zhang
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China
| | - Wei Guo
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Linzhu Du
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China
| | - Junhui Yue
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China
| | - Binyu Wang
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jun Li
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China
| | - Shuhang Wang
- State Environmental Protection Key Laboratory for Lake Pollution Control, Institute of Lake Environment, Chinese Research Academy of Environmental Sciences (CRAES), Beijing 100012, PR China
| | - Jiang Xia
- State Environmental Protection Key Laboratory for Lake Pollution Control, Institute of Lake Environment, Chinese Research Academy of Environmental Sciences (CRAES), Beijing 100012, PR China
| | - Zhihao Wu
- State Environmental Protection Key Laboratory for Lake Pollution Control, Institute of Lake Environment, Chinese Research Academy of Environmental Sciences (CRAES), Beijing 100012, PR China
| | - Xu Zhao
- Institute of Blue and Green Development, Shandong University, Weihai 264209, China
| | - Yue Gao
- Analytical, Environmental and Geochemistry (AMGC), Vrije Universiteit Brussel (VUB), 1050, Belgium
| |
Collapse
|
11
|
Bhattacharya M, Majumder S, Nandi S, Ghosh A, Subba P, Acharyya S, Chakraborty S. Comprehensive analysis of water and sediment from holy water body 'Pokhri' reveals presence of biomolecules that may educe skin, gastroenterological and neurological dysfunction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177373. [PMID: 39500452 DOI: 10.1016/j.scitotenv.2024.177373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/28/2024] [Accepted: 11/01/2024] [Indexed: 11/11/2024]
Abstract
'Pokhri mai' refers to the natural pond amidst the hilly forest slopes of the Buxa tiger reserve (BTR) nearby Jayanti considered to be sacred by the local ethnic groups serving as the prime source of water for wild animals and occasionally by neighbouring inhabitants. However, the water body is designated to be noxious by a group of native people with no scientific validation. This paper focuses to explore its toxicity status and allied environmental concerns through Pokhri water and sediment sample analysis through physicochemical assessment, in vitro antioxidant assay, microbiological investigation followed by AAS, GC-MS and in silico study. pH of soil and water samples were found to be quite high (>6.8) with organic matter, carbon and available nitrogen content being 1.5308 ± 0.28 %, 0.89 ± 0.17 % and 0.072 ± 0.34 % respectively. Profuse microbial growths were observed in both sediment and water samples with consortia obtained exhibiting tolerance against a range of antifungals and antibiotics. Inhibition zone was absent for sediment consortium whereas consortium of water samples portrayed susceptibility against various heavy metals viz. Cu2+, Pb2+, Zn2+, Fe3+ and Al3+ salts with corresponding AAS quantified values of sediment samples being 133, 223.3, 86.8, 1449 and 481.5 ppm. A summative of 18 metabolites were identified by GC-MS in Pokhri lake sediment among which 13 (occupying 96.35 % peak area) were investigated to be potentially toxic with 2,4-Di-tert-butylphenol (53.38 %) as the major compound. Biomolecular characterization, ADMET test and molecular docking study with dermal, gastrointestinal and neural peptides exhibiting high binding affinity scores (ranging between -2.6 to -8.3 kcal/mol) further affirmed the toxicity attributes of the GC-MS deciphered molecules. The findings clearly justifies the local 'myth' of Pokhri water to be deleterious with prospective dermatotoxic, neurotoxic and being evident of gastrointestinal toxicity emphasizing ecological risk to the environment, wildlife and microflora of the adjoining forests.
Collapse
Affiliation(s)
- Malay Bhattacharya
- Molecular Biology and Tissue Culture Laboratory, Department of Tea Science, University of North Bengal, Raja Rammohunpur, Siliguri 734013, West Bengal, India
| | - Soumya Majumder
- Molecular Biology and Tissue Culture Laboratory, Department of Tea Science, University of North Bengal, Raja Rammohunpur, Siliguri 734013, West Bengal, India
| | - Sudeshna Nandi
- Molecular Biology and Tissue Culture Laboratory, Department of Tea Science, University of North Bengal, Raja Rammohunpur, Siliguri 734013, West Bengal, India
| | - Arindam Ghosh
- Molecular Biology and Tissue Culture Laboratory, Department of Tea Science, University of North Bengal, Raja Rammohunpur, Siliguri 734013, West Bengal, India
| | - Preeti Subba
- Molecular Biology and Tissue Culture Laboratory, Department of Tea Science, University of North Bengal, Raja Rammohunpur, Siliguri 734013, West Bengal, India
| | - Sukanya Acharyya
- Molecular Biology and Tissue Culture Laboratory, Department of Tea Science, University of North Bengal, Raja Rammohunpur, Siliguri 734013, West Bengal, India
| | - Sourav Chakraborty
- Plant Biochemistry and Molecular Biology Laboratory, Postgraduate Department of Botany, Darjeeling Government College, Darjeeling 734101, West Bengal, India.
| |
Collapse
|
12
|
Shaalan WM, Elbaghdady HAM, Sayed AEDH. Synergistic effects of thermal stress and 4-nonylphenol on oxidative stress and immune responses in juvenile tilapia (Oreochromis niloticus). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:64024-64032. [PMID: 39528893 DOI: 10.1007/s11356-024-35419-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Aquatic ecosystems face multiple stressors, including thermal fluctuations and chemical pollutants, which can detrimentally impact fish health and ecosystem integrity. This study investigates the individual and combined toxic effects of 4-nonylphenol (4-NP) and thermal stress on juvenile tilapia fish (Oreochromis niloticus). Four groups of fish were exposed to different stressors for 15 days: control, thermal stress (35 °C ± 1 °C), 4-NP exposure (1 mg/L), and a combination of thermal stress and 4-NP. Results reveal significant alterations in antioxidant enzyme activity, lipid peroxidation levels, and cytokine expression in response to stressors. Thermal stress and 4-NP exposure disrupt antioxidant defense mechanisms and increase oxidative stress. Thermal stress profoundly affects fish health and metabolism, impacting physiological functions and immunity. Thermal stress induces reactive oxygen species production, triggering antioxidant responses and affecting immune parameters. Exposure to 4-NP exacerbates oxidative stress, further compromising fish health. The observed increase in pro-inflammatory cytokines implies an immunostimulatory reaction to stressors. These findings underscore the complex interactions between environmental stressors, immune responses, and fish health. Further research is needed to fully understand these interactions and their implications for aquatic ecosystems. Implementing these biomarkers in ecological risk assessments can provide insights into the impacts of environmental stressors and inform conservation and management strategies in aquaculture.
Collapse
Affiliation(s)
- Walaa M Shaalan
- Zoology Department, Faculty of Science, Benha University, Benha, 13518, Egypt
- Faculty for Biology and Biotechnology and Center for Protein Diagnostics, Ruhr-University, 44801, Bochum, Germany
| | | | - Alaa El-Din H Sayed
- Department of Zoology, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
- Molecular Biology Research & Studies Institute, Assiut University, Assiut, 71516, Egypt.
| |
Collapse
|
13
|
Lv X, Han Y, Li Y, Wang X, Zhang T, Wang X, Zhang Q, Yang D, Zhao J. Nonylphenol displays immunotoxicity by triggering hemocyte extracellular traps in Manila clam via ROS burst, ERK pathway and glycolysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117145. [PMID: 39357378 DOI: 10.1016/j.ecoenv.2024.117145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/04/2024]
Abstract
Nonylphenol (NP), an endocrine disruptor, has been demonstrated to be a harmful environmental contaminant and toxic to organisms. In this study, to address concerns regarding the immunotoxicity of NP, we treated clam Ruditapes philippinarum hemocytes with NP in vitro and explored the underlying mechanisms of NP-induced extracellular traps (ETs). NP could induce the formation of hemocytes ETs in a dose-dependent manner. Transcriptomics analysis revealed changes of signaling pathway involved in immunity and energy metabolism in hemocytes after NP stimulation. In this process, both reactive oxygen species (ROS) and myeloperoxidase (MPO) were up-regulated. Moreover, mitogen-activated protein kinase (MAPK) signaling pathway was proved to be activated in the formation of NP-induced ETs, manifested as enhanced phosphorylation of extracellular signal-regulated kinase (ERK) but not p38 or c-Jun N-terminal kinase (JNK). In the presence of U0126, an ERK phosphorylation inhibitor, the NP-induced expression of NADPH oxidase enzyme (NOX) was significantly decreased, which further alleviated the ROS production and ultimately limited the release of ETs. NP exposure increased glucose uptake, along with enhanced activities of glycolysis-related enzymes such as hexokinase (HK) and pyruvate kinase (PK). After inhibiting glycolysis by the inhibitor 2-DG, the formation of NP-induced ETs was significantly suppressed. ERK could regulate mTOR signaling and the PI3K/AKT pathway, potentially directing ETs formation by orchestrating the glycolysis through the activation of key transcription factors c-Myc and HIF-1α. Collectively, the results preliminary confirm that the ERK-NOX-ROS axis and glycolysis are involved in NP-induced ETs formation, contributing to the cellular immunotoxicity in clam.
Collapse
Affiliation(s)
- Xiaojing Lv
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yijing Han
- School of Fisheries, Ludong University, Yantai 264025, PR China
| | - Yongxue Li
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Xin Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Tianyu Zhang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Xiaodan Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Qianqian Zhang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Dinglong Yang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China.
| | - Jianmin Zhao
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China.
| |
Collapse
|
14
|
Gündoğdu S, Bour A, Köşker AR, Walther BA, Napierska D, Mihai FC, Syberg K, Hansen SF, Walker TR. Review of microplastics and chemical risk posed by plastic packaging on the marine environment to inform the Global Plastics Treaty. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174000. [PMID: 38901589 DOI: 10.1016/j.scitotenv.2024.174000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
Plastic overproduction and the resulting increase in consumption has made plastic pollution ubiquitous in all ecosystems. Recognizing this, the United Nations (UN) has started negotiations to establish a global treaty to end plastic pollution, especially in the marine environment. The basis of the treaty has been formulated in terms of turning off the tap, signaling the will to prevent plastic pollution at its source. Based on the distribution of plastic production by sector, the plastic packaging sector consumes the most plastic. The volume and variety of chemicals used in plastic packaging, most of which is single-use, is a major concern. Single-use plastics including packaging is one of the most dominant sources of plastic pollution. Plastic waste causes pollution in water, air and soil by releasing harmful chemicals into the environment and can also lead to exposure through contamination of food with micro- and nano-plastic particles and chemicals through packaging. Marine life and humans alike face risks from plastic uptake through bioaccumulation and biomagnification. While the contribution of plastics ingested to chemical pollution is relatively minor in comparison to other pathways of exposure, the effect of plastic waste on marine life and human consumption of seafood is beyond question. To reduce the long-term impact of plastic, it is crucial to establish a global legally binding instrument to ensure the implementation of upstream rather than downstream solutions. This will help to mitigate the impact of both chemicals and microplastics, including from packaging, on the environment.
