1
|
Gea M, Fea E, Racca L, Gilli G, Gardois P, Schilirò T. Atmospheric endocrine disruptors: A systematic review on oestrogenic and androgenic activity of particulate matter. CHEMOSPHERE 2024; 349:140887. [PMID: 38070607 DOI: 10.1016/j.chemosphere.2023.140887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 01/10/2024]
Abstract
The alarming human health effects induced by endocrine disruptors (ED) have raised the attention of public opinion and policy makers leading worldwide to regulations that are continuously improved to reduce exposure to them. However, decreasing the exposure levels is challenging because EDs are ubiquitous and exposure occurs through multiple routes. The main exposure route is considered ingestion, but, recently, the inhalation has been hypothesized as an important additional route. To explore this scenario, some authors applied bioassays to assess the endocrine activity of air. This review summarizes for the first time the applied methods and the obtained evidences about the in vitro endocrine activity of airborne particulate matter (PM) collected outdoor. Among the bioassay endpoints, (anti)oestrogenic and (anti)androgenic activities were selected because are the most studied endocrine activities. A total of 24 articles were ultimately included in this review. Despite evidences are still scarce, the results showed that PM can induce oestrogenic, antioestrogenic, androgenic and antiandrogenic effects, suggesting that PM has an endocrine disrupting potential that should be considered because it could represent a further source of exposure to EDs. Although it is difficult to estimate how much inhalation can contribute to the total burden of EDs, endocrine activity of PM may increase the human health risk. Finally, the results pointed out that the overall endocrine activity is difficult to predict from the concentrations of individual pollutants, so the assessment using bioassays could be a valuable additional tool to quantify the health risk posed by EDs in air.
Collapse
Affiliation(s)
- Marta Gea
- Department of Public Health and Pediatrics, University of Torino, Torino, 10126, Italy.
| | - Elisabetta Fea
- Department of Public Health and Pediatrics, University of Torino, Torino, 10126, Italy.
| | - Letizia Racca
- Department of Public Health and Pediatrics, University of Torino, Torino, 10126, Italy.
| | - Giorgio Gilli
- Department of Public Health and Pediatrics, University of Torino, Torino, 10126, Italy.
| | - Paolo Gardois
- Biblioteca Federata di Medicina Ferdinando Rossi, University of Torino, Torino, 10126, Italy.
| | - Tiziana Schilirò
- Department of Public Health and Pediatrics, University of Torino, Torino, 10126, Italy.
| |
Collapse
|
2
|
Gea M, Macrì M, Marangon D, Pitasi FA, Fontana M, Bonetta S, Schilirò T. Can oestrogenic activity in air contribute to the overall body burden of endocrine disruptors? ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104232. [PMID: 37459960 DOI: 10.1016/j.etap.2023.104232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/28/2023]
Abstract
Endocrine disruptors (EDCs) are emerging contaminants that are harmful to health. Human exposure occurs mainly through ingestion or dermal contact, but inhalation could be an additional exposure route; therefore, this study was conducted to evaluate the oestrogenic activity of airborne particulate matter (PM). Outdoor PM was collected for a year in five Italian sites and extracted with organic solvents (four seasonal extracts/site). The oestrogenic activity was assessed using a gene reporter assay (MELN), and the risk to human health through inhalation was quantified using the results. Moreover, extracts were analysed to assess cytotoxicity (WST-1 and LDH assays) on human bronchial cells (BEAS-2B). The extracts induced a significant cytotoxicity and oestrogenic activity. Oestrogenic activity showed a seasonal trend and was correlated with concentrations of benzo(a)pyrene and toxic equivalency factor. Although a low inhalation cancer risk was found, this study confirmed that oestrogenic activity in air could contribute to overall health risks due to EDC exposure.
Collapse
Affiliation(s)
- Marta Gea
- Department of Public Health and Pediatrics, University of Torino, Torino, Italy.
| | - Manuela Macrì
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Daniele Marangon
- Regional Agency for Environmental Protection of Piedmont (ARPA Piemonte), Grugliasco, TO, Italy
| | | | - Marco Fontana
- Regional Agency for Environmental Protection of Piedmont (ARPA Piemonte), Grugliasco, TO, Italy
| | - Sara Bonetta
- Department of Public Health and Pediatrics, University of Torino, Torino, Italy
| | - Tiziana Schilirò
- Department of Public Health and Pediatrics, University of Torino, Torino, Italy
| |
Collapse
|
3
|
In Vitro Effects of Particulate Matter Associated with a Wildland Fire in the North-West of Italy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182010812. [PMID: 34682553 PMCID: PMC8535364 DOI: 10.3390/ijerph182010812] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/09/2021] [Indexed: 11/27/2022]
Abstract
Wildland fires, increasing in recent decades in the Mediterranean region due to climate change, can contribute to PM levels and composition. This study aimed to investigate biological effects of PM2.5 (Ø < 2.5 µm) and PM10 (Ø < 10 µm) collected near a fire occurred in the North-West of Italy in 2017 and in three other areas (urban and rural areas). Organic extracts were assessed for mutagenicity using Ames test (TA98 and TA100 strains), cell viability (WST-1 and LDH assays) and genotoxicity (Comet assay) with human bronchial cells (BEAS-2B) and estrogenic activity using a gene reporter assay (MELN cells). In all sites, high levels of PM10 and PM2.5 were measured during the fire suggesting that near and distant sites were influenced by fire pollutants. The PM10 and PM2.5 extracts induced a significant mutagenicity in all sites and the mutagenic effect was increased with respect to historical data. All extracts induced a slight increase of the estrogenic activity but a possible antagonistic activity of PM samples collected near fire was observed. No cytotoxicity or DNA damage was detected. Results confirm that fires could be relevant for human health, since they can worsen the air quality increasing PM concentrations, mutagenic and estrogenic effects.
Collapse
|
4
|
Joaquim-Justo C, Gismondi E. Expression variations of two retinoid signaling pathway receptors in the rotifer Brachionus calyciflorus exposed to three endocrine disruptors. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:343-350. [PMID: 33443716 DOI: 10.1007/s10646-020-02339-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
Endocrine disruption compounds (EDC) are known to affect reproduction, development, and growth of exposed organisms. Although in vertebrates, EDCs mainly act through steroid receptors (e.g. androgen and estrogen receptors), their absence in many invertebrates suggests the involvement of another biological pathway in endocrine disruption effects. As retinoid signaling pathway is present in almost all Metazoa and its involvement in the endocrine disruption of gastropods (i.e. imposex) has been demonstrated, the present work was devoted to investigating the relative mRNA variations of two retinoid receptors genes, retinoid X receptor (RXR) and retinoid acid receptor (RAR), in the freshwater rotifer Brachionus calyciflorus exposed for 6, 12 and 24 h to flutamide, fenitrothion and cyproterone acetate, three anti-androgens known to disrupt sexual reproduction of Brachionus sp. Results revealed that fenitrothion did not affect the relative mRNA levels RXR and RAR in B. calyciflorus, whereas RXR and RAR mRNA levels could be significantly increased by 2 to 4.5-fold and from 2 to 7-fold after exposure to flutamide and cyproterone acetate, respectively. Moreover, the effects of flutamide and cyproterone acetate were measured from 6 and 12 h of exposure, respectively. Cyproterone acetate caused the highest increase of RXR and RAR mRNA levels, probably due to its progestin activity in addition to its anti-androgenic activity and the potential presence of a membrane-associated progesterone receptor as reported in Brachionus manjavacas. Consequently, although it is still difficult to evaluate the hormonal pathways involved in the endocrine disruption in Brachionus sp., this work suggests that the retinoid signaling pathway appears to be a good starting point to try to elucidate the molecular mechanisms involved in sexual reproductive dysfunction in Brachionidae.