Collapse
Affiliation(s)
- Sedat Gündoğdu
- Cukurova University Faculty of Fisheries Department of Basic Science, 01330 Adana, Türkiye.
| | - Agathe Bour
- Dept. of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | - Ali Rıza Köşker
- Cukurova University Faculty of Fisheries Department of Seafood Processing, 01330 Adana, Türkiye
| | - Bruno Andreas Walther
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, D-27570 Bremerhaven, Germany
| | | | - Florin-Constantin Mihai
- CERNESIM Center, Department of Exact Sciences and Natural Sciences, Institute of Interdisciplinary Research "Alexandru Ioan Cuza" University, Carol I Blvd 11, 700506 Iași, Romania
| | - Kristian Syberg
- Dept. of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | - Steffen Foss Hansen
- Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800 Kongens Lyngby, Denmark
| | - Tony R Walker
- School for Resource and Environmental Studies, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
15
|
Pedersen AF, Bayen S, Liu L, Dietz R, Sonne C, Rosing-Asvid A, Ferguson SH, McKinney MA. Nontarget and suspect screening reveals the presence of multiple plastic-related compounds in polar bear, killer whale, narwhal and long-finned pilot whale blubber from East Greenland. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124417. [PMID: 38909771 DOI: 10.1016/j.envpol.2024.124417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/05/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
The monitoring of legacy contaminants in sentinel northern marine mammals has revealed some of the highest concentrations globally. However, investigations into the presence of chemicals of emerging Arctic concern (CEACs) and other lesser-known chemicals are rarely conducted, if at all. Here, we used a nontarget/suspect approach to screen for thousands of different chemicals, including many CEACs and plastic-related compounds (PRCs) in blubber/adipose from killer whales (Orcinus orca), narwhals (Monodon monoceros), long-finned pilot whales (Globicephala melas), and polar bears (Ursus maritimus) in East Greenland. 138 compounds were tentatively identified mostly as PRCs, and four were confirmed using authentic standards: di(2-ethylhexyl) phthalate (DEHP), diethyl phthalate (DEP), di(2-propylheptyl) phthalate (DPHP), and one antioxidant (Irganox 1010). Three other PRCs, a nonylphenol isomer, 2,6-di-tert-butylphenol, and dioctyl sebacate, exhibited fragmentation patterns matching those in library databases. While phthalates were only above detection limits in some polar bear and narwhal, Irganox 1010, nonylphenol, and 2,6-di-tert-butylphenol were detected in >50% of all samples. This study represents the first application of a nontarget/suspect screening approach in Arctic cetaceans, leading to the identification of multiple PRCs in their blubber. Further nontarget analyses are warranted to comprehensively characterize the extent of CEAC and PRC contamination within Arctic marine food webs.
Collapse
Affiliation(s)
- Adam F Pedersen
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada.
| | - Stéphane Bayen
- Department of Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Lan Liu
- Department of Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Rune Dietz
- Department of Ecoscience, Arctic Research Centre, Aarhus University, Roskilde DK-4000, Denmark
| | - Christian Sonne
- Department of Ecoscience, Arctic Research Centre, Aarhus University, Roskilde DK-4000, Denmark
| | - Aqqalu Rosing-Asvid
- Department of Birds and Mammals, Greenland Institute of Natural Resources, Nuuk GL-3900, Greenland
| | - Steven H Ferguson
- Arctic Aquatic Research Division, Fisheries and Oceans Canada, Winnipeg, MB R3T 2N6, Canada
| | - Melissa A McKinney
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| |
Collapse
|
16
|
Kim Y, Lee Y, Lee CE, Jeong H, Ra K, Choi D, Hong S. Compound- and element-specific accumulation characteristics of persistent toxic substances and metals in sediments of the Yellow Sea. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134926. [PMID: 38909470 DOI: 10.1016/j.jhazmat.2024.134926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/01/2024] [Accepted: 06/13/2024] [Indexed: 06/25/2024]
Abstract
This study investigated the large-scale distributions of persistent toxic substances (PTSs) and heavy metals in sediments of the Yellow Sea, collected from six transects between latitudes 32 and 37 degrees north (n = 35). Elevated concentrations of polychlorinated biphenyls (PCBs) were detected near the mainland, with a predominance of low-chlorinated congeners (di to tetra, ∼60%), indicative of atmospheric deposition. Analysis of traditional and emerging polycyclic aromatic hydrocarbons (t-PAHs and e-PAHs) revealed notable enrichment in the Central Yellow Sea Mud Zone (CYSM), attributing fossil fuel combustion as the significant source. Styrene oligomers and alkylphenols exhibited notable accumulation near the Han River Estuary in South Korea and the Yangtze River Estuary in China, respectively. The accumulation of heavy metals was predominantly observed in the CYSM, with element-specific distribution patterns. Cluster analysis revealed distinct distribution patterns for PTSs and metals, highlighting their source-dependent and grain size-dependent behaviors. In addition, the distribution and accumulation of PTSs tended to depend on their partitioning coefficients, such as the octanol-air partition coefficient (log KOA) and octanol-water partition coefficient (log KOW). This study offers valuable insights into the sources, transport, and fate of hazardous substances in the Yellow Sea, emphasizing the necessity for targeted environmental management strategies.
Collapse
Affiliation(s)
- Youngnam Kim
- Department of Earth, Environmental & Space Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yeonjung Lee
- Ocean Climate Response & Ecosystem Research Department, Korea Institute of Ocean Science and Technology, Busan 49111, Republic of Korea
| | - Chang-Eon Lee
- Marine Environment Research Department, Korea Institute of Ocean Science and Technology, Busan 49111, Republic of Korea; Department of Marine Environmental Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyeryeong Jeong
- Marine Environment Research Department, Korea Institute of Ocean Science and Technology, Busan 49111, Republic of Korea; Ifremer, CCEM-Unité Contamination Chimique des Ecosystèmes Marins (CCEM), F-44300, Nantes, France
| | - Kongtae Ra
- Marine Environment Research Department, Korea Institute of Ocean Science and Technology, Busan 49111, Republic of Korea
| | - Donghan Choi
- Ocean Climate Response & Ecosystem Research Department, Korea Institute of Ocean Science and Technology, Busan 49111, Republic of Korea
| | - Seongjin Hong
- Department of Earth, Environmental & Space Sciences, Chungnam National University, Daejeon 34134, Republic of Korea; Department of Marine Environmental Sciences, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
17
|
Khajvand M, Drogui P, Arab H, Tyagi RD, Brien E. Hybrid process combining ultrafiltration and electro-oxidation for COD and nonylphenol ethoxylate removal from industrial laundry wastewater. CHEMOSPHERE 2024; 363:142931. [PMID: 39053780 DOI: 10.1016/j.chemosphere.2024.142931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/10/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Laundry wastewater is a significant source of nonylphenol ethoxylate (NPEO) at wastewater treatment plants, where its breakdown forms persistent nonylphenol (NP). NP poses risks as an endocrine disruptor in wildlife and humans. This study investigates the degradation of NPEO and COD in industrial laundry wastewater (LWW) using a two-stage process combining ultrafiltration (UF) and electro-oxidation (EO). UF was used to remove suspended solids, while soluble COD (COD0 = 239 ± 6 mg.L-1) and NPEO (NPEO0 = 341 ± 8 μg.L-1) were oxidized by the EO process. Different operating parameters were studied such as current density, electrolysis time, type of cathode and supporting electrolyte concentration. Using an experimental design methodology, the optimal conditions for COD and NPEO3-17 degradation were recorded. This included achieving 97% degradation of NPEO3-17 and 61% degradation of COD, with a total operating cost of 3.65 USD·m-3. These optimal conditions were recorded at a current density of 15 mA cm-2 for a 120-min reaction period in the presence of 4 g·Na2SO4 L-1 using a graphite cathode. The EO process allowed for reaching the guidelines required for water reuse (NPEO <200 μg.L-1, COD <100 mg.L-1) in the initial laundry washing cycles. Furthermore, our results demonstrate that both NP and NPEO compounds, including higher and shorter ethoxylate chains (NPEO3-17), were effectively degraded during the EO process, with removal efficiencies between 94% and 98%. This confirms the EO process's capability to effectively degrade NP, the by-product of NPEO breakdown.
Collapse
Affiliation(s)
- Mahdieh Khajvand
- Institut National de La Recherche Scientifique (INRS), Centre-Eau Terre Environnement (ETE), Université Du Québec, 490 Rue de La Couronne, Québec, G1K 9A9, Canada
| | - Patrick Drogui
- Institut National de La Recherche Scientifique (INRS), Centre-Eau Terre Environnement (ETE), Université Du Québec, 490 Rue de La Couronne, Québec, G1K 9A9, Canada.
| | - Hamed Arab
- Institut National de La Recherche Scientifique (INRS), Centre-Eau Terre Environnement (ETE), Université Du Québec, 490 Rue de La Couronne, Québec, G1K 9A9, Canada
| | - Rajeshwar Dayal Tyagi
- Research Centre for Eco-Environmental Engineering, Dongguan University of Technology, China; BOSK Bioproducts, Québec, Québec, Canada
| | - Emmanuel Brien
- Groupe Veos Inc, 1552 Rue Nationale, Terrebonne, Québec, J6W 6M1, Canada
| |
Collapse
|
18
|
Liang SZ, Chang YJ, Semaha P, Liu LZ, Gao Y, Wang Z, Zhang WG. A maverick: Environmentally relevant concentrations of nonylphenol attenuate the plasmid-mediated conjugative transfer of antibiotic resistance genes. WATER RESEARCH X 2024; 24:100241. [PMID: 39188327 PMCID: PMC11345678 DOI: 10.1016/j.wroa.2024.100241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 08/28/2024]
Abstract
Given that many organic pollutants have been reported to facilitate the plasmid-mediated conjugative transfer of antibiotic resistance genes (ARGs), it was naturally deduced that nonylphenol (NP) can also have this kind of effect. Whereas, this study demonstrates an entirely different result that environmentally relevant concentrations of NP attenuate plasmid-mediated ARGs conjugative transfer (maximum inhibition rate 64 %), further study show that NP exposure had no significant effect on bacterial growth, cell vitality, oxidative stress response, and expression of conjugation-relevant genes, which were reported to closely relate to the conjugative transfer in numerous studies. Conclusively, it was found that the dispersant function of NP impeded the occurrence of cell mating, thus was responsible for the decline of conjugative transfer. This study shows a new perspective on understanding the effect of organic pollutants like NP on the ARGs horizontal dissemination in environment.
Collapse
Affiliation(s)
- Si-Zhou Liang
- China Ministry of Agriculture Key Laboratory at Yangtze River Plain for Agricultural Environment, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ya-Jun Chang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China
| | - Philip Semaha
- Department of Agriculture, Ministry of Local Government and Rural Development, AJ 2, Ajumako, Central Region, Ghana
| | - Li-Zhu Liu
- China Ministry of Agriculture Key Laboratory at Yangtze River Plain for Agricultural Environment, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yan Gao
- China Ministry of Agriculture Key Laboratory at Yangtze River Plain for Agricultural Environment, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhi Wang
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Wei-Guo Zhang
- China Ministry of Agriculture Key Laboratory at Yangtze River Plain for Agricultural Environment, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
19
|
Saha U, Kumari P, Ghosh A, Sinha A, Jena S, Kirti A, Gupta A, Choudhury A, Simnani FZ, Nandi A, Sahoo RN, Singh S, Mishra R, Kaushik NK, Singh D, Suar M, Verma SK. Detrimental consequences of micropolymers associated plasticizers on endocrinal disruption. Mater Today Bio 2024; 27:101139. [PMID: 39027679 PMCID: PMC11255117 DOI: 10.1016/j.mtbio.2024.101139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/20/2024] [Accepted: 06/23/2024] [Indexed: 07/20/2024] Open
Abstract
The prevalence of polymer usage in everyday activities has emerged as a detriment to both human life and the environment. A large number of studies describe severe impacts of micropolymers (MP) and nanopolymers (NP) on various organ systems, including the endocrine system. Additionally, plasticizers utilized as additives have been identified as endocrine-disrupting chemicals (EDCs). MP/NP, along with associated plasticizers, affect principal signalling pathways of endocrine glands such as the pituitary, thyroid, adrenal, and gonads, thereby disrupting hormone function and metabolic processes crucial for maintaining homeostasis, fertility, neural development, and fetal growth. This review delves into the sources, distribution, and effects of micropolymers, nanopolymers, and associated plasticizers acting as EDCs. Furthermore, it provides a detailed review of the mechanisms underlying endocrine disruption in relation to different types of MP/NP.