Collapse
Affiliation(s)
- C Joaquim-Justo
- Laboratory of Animal Ecology and Ecotoxicology (LEAE)-Freshwater and OceaniC sciences Unit of reSearch (FOCUS), Chemistry Institute, B ât. B6C, University of Liège, 11 allée du 6 Août, Sart-Tilman, B-4000, Liège, Belgium
| | - E Gismondi
- Laboratory of Animal Ecology and Ecotoxicology (LEAE)-Freshwater and OceaniC sciences Unit of reSearch (FOCUS), Chemistry Institute, B ât. B6C, University of Liège, 11 allée du 6 Août, Sart-Tilman, B-4000, Liège, Belgium.
| |
Collapse
|
5
|
Vari HK, Roslund MI, Oikarinen S, Nurminen N, Puhakka R, Parajuli A, Grönroos M, Siter N, Laitinen OH, Hyöty H, Rajaniemi J, Rantalainen AL, Sinkkonen A. Associations between land cover categories, gaseous PAH levels in ambient air and endocrine signaling predicted from gut bacterial metagenome of the elderly. CHEMOSPHERE 2021; 265:128965. [PMID: 33248729 DOI: 10.1016/j.chemosphere.2020.128965] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/05/2020] [Accepted: 11/10/2020] [Indexed: 06/12/2023]
Abstract
There is evidence that polycyclic aromatic hydrocarbons (PAHs) and human gut microbiota are associated with the modulation of endocrine signaling pathways. Independently, studies have found associations between air pollution, land cover and commensal microbiota. We are the first to estimate the interaction between land cover categories associated with air pollution or purification, PAH levels and endocrine signaling predicted from gut metagenome among urban and rural populations. The study participants were elderly people (65-79 years); 30 lived in rural and 32 in urban areas. Semi-Permeable Membrane devices were utilized to measure air PAH concentrations as they simulate the process of bioconcentration in the fatty tissues. Land cover categories were estimated using CORINE database and geographic information system. Functional orthologues for peroxisome proliferator-activated receptor (PPAR) pathway in endocrine system were analyzed from gut bacterial metagenome with Kyoto Encyclopaedia of Genes and Genomes. High coverage of broad-leaved and mixed forests around the homes were associated with decreased PAH levels in ambient air, while gut functional orthologues for PPAR pathway increased along with these forest types. The difference between urban and rural PAH concentrations was not notable. However, some rural measurements were higher than the urban average, which was due to the use of heavy equipment on active farms. The provision of air purification by forests might be an important determining factor in the context of endocrine disruption potential of PAHs. Particularly broad-leaved forests around homes may reduce PAH levels in ambient air and balance pollution-induced disturbances within commensal gut microbiota.
Collapse
Affiliation(s)
- Heli K Vari
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, Lahti, Finland
| | - Marja I Roslund
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, Lahti, Finland
| | - Sami Oikarinen
- Tampere University, Faculty of Medicine and Health Technology, Arvo Ylpönkatu 34, Tampere, Finland
| | - Noora Nurminen
- Tampere University, Faculty of Medicine and Health Technology, Arvo Ylpönkatu 34, Tampere, Finland
| | - Riikka Puhakka
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, Lahti, Finland
| | - Anirudra Parajuli
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, Lahti, Finland
| | - Mira Grönroos
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, Lahti, Finland
| | - Nathan Siter
- Tampere University, Faculty of Built Environment, Korkeakoulunkatu 5, Tampere, Finland
| | - Olli H Laitinen
- Tampere University, Faculty of Medicine and Health Technology, Arvo Ylpönkatu 34, Tampere, Finland
| | - Heikki Hyöty
- Tampere University, Faculty of Medicine and Health Technology, Arvo Ylpönkatu 34, Tampere, Finland
| | - Juho Rajaniemi
- Tampere University, Faculty of Built Environment, Korkeakoulunkatu 5, Tampere, Finland
| | - Anna-Lea Rantalainen
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, Lahti, Finland
| | - Aki Sinkkonen
- Natural Resources Institute Finland, Horticulture Technologies, Itäinen Pitkäkatu 4, Turku, Finland.
| |
Collapse
|
6
|
Barhoumi B, Tedetti M, Heimbürger-Boavida LE, Tesán Onrubia JA, Dufour A, Doan QT, Boutaleb S, Touil S, Scippo ML. Chemical composition and in vitro aryl hydrocarbon receptor-mediated activity of atmospheric particulate matter at an urban, agricultural and industrial site in North Africa (Bizerte, Tunisia). CHEMOSPHERE 2020; 258:127312. [PMID: 32947663 DOI: 10.1016/j.chemosphere.2020.127312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/17/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
As recognized risk factor to pose a health threat to humans and wildlife globally, atmospheric particulate matter (PM) were collected from a North African coastal city (Bizerte, Tunisia) for one year, and were characterized for their chemical compositions, including mercury (HgPM), as well as organic contaminants (polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs)), organic carbon (OC) and organic nitrogen (ON), determined in a previous study. Then, we applied an in vitro reporter gene assay (DR-CALUX) to detect and quantify the dioxin-like activity of PM-associated organic contaminants. Results showed that average HgPM concentration over the entire sampling period was found to be 13.4 ± 12 pg m-3. Seasonal variation in the HgPM concentration was observed with lower values in spring and summer and higher values in winter and autumn due to the variation of meteorological conditions together with the emission sources. Principal component analysis suggested that fossil fuel combustion and a nearby cement factory were the dominant anthropogenic HgPM sources. Aryl hydrocarbon receptor (AhR)-mediated activities were observed in all organic extracts of atmospheric PM from Bizerte city (388.3-1543.6 fg m-3), and shows significant positive correlations with all PM-associated organic contaminants. A significant proportion of dioxin-like activity of PM was related to PAHs. The dioxin-like activity followed the same trend as PM-associated organic contaminants, with higher dioxin-like activity in the cold season than in the warm season, indicating the advantage and utility of the use of bioassays in risk assessment of complex environmental samples.
Collapse
Affiliation(s)
- Badreddine Barhoumi
- Laboratory of Hetero-Organic Compounds and Nanostructured Materials (LR18ES11), Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021, Zarzouna, Tunisia.
| | - Marc Tedetti
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France
| | | | - Javier A Tesán Onrubia
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France
| | - Aurélie Dufour
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France
| | - Que Thi Doan
- Laboratory of Food Analysis, FARAH-Veterinary Public Health, University of Liège, Liège, 4000, Belgium
| | - Samiha Boutaleb
- Laboratory of Food Analysis, FARAH-Veterinary Public Health, University of Liège, Liège, 4000, Belgium
| | - Soufiane Touil
- Laboratory of Hetero-Organic Compounds and Nanostructured Materials (LR18ES11), Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021, Zarzouna, Tunisia
| | - Marie-Louise Scippo
- Laboratory of Food Analysis, FARAH-Veterinary Public Health, University of Liège, Liège, 4000, Belgium
| |
Collapse
|
7
|
Novák J, Vaculovič A, Klánová J, Giesy JP, Hilscherová K. Seasonal variation of endocrine disrupting potentials of pollutant mixtures associated with various size-fractions of inhalable air particulate matter. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114654. [PMID: 32375093 DOI: 10.1016/j.envpol.2020.114654] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Ambient air pollution, namely exposure to air particulate matter (PM), has been shown to be connected with a number of adverse health effects. At least part of the effects can be caused by organic pollutant mixtures associated with PM, which can elicit a wide range of specific toxic potentials. These potentials could be affected by seasonal variation of pollutant mixtures and PM size fraction. To examine this, six size subfractions of PM10 were collected at rural and urban site in the Czech Republic in a year-long sampling campaign. The samples were assessed for aryl hydrocarbon (AhR)-mediated activity, estrogenicity and anti-androgenicity using mammalian cell models. The concentrations of detected toxic potentials differed among seasons. The greatest levels were observed in samples collected during winter when AhR-mediated effects and estrogenicity were at least 10-times greater than in summer. While the observed potentials were mostly less pronounced in samples from rural area, during winter, their AhR-mediated activity was twice as great as at the urban site. This was probably caused by the low-quality of fuel used for heating at the rural site. Assessed toxic potentials were associated mainly with PM size fractions with lesser aerodynamic diameters (<1 μm). Toxic potentials were compared with data from chemical analyses covering 102 chemicals from different pollutant groups to model their contribution to the observed effects. For AhR-mediated activity, chemical analyses explained on average 44% of the effect and the main identified effect-drivers were polycyclic aromatic hydrocarbons. For estrogenicity and anti-androgenicity, detected chemicals were able to explain on average less than 1.6% and 11% of the potentials, with their highest explicability reaching 13% and 57%, respectively. This was affected by the lack of data on specific toxic potency of some detected air pollutants, but also indicates a possible role of further not analyzed chemicals in these effects.