Collapse
Affiliation(s)
- Utsa Saha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Puja Kumari
- Department of Biotechnology, Vinoba Bhave University, Hazaribagh, Jharkhand, 825001, India
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, 61137, Czech Republic
| | - Aishee Ghosh
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Adrija Sinha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Snehashmita Jena
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Apoorv Kirti
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Abha Gupta
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Anmol Choudhury
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | | | - Aditya Nandi
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Rudra Narayan Sahoo
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Shalini Singh
- Markham College of Commerce, Vinoba Bhave University, Hazaribagh, Jharkhand, 825001, India
| | - Richa Mishra
- Department of Computer Engineering, Parul University, Ta. Waghodia, Vadodara, Gujarat, 391760, India
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897, Seoul, South Korea
| | - Deobrat Singh
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20, Uppsala, Sweden
| | - Mrutyunjay Suar
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Suresh K. Verma
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| |
Collapse
|
20
|
Ge C, Luo X, Lv Y, Wu L, Hu Z, Huang W, Zhan S, Shen X, Hui C, Yu D, Liu B. Essential oils ameliorate the intestinal damages induced by nonylphenol exposure by modulating tryptophan metabolism and activating aryl hydrocarbon receptor via gut microbiota regulation. CHEMOSPHERE 2024; 362:142571. [PMID: 38876325 DOI: 10.1016/j.chemosphere.2024.142571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024]
Abstract
Nonylphenol (NP) is a ubiquitous endocrine disruptor that persists in the environment and can significantly contribute to serious health hazards, particularly intestinal barrier injury. Plant essential oils (EOs) have recently gained widespread interest due to their potential for improving intestinal health. However, the precise mechanism and protective effects of EOs ameliorating the intestinal damages induced by NP exposure remain unclear. To clarify the potential mechanism and protective impact of EOs against intestinal injury induced by NP, a total of 144 one-day-old male ducks were randomly allocated to four groups: CON (basal diet), EO (basal diet + 200 mg/kg EOs), NP (basal diet + 40 mg/kg NP), and NPEO (basal diet + 200 mg/kg EOs + 40 mg/kg NP). The data revealed that NP exposure significantly damaged intestinal barrier, as evidenced by a reduction in the levels of tight junction gene expression and an increase in intestinal permeability. Additionally, it disturbed gut microbiota, as well as interfered with tryptophan (Trp) metabolism. The NP-induced disorder of Trp metabolism restrained the activation of aryl hydrocarbon receptor (AhR) and resulted in decreased the expression levels of CYP1A1, IL-22, and STAT3 genes, which were alleviated after treatment with EOs. Taken together, NP exposure resulted in impairment of the intestinal barrier function, disruption of gut microbiota, and disturbances in Trp metabolism. Dietary EOs supplementation alleviated the intestinal barrier injury induced by NP through the Trp/AhR/IL-22 signaling pathway.
Collapse
Affiliation(s)
- Chaoyue Ge
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China; Hainan Institute, Zhejiang University, Sanya, 572000, China
| | - Xinyu Luo
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yujie Lv
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China; Hainan Institute, Zhejiang University, Sanya, 572000, China
| | - Lianchi Wu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhaoying Hu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Weichen Huang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shenao Zhan
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xinyu Shen
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Cai Hui
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Dongyou Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China; Hainan Institute, Zhejiang University, Sanya, 572000, China.
| | - Bing Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
21
|
Ecer Uzun Ç, Kabdaşlı I. Effect of chloride ions on persulfate/UV-C advanced oxidation of an alcohol ethoxylate (Brij 30). Sci Rep 2024; 14:15328. [PMID: 38961237 PMCID: PMC11222532 DOI: 10.1038/s41598-024-66442-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024] Open
Abstract
In the present study, the effect of chloride ions on the oxidative degradation of an alcohol ethoxylate (Brij 30) by persulfate (PS)/UV-C was experimentally explored using Brij 30 aqueous solution (BAS) and a domestic wastewater treatment plant effluent spiked with Brij 30. Brij 30 degradation occurred rapidly during the early stages of oxidation without affecting the water/wastewater matrix. Mineralization of intermediates of Brij 30 degradation markedly influenced by presence of chloride ions. Chloride ions at concentrations up to 50 mg/L accelerated the mineralization through reactions involving reactive chlorine species, which reduced the sink of SO4·- by Cl- scavenging at both initial pH of 6.0 and 3.0 in the case of BAS. The fastest mineralization was achieved under acidic conditions. The WWTP effluent matrix significantly influenced mineralization efficacy of the intermediates. Co-existence of HCO 3 - and Cl- anions accelerated the mineralization of degradation products. Organic matter originating from the WWTP effluent itself had an adverse effect on the mineralization rate. The positive effects of organic and inorganic components present in the WWTP effluent were ranked in the following order of increasing influence: (Organic matter originating from the effluent + Cl- + HCO 3 - ) < (Cl-) < (Cl- + HCO 3 - ).
Collapse
Affiliation(s)
- Çisem Ecer Uzun
- Environmental Engineering Department, Civil Engineering Faculty, İstanbul Technical University, Ayazağa Campus, 34469, Sarıyer, İstanbul, Turkey
| | - Işık Kabdaşlı
- Environmental Engineering Department, Civil Engineering Faculty, İstanbul Technical University, Ayazağa Campus, 34469, Sarıyer, İstanbul, Turkey.
| |
Collapse
|
22
|
Song H, Lim HJ, Son A. Development of an aptasensor for dibutyl phthalate detection and the elucidation of assay inhibition factors. RSC Adv 2024; 14:20585-20594. [PMID: 38946763 PMCID: PMC11211734 DOI: 10.1039/d4ra03045a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024] Open
Abstract
We developed a fluorescence aptasensor (hereafter 'SG-aptasensor') using SYBR Green I, a newly truncated 20-mer aptamer, and probe DNA to detect dibutyl phthalate (DBP). The detection range of DBP was 0.1-100 ng L-1 with 0.08 ng L-1 as the limit of detection. To adapt the assay to environmental samples in the near future, possible inhibition factors (experimental and environmental) have been tested and reported. The experimental inhibitors included the incubation time, temperature, pH, and ionic strength. Consequently, temperature (2-25 °C) and pH (7.0-9.0) ranges did not significantly inhibit the assay. The incubation time required for sufficient reaction was at least 4 h, and a relative humidity <20% may have induced fluorescence quenching. Tris-HCl-based incubation buffer with excess ionic strength (more than 0.2 M NaCl) demonstrated an abnormal increase in fluorescence. Environmental inhibitors including cations (Mg2+, Ca2+, and Cu2+) and humic acids were tested. The fluorescence signal was significantly reduced (∼99%) by 100 mM Cu2+ compared to that by 0 mM Cu2+. In contrast, the reduction in fluorescence signal was marginal (<15%) when Mg2+ or Ca2+ ions were present. Inhibition of the assay was observed (∼28%) in the presence of 100 mg L-1 humic acids.
Collapse
Affiliation(s)
- Hyerin Song
- Department of Environmental Science and Engineering, Ewha Womans University 52 Ewhayeodae-gil, Seodaemun-gu Seoul 03760 Republic of Korea +82(2)3277-3339
- Center of SEBIS (Strategic Solutions for Environmental Blindspots in the Interests of Society) 52 Ewhayeodae-gil, Seodaemun-gu Seoul 03760 Republic of Korea
| | - Hyun Jeong Lim
- Department of Environmental Science and Engineering, Ewha Womans University 52 Ewhayeodae-gil, Seodaemun-gu Seoul 03760 Republic of Korea +82(2)3277-3339
- Center of SEBIS (Strategic Solutions for Environmental Blindspots in the Interests of Society) 52 Ewhayeodae-gil, Seodaemun-gu Seoul 03760 Republic of Korea
| | - Ahjeong Son
- Department of Environmental Science and Engineering, Ewha Womans University 52 Ewhayeodae-gil, Seodaemun-gu Seoul 03760 Republic of Korea +82(2)3277-3339
- Center of SEBIS (Strategic Solutions for Environmental Blindspots in the Interests of Society) 52 Ewhayeodae-gil, Seodaemun-gu Seoul 03760 Republic of Korea
| |
Collapse
|
23
|
Dornelles HS, Sabatini CA, Adorno MAT, Silva EL, Lee PH, Varesche MBA. Microbial synergies drive simultaneous biodegradation of ethoxy and alkyl chains of Nonylphenol Ethoxylate in fluidized bed reactors. CHEMOSPHERE 2024; 358:142084. [PMID: 38642772 DOI: 10.1016/j.chemosphere.2024.142084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/02/2024] [Accepted: 04/18/2024] [Indexed: 04/22/2024]
Abstract
The widely-used surfactant Nonylphenol Ethoxylate (NPEO) produces endocrine-disrupting compounds during biodegradation, with these byproducts being more harmful than untreated NPEO. This study investigates the effectiveness of a Fluidized Bed Reactor (FBR) in reducing the production of 4-Nonylphenol (4-NP) during the biodegradation of NPEO. Two identical FBR filled with sand were used to assess the NPEO degradation and to enhance the microbial consortia capable of breaking down the complex byproducts, ethanol and fumarate were introduced as co-substrates. Our findings demonstrate the significant potential of the FBR, especially when coupled with fumarate, for enhancing the surfactant degradation. It outperforms the efficiency achieved with ethanol as the primary electron donor, albeit with a higher rate of byproduct production. Microbial community taxonomy and metabolic prediction revealed the high abundance of Geobacter (1.51-31.71%) and Methanobacterium (1.08-13.81%) in non-conductive sand. This may hint a new metabolic interaction and expand our understanding of Direct Interspecies Electron Transfer (DIET) in bioreactors applied to micropollutants degradation. Such an intricate relationship between facultative and anaerobes working together to simultaneously biodegrade the ethoxy and alkyl chains presents a new perspective on NPEO degradation and can potentially be extended to other micropollutants.
Collapse
Affiliation(s)
- Henrique S Dornelles
- Department of Hydraulics and Sanitation, School of Engineering, University of São Paulo, Av. João Dagnone - 1100, 13563-120, São Carlos, São Paulo, Brazil; Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, Imperial College Road, SW7 2BU, London, England, United Kingdom
| | - Carolina A Sabatini
- Department of Hydraulics and Sanitation, School of Engineering, University of São Paulo, Av. João Dagnone - 1100, 13563-120, São Carlos, São Paulo, Brazil
| | - Maria A T Adorno
- Department of Hydraulics and Sanitation, School of Engineering, University of São Paulo, Av. João Dagnone - 1100, 13563-120, São Carlos, São Paulo, Brazil
| | - Edson L Silva
- Department of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luiz, Km 235, SP 310, 13565-905, São Carlos, São Paulo, Brazil
| | - Po-Heng Lee
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, Imperial College Road, SW7 2BU, London, England, United Kingdom
| | - Maria Bernadete A Varesche
- Department of Hydraulics and Sanitation, School of Engineering, University of São Paulo, Av. João Dagnone - 1100, 13563-120, São Carlos, São Paulo, Brazil.
| |
Collapse
|
24
|
Su X, Li T, Zhu X, Zheng P, Pan H, Guo H. Exploring the impact of nonylphenol exposure on Litopenaeus vannamei at the histological and molecular levels. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116475. [PMID: 38781889 DOI: 10.1016/j.ecoenv.2024.116475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Nonylphenol (NP) is one of the common pollutants in the environment that have toxic effects on aquatic animals. Nevertheless, little is known about the possible toxicity mechanism of NP on the hepatopancreas of Litopenaeus vannamei. In the present study, the detrimental effects of NP on the hepatopancreas of the L. vannamei were explored at the histological and transcriptomic levels. The findings indicated that after NP exposed for 3, 12, and 48 h, the hepatopancreas histology was changed significantly. Transcriptomic analysis showed that a total of 4302, 3651, and 4830 differentially expressed genes (DEGs) were identified at 3, 12, and 48 h following NP exposure. All these DEGs were classified into 12 clusters according to the expression patterns at different time points. GO and KEGG enrichment analyses of DEGs were also performed, immunological, metabolic, and inflammatory related pathways, including arachidonic acid metabolism (ko00590), the PPAR signaling pathway (ko03320), and the regulation of TRP channels by inflammatory mediators (ko04750) were significantly enriched. Six DEGs were selected for validation by quantitative real-time PCR (qRT-PCR) and the results confirmed the reliability of transcriptome data. All results indicated that NP is toxic to L. vannamei by damaging the histopathological structure and disrupting the biological function. The findings would provide a theoretical framework for lowering or limiting the detrimental impacts of NP on aquaculture and help us to further study the molecular toxicity of NP in crustaceans.