Collapse
Affiliation(s)
- Jiří Novák
- RECETOX, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Anita Vaculovič
- RECETOX, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Jana Klánová
- RECETOX, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - John P Giesy
- Dept. Biomedical Veterinary Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Department of Environmental Science, Baylor University, Waco, TX, United States
| | - Klára Hilscherová
- RECETOX, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic.
| |
Collapse
|
8
|
Prada D, López G, Solleiro-Villavicencio H, Garcia-Cuellar C, Baccarelli AA. Molecular and cellular mechanisms linking air pollution and bone damage. ENVIRONMENTAL RESEARCH 2020; 185:109465. [PMID: 32305664 PMCID: PMC7430176 DOI: 10.1016/j.envres.2020.109465] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/10/2020] [Accepted: 03/29/2020] [Indexed: 05/04/2023]
Abstract
Air pollution is the second most important risk factor associated with noncommunicable diseases after smoking. The effects of pollution on health are commonly attributable to particulate matter (PM), a complex mixture of particles suspended in the air. PM can penetrate the lower respiratory tract and has harmful direct and indirect effects on different organs and tissues. Direct effects are caused by the ability of PM components to cross the respiratory membrane and enter the bloodstream; indirect effects are systemic consequences of the local airway response. Recent work suggests that PM is an independent risk factor for low bone mineral density and osteoporosis-related fractures. Osteoporosis is a common age-related disease closely linked to bone fractures, with severe clinical consequences affecting quality of life, morbidity, and mortality. In this review, we discuss potential mechanisms behind the association between outdoor air pollution, especially PM, and bone damage. The discussion features four main mechanisms: 1) several different atmospheric pollutants can induce low-grade systemic inflammation, which affects bone metabolism through a specific effect of cytokines such as TNFα, IL-1β, IL-6, and IL-17 on osteoblast and osteoclast differentiation and function; 2) some pollutants, particularly certain gas and metal compounds, can cause oxidative damage in the airway and bone cells; 3) different groups of pollutants can act as endocrine disruptors when binding to the receptors in bone cells, changing their functioning; and 4) air pollution can directly and indirectly cause vitamin D deficiency. Characterizing these mechanisms will better define the physiopathology of bone damage, and recognizing air pollution as a modifiable risk factor for osteoporosis will inform environmental policies. Such knowledge will also guide the prevention of fractures due to fragility and help reduce health-related costs.
Collapse
Affiliation(s)
- Diddier Prada
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, 10032, USA; Unit for Biomedical Research in Cancer, Instituto Nacional de Cancerología - Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 14080, Mexico; Department of Biomedical Informatics, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.
| | - Gerard López
- Program of Support and Promotion of Research (AFINES), School of Medicine, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico; Department of Physiology, Universidad Nacional Autónoma de México, Mexico City, 14080, Mexico.
| | - Helena Solleiro-Villavicencio
- Program of Support and Promotion of Research (AFINES), School of Medicine, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.
| | - Claudia Garcia-Cuellar
- Unit for Biomedical Research in Cancer, Instituto Nacional de Cancerología - Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 14080, Mexico.
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, 10032, USA.
| |
Collapse
|
9
|
Nováková Z, Novák J, Kitanovski Z, Kukučka P, Smutná M, Wietzoreck M, Lammel G, Hilscherová K. Toxic potentials of particulate and gaseous air pollutant mixtures and the role of PAHs and their derivatives. ENVIRONMENT INTERNATIONAL 2020; 139:105634. [PMID: 32446144 DOI: 10.1016/j.envint.2020.105634] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 02/13/2020] [Accepted: 03/02/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND Air pollution, which represents a major environmental risk to human health, comprises a complex mixture of compounds where only little is known about its specific toxicities. OBJECTIVES This study examined the specific toxicities associated with ambient air pollutant mixtures with respect to gas/particle partitioning, particulate matter (PM) size, pollutant polarity and bioaccessibility from PM, and evaluated the contribution of PAHs and their oxygenated and nitrated derivatives (OPAHs, NPAHs). METHODS Air samples (gas phase, PM10 and size-segregated PM), were collected at urban (in winter and summer) and background (winter) sites in the Czech Republic. The total and bioaccessible concentrations were addressed using organic solvent extraction and simulated lung fluid extraction, respectively. Organic extracts were also further fractionated according to polarity. Aryl hydrocarbon receptor (AhR)-mediated activity, anti-/estrogenicity, anti-/androgenicity, thyroid receptor (TR)-mediated activity and cytotoxicity for bronchial cells were determined by human cell-based in vitro bioassays. The contribution of studied compounds to observed effects was assessed by both modelling and reconstructing the mixtures. RESULTS Significant effects were detected in the sub-micrometre size fraction of PM (estrogenicity, androgenicity, TR- and AhR-mediated activities) and in the gas phase (TR-mediated activity, antiandrogenicity). Compounds interacting with TR showed high bioaccessibility to simulated lung fluid. Relatively lower bioaccessibility was observed for estrogenicity and AhR-mediated activity. However, the toxicity testing of reconstructed mixtures revealed that the targeted pollutants are not the main contributors, except for urban PM air pollution in winter, where they accounted for 5-88% of several effects detected in the original complex environmental samples. DISCUSSION Studied toxicities were mostly driven by polar compounds largely attributed to the easily inhalable PM1, which is of high relevance for human health risk assessment. Except of parent PAHs in some cases, the targeted compounds contributed to the detected effects mostly to a relatively low extent implying huge data gaps in terms of endocrine disruptive potencies of targeted substances and the significance of other polar compounds present in ambient air.
Collapse
Affiliation(s)
- Zuzana Nováková
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Jiří Novák
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Zoran Kitanovski
- Max Planck Institute for Chemistry, Multiphase Chemistry Department, Hahn-Meitner-Weg 1, 55128 Mainz, Germany
| | - Petr Kukučka
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Marie Smutná
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Marco Wietzoreck
- Max Planck Institute for Chemistry, Multiphase Chemistry Department, Hahn-Meitner-Weg 1, 55128 Mainz, Germany
| | - Gerhard Lammel
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; Max Planck Institute for Chemistry, Multiphase Chemistry Department, Hahn-Meitner-Weg 1, 55128 Mainz, Germany
| | - Klára Hilscherová
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic.
| |
Collapse
|
10
|
Starling AP, Moore BF, Thomas DSK, Peel JL, Zhang W, Adgate JL, Magzamen S, Martenies SE, Allshouse WB, Dabelea D. Prenatal exposure to traffic and ambient air pollution and infant weight and adiposity: The Healthy Start study. ENVIRONMENTAL RESEARCH 2020; 182:109130. [PMID: 32069764 PMCID: PMC7394733 DOI: 10.1016/j.envres.2020.109130] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND Prenatal exposures to ambient air pollution and traffic have been associated with adverse birth outcomes, and may also lead to an increased risk of obesity. Obesity risk may be reflected in changes in body composition in infancy. OBJECTIVE To estimate associations between prenatal ambient air pollution and traffic exposure, and infant weight and adiposity in a Colorado-based prospective cohort study. METHODS Participants were 1125 mother-infant pairs with term births. Birth weight was recorded from medical records and body composition measures (fat mass, fat-free mass, and adiposity [percent fat mass]) were evaluated via air displacement plethysmography at birth (n = 951) and at ~5 months (n = 574). Maternal residential address was used to calculate distance to nearest roadway, traffic density, and ambient concentrations of fine particulate matter (PM2.5) and ozone (O3) via inverse-distance weighted interpolation of stationary monitoring data, averaged by trimester and throughout pregnancy. Adjusted linear regression models estimated associations between exposures and infant weight and body composition. RESULTS Participants were urban residents and diverse in race/ethnicity and socioeconomic status. Average ambient air pollutant concentrations were generally low; the median, interquartile range (IQR), and range of third trimester concentrations were 7.3 μg/m3 (IQR: 1.3, range: 3.3-12.7) for PM2.5 and 46.3 ppb (IQR: 18.4, range: 21.7-63.2) for 8-h maximum O3. Overall there were few associations between traffic and air pollution exposures and infant outcomes. Third trimester O3 was associated with greater adiposity at follow-up (2.2% per IQR, 95% CI 0.1, 4.3), and with greater rates of change in fat mass (1.8 g/day, 95% CI 0.5, 3.2) and adiposity (2.1%/100 days, 95% CI 0.4, 3.7) from birth to follow-up. CONCLUSIONS We found limited evidence of an association between prenatal traffic and ambient air pollution exposure and infant body composition. Suggestive associations between prenatal ozone exposure and early postnatal changes in body composition merit further investigation.