Collapse
Affiliation(s)
- Xianbin Su
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, People's Republic of China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang 524025, People's Republic of China
| | - Teng Li
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, People's Republic of China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang 524025, People's Republic of China; Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, People's Republic of China
| | - Xiaowen Zhu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, People's Republic of China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang 524025, People's Republic of China
| | - Peihua Zheng
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, People's Republic of China
| | - Huakang Pan
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, People's Republic of China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang 524025, People's Republic of China
| | - Hui Guo
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, People's Republic of China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang 524025, People's Republic of China.
| |
Collapse
|
25
|
Lalonde B, Garron C. NP, OP and Derivatives in Freshwater Sediment Downstream of Textile Associated Municipal Wastewater Discharges. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 86:375-382. [PMID: 38775938 PMCID: PMC11142977 DOI: 10.1007/s00244-024-01066-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/10/2024] [Indexed: 06/02/2024]
Abstract
Alkylphenol ethoxylates comprise of many anthropogenic chemicals such as nonylphenol (NP), octylphenol (OP) and nonylphenol ethoxylates (NPEOs). The objectives of this study were to assess the frequency and magnitude of detections of 4-NP, OP and NPEOs in Canadian sediment downstream of textile associated municipal wastewater treatment plants (MWWTPs) to determine if regulatory actions have had a beneficial impact on the receiving environment. Surficial sediments were obtained in four locations in the province of Québec (Canada) and were analyzed for nonylphenol, nonylphenol monoethoxylates (NP1EO), nonylphenol diethoxylates (NP2EO) and octylphenol from 2015 to 2018. Individual concentrations of the compounds varied from non detect to 419 ng/g. Of the four compounds analyzed, NP was detected the most frequently with a 75% detection rate while OPs were not detected in any of the samples. Since the Canadian regulatory actions have drastically reduced NP/NPEOs usage in textile mill factories and manufactured products, the potential source of these compounds in sediment for this study could stem from the outfall from the MWWTPs but not related to textile mills as well as from the usage of these compounds as formulants in pesticide products. Lastly, there were no exceedances to the Canadian Sediment Quality guideline toxic equivalency approach (TEQ) of 1400 ng/g or the 1310 ng/g guideline for NP in freshwater sediment from the European Scientific Committee on Health, Environmental and Emerging Risks. We hypothesize that the significant concentrations of these compounds in sediment may be a relevant and continuous source of 4NP in surface waters due to resuspension of sediment in the water column.
Collapse
Affiliation(s)
- Benoit Lalonde
- Water Quality Monitoring and Surveillance Division, Science and Technology Branch, Environment and Climate Change Canada, 45 Alderney Dr, Dartmouth, NS, B2Y2N6, Canada.
| | - Christine Garron
- Water Quality Monitoring and Surveillance Division, Science and Technology Branch, Environment and Climate Change Canada, 45 Alderney Dr, Dartmouth, NS, B2Y2N6, Canada
| |
Collapse
|
26
|
Zhao Y, Ji J, Wu Y, Chen S, Xu M, Cao X, Liu H, Wang Z, Bi H, Guan G, Tang R, Tao H, Zhang H. Nonylphenol and its derivatives: Environmental distribution, treatment strategy, management and future perspectives. CHEMOSPHERE 2024; 352:141377. [PMID: 38346514 DOI: 10.1016/j.chemosphere.2024.141377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/17/2024] [Accepted: 02/02/2024] [Indexed: 02/20/2024]
Abstract
In recent years, emerging pollutants, including nonylphenol (NP) and nonylphenol ethoxylate (NPE), have become a prominent topic. These substances are also classified as persistent organic pollutants. NP significantly affects the hormone secretion of organisms and exhibits neurotoxicity, which can affect the human hippocampus. Therefore, various countries are paying increased attention to NP regulation. NPEs are precursors of NPs and are widely used in the manufacture of various detergents and lubricants. NPEs can easily decompose into NPs, which possess strong biological and environmental toxicity. This review primarily addresses the distribution, toxicity mechanisms and performance, degradation technologies, management policies, and green alternative reagents of NPs and NPEs. Traditional treatment measures have been unable to completely remove NP from wastewater. With the progressively tightening management and regulatory policies, identifying proficient and convenient treatment methods and a sustainable substitute reagent with comparable product effectiveness is crucial.
Collapse
Affiliation(s)
- Yuqing Zhao
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Jie Ji
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Yao Wu
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Shiqi Chen
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Mengyao Xu
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Xiang Cao
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Hanlin Liu
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Zheng Wang
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Hengyao Bi
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Guian Guan
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Ruixi Tang
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Hong Tao
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - He Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China.
| |
Collapse
|
27
|
Teixeira RM, Sakamoto IK, Motteran F, Camargo FP, Varesche MBA. Removal of nonylphenol ethoxylate surfactant in batch reactors: emphasis on methanogenic potential and microbial community characterization under optimized conditions. ENVIRONMENTAL TECHNOLOGY 2024; 45:1343-1357. [PMID: 36352347 DOI: 10.1080/09593330.2022.2143287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
ABSTRACTNonylphenol ethoxylate (NPE) is an endocrine-disrupting chemical that has bioaccumulative, persistent and toxic characteristics in different environmental matrices and is difficult to remove in sewage treatment plants. In this study, the effects of the initial concentration of NPE (0.2 ± 0.03 - 3.0 ± 0.02 mg. L-1) and ethanol (73.9 ± 5.0-218.6 ± 10.6 mg. L-1) were investigated using factorial design. Assays were carried out in anaerobic batch reactors, using the Zinder basal medium, yeast extract (200 mg. L-1), vitamin solution and sodium bicarbonate (10% v/v). The optimal conditions were 218.56 mg.L-1 of ethanol and 1596.51 µg.L-1 of NPE, with 92% and 88% of NPE and organic matter removal, respectively, and methane yield (1689.8 ± 59.6 mmol) after 450 h of operation. In this condition, bacteria potentially involved in the degradation of this surfactant were identified in greater relative abundance, such as Acetoanaerobium (1.68%), Smithella (1.52%), Aminivibrio (0.91%), Petrimonas (0.57%) and Enterobacter (0.47%), as well as archaea Methanobacterium and Methanoregula, mainly involved in hydrogenotrophic pathway.
Collapse
Affiliation(s)
- Rômulo Mota Teixeira
- Department of Hydraulic Engineering and Sanitation, São Carlos School of Engineering (EESC), University of São Paulo (USP), São Paulo, Brazil
| | - Isabel Kimiko Sakamoto
- Department of Hydraulic Engineering and Sanitation, São Carlos School of Engineering (EESC), University of São Paulo (USP), São Paulo, Brazil
| | - Fabrício Motteran
- Department of Civil and Environmental Engineering, Federal University of Pernambuco, Recife, Brazil
| | - Franciele Pereira Camargo
- Department of Hydraulic Engineering and Sanitation, São Carlos School of Engineering (EESC), University of São Paulo (USP), São Paulo, Brazil
| | - Maria Bernadete Amâncio Varesche
- Department of Hydraulic Engineering and Sanitation, São Carlos School of Engineering (EESC), University of São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
28
|
Hwang JM, Bae JW, Lee WJ, Kwon WS. Effect of 4-nonylphenol (4-NP) on sperm function: Insights into the PI3K/PDK1/AKT signaling pathway during capacitation. Reprod Toxicol 2024; 124:108545. [PMID: 38246476 DOI: 10.1016/j.reprotox.2024.108545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/23/2024]
Abstract
4-Nonylphenol (4-NP) is an endocrine-disrupting chemical that impairs animal and human reproduction. However, the mechanisms underlying male reproductive dysfunction by 4-NP have not been fully understood. Herein, we demonstrated the effects of 4-NP on boar sperm functions and molecular mechanisms. Spermatozoa were treated with various concentrations of 4-NP (0, 10, 25, 50, 75, and 100 μM) during capacitation. Then, we evaluated sperm motility, capacitation status, intracellular ATP level, and cell viability. Finally, we measured the expression of phosphorylated protein kinase A (PKA), tyrosine phosphorylation, and proteins related to the phosphatidylinositol 3 kinase (PI3K)/phosphoinositide-dependent kinase-1 (PDK1)/protein kinase B (AKT) signaling pathways following exposure to 4-NP. Sperm motility and motion kinematics were reduced by 4-NP, whereas intracellular ATP levels were increased significantly in a dose-dependent manner. Furthermore, the expression levels of p-PI3K, PTEN, p-PDK1, AKT, and p-AKT exhibited a significant dose-dependent increase. Moreover, abnormal activation of PKA and tyrosine phosphorylation were observed. Specifically, the ∼24 kDa p-PKA substrate demonstrated a significant reduction following exposure to 4-Np. In addition, the ∼18 kDa p-PKA substrate and tyrosine-phosphorylated proteins displayed a significant dose-dependent increase after exposure to 4-NP. Our results suggest that 4-NP may induce detrimental effects on sperm functions through abnormal changes in PKA activity and tyrosine phosphorylation during capacitation, possibly through unusual alteration of the PI3K/PDK1/AKT signaling pathway. Therefore, 4-NP must be cautiously used considering its reproductive toxicity.
Collapse
Affiliation(s)
- Ju-Mi Hwang
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Jeong-Won Bae
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Woo-Jin Lee
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Woo-Sung Kwon
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea; Department of Animal Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea; Research Institute for Innovative Animal Science, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea.
| |
Collapse
|
29
|
Zhou S, Wang L, Liu J, Zhang C, Liu X. Microplastics' toxic effects and influencing factors on microorganisms in biological wastewater treatment units. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:1539-1553. [PMID: 38557717 DOI: 10.2166/wst.2024.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/03/2024] [Indexed: 04/04/2024]
Abstract
Prior to entering the water body, microplastics (MPs) are mostly collected at the sewage treatment plant and the biological treatment unit is the sewage treatment facility's central processing unit. This review aims to present a comprehensive analysis of the detrimental impacts of MPs on the biological treatment unit of a sewage treatment plant and it covers how MPs harm the effluent quality of biological treatment processes. The structure of microbial communities is altered by MPs presence and additive release, which reduces functional microbial activity. Extracellular polymers, oxidative stress, and enzyme activity are explored as micro views on the harmful mechanism of MPs on microorganisms, examining the toxicity of additives released by MPs and the harm caused to microorganisms by harmful compounds that have been adsorbed in the aqueous environment. This article offers a theoretical framework for a thorough understanding of the potential problems posed by MPs in sewage treatment plants and suggests countermeasures to mitigate those risks to the aquatic environment.