Collapse
Affiliation(s)
- Anne P Starling
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Brianna F Moore
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Deborah S K Thomas
- Department of Geography and Earth Sciences, University of North Carolina Charlotte, NC, USA
| | - Jennifer L Peel
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Weiming Zhang
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - John L Adgate
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sheryl Magzamen
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA; Department of Epidemiology, Colorado School of Public Health, Colorado State University, Fort Collins, CO, USA
| | - Sheena E Martenies
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - William B Allshouse
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Dana Dabelea
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
11
|
McDonough CA, Franks DG, Hahn ME, Lohmann R. Aryl hydrocarbon receptor-mediated activity of gas-phase ambient air derived from passive sampling and an in vitro bioassay. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:748-759. [PMID: 30648756 PMCID: PMC6467651 DOI: 10.1002/etc.4361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 05/30/2023]
Abstract
The gaseous fraction of hydrophobic organic contaminants (HOCs) in ambient air appears to be responsible for a significant portion of aryl hydrocarbon receptor (AhR)-mediated activity, but the majority of compounds contributing to this activity remain unidentified. The present study investigated the use of polyethylene passive samplers to isolate gaseous HOCs from ambient air for use in in vitro bioassays and to improve our understanding of the toxicological relevance of the gaseous fraction of ambient air in urban and residential environments. Concentrations of polycyclic aromatic hydrocarbons (PAHs) and organic flame retardants were measured in polyethylene passive sampler extracts. Extracts were also analyzed using an in vitro bioassay to measure AhR-mediated activity. Bioassay-derived benzo[a]pyrene (BaP) equivalents (BaP-Eqbio ), a measure of potency of HOC mixtures, were greatest in the downtown Cleveland area and lowest at rural/residential sites further from the city center. The BaP-Eqbio was weakly correlated with concentrations of 2-ring alkyl/substituted PAHs and one organophosphate flame retardant, ethylhexyl diphenyl phosphate. Potency predicted based on literature-derived induction equivalency factors (IEFs) explained only 2 to 23% of the AhR-mediated potency observed in bioassay experiments. Our results suggests that health risks of gaseous ambient air pollution predicted using data from targeted chemical analysis may underestimate risks of exposure, most likely due to augmentation of potency by unmonitored chemicals in the mixture, and the lack of relevant IEFs for many targeted analytes. Environ Toxicol Chem 2019;38:748-759. © 2019 SETAC.
Collapse
Affiliation(s)
- Carrie A. McDonough
- University of Rhode Island Graduate School of Oceanography, Narragansett, RI, USA
| | - Diana G. Franks
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Mark E. Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Rainer Lohmann
- University of Rhode Island Graduate School of Oceanography, Narragansett, RI, USA
| |
Collapse
|
12
|
André A, Ruivo R, Fonseca E, Froufe E, Castro LFC, Santos MM. The retinoic acid receptor (RAR) in molluscs: Function, evolution and endocrine disruption insights. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 208:80-89. [PMID: 30639747 DOI: 10.1016/j.aquatox.2019.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 01/04/2019] [Accepted: 01/04/2019] [Indexed: 06/09/2023]
Abstract
Retinoid acid receptor (RAR)-dependent signalling pathways are essential for the regulation and maintenance of essential biological functions and are recognized targets of disruptive anthropogenic compounds. Recent studies put forward the inability of mollusc RARs to bind and respond to the canonical vertebrate ligand, retinoic acid: a feature that seems to have been lost during evolution. Yet, these studies were carried out in a limited number of molluscs. Therefore, using an in vitro transactivation assay, the present work aimed to characterize phylogenetically relevant mollusc RARs, as monomers or as functional units with RXR, not only in the presence of vertebrate bone fine ligands but also known endocrine disruptors, described to modulate retinoid-dependent pathways. In general, none of the tested mollusc RARs were able to activate reporter gene transcription when exposed to retinoic acid isomers, suggesting that the ability to respond to retinoic acid was lost across molluscs. Similarly, the analysed mollusc RAR were unresponsive towards organochloride pesticides. In contrast, transcriptional repressions were observed with the RAR/RXR unit upon exposure to retinoids or RXR-specific ligands. Loss-of-function and gain-of-function mutations further corroborate the obtained results and suggest that the repressive behaviour, observed with mollusc and human RAR/RXR heterodimers, is possibly mediated by ligand biding to RXR.
Collapse
Affiliation(s)
- Ana André
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal; ICBAS - Institute of biomedical Sciences Abel Salazar, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| | - Raquel Ruivo
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal.
| | - Elza Fonseca
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - Elsa Froufe
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - L Filipe C Castro
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal.
| | - Miguel M Santos
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal.
| |
Collapse
|
13
|
Hamanaka RB, Mutlu GM. Particulate Matter Air Pollution: Effects on the Cardiovascular System. Front Endocrinol (Lausanne) 2018; 9:680. [PMID: 30505291 PMCID: PMC6250783 DOI: 10.3389/fendo.2018.00680] [Citation(s) in RCA: 257] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/30/2018] [Indexed: 12/18/2022] Open
Abstract
Air pollution is a complex mixture of gaseous and particulate components, each of which has detrimental effects on human health. While the composition of air pollution varies greatly depending on the source, studies from across the world have consistently shown that air pollution is an important modifiable risk factor for significantly increased morbidity and mortality. Moreover, clinical studies have generally shown a greater impact of particulate matter (PM) air pollution on health than the gaseous components. PM has wide-ranging deleterious effects on human health, particularly on the cardiovascular system. Both acute and chronic exposure to PM air pollution is associated with increased risk of death from cardiovascular diseases including ischemic heart disease, heart failure, and ischemic/thrombotic stroke. Particulate matter has also been shown to be an important endocrine disrupter, contributing to the development of metabolic diseases such as obesity and diabetes mellitus, which themselves are risk factors for cardiovascular disease. While the epidemiological evidence for the deleterious effects of PM air pollution on health is increasingly accepted, newer studies are shedding light on the mechanisms by which PM exerts its toxic effects. A greater understanding of how PM exerts toxic effects on human health is required in order to prevent and minimize the deleterious health effects of this ubiquitous environmental hazard. Air pollution is a growing public health problem and mortality due to air pollution is expected to double by 2050. Here, we review the epidemiological evidence for the cardiovascular effects of PM exposure and discuss current understanding about the biological mechanisms, by which PM exerts toxic effects on cardiovascular system to induce cardiovascular disease.
Collapse
Affiliation(s)
| | - Gökhan M. Mutlu
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
14
|
Vondráček J, Pivnička J, Machala M. Polycyclic aromatic hydrocarbons and disruption of steroid signaling. CURRENT OPINION IN TOXICOLOGY 2018. [DOI: 10.1016/j.cotox.2018.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Oziol L, Alliot F, Botton J, Bimbot M, Huteau V, Levi Y, Chevreuil M. First characterization of the endocrine-disrupting potential of indoor gaseous and particulate contamination: comparison with urban outdoor air (France). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:3142-3152. [PMID: 27858277 DOI: 10.1007/s11356-016-8045-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 11/03/2016] [Indexed: 06/06/2023]
Abstract
The composition of endocrine-disrupting compounds (EDCs) in the ambient air of indoor environments has already been described, but little is known about the inherent endocrine-disrupting potential of indoor air contamination. We therefore aimed to study the distribution of bioactive EDCs in the gaseous and particulate phases of indoor air using a cellular bioassay approach that integrates the interaction effects between chemicals. Organic air extracts, both gaseous and particulate, were taken from three indoor locations (office, apartment, and children's day care) in France and sampled in two different seasons in order to study their interference with the signaling of estrogen, androgen, and thyroid receptors. The experiments were also conducted on aerial extracts from an outdoor site (urban center). We found that gaseous and/or particulate extracts from all locations displayed estrogenicity, anti-androgenicity, and thyroidicity. Overall, indoor air extracts had a higher endocrine-disrupting potential compared to outdoor ones, especially during winter and in the day care. The biological activities were predominant for the gaseous extracts and tended to increase for the particulate extracts in cool conditions. In conclusion, our data confirmed the presence of bioactive EDCs in a gaseous state and highlighted their indoor origin and concentration, especially in the cold season.