Collapse
Affiliation(s)
- Sijie Zhou
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, Tianjin 300457, China; Sijie Zhou and Lili Wang contributed equally to this work
| | - Lili Wang
- Waterway Transportation Environmental Protection Technology Laboratory, Tianjin Institute of Water Transportation Engineering Science and Research, Ministry of Transportation, Tianjin 300456, China; Sijie Zhou and Lili Wang contributed equally to this work
| | - Jin Liu
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Chuanguo Zhang
- Waterway Transportation Environmental Protection Technology Laboratory, Tianjin Institute of Water Transportation Engineering Science and Research, Ministry of Transportation, Tianjin 300456, China
| | - Xianbin Liu
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, Tianjin 300457, China E-mail:
| |
Collapse
|
30
|
Swenson JT, Ginder-Vogel M, Remucal CK. Influence of Divalent Cation Inhibition and Dissolved Organic Matter Enhancement on Phenol Oxidation Kinetics by Manganese Oxides. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2479-2489. [PMID: 38265036 DOI: 10.1021/acs.est.3c08273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Manganese oxides can oxidize organic compounds, such as phenols, and may potentially be used in passive water treatment applications. However, the impact of common water constituents, including cations and dissolved organic matter (DOM), on this reaction is poorly understood. For example, the presence of DOM can increase or decrease phenol oxidation rates with manganese oxides. Furthermore, the interactions of DOM and cations and their impact on the phenol oxidation rates have not been examined. Therefore, we investigated the oxidation kinetics of six phenolic contaminants with acid birnessite in ten whole water samples. The oxidation rate constants of 4-chlorophenol, 4-tert-octylphenol, 4-bromophenol, and phenol consistently decreased in all waters relative to buffered ultrapure water, whereas the oxidation rate of bisphenol A and triclosan increased by up to 260% in some waters. Linear regression analyses and targeted experiments demonstrated that the inhibition of phenol oxidation is largely determined by cations. Furthermore, quencher experiments indicated that radical-mediated interactions from oxidized DOM contributed to enhanced oxidation of bisphenol A. The variable changes between compounds and water samples demonstrate the challenge of accurately predicting contaminant transformation rates in environmentally relevant systems based on experiments conducted in the absence of natural water constituents.
Collapse
Affiliation(s)
- Jenna T Swenson
- Environmental Chemistry and Technology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Matthew Ginder-Vogel
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Christina K Remucal
- Environmental Chemistry and Technology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
31
|
Suwannarin N, Nishihama Y, Isobe T, Nakayama SF. Urinary concentrations of environmental phenol among pregnant women in the Japan Environment and Children's Study. ENVIRONMENT INTERNATIONAL 2024; 183:108373. [PMID: 38088018 DOI: 10.1016/j.envint.2023.108373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 01/25/2024]
Abstract
Humans are exposed to various bisphenols, alkylphenols and nitrophenols through dietary intake, food packaging and container materials, indoor and outdoor air/dust. This study aimed to evaluate exposure of Japanese pregnant women to environmental phenols by measuring target compounds in urine samples. From a cohort of the Japan Environment and Children's Study, 4577 pregnant women were selected. Bisphenol A (BPA), bisphenol S (BPS), bisphenol F (BPF), bisphenol AF (BPAF), para-nitrophenol (PNP), 3-methyl-4-nitrophenol (PNMC), branched 4-nonylphenol (4-NP), linear 4-nonylphenol and 4-tert-octylphenol (4-t-OP) were analysed using a high-performance liquid chromatograph coupled to a triple-quadrupole mass spectrometer. The urinary metabolite data were combined with a questionnaire to examine the determinants of phenol exposure by machine learning. The estimated daily intake (EDI) and hazard quotient (HQ) of BPA were calculated. PNP (68.2%) and BPA (71.5%) had the highest detection frequencies, with median concentrations of 0.76 and 0.46 μg/g creatinine, respectively. PNMC, BPS, BPF and 4-NP were determined in 24.9%, 11.9%, 1.3% and 0.4% of samples, respectively, whereas BPAF (0.02%) and 4-t-OP (0.02%) were only determined in a few samples. The PNP concentrations measured in this study were comparable with those reported in previous studies, whereas the BPA concentrations were lower than those reported previously worldwide. The EDI of BPA was 0.014 μg/kg body weight/day. Compared with the tolerable daily intake set by the German Federal Institute for Risk Assessment, the median (95th percentile) HQ was 0.044 (0.2). This indicates that the observed levels of BPA exposure pose a negligible health risk to Japanese pregnant women. Determinants of bisphenol and nitrophenol exposure could not be identified by analysing the questionnaire solely, suggesting that biological measurement is necessary to assess exposure of pregnant women to bisphenols and nitrophenols. This is the first study to report environmental phenol exposure of Japanese pregnant women on a nationwide scale.
Collapse
Affiliation(s)
- Neeranuch Suwannarin
- Japan Environment and Children's Study Office, Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-0086, Japan.
| | - Yukiko Nishihama
- Japan Environment and Children's Study Office, Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-0086, Japan; Paediatric Environmental Medicine, Institute of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8577, Japan.
| | - Tomohiko Isobe
- Japan Environment and Children's Study Office, Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-0086, Japan.
| | - Shoji F Nakayama
- Japan Environment and Children's Study Office, Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-0086, Japan.
| |
Collapse
|
32
|
Repková A, Mišľanová C, Hrabčáková J, Masár M, Slezáková Z, Žemlička L, Valachovičová M. Relationship between Eating Habits and 4-Nonylphenol Concentration in Breast Milk of Women in Slovakia. Life (Basel) 2023; 13:2361. [PMID: 38137962 PMCID: PMC10744535 DOI: 10.3390/life13122361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/07/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
4-Nonylphenol belongs to the alkylphenol group of chemicals, and its high occurrence in the environment can cause an adverse effect on human health. Breast milk can serve as a marker to take measure of human exposure to these chemicals through different routes of exposure. In this work, the influence of selected factors (the kind of water drank by the mothers; the consumption of fish, pork, and beef; wearing gloves; using nail polish, gel nails, vitamins, and medication) on the concentration on 4-nonylphenol in 89 breast milk samples was studied. The concentrations of nonylphenol in breast milk were determined by HPLC with fluorescence detection. The lowest and highest concentrations of 4-nonylphenol in breast milk were 0.97 ng/mL and 4.37 ng/mL, respectively. Statistical significance was observed for the consumption of pork (p = 0.048) and fish (0.041) in relation to the 4-nonylphenol concentration. Certain parameters (use of gel nails, beef consumption, and vitamin supplementation) were at the border of statistical significance (p = 0.06). Other parameters did not show any statistical significance. The results showed that breast milk in Slovakia does not contain a harmful dose of 4-nonylphenol and does not cause health problems. But it is necessary to continue this research and perform extended screening on a larger number of samples.
Collapse
Affiliation(s)
- Adriana Repková
- Department of Midwifery, Faculty of Nursing and Professional Health Studies, Slovak Medical University, 833 03 Bratislava, Slovakia; (A.R.); (J.H.)
| | - Csilla Mišľanová
- Institute of Nutrition, Faculty of Nursing and Professional Health Studies, Slovak Medical University, 833 03 Bratislava, Slovakia;
| | - Janka Hrabčáková
- Department of Midwifery, Faculty of Nursing and Professional Health Studies, Slovak Medical University, 833 03 Bratislava, Slovakia; (A.R.); (J.H.)
| | - Marián Masár
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, 842 15 Bratislava, Slovakia;
| | - Zuzana Slezáková
- Department of Nursing, Faculty of Nursing and Professional Health Studies, Slovak Medical University, 833 03 Bratislava, Slovakia;
| | - Lukáš Žemlička
- Department of Nutrition and Food Quality Assessment, Institute of Food Science and Nutrition, Faculty of Chemical and Food Technology STU, 812 37 Bratislava, Slovakia;
| | - Martina Valachovičová
- Institute of Nutrition, Faculty of Nursing and Professional Health Studies, Slovak Medical University, 833 03 Bratislava, Slovakia;
| |
Collapse
|
33
|
Maddela NR, Kakarla D, Venkateswarlu K, Megharaj M. Additives of plastics: Entry into the environment and potential risks to human and ecological health. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119364. [PMID: 37866190 DOI: 10.1016/j.jenvman.2023.119364] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 10/03/2023] [Accepted: 10/14/2023] [Indexed: 10/24/2023]
Abstract
A steep rise in global plastic production and significant discharge of plastic waste are expected in the near future. Plastics pose a threat to the ecosystem and human health through the generation of particulate plastics that act as carriers for other emerging contaminants, and the release of toxic chemical additives. Since plastic additives are not covalently bound, they can freely leach into the environment. Due to their occurrence in various environmental settings, the additives exert significant ecotoxicity. However, only 25% of plastic additives have been characterized for their potential ecological concern. Despite global market statistics highlighting the substantial environmental burden caused by the unrestricted production and use of plastic additives, information on their ecotoxicity remains incomplete. By focusing on the ecological impacts of plastic additives, the present review aims to provide detailed insights into the following aspects: (i) diversity and occurrence in the environment, (ii) leaching from plastic materials, (iii) trophic transfer, (iv) human exposure, (v) risks to ecosystem and human health, and (vi) legal guidelines and mitigation strategies. These insights are of immense value in restricting the use of toxic additives, searching for eco-friendly alternatives, and establishing or revising guidelines on plastic additives by global health and environmental agencies.
Collapse
Affiliation(s)
- Naga Raju Maddela
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Salud, Universidad Técnica de Manabí, Portoviejo, 130105, Ecuador
| | - Dhatri Kakarla
- University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu, 515003, India
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), College of Engineering Science and Environment, ATC Building, The University of Newcastle, Callaghan, NSW, 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), The University of Newcastle, ATC Building, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
34
|
Zhang Y, Kong X, Yang Y, Ran Y. Effects of sedimentary organic matter degradation and structure on nonylphenol degradation by sodium persulfate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166754. [PMID: 37683871 DOI: 10.1016/j.scitotenv.2023.166754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/17/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
The structure and constituents of sedimentary organic matter (SOM) in the degradation of benzene ring-14C labeled 4-nonylphenol (14C-NP) by sodium persulfate (Na2S2O8) were investigated. Na2S2O8 mineralized over 84 % of 14C-NP to 14CO2, and no parent unlabeled 4-nonylphenol (NP) compounds were detected in the water-soluble/supernatant phase or extractable residues. Organic carbon (OC) was sequentially separated from six sediment samples collected from the Pearl River (BET), estuary (GSD), continental shelf (S11 and S21), and deep sea (M9 and M10). Demineralized OC (DM), unstable OC (USOC), nonhydrolyzable OC (NHC), and resistant OC (ROC) were obtained and characterized using solid-state 13C nuclear magnetic resonance (SS-NMR). The correlations among USOC, NHC, and the degradation kinetic constant of 14C-NP (kNP) were significant (R2 > 0.86, p < 0.01), indicating that USOC and NHC were the main factors controlling 14C-NP degradation. SOM structure and constituent analyses indicated that O-alkyl C + OCH3/NCH C + COO/NC=O C and carbohydrate + protein were positively related to Ln(kNP) (R2 > 0.72, p < 0.05) because these structures were unstable. However, the stable structures (Alkyl C and Arom CC) and constituents (sporopollenin, algaenan, and char) hindered 14C-NP degradation because they were negatively related to Ln(kNP) (R2 > 0.81, p < 0.05). The OC removal rate was positively correlated with 14C-NP degradation (R2 > 0.86, p < 0.01), indicating that the NP was primarily degraded in parallel with the breakdown of SOM. Stoichiometric analysis showed that Na2S2O8 effectively oxidized over 58 % of the OC to CO2, and the electron transfer efficiency was 17.2-69.5 %. This study is the first to emphasize the importance of SOM degradation, structure, and constituents in the degradation of NP by persulfate.