Collapse
Affiliation(s)
- Lucie Oziol
- Ecologie Systématique Evolution, University of Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France.
- University of Paris-Sud, Université Paris-Saclay, 92296, Châtenay-Malabry, France.
| | - Fabrice Alliot
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, EPHE, UMR 7619 Metis, 4 place Jussieu, 75005, Paris, France
| | - Jérémie Botton
- INSERM, UMR1153 Epidemiology and Biostatistics Sorbonne Paris Cité Center (CRESS), Team "Early Origin of the Child's Health and Development" (ORCHAD), Paris Descartes University, Paris, France
- University of Paris-Sud, Université Paris-Saclay, 92296, Châtenay-Malabry, France
| | - Maya Bimbot
- Ecologie Systématique Evolution, University of Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France
- University of Paris-Sud, Université Paris-Saclay, 92296, Châtenay-Malabry, France
| | - Viviane Huteau
- Ecologie Systématique Evolution, University of Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France
- University of Paris-Sud, Université Paris-Saclay, 92296, Châtenay-Malabry, France
| | - Yves Levi
- Ecologie Systématique Evolution, University of Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France
- University of Paris-Sud, Université Paris-Saclay, 92296, Châtenay-Malabry, France
| | - Marc Chevreuil
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, EPHE, UMR 7619 Metis, 4 place Jussieu, 75005, Paris, France
| |
Collapse
|
16
|
Croes K, Van den Heuvel R, Van den Bril B, Staelens J, Denison MS, Van Langenhove K, Vandermarken T, Elskens M. Assessment of estrogenic and androgenic activity in PM10 air samples from an urban, industrial and rural area in Flanders (Belgium) using the CALUX bioassay. ENVIRONMENTAL RESEARCH 2016; 150:66-72. [PMID: 27257826 PMCID: PMC7932495 DOI: 10.1016/j.envres.2016.05.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/25/2016] [Accepted: 05/23/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND Endocrine disrupting chemicals represent a broad class of compounds, are widespread in the environment and can pose severe health effects. OBJECTIVES The objective of this study was to investigate and compare the overall estrogen and androgen activating potential of PM10 air samples at an urban, rural and industrial location in Flanders, using a human in vitro cell bioassay. METHODS PM10 samples were collected on glass fiber filters every six days between April 2013 and January 2014 using a high-volume sampler. Extraction was executed with a hexane/acetone mixture before analysis using a recombinant estrogen- or androgen responsive human carcinoma cell line. Results were expressed as bioanalytical equivalents (BEQs) per cubic meter of air. RESULTS High fluctuations in estrogenic activity were observed during the entire sampling period, with median BEQs of 32.1, 35.9 and 31.1 fg E2-Eq m(-)³ in the industrial, urban and rural background area, respectively. Estrogenic activity was measured in 70% of the samples, while no androgenic activity was observed in any of the samples. The estrogenic activity in the industrial area was positively correlated with the airborne concentration of the sum of the non-carcinogenic PAHs pyrene and fluoranthene (rho=0.48; p<0.01) and the sum of the carcinogenic PAHs (rho=0.36; p=0.05). CONCLUSIONS This study showed that no androgenic activity was present in PM10 and that although the median estrogenic activity was rather low and comparable in the three locations, high fluctuations in estrogenic response exist over time. While atmospheric PAHs contributed to the observed estrogenic response, especially in the industrial area, the chemicals responsible for the majority of estrogenic activity remain to be identified.
Collapse
Affiliation(s)
- Kim Croes
- Department of Analytical, Environmental and Geo-Chemistry (AMGC), Vrije Universiteit Brussel, Brussels, Belgium.
| | | | - Bo Van den Bril
- Unit Air, Flanders Environment Agency (VMM), Kronenburgstraat 45, 2000 Antwerp, Belgium
| | - Jeroen Staelens
- Unit Air, Flanders Environment Agency (VMM), Kronenburgstraat 45, 2000 Antwerp, Belgium
| | - Michael S Denison
- Department of Environmental Toxicology, University of California at Davis, Davis, CA 95616, USA
| | - Kersten Van Langenhove
- Department of Analytical, Environmental and Geo-Chemistry (AMGC), Vrije Universiteit Brussel, Brussels, Belgium
| | - Tara Vandermarken
- Department of Analytical, Environmental and Geo-Chemistry (AMGC), Vrije Universiteit Brussel, Brussels, Belgium
| | - Marc Elskens
- Department of Analytical, Environmental and Geo-Chemistry (AMGC), Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
17
|
Croes K, Debaillie P, Van den Bril B, Staelens J, Vandermarken T, Van Langenhove K, Denison MS, Leermakers M, Elskens M. Assessment of estrogenic activity in PM₁₀ air samples with the ERE-CALUX bioassay: Method optimization and implementation at an urban location in Flanders (Belgium). CHEMOSPHERE 2016; 144:392-398. [PMID: 26383266 PMCID: PMC7976781 DOI: 10.1016/j.chemosphere.2015.09.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 08/17/2015] [Accepted: 09/06/2015] [Indexed: 05/29/2023]
Abstract
Endocrine disrupting chemicals represent a broad class of compounds, are widespread in the environment and can pose severe health effects. The objective of this study was to investigate the overall estrogen activating potential of PM10 air samples at an urban location with high traffic incidence in Flanders, using a human in vitro cell bioassay. PM10 samples (n = 36) were collected on glass fiber filters every six days between April 2013 and January 2014 using a high-volume sampler. Extraction was executed with a hexane/acetone mixture before analysis using a recombinant estrogen-responsive human ovarian carcinoma (BG1Luc4E2) cell line. In addition, several samples and procedural blanks were extracted with ultra-pure ethanol or acetonitrile to compare extraction efficiencies. Results were expressed as bioanalytical equivalents (BEQs) in femtogram 17β-estradiol equivalent (fg E2-Eq) per cubic meter of air. High fluctuations in estrogenic activity were observed during the entire sampling period, with mean and median BEQs of 50.7 and 35.9 fg E2-Eq m(-)(3), respectively. Estrogenic activity was measured in more than 70% of the samples and several sample extracts showed both high BEQs and high cytotoxicity, which could not be related to black carbon, PM10 or heavy metal concentrations. At this moment, it remains unclear which substances cause this toxicity, but comparison of results obtained with different extraction solvents indicated that acetone/hexane extracts contained more compounds that were cytotoxic and suppressive of responses than those extracted using ultra-pure ethanol. Although more research is needed, the use of a more polar extraction solvent seems to be advisable.
Collapse
Affiliation(s)
- Kim Croes
- Department of Analytical, Environmental and Geo-Chemistry (AMGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium.
| | - Pieterjan Debaillie
- Department of Analytical, Environmental and Geo-Chemistry (AMGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium; Department of Chemistry, Ghent University, Krijgslaan, 9000 Ghent, Belgium
| | - Bo Van den Bril
- Unit Air, Flemish Environment Agency (VMM), Kronenburgstraat 45, 2000 Antwerp, Belgium
| | - Jeroen Staelens
- Unit Air, Flemish Environment Agency (VMM), Kronenburgstraat 45, 2000 Antwerp, Belgium
| | - Tara Vandermarken
- Department of Analytical, Environmental and Geo-Chemistry (AMGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| | - Kersten Van Langenhove
- Department of Analytical, Environmental and Geo-Chemistry (AMGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| | - Michael S Denison
- Department of Environmental Toxicology, University of California-Davis, Davis, CA 95616, USA
| | - Martine Leermakers
- Department of Analytical, Environmental and Geo-Chemistry (AMGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| | - Marc Elskens
- Department of Analytical, Environmental and Geo-Chemistry (AMGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
18
|
Yue H, Yun Y, Gao R, Li G, Sang N. Winter Polycyclic Aromatic Hydrocarbon-Bound Particulate Matter from Peri-urban North China Promotes Lung Cancer Cell Metastasis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:14484-14493. [PMID: 26008712 DOI: 10.1021/es506280c] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
On the basis of the close relationship between human exposure to high concentrations of small particulate matter (PM) and increased lung cancer mortality, PM was recently designated as a Group I carcinogen. Considering that PM is highly heterogeneous, the potential health risks of PM promoting tumor metastasis in lung cancer, as well as its chemical characteristics, remain elusive. In the present study, we collected PM2.5 and PM10 in a peri-urban residential site of Taiyuan and determined the concentration and source of polycyclic aromatic hydrocarbons (PAHs). The results indicated that 18 PAHs, ranging from 38.21 to 269.69 ng/m(3) (for PM2.5) and from 44.34 to 340.78 ng/m(3) (for PM10), exhibited seasonal variations, and the PAHs in winter PM mainly originated from coal combustion. We calculated the benzo(a)pyrene-equivalent (BaPeq) and found that the PAH-bound PM in winter exhibited higher carcinogenic risks for humans. Following this result, in vitro bioassays demonstrated that PM2.5 and PM10 induced A549 cell migration and invasion, and the mechanism involved reactive oxygen species (ROS)-mediated epithelial-to-mesenchymal transition (EMT) activation and extracellular matrix (ECM) degradation. Our data indicate the potential risk for winter PAH-bound PM from peri-urban North China promoting lung cancer cell metastasis and reveal a mechanistic basis for treating, ameliorating, or preventing outcomes in polluted environments.
Collapse
Affiliation(s)
- Huifeng Yue
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University , Taiyuan, Shanxi 030006, P. R. China
| | - Yang Yun
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University , Taiyuan, Shanxi 030006, P. R. China
| | - Rui Gao
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University , Taiyuan, Shanxi 030006, P. R. China
| | - Guangke Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University , Taiyuan, Shanxi 030006, P. R. China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University , Taiyuan, Shanxi 030006, P. R. China
| |
Collapse
|
19
|
Bittner M, Jarque S, Hilscherová K. Polymer-immobilized ready-to-use recombinant yeast assays for the detection of endocrine disruptive compounds. CHEMOSPHERE 2015; 132:56-62. [PMID: 25797899 DOI: 10.1016/j.chemosphere.2015.02.063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 02/17/2015] [Accepted: 02/26/2015] [Indexed: 06/04/2023]
Abstract
Recombinant yeast assays (RYAs) constitute a suitable tool for the environmental monitoring of compounds with endocrine disrupting activities, notably estrogenicity and androgenicity. Conventional procedures require yeast reconstitution from frozen stock, which usually takes several days and demands additional equipment. With the aim of applying such assays to field studies and making them more accessible to less well-equipped laboratories, we have optimized RYA by the immobilization of Saccharomyces cerevisiae cells in three different polymer matrices - gelatin, Bacto agar, and Yeast Extract Peptone Dextrose agar - to obtain a ready-to-use version for the fast assessment of estrogenic and androgenic potencies of compounds and environmental samples. Among the three matrices, gelatin showed the best results for both testosterone (androgen receptor yeast strain; AR-RYA) and 17β-estradiol (estrogen receptor yeast strain; ER-RYA). AR-RYA was characterized by a lowest observed effect concentration (LOEC), EC50 and induction factor (IF) of 1nM, 2.2nM and 51, respectively. The values characterizing ER-RYA were 0.4nM, 1.8nM, and 63, respectively. Gelatin immobilization retained yeast viability and sensitivity for more than 90d of storage at 4°C. The use of the immobilized yeast reduced the assay duration to only 3h without necessity of sterile conditions. Because immobilized RYA can be performed either in multiwell microplates or glass tubes, it allows multiple samples to be tested at once, and easy adaptation to existing portable devices for direct in-field applications.
Collapse
Affiliation(s)
- Michal Bittner
- Masaryk University, Faculty of Science, RECETOX, Kamenice 5, CZ-62500 Brno, Czech Republic
| | - Sergio Jarque
- Masaryk University, Faculty of Science, RECETOX, Kamenice 5, CZ-62500 Brno, Czech Republic
| | - Klára Hilscherová
- Masaryk University, Faculty of Science, RECETOX, Kamenice 5, CZ-62500 Brno, Czech Republic.
| |
Collapse
|
20
|
Érseková A, Hilscherová K, Klánová J, Giesy JP, Novák J. Effect-based assessment of passive air samples from four countries in Eastern Europe. ENVIRONMENTAL MONITORING AND ASSESSMENT 2014; 186:3905-16. [PMID: 24532343 DOI: 10.1007/s10661-014-3667-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 01/28/2014] [Indexed: 05/07/2023]
Abstract
Although passive sampling has been previously used for the monitoring of volatile and semi-volatile contaminants in air, there are limited data on the use of this technique coupled with bioassays based on specific biological responses. Biological responses including those mediated by the aryl hydrocarbon (AhR) receptor as well as (anti-)estrogenicity and (anti-)androgenicity of samples from four Eastern European countries (Lithuania, Slovakia, Romania, and Serbia) were determined. To address the potential differences of specific toxic potencies of pollutant mixtures in ambient air in Eastern Europe, each country was characterized by a single more remote location that served to determine regional background conditions and one location in more urbanized and industrialized locations, which were defined as "impacted" areas. Besides samples from Lithuania, a significant gradient in concentrations of AhR-mediated potency from background and impacted localities was observed. Greatest potencies were measured in samples from impacted locations in Romania and Slovakia. Concentrations of polycyclic aromatic hydrocarbons (PAHs) that were quantified accounted for 3-33 % of the 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents determined by use of the bioassay. No significant estrogenic potency was detected but anti-estrogenic effects were produced by air from two background locations (Lithuania, Slovakia) and three impacted locations (Lithuania, Romania, and Serbia). Anti-androgenic potency was observed in all samples. The greatest anti-estrogenic potency was observed at the background location in Slovakia. Anti-estrogenic and anti-androgenic potencies of studied air samples were probably associated with compounds that are not routinely monitored. The study documents suitability of passive air sampling for the assessment of specific toxic potencies of ambient air pollutants.
Collapse
Affiliation(s)
- Anita Érseková
- Faculty of Science, RECETOX, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic
| | | | | | | | | |
Collapse
|
21
|
Macikova P, Kalabova T, Klanova J, Kukucka P, Giesy JP, Hilscherova K. Longer-term and short-term variability in pollution of fluvial sediments by dioxin-like and endocrine disruptive compounds. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:5007-5022. [PMID: 24363052 DOI: 10.1007/s11356-013-2429-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 12/03/2013] [Indexed: 06/03/2023]
Abstract
Changes in pollutant loads in relatively dynamic river sediments, which contain very complex mixtures of compounds, can play a crucial role in the fate and effects of pollutants in fluvial ecosystems. The contamination of sediments by bioactive substances can be sensitively assessed by in vitro bioassays. This is the first study that characterizes detailed short- and long-term changes in concentrations of contaminants with several modes of action in river sediments. One-year long monthly study described seasonal and spatial variability of contamination of sediments in a representative industrialized area by dioxin-like and endocrine disruptive chemicals. There were significant seasonal changes in both antiandrogenic and androgenic as well as dioxin-like potential of river sediments, while there were no general seasonal trends in estrogenicity. Aryl hydrocarbon receptor-dependent potency (dioxin-like potency) expressed as biological TCDD-equivalents (BIOTEQ) was in the range of 0.5-17.7 ng/g, dry mass (dm). The greatest BIOTEQ levels in sediments were observed during winter, particularly at locations downstream of the industrial area. Estrogenicity expressed as estradiol equivalents (EEQ) was in the range of 0.02-3.8 ng/g, dm. Antiandrogenicity was detected in all samples, while androgenic potency in the range of 0.7-16.8 ng/g, dm dihydrotestosterone equivalents (DHT-EQ) was found in only 30 % of samples, most often during autumn, when antiandrogenicity was the least. PAHs were predominant contaminants among analyzed pollutants, responsible, on average, for 13-21 % of BIOTEQ. Longer-term changes in concentrations of BIOTEQ corresponded to seasonal fluctuations, whereas for EEQ, the inter-annual changes at some locations were greater than seasonal variability during 1 year. The inter- as well as intra-annual variability in concentrations of both BIOTEQ and EEQ at individual sites was greater in spring than in autumn which was related to hydrological conditions in the river. This study stresses the importance of river hydrology and its seasonal variations in the design of effective sampling campaigns, as well as in the interpretation of any monitoring results.