Collapse
Affiliation(s)
- Yongli Zhang
- State Key Laboratory of Organic Geochemistry, Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianglan Kong
- State Key Laboratory of Organic Geochemistry, Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Yang
- State Key Laboratory of Organic Geochemistry, Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Yong Ran
- State Key Laboratory of Organic Geochemistry, Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China.
| |
Collapse
|
35
|
Xie R, Wang X, Xu Y, Zhang L, Ma M, Wang Z. In vitro to in vivo extrapolation for predicting human equivalent dose of phenolic endocrine disrupting chemicals: PBTK model development, biological pathways, outcomes and performance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165271. [PMID: 37422235 DOI: 10.1016/j.scitotenv.2023.165271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/12/2023] [Accepted: 06/30/2023] [Indexed: 07/10/2023]
Abstract
In vitro to in vivo (IVIVE) leverages in vitro high-throughput biological responses to predict the corresponding in vivo exposures and further estimate the human safe dose. However, for phenolic endocrine disrupting chemicals (EDCs) linked with complicated biological pathways and adverse outcomes (AO), such as bisphenol A (BPA) and 4-nonylphenol (4-NP), plausible estimation of human equivalent doses (HED) by IVIVE approaches considering various biological pathways and endpoints is still challenging. To explore the capabilities and limitations of IVIVE, this study conducted physiologically based toxicokinetic (PBTK)-IVIVE approaches to derive pathway-specific HEDs using BPA and 4-NP as examples. In vitro HEDs of BPA and 4-NP varied in different adverse outcomes, pathways, and testing endpoints and ranged from 0.0013 to 1.0986 mg/kg bw/day and 0.0551 to 1.7483 mg/kg bw/day, respectively. In vitro HEDs associated with reproductive AOs initiated by PPARα activation and ER agonism were the most sensitive. Model verification suggested the potential of using effective in vitro data to determine reasonable approximation of in vivo HEDs for the same AO (fold differences of most AOs ranged in 0.14-2.74 and better predictions for apical endpoints). Furthermore, system-specific parameters of cardiac output and its fraction, body weight, as well as chemical-specific parameters of partition coefficient and liver metabolic were most sensitive for the PBTK simulations. The results indicated that the application of fit for-purpose PBTK-IVIVE approach could provide credible pathway-specific HEDs and contribute to high throughput prioritization of chemicals in a more realistic scenario.
Collapse
Affiliation(s)
- Ruili Xie
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaodan Wang
- China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Yiping Xu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Lei Zhang
- China National Center for Food Safety Risk Assessment, Beijing 100022, China.
| | - Mei Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zijian Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
36
|
Zhang Y, Kong X, Yang Y, Ran Y. Effect of organic carbon structures on the degradation of nonylphenol by hydrogen peroxide in sediment-water system. JOURNAL OF ENVIRONMENTAL QUALITY 2023; 52:1166-1177. [PMID: 37683113 DOI: 10.1002/jeq2.20510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/17/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
A laboratory experiment is conducted to investigate the effects of organic carbon (OC) from riverine and marine sediments on the degradation of ring-14 C-labeled nonylphenol (14 C-NP) by hydrogen peroxide (H2 O2 ). Researchers have isolated demineralized OC (DM) before and after oxidation, namely, DM and resistant OC (ROC) fractions, respectively. The structures of DM and ROC are characterized using solid-state 13 C nuclear magnetic resonance. Unstable structures (O-alkyl, OCH3 /NCH, and COO/NC=O) show a significant and positive correlation with the degradation of 14 C-NP (R2 > 0.73, p < 0.05), thus suggesting that the NP absorbed in the unstable structures is easily degraded because of the decomposition of unstable components. The stable structures (alkyl C and non-protonated aromatic C [Arom C─C]) exhibit a significant and negative correlation with the degradation of 14 C-NP (R2 > 0.69, p < 0.05), thus suggesting that the NP absorbed and protected in these resistant structures is minimally degraded. The significant correlations among the degradation kinetic parameters (Frap and Fslow ), OC structures (Falip and Farom ), and microporosity further illustrate the important protective roles of OC structures and micropores in the degradation of 14 C-NP by H2 O2 (R2 > 0.69, p < 0.05). The parent NP fraction that desorbed into the aqueous solution or extracted is completely degraded, indicating preferential degradation of the easily desorbed NP. This study provides important insights into the NP degradation mechanism in sediment-water systems, particularly regarding sediment OC structures and microporosity.
Collapse
Affiliation(s)
- Yongli Zhang
- State Key Laboratory of Organic Geochemistry, Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xianglan Kong
- State Key Laboratory of Organic Geochemistry, Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu Yang
- State Key Laboratory of Organic Geochemistry, Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, China
| | - Yong Ran
- State Key Laboratory of Organic Geochemistry, Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, China
| |
Collapse
|
37
|
Ceylan T, Akin AT, Karabulut D, Tan FC, Taşkiran M, Yakan B. Therapeutic effect of thymoquinone on brain damage caused by nonylphenol exposure in rats. J Biochem Mol Toxicol 2023; 37:e23471. [PMID: 37466128 DOI: 10.1002/jbt.23471] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 06/24/2023] [Accepted: 07/08/2023] [Indexed: 07/20/2023]
Abstract
Nonylphenol (NP), causes various harmful effects such as cognitive impairment and neurotoxicity. Thymoquinone (TQ), has antioxidant, anti-inflammatory, and neuroprotective properties. In this study, our aim is to investigate the effects of TQ on the brain damage caused by NP. Corn oil was applied to the control group. NP (100 mg/kg/day) was administered to the NP and NP + TQ groups for 21 days. TQ (5 mg/kg/day) was administered to the NP + TQ and TQ groups for 7 after 21 days. At the end of the experiment, the new object recognition test was applied to the rats and the rats were killed and their brain tissues were removed. Sections taken from brain tissues were stained with hematoxylin-eosin for histopathological evaluation. In addition, neuronal nuclei (NeuN), glial fibrillary acidic protein (GFAP), Cas-3, and nerve growth factor (NGF) immunoreactivities were evaluated in brain tissue sections. In addition, malondialdehyde (MDA), superoxide dismutase (SOD), and catalase (CAT) activities were determined. Comet assay was applied to determine DNA damage in cells. The results of our study showed that NP, caused behavioral disorders and damage to the cerebral cortex in rats. This damage in the form of neuron degeneration seen in the cortex was associated with apoptosis involving Cas-3 activation, increased DNA damage, and free oxygen radicals. NP, SOD, and CAT caused a decrease in enzyme activities. In addition, the cellular protein NeuN was decreased, astrocytosis-associated GFAP was increased, and growth factor NGF was decreased. When all our evaluations are taken together, treatment with TQ showed an ameliorative effect on the behavioral impairment and brain damage caused by NP exposure.
Collapse
Affiliation(s)
- Tayfun Ceylan
- Department of Histology and Embryology, Faculty of Dentistry, Cappadocia University, Nevsehir, Turkey
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Ali Tuğrul Akin
- Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul, Turkey
| | - Derya Karabulut
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Fazile Cantürk Tan
- Department of Biophysics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Mehmet Taşkiran
- Department of Biology, Faculty of Science, Erciyes University, Kayseri, Turkey
| | - Birkan Yakan
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
38
|
Li Y, Meenatchisundaram K, Rajendran K, Gohil N, Kumar V, Singh V, Solanki MK, Harirchi S, Zhang Z, Sindhu R, Taherzadeh MJ, Awasthi MK. Sustainable Conversion of Biowaste to Energy to Tackle the Emerging Pollutants: A Review. CURRENT POLLUTION REPORTS 2023; 9:660-679. [DOI: 10.1007/s40726-023-00281-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/24/2023] [Indexed: 01/11/2025]
|
39
|
Ribeiro CM, de Oliveira FCB, Pereira SA, Moraes ACRO, Beserra BTS, Dias JC, da Silva NG, Lacerda MG, Milton FA, Neves FDAR, Coelho MS, Amato AA. The effect of long-term exposure to nonylphenol at environmentally relevant levels on mouse liver and adipose tissue. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104216. [PMID: 37437749 DOI: 10.1016/j.etap.2023.104216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/13/2022] [Accepted: 07/07/2023] [Indexed: 07/14/2023]
Abstract
Exposure to the xenoestrogen nonylphenol (NP) during critical windows of development leads to metabolic abnormalities in adult life. However, less is known about NP exposure outside the developmental period on metabolic outcomes. We investigated the effect of prolonged exposure to NP after sexual maturity and at environmentally relevant concentrations below the 'no observable adverse effects level' (0.5 and 2.5 mg/kg/d). Male Swiss mice fed a normal-fat diet exposed to 2.5 mg/kg/d NP showed reduced weight gain and hepatic fat content. In male and female C57BL/6 mice fed a high-fat diet, NP exposure modified the mRNA levels of estrogen receptor α (Esr1) and adipose lineage markers in a sexually dimorphic and adipose depot-dependent pattern. Moreover, in primary female but not male stromal vascular cells from C57BL/6 mouse inguinal WAT induced to differentiate into adipocytes, NP upregulated Fabp4 expression. Low-level exposure to NP outside critical developmental windows may affect the metabolic phenotype distinctly. DATA AVAILABILITY STATEMENT: All data not included in the manuscript, such as raw results, are available upon request and should be addressed to AAA.
Collapse
Affiliation(s)
- Carolina Martins Ribeiro
- Laboratory of Molecular Pharmacology, School of Health Sciences, University of Brasilia, Brasilia, Brazil
| | | | - Sidney Alcantara Pereira
- Laboratory of Molecular Pharmacology, School of Health Sciences, University of Brasilia, Brasilia, Brazil
| | | | - Bruna Teles Soares Beserra
- Laboratory of Molecular Pharmacology, School of Health Sciences, University of Brasilia, Brasilia, Brazil
| | - Jamison Cordeiro Dias
- Laboratory of Molecular Pharmacology, School of Health Sciences, University of Brasilia, Brasilia, Brazil
| | | | - Mariella Guimarães Lacerda
- Laboratory of Molecular Pharmacology, School of Health Sciences, University of Brasilia, Brasilia, Brazil
| | - Flora Aparecida Milton
- Laboratory of Molecular Pharmacology, School of Health Sciences, University of Brasilia, Brasilia, Brazil
| | | | - Michella Soares Coelho
- Laboratory of Molecular Pharmacology, School of Health Sciences, University of Brasilia, Brasilia, Brazil
| | - Angelica Amorim Amato
- Laboratory of Molecular Pharmacology, School of Health Sciences, University of Brasilia, Brasilia, Brazil.
| |
Collapse
|
40
|
Rapp-Wright H, Rodríguez-Mozaz S, Álvarez-Muñoz D, Barceló D, Regan F, Barron LP, White B. International Comparison, Risk Assessment, and Prioritisation of 26 Endocrine Disrupting Compounds in Three European River Catchments in the UK, Ireland, and Spain. Molecules 2023; 28:5994. [PMID: 37630246 PMCID: PMC10458904 DOI: 10.3390/molecules28165994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Endocrine-disrupting compounds (EDCs) constitute a wide variety of chemistries with diverse properties that may/can pose risks to both humans and the environment. Herein, a total of 26 compounds, including steroids, flame retardants, and plasticizers, were monitored in three major and heavily urbanized river catchments: the R. Liffey (Ireland), the R. Thames (UK), and the R. Ter (Spain), by using a single solid-phase extraction liquid chromatography-mass spectrometry (SPE-LC-MS/MS) method. Occurrence and frequency rates were investigated across all locations over a 10-week period, with the highest concentration obtained for the flame retardant tris(2-chloroethyl) phosphate (TCEP) at 4767 ng∙L-1 in the R. Thames in Central London. Geographical variations were observed between sites and were partially explained using principal component analysis (PCA) and hierarchical cluster analysis (HCA). In particular, discrimination between the R. Ter and the R. Thames was observed based on the presence and concentration of flame retardants, benzotriazole, and steroids. Environmental risk assessment (ERA) across sites showed that caffeine, a chemical marker, and bisphenol A (BPA), a plasticizer, were classified as high-risk for the R. Liffey and R. Thames, based on relative risk quotients (rRQs), and that caffeine was classified as high-risk for the R. Ter, based on RQs. The total risks at each location, namely ΣRQriver, and ΣrRQriver, were: 361, 455, and 723 for the rivers Liffey, Thames, and Ter, respectively. Caffeine, as expected, was ubiquitous in all 3 urban areas, though with the highest RQ observed in the R. Ter. High contributions of BPA were also observed across the three matrices. Therefore, these two compounds should be prioritized independently of location. This study represents a comprehensive EDC monitoring comparison between different European cities based on a single analytical method, which allowed for a geographically independent ERA prioritization to be performed.
Collapse
Affiliation(s)
- Helena Rapp-Wright
- DCU Water Institute, Water Hub SG57, Dublin City University, Glasnevin, Dublin 9, Dublin, Ireland; (F.R.); (B.W.)