Collapse
Affiliation(s)
- P Macikova
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | | | | | | | | | | |
Collapse
|
22
|
Novák J, Hilscherová K, Landlová L, Čupr P, Kohút L, Giesy JP, Klánová J. Composition and effects of inhalable size fractions of atmospheric aerosols in the polluted atmosphere. Part II. In vitro biological potencies. ENVIRONMENT INTERNATIONAL 2014; 63:64-70. [PMID: 24263139 DOI: 10.1016/j.envint.2013.10.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 10/21/2013] [Accepted: 10/22/2013] [Indexed: 05/20/2023]
Abstract
Exposure to particulate matter (PM) in ambient air has been shown to lead to adverse health consequences. Six size fractions of PM with aerodynamic diameter smaller than 10μm (PM10) and gas phase were collected at six localities with different major pollution sources. Extracts of samples were assessed for AhR-mediated toxicity, (anti-)estrogenicity, (anti-)androgenicity and genotoxicity. The biological responses were interpreted relative to chemical characterization. Historically, for regulatory purposes, evaluation of air pollution was based mainly on assessment of the sum of PM10. In the case of AhR-mediated activity, PM1 was responsible for more than 75% of the activity of the particulate fraction from all localities. The assessed effects were correlated with concentrations of polycyclic aromatic hydrocarbons (PAH), organic carbon content and specific surface area of the PM. A significant proportion of biologically active chemicals seems to be present in the gas phase of air. The results suggest that an average daily exposure based just on the concentrations of contaminants contained in PM10, as regulated in EU legislation so far, is not a sufficient indicator of contaminants in air particulates and adoption of standards more similar to other countries and inclusion of other parameters besides mass should be considered.
Collapse
Affiliation(s)
- Jiří Novák
- Masaryk University, RECETOX - Research Centre for Toxic Compounds in the Environment, Faculty of Science, Kamenice 753/5, 625 00 Brno, Czech Republic.
| | - Klára Hilscherová
- Masaryk University, RECETOX - Research Centre for Toxic Compounds in the Environment, Faculty of Science, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Linda Landlová
- Masaryk University, RECETOX - Research Centre for Toxic Compounds in the Environment, Faculty of Science, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Pavel Čupr
- Masaryk University, RECETOX - Research Centre for Toxic Compounds in the Environment, Faculty of Science, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Lukáš Kohút
- Masaryk University, RECETOX - Research Centre for Toxic Compounds in the Environment, Faculty of Science, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - John P Giesy
- Dept. Biomedical Veterinary Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Zoology Department, Center for Integrative Toxicology, Michigan State University, E. Lansing, MI 48823, United States; Biology and Chemistry Department, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Jana Klánová
- Masaryk University, RECETOX - Research Centre for Toxic Compounds in the Environment, Faculty of Science, Kamenice 753/5, 625 00 Brno, Czech Republic
| |
Collapse
|
23
|
Ifegwu C, Igwo-Ezikpe MN, Anyakora C, Osuntoki A, Oseni KA, Alao EO. 1-hydroxypyrene levels in blood samples of rats after exposure to generator fumes. BIOMARKERS IN CANCER 2013; 5:1-6. [PMID: 24179393 PMCID: PMC3791950 DOI: 10.4137/bic.s10759] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Polynuclear Aromatic Hydrocarbons (PAHs) are a major component of fuel generator fumes. Carcinogenicity of these compounds has long been established. In this study, 37 Swiss albino rats were exposed to generator fumes at varied distances for 8 hours per day for a period of 42 days and the level of 1-hydroxypyrene in their blood was evaluated. This study also tried to correlate the level of blood 1-hyroxypyrene with the distance from the source of pollution. Plasma was collected by centrifuging the whole blood sample followed by complete hydrolysis of the conjugated 1-hydroxypyrene glucuronide to yield the analyte of interest, 1-hydroxypyrene, which was achieved using beta glucuronidase. High performance liquid chromatography (HPLC) with UV detector was used to determine the 1-hydroxypyrene concentrations in the blood samples. The mobile phase was water:methanol (12:88 v/v) isocratic run at the flow rate of 1.2 mL/min with CI8 stationary phase at 250 nm. After 42 days of exposure, blood concentration level of 1-hydroxypyrene ranged from 34 μg/mL to 26.29 μg/mL depending on the distance from source of exposure. The control group had no 1-hydroxypyrene in their blood. After the period of exposure, percentage of death correlated with the distance from the source of exposure. Percentage of death ranged from 56% to zero depending on the proximity to source of pollution.
Collapse
Affiliation(s)
- Clinton Ifegwu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Lagos
| | | | | | | | | | | |
Collapse
|
24
|
Novák J, Giesy JP, Klánová J, Hilscherová K. In vitro effects of pollutants from particulate and volatile fractions of air samples-day and night variability. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:6620-6627. [PMID: 23613208 DOI: 10.1007/s11356-013-1726-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 04/08/2013] [Indexed: 06/02/2023]
Abstract
Chemicals in air were characterized for potential interference with signaling of estrogen, androgen, and arylhydrocarbon (AhR) receptors, which are known to play an important role in endocrine-disruptive changes in vivo. Previously, effects of this type have been studied mainly in particulate matter in the ambient air from various localities. In this study, both volatile and particulate fractions of air from three sites in Banja Luka region (Bosnia and Herzegovina) were investigated to describe the distribution of endocrine-disrupting contaminants on a small spatial scale. Circadian variability of air pollution was investigated by collecting samples during both day and night. Air samples collected from urban localities at night were more potent in producing the AhR-mediated effects than those collected during daytime. This trend was not observed at the reference rural location. None of the samples showed significant estrogenic or androgenic activity. On the other hand, anti-androgenicity was detected in both particulate and vapor phases, while anti-estrogenicity was detected only in the particulate fraction of air from all localities. The AhR-mediated potencies of samples were associated primarily with non-persistent compounds. Based on the concentrations of 28 individual compounds, PAHs accounted for approximately 30 % of the AhR-mediated potency determined by the bioassay. The results show that there can be a significant difference between levels of bioactive compounds in air between daytime and nighttime.
Collapse
Affiliation(s)
- Jiří Novák
- Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
| | | | | | | |
Collapse
|
25
|
Suzuki G, Tue NM, Malarvannan G, Sudaryanto A, Takahashi S, Tanabe S, Sakai SI, Brouwer A, Uramaru N, Kitamura S, Takigami H. Similarities in the endocrine-disrupting potencies of indoor dust and flame retardants by using human osteosarcoma (U2OS) cell-based reporter gene assays. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:2898-908. [PMID: 23398518 DOI: 10.1021/es304691a] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Indoor dust is a sink for many kinds of pollutants, including flame retardants (FRs), plasticizers, and their contaminants and degradation products. These pollutants can be migrated to indoor dust from household items such as televisions and computers. To reveal high-priority end points of and contaminant candidates in indoor dust, using CALUX reporter gene assays based on human osteosarcoma (U2OS) cell lines, we evaluated and characterized the endocrine-disrupting potencies of crude extracts of indoor dust collected from Japan (n = 8), the United States (n = 21), Vietnam (n = 10), the Philippines (n = 17), and Indonesia (n = 10) and for 23 selected FRs. The CALUX reporter gene assays used were specific for compounds interacting with the human androgen receptor (AR), estrogen receptor α (ERα), progesterone receptor (PR), glucocorticoid receptor (GR), and peroxisome proliferator-activated receptor γ2 (PPARγ2). Indoor dust extracts were agonistic to ERα, GR, and PPARγ2 and antagonistic against AR, PR, GR, and PPARγ2. In comparison, a majority of FRs was agonistic to ERα and PPARγ2 only, and some FRs demonstrated receptor-specific antagonism against all tested nuclear receptors. Hierarchical clustering clearly indicated that agonism of ERα and antagonism of AR and PR were common, frequently detected end points for indoor dust and tested FRs. Given our previous results regarding the concentrations of FRs in indoor dust and in light of our current results, candidate contributors to these effects include not only internationally controlled brominated FRs but also alternatives such as some phosphorus-containing FRs. In the context of indoor pollution, high-frequency effects of FRs such as agonism of ERα and antagonism of AR and PR are candidate high-priority end points for further investigation.
Collapse
Affiliation(s)
- Go Suzuki
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, Tsukuba, Japan, Tsukuba 305-8506, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
De Coster S, van Larebeke N. Endocrine-disrupting chemicals: associated disorders and mechanisms of action. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2012; 2012:713696. [PMID: 22991565 PMCID: PMC3443608 DOI: 10.1155/2012/713696] [Citation(s) in RCA: 335] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 05/10/2012] [Accepted: 05/10/2012] [Indexed: 12/21/2022]
Abstract
The incidence and/or prevalence of health problems associated with endocrine-disruption have increased. Many chemicals have endocrine-disrupting properties, including bisphenol A, some organochlorines, polybrominated flame retardants, perfluorinated substances, alkylphenols, phthalates, pesticides, polycyclic aromatic hydrocarbons, alkylphenols, solvents, and some household products including some cleaning products, air fresheners, hair dyes, cosmetics, and sunscreens. Even some metals were shown to have endocrine-disrupting properties. Many observations suggesting that endocrine disruptors do contribute to cancer, diabetes, obesity, the metabolic syndrome, and infertility are listed in this paper. An overview is presented of mechanisms contributing to endocrine disruption. Endocrine disruptors can act through classical nuclear receptors, but also through estrogen-related receptors, membrane-bound estrogen-receptors, and interaction with targets in the cytosol resulting in activation of the Src/Ras/Erk pathway or modulation of nitric oxide. In addition, changes in metabolism of endogenous hormones, cross-talk between genomic and nongenomic pathways, cross talk with estrogen receptors after binding on other receptors, interference with feedback regulation and neuroendocrine cells, changes in DNA methylation or histone modifications, and genomic instability by interference with the spindle figure can play a role. Also it was found that effects of receptor activation can differ in function of the ligand.
Collapse
Affiliation(s)
| | - Nicolas van Larebeke
- Study Centre for Carcinogenesis and Primary Prevention of Cancer, Department of Radiotherapy and Experimental Cancerology, Ghent University Hospital, De Pintelaan 185 3K3, 9000 Ghent, Belgium
| |
Collapse
|
27
|
Stěpánková T, Ambrožová L, Bláha L, Giesy JP, Hilscherová K. In vitro modulation of intracellular receptor signaling and cytotoxicity induced by extracts of cyanobacteria, complex water blooms and their fractions. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 105:497-507. [PMID: 21903046 DOI: 10.1016/j.aquatox.2011.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Revised: 07/21/2011] [Accepted: 08/02/2011] [Indexed: 05/31/2023]
Abstract
The biological activity of cyanobacteria and their chemical components have been widely studied due to their blooms in eutrophic waters worldwide. The primary goal of this study was to determine if individual cyanobacterial species and mixtures of cyanobacteria collected from the environment contain compounds with the potential for interaction with signaling pathways of the aryl hydrocarbon receptor (AhR), androgen receptor (AR), estrogen receptor (ER), glucocorticoid receptor (GR) and retinoid acid receptor (RAR). Cytotoxicity and specific toxic potencies of products of freshwater cyanobacteria were determined by use of in vitro reporter gene trans-activation assays. The testing included samples prepared from five selected single cyanobacterial species cultivated in laboratory and five complex cyanobacterial biomasses collected from blooms in surface waters in the Czech Republic. The results demonstrate estrogenic potencies of extracts of cyanobacterial biomasses. Among the laboratory single species, the extract of Planktothrix agardhii (intracellular metabolites) had a potency of estrogenic equivalents (EEQ) of 3.8 ng 17β-estradiol/g dw. The estimates of EEQs of samples prepared from complex cyanobacterial biomasses collected from freshwaters in the Czech Republic ranged from 19 to 2200 ng 17β-estradiol/g dw. Several samples prepared from the environmental cyanobacterial biomasses potentiated the androgenic potency of dihydrotestosterone. There was no dioxin-like, glucocorticoid or anti/retinoic activity observed for any of the extracts studied. Extracts of natural complex cyanobacterial biomasses exhibited greater and more frequent presence of compounds with specific modes of action, mainly estrogenic, and also greater cytotoxicity than extracts of single cyanobacterial species. The demonstrated estrogenic potency of the compounds present in complex cyanobacterial biomasses is of environmental relevance, and could potentially contribute to endocrine disruptive effects in aquatic ecosystems in case of great bloom densities.
Collapse
Affiliation(s)
- T Stěpánková
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 126/3, 625 00 Brno, Czech Republic
| | | | | | | | | |
Collapse
|
28
|
Sources and Distributions of Polycyclic Aromatic Hydrocarbons and Toxicity of Polluted Atmosphere Aerosols. URBAN AIRBORNE PARTICULATE MATTER 2010. [DOI: 10.1007/978-3-642-12278-1_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
29
|
Sídlová T, Novák J, Janosek J, Andel P, Giesy JP, Hilscherová K. Dioxin-like and endocrine disruptive activity of traffic-contaminated soil samples. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2009; 57:639-650. [PMID: 19488800 DOI: 10.1007/s00244-009-9345-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Accepted: 05/11/2009] [Indexed: 05/27/2023]
Abstract
Pollution of surface soils by traffic, especially along major highways, can be a significant issue. Numerous studies have demonstrated traffic to be an important source of particulate matter and gas-phase organic air pollutants that produce many types of deleterious effects. This article brings original information about the presence of contaminants with specific mechanisms of action in traffic-influenced soils as determined by bioanalytical approaches and instrumental analyses. The initial phase of the study aimed to compare contamination of soils near highways with those from reference localities, whereas the second phase of the study investigated the influence of traffic pollution in soils at various distances from highways. For the reference areas, forest soils contained greater concentrations of 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents (TCDD-EQs; 483 to 2094 pg/g) than did arable soils (96 to 478 pg/g), which represent the relevant reference for the studied soils along highways. The total concentration of TCDD-EQs determined in the in vitro transactivation assay ranged from 225 to 27,700 pg/g in traffic-affected soils. The greatest concentration of TCDD-EQs among the studied sites was observed in soils collected near highway D1, which is the primary thoroughfare in the Czech Republic. The concentrations of TCDD-EQs in roadside soils were the greatest and decreased with increased distance from highways, and this spatial distribution corresponded with the levels of polycyclic aromatic hydrocarbons (PAHs). Soils collected 100 m away from highways in most cases contained concentrations of TCDD-EQs similar to background values. Most TCDD-EQ presence was caused by nonpersistent compounds in soils, with a significant contribution from PAHs as well as other unknown nonpersistent chemicals. Extracts from most soils collected near highways exhibited antiestrogenic and in some cases antiandrogenic activities; for several sites the activity was also detected in soils farther from highways. The presence of TCDD-EQs and antihormonal activity in highway-affected soils points to traffic as a source of polluting compounds having specific effects.
Collapse
Affiliation(s)
- T Sídlová
- RECETOX, Masaryk University, Brno, Czech Republic
| | | | | | | | | | | |
Collapse
|
30
|
Kennedy K, Macova M, Leusch F, Bartkow ME, Hawker DW, Zhao B, Denison MS, Mueller JF. Assessing indoor air exposures using passive sampling with bioanalytical methods for estrogenicity and aryl hydrocarbon receptor activity. Anal Bioanal Chem 2009; 394:1413-21. [PMID: 19430962 PMCID: PMC2864012 DOI: 10.1007/s00216-009-2825-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 04/13/2009] [Accepted: 04/24/2009] [Indexed: 10/20/2022]
Abstract
Passive air sampling was undertaken using polyurethane foam passive air samplers at three types of locations, including indoors (six offices) at buildings in the central business district (CBD) and at a private suburban home (indoor and outdoor) located 9 km from the CBD in Brisbane, Queensland, Australia. Estrogenic (E-SCREEN--MCF7-BOS) and aryl hydrocarbon receptor (AhR) (CAFLUX--H4G1.1c2) activity were assessed for samples collected from each of these locations. The samples were tested either as crude extracts ("untreated") or were subjected to H2SO4 silica gel ("treated") for each location in order to determine whether chemicals, which are not resistant to this treatment like polycyclic aromatic hydrocarbons, potentially account for the observed activity. In most cases, H2SO4 treatment resulted in a statistically significant reduction of potency for both endpoints, suggesting that chemicals less resistant to treatment may be responsible for much of the detected biological activity in these locations. Estrogenic potency measurements (<0.22-185 pg m(-3)) were highest in the indoor offices, followed by the indoor suburban home and finally the outdoor suburban home (which was not estrogenic). Total AhR activity for crude extracts (1.3-10 pg m(-3)) however was highest for the outdoor suburban home site. Levels of polycyclic aromatic hydrocarbons were monitored indoors and outdoors at the suburban home. At that location, polycyclic aromatic hydrocarbon air concentrations were on average approximately two times higher outdoor than indoor, while AhR potency was five times higher outdoor