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Dublin, Ireland
- MRC Centre for Environment and Health, Environmental Research Group, School of Public Health, Imperial College London, Wood Lane, London W12 0BZ, UK
| | - Sara Rodríguez-Mozaz
- Catalan Institute for Water Research (ICRA-CERCA), C/Emili Grahit 101, 17003 Girona, Spain; (S.R.-M.); (D.Á.-M.); (D.B.)
- University of Girona (UdG), 17004 Girona, Spain
| | - Diana Álvarez-Muñoz
- Catalan Institute for Water Research (ICRA-CERCA), C/Emili Grahit 101, 17003 Girona, Spain; (S.R.-M.); (D.Á.-M.); (D.B.)
- University of Girona (UdG), 17004 Girona, Spain
| | - Damià Barceló
- Catalan Institute for Water Research (ICRA-CERCA), C/Emili Grahit 101, 17003 Girona, Spain; (S.R.-M.); (D.Á.-M.); (D.B.)
- University of Girona (UdG), 17004 Girona, Spain
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Fiona Regan
- DCU Water Institute, Water Hub SG57, Dublin City University, Glasnevin, Dublin 9, Dublin, Ireland; (F.R.); (B.W.)
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Dublin, Ireland
| | - Leon P. Barron
- MRC Centre for Environment and Health, Environmental Research Group, School of Public Health, Imperial College London, Wood Lane, London W12 0BZ, UK
| | - Blánaid White
- DCU Water Institute, Water Hub SG57, Dublin City University, Glasnevin, Dublin 9, Dublin, Ireland; (F.R.); (B.W.)
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Dublin, Ireland
| |
Collapse
|
41
|
Hong Y, Chen M, Zhu Z, Liao W, Feng C, Yan Z, Qiao Y, Mei Y, Xu D. The Distribution Characteristics and Ecological Risks of Alkylphenols and the Relationships between Alkylphenols and Different Types of Land Use. TOXICS 2023; 11:579. [PMID: 37505545 PMCID: PMC10383479 DOI: 10.3390/toxics11070579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/26/2023] [Accepted: 07/01/2023] [Indexed: 07/29/2023]
Abstract
In this study, the spatial distribution characteristics of nine alkylphenols (APs) in the Yongding River and Beiyun River were analyzed. The differences in the concentrations and spatial distribution patterns of nine APs were systematically evaluated using principal component analysis (PCA). The relationships between the concentration distribution patterns and the risks associated with nine APs were investigated under various categories of land use conditions in the region. The results demonstrated that the APs were widely present in both rivers, and the pollution risks associated with the APs were more severe in the Yongding River than in the Beiyun River. The results show that the contamination risks associated with 4-NP were the most serious in the two rivers, with detection percentages of 100% and 96.3%, respectively. In the Yongding River, the APs showed a tendency of low concentration levels in the upper reaches and high levels in the middle and lower regions. Meanwhile, the overall concentration levels of the APs in the Beiyun River were relatively high. However, despite the differences between the upper and middle regions of the Yongding River, the distribution pattern of the APs in the Beiyun River was basically stable. The concentration levels and risk quotient of the APs were negatively correlated with the vegetation cover land use type and positively correlated with the cropland and unused land use types within 500 m, 1 km, and 2 km. The purpose of this study was to provide theoretical data support and a basis for AP pollution risk evaluations in the Yongding River and Beiyun River.
Collapse
Affiliation(s)
- Yajun Hong
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Miao Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Ziwei Zhu
- Wetland Research Center, Jiangxi Academy of Forestry, Nanchang 330032, China
| | - Wei Liao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- Wetland Research Center, Jiangxi Academy of Forestry, Nanchang 330032, China
| | - Chenglian Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhenfei Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- College of Environment, Hohai University, Nanjing 210098, China
| | - Yu Qiao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yaru Mei
- Wetland Research Center, Jiangxi Academy of Forestry, Nanchang 330032, China
| | - Dayong Xu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| |
Collapse
|
42
|
Weatherly S, Lyons R. The photolytic conversion of 4-nonylphenol to 4-nonylcatechol within snowpack of the Palisade Glacier, Sierra Nevada, CA, USA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162835. [PMID: 36924957 DOI: 10.1016/j.scitotenv.2023.162835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
4-Nonylphenol (4-NP), an environmental pollutant with potent ecotoxicological effects, has been discovered in significant quantities in glacial ice and snow of the Sierra Nevada Mountain Range, CA. Photolysis of 4-NP is suspected to be a major, if not the sole, breakdown pathway in snow. However, the photolysis process has yet to be characterized in detail for this unique environment. This study therefore seeks to (1) confirm the presence of the major photolysis product within snowpack and snowmelt samples from the Palisade Glacier, CA, (2) determine key photolysis parameters through laboratory assays in snow analogs, and (3) compute environmentally relevant photolysis rates in snowpack via a spectral solar irradiance model parameterized for the Palisade Glacier. The primary photooxidation product of 4-NP, 4-nonylcatechol (4-NC), was synthesized and characterized by NMR and GC-MS for use as a reference standard in the detection of 4-NC in environmental samples. 4-NP was detected in all snowpack (n = 4) and snowmelt (n = 5) samples, with concentrations of 1.05 (± 0.11) μg L-1 and 1.28 (± 0.12) μg L-1, respectively. 4-NC was detected in all snowmelt outflow samples and all but one snow samples (88 % detection frequency) but was below the limit of quantification for the given method. All samples were collected during a sampling regime at the Palisade Glacier in August of 2021. Quantum yields of photolysis at the 277 nm absorption band were determined to be 0.36 (±0.06) and 0.21 (±0.06) in ultrapure water and liquid snow, respectively. Under clear sky conditions at the Palisade Glacier, half-lives for 4-NP are estimated to range from 235 to 251 h (9.8-10.5 days) based on assays conducted in liquid snowmelt and irradiance modeling. These results suggest that the photolysis of 4-NP, and hence the production of 4-NC, is occurring at significant rates within the snowpack where 4-NC is inevitably released to downstream catchment areas via snowmelt. 4-NC is significantly more toxic than its precursor, thereby raising amplified concerns for downstream human and wildlife populations. Furthermore, the ubiquity of 4-NP among the Earth's environments presents this as an issue of potentially global concern.
Collapse
Affiliation(s)
- Shaun Weatherly
- University of Redlands, 1200 E Colton Ave., Redlands, CA 92373, United States of America.
| | - Rebecca Lyons
- University of Redlands, 1200 E Colton Ave., Redlands, CA 92373, United States of America
| |
Collapse
|
43
|
Adebesin TN, Lateef SA, Oloruntoba EO, Adejumo M. Occurrence of bisphenol A, nonylphenol, octylphenol and heavy metals in groundwater from selected communities in Ibadan, Nigeria. JOURNAL OF WATER AND HEALTH 2023; 21:740-750. [PMID: 37387339 PMCID: wh_2023_306 DOI: 10.2166/wh.2023.306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Endocrine disruptors (EDs) such as bisphenol A (BPA), nonylphenol (NP), octylphenol (OP) and heavy metals in drinking water supply represent a significant threat to human health. In Nigeria, little is known about the presence of EDs in various environmental media. This study was conducted to determine the concentrations of BPA, NP and OP in groundwater samples from selected communities in Ibadan, Nigeria. Water samples were collected from 30 different sites (26 hand-dug wells, 2 boreholes and 2 spring water sources), 15 from each of Ibadan North-West (IbNW) and Ido Local Government Area (LGA). Samples were collected in triplicate from all the sampling points and analysed for BPA, NP, OP and physicochemical parameters (including heavy metals) using a standard procedure. Bisphenol A and octylphenol were not detected in any samples, while NP was detected in spring water and the concentration (0.00279 mg/L) was less than the maximum allowable limit (0.015 mg/L). All (100.0%) boreholes in IbNW and 100.0% of the springs in Ido LGA showed iron concentrations that exceeded the permissible limit. There is a need for public awareness on the health risk of EDs in drinking water supply and appropriate preventive measures to be adopted.
Collapse
Affiliation(s)
- Taiwo Nureni Adebesin
- Department of Environmental Health Sciences, Faculty of Public Health, University of Ibadan, Ibadan, Nigeria E-mail:
| | - Suraju Adekunle Lateef
- Department of Environmental Health Sciences, Faculty of Public Health, University of Ibadan, Ibadan, Nigeria
| | | | - Mumuni Adejumo
- Department of Environmental Health Sciences, Faculty of Public Health, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
44
|
Stiefel C, Stintzing F. Endocrine-active and endocrine-disrupting compounds in food – occurrence, formation and relevance. NFS JOURNAL 2023; 31:57-92. [DOI: 10.1016/j.nfs.2023.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
45
|
Yang K, Sun J, Liu H, Yang W, Dong L. Study on the Thermogravimetric Kinetics of Dehydrated Sewage Sludge Regulated by Cationic Polyacrylamide and Sawdust. Polymers (Basel) 2023; 15:polym15102396. [PMID: 37242971 DOI: 10.3390/polym15102396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
With the continuous increase in sewage-sludge production worldwide, the pyrolytic disposal of sludge has received great attention. To build knowledge on the kinetics of pyrolysis, first, sludge was regulated using appropriate amounts of cationic polyacrylamide (CPAM) and sawdust to study their enhancing effect on dehydration. Due to the effects of the charge neutralization and skeleton hydrophobicity, a certain dose of CPAM and sawdust reduced the sludge's moisture content from 80.3% to 65.7%. Next, the pyrolysis characteristics of the dehydrated sludge regulated by CPAM and sawdust were investigated at a heating rate of 10~40 °C/min by using TGA method. The addition of sawdust enhanced the release of volatile substances and reduced the apparent activation energy of the sample. The maximum weight-loss rate decreased with the heating rate, and the DTG curves moved in the direction of high temperature. A model-free method, namely the Starink method, was adopted to calculate the apparent activation energies, which ranged from 135.3 kJ/mol to 174.8 kJ/mol. Combined with the master-plots method, the most appropriate mechanism function ultimately obtained was the nucleation-and-growth model.
Collapse
Affiliation(s)
- Kai Yang
- College of Mechanical and Electrical Engineering, Shijiazhuang University, Shijiazhuang 065000, China
- Shijiazhuang Digital Medical Rehabilitation Technology Innovation Center, Shijiazhuang 065000, China
| | - Jianqi Sun
- College of Mechanical and Electrical Engineering, Shijiazhuang University, Shijiazhuang 065000, China
- Shijiazhuang Digital Medical Rehabilitation Technology Innovation Center, Shijiazhuang 065000, China
| | - Hongning Liu
- College of Mechanical and Electrical Engineering, Shijiazhuang University, Shijiazhuang 065000, China
| | - Weichao Yang
- College of Mechanical and Electrical Engineering, Shijiazhuang University, Shijiazhuang 065000, China
| | - Lei Dong
- College of Mechanical and Electrical Engineering, Shijiazhuang University, Shijiazhuang 065000, China
- Shijiazhuang Digital Medical Rehabilitation Technology Innovation Center, Shijiazhuang 065000, China
| |
Collapse
|
46
|
Goktepe O, Onder GO, Cetindag E, Bitgen N, Cengiz Mat O, Alisan Suna P, Tufan E, Yalcın B, Baran M, Öz Gergin Ö, Yay A. The effect of different doses of nonylphenol on the blood-testicular barrier integrity, hormone level, and DNA damage in the testes of rats. Food Chem Toxicol 2023; 177:113816. [PMID: 37164249 DOI: 10.1016/j.fct.2023.113816] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/04/2023] [Accepted: 05/07/2023] [Indexed: 05/12/2023]
Abstract
Determining the molecular characteristics of the damage caused by NP exposure in the testis is very important for understanding the source of the damage and developing treatment methods accordingly. Therefore, in this study, it is aimed to evaluate the toxic effects that different doses of NP may cause in the testis, including blood-testicular barrier integrity and sperm DNA damage. For this purpose, 50 adult male Wistar albino rats were used in the study. Low, medium, and high-dose NP groups and the corn oil group were formed. After NP administration at determined doses for 15 days, the testis tissue taken under anesthesia was fixed in formaldehyde. Paraffin blocks were embedded using the routine histological tissue follow-up method. Histopathological and immunohistochemical analyses were performed by taking 5 μm thick sections from paraffin blocks. The other testicular tissue was taken for the Western blot, Elisa, and comet methods, and the findings of sperm DNA analysis and the blood-testicular barrier were examined. NP caused the seminiferous epithelium to be disorganized and have significantly fewer cells in the testes of rats in different dose NP-induced groups. Compared with the control group, mTOR, Cx43, SCF, and HSP70 protein levels were decreased, while the expression of MMP-9 levels was increased in the different NP dose groups. Furthermore, tissue testosterone and inhibin B levels and SF-1 immunoreactivity intensity gradually decreased depending on the dose increase of NP. DNA damage of testicular tissues were increased in NP groups depending on NP dose. These results suggest that it is evident that NP, a commonly used industrial chemical, is an endocrine disrupting chemical (EDC) with estrogenic activity exerting adverse effects on health and that urgent measures are needed regarding the use.
Collapse
Affiliation(s)
- Ozge Goktepe
- Department of Histology and Embryology, Erciyes University, Faculty of Medicine, 38039, Kayseri, Turkey; Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey.
| | - Gozde Ozge Onder
- Department of Histology and Embryology, Erciyes University, Faculty of Medicine, 38039, Kayseri, Turkey; Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey.
| | - Emre Cetindag
- Department of Histology and Embryology, Ömer Halisdemir University, Faculty of Medicine, Niğde, Turkey.
| | - Nazmiye Bitgen
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey; Department of Medical Biology, Erciyes University, Faculty of Medicine, 38039, Kayseri, Turkey.
| | - Ozge Cengiz Mat
- Department of Histology and Embryology, Erciyes University, Faculty of Medicine, 38039, Kayseri, Turkey.
| | - Pınar Alisan Suna
- Department of Histology and Embryology, Erciyes University, Faculty of Medicine, 38039, Kayseri, Turkey.
| | - Emre Tufan
- Department of Biophysics, Erciyes University, Faculty of Medicine, 38039, Kayseri, Turkey
| | - Betul Yalcın
- Department of Histology and Embryology, Adıyaman University, Faculty of Medicine, 02040, Adıyaman, Turkey.
| | - Munevver Baran
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey.
| | - Özlem Öz Gergin
- Department of Surgical Medicine Science, Anesthesiology and Reanimation, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey.
| | - Arzu Yay
- Department of Histology and Embryology, Erciyes University, Faculty of Medicine, 38039, Kayseri, Turkey; Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey.
| |
Collapse
|
47
|
Ni C, Pan K, Xu J, Long X, Lin F, Nie Y, Yang Y, Yu J. Effects and mechanism of perinatal nonylphenol exposure on cardiac function and myocardial mitochondria in neonatal rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 258:114977. [PMID: 37146387 DOI: 10.1016/j.ecoenv.2023.114977] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 04/18/2023] [Accepted: 05/01/2023] [Indexed: 05/07/2023]
Abstract
BACKGROUND Nonylphenol (NP) is a common environmental endocrine disruptor that is associated with the development of cardiovascular disease. However, the toxic effect of NP on mitochondria in the heart of offspring to exposed individuals remains exclusive. OBJECTIVE To investigate whether perinatal NP exposure causes mitochondrial damage in the hearts of offspring of exposed individuals and determine its mechanism of action through both animal and cell experiments. METHODS AND RESULTS For the in vivo experiment, pregnant rats were randomly divided into four groups: the control group (corn oil, C), low dose group (2.5 mg/kg/day, L-NP group), medium dose group (50 mg/kg/day, M-NP group), and high dose group (100 mg/kg/day, H-NP group), with 12 rats in each group. The NP concentration in the hearts of offspring at PND21 and PND90 increased with the increase of the NP dose. Perinatal NP exposure induced a gradual increase in systolic blood pressure in offspring at PND90. In the H-NP group, there was a high degree of inflammatory cell infiltration, myofibril breaks, inconspicuous or absent nuclei, and pink collagen deposition. At PND90, the membrane integrity of mitochondria in the H-NP group was disrupted, the cristae disorder was aggravated, and there was internal lysis with vacuolation. Compared to the control group, the mitochondrial membrane potential of offspring at PND21 and PND90 was decreased in each of the NP exposure groups. NP exposure decreased the activity of mitochondrial respiratory enzyme complex I (CI) and increased the activity of mitochondrial respiratory enzyme complex IV (CIV) in the offspring. At PND21 and PND90, the mRNA and protein expression levels of cardiac mitochondrial PGC-1α, NRF-1, and TFAM decreased with increasing NP dose in a dose-dependent manner. In the in vitro experiment, H9C2 cells were divided into the following four groups: the blank group, RSV group (15 μg/ml), RSV + NP group (15 μg/ml RSV + 120 mmol/L NP), and NP group (120 mmol/L). With increasing NP concentration, the cell survival rate gradually decreased. Compared to the control, the membrane potential was significantly decreased in the NP group; the protein expression levels of SIRT1, PGC-1α, NRF-1, and TFAM in the NP group were significantly lower. CONCLUSION Perinatal NP exposure caused mitochondrial damage and dysfunction in the offspring of exposed individuals in a dose-dependent manner. This toxic effect may be related to NP-induced mitochondrial pathology in the offspring and the inhibition of both gene and protein expression involved in the PGC-1α/NRF-1/TFAM mitochondrial biogenesis signaling pathway following NP exposure.
Collapse
Affiliation(s)
- Chengyu Ni
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China; Department of Medicine, Hubei College of Chinese Medicine, Jingzhou, Hubei 434020, PR China
| | - Kai Pan
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China
| | - Jie Xu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China
| | - Xianping Long
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Guizhou, PR China
| | - FangMei Lin
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China
| | - Yanling Nie
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China
| | - Yu Yang
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China
| | - Jie Yu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China.
| |
Collapse
|
48
|
Newsted J, Tazelaar D, Kristofco L, Losey B. A meta-analysis of the occurrence of alkylphenols and alkylphenol ethoxylates in surface waters and sediments in the United States between 2010 and 2020. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121757. [PMID: 37142212 DOI: 10.1016/j.envpol.2023.121757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/13/2023] [Accepted: 04/29/2023] [Indexed: 05/06/2023]
Abstract
Nonylphenol (NP), Octylphenol (OP), and their ethoxylates (NPEO and OPEO) have been the subject of considerable scientific and regulatory attention, primarily due to concerns about their aquatic toxicity and endocrine activity. Environmental monitoring has been conducted and reported for these substances in the United States (U.S.) for several decades. This paper develops an updated statistically based meta-analysis of the occurrence and ecological relevance of these substances in fresh and marine surface waters and sediments in the U.S. between 2010 and 2020. The overall objectives of this study were: (1) to evaluate the impact of analytical detection limits (DLs) and treatment of censored or non-detected (ND) samples on reported results, (2) to summarize and evaluate recent (2010-2020) occurrence and concentrations of these substances in surface waters and sediments, (3) to conduct an ecological screening assessment of the potential risks of these substances to aquatic organisms in surface waters and sediments for this same period, and (4) to examine temporal trends of these substances in surface waters and sediments relative to previous investigations. Given that a large proportion of all NP, NPEO, OP and OPEO samples in recent (2010-2019) U.S. monitoring studies were below their respective method Limit of Detection/Limit of Quantification (LOD/LOQ) detection frequency ranging from 0 to 24%), proxy values were imputed using robust regression of order statistics (ROS). Nationally, NP and OP concentrations in fresh surface waters and sediments have decreased from 2010 to 2019. In contrast, changes in NP and OP concentrations in marine waters and sediments were more variable with some increases noted. A screening environmental risk assessment indicated that less than 1% of all samples exceeded U.S. or Canadian environmental quality guidelines. No exceedances were noted after 2016 which indicates a low potential for risk to aquatic organisms.
Collapse
|
49
|
Spataro F, Rauseo J, Pescatore T, Patrolecco L. Priority Organic Pollutants and Endocrine-Disrupting Compounds in Arctic Marine Sediments (Svalbard Islands, Norway). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:953-965. [PMID: 35353401 DOI: 10.1002/etc.5334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/05/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
The present study investigated the occurrence and distribution of polycyclic aromatic hydrocarbons (PAHs) and phenolic endocrine-disrupting compounds (PEDCs), including bisphenol A (BPA), 4-nonylphenol (4-NP), and its monoethoxylate (NP1EO) and diethoxylate precursors in marine sediments in an Arctic fjord (Svalbard, Norway). The contribution of different local sources of contamination was also evaluated, together with a risk assessment for the marine environment. Samples were collected during two consecutive summer seasons (2018 and 2019), and target contaminants were analyzed with gas chromatography-mass spectrometry (MS) and high-performance liquid chromatography-MS/MS. The results showed no statistical differences between total PAH concentrations measured in 2018 (mean value 53.7 ± 54.3 ng/g) and 2019 (mean value 58.1 ± 63.6 ng/g). Low-ring (three or four rings) PAHs were the most abundant congeners, and single PAH ratios indicated a predominance of petrogenic sources (i.e., coal and liquid fossil fuel combustion). Nonylphenols and BPA showed a significant decrease in 2019 compared to 2018; 4-NP and NP1EO prevailed in both years, particularly in sediments close to the Ny-Ålesund research village. Overall, the results indicate that local anthropic activities are the major source of contamination in the Kongsfjorden ecosystem, but also melting waters from glaciers in the summer season can play an important role as a secondary source of pollutants previously trapped in ice. Comparison between our data and empirical and mechanistic indices derived from sediment quality guidelines suggests that the occurrence of PAHs and PEDCs in sediments does not currently pose a risk for this Arctic ecosystem, but further investigation is needed on the spread of hazardous contaminants and their effects on these fragile environments. Environ Toxicol Chem 2023;42:953-965. SETAC.
Collapse
Affiliation(s)
| | - Jasmin Rauseo
- Institute of Polar Sciences, National Research Council, Rome, Italy
| | - Tanita Pescatore
- Institute of Polar Sciences, National Research Council, Rome, Italy
| | - Luisa Patrolecco
- Institute of Polar Sciences, National Research Council, Rome, Italy
| |
Collapse
|
50
|
De la Parra-Guerra AC, Acevedo-Barrios R. Studies of Endocrine Disruptors: Nonylphenol and Isomers in Biological Models. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023. [PMID: 37057841 DOI: 10.1002/etc.5633] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 05/23/2023]
Abstract
Certain emerging pollutants are among the most widely used chemicals globally, causing widespread concern in relation to their use in products devoted to cleaniness and asepsis. Nonylphenol ethoxylate (NPEOn) is one such contaminant, along with its degradation product, nonylphenol, an active ingredient presents in nonionic surfactants used as herbicides, cosmetics, paints, plastics, disinfectants, and detergents. These chemicals and their metabolites are commonly found in environmental matrices. Nonylphenol and NPEOn, used, are particularly concerning, given their role as endocrine disruptors chemical and possible neurotoxic effects recorded in several biological models, primarily aquatic organisms. Limiting and detecting these compounds remain of paramount importance. The objective of the present review was to evaluate the toxic effects of nonylphenol and NPEOn in different biological models. Environ Toxicol Chem 2023;00:1-12. © 2023 SETAC.
Collapse
Affiliation(s)
- Ana C De la Parra-Guerra
- Department of Natural and Exact Sciences, Universidad de La Costa, Barranquilla, Colombia
- Biodiversity Research Group, Faculty of Basic Sciences, Universidad del Atlántico, Barranquilla, Colombia
| | - Rosa Acevedo-Barrios
- Grupo de Investigación en Estudios Químicos y Biológicos, Facultad de Ciencias Básicas, Universidad Tecnológica de Bolívar, Cartagena, Colombia
| |
Collapse
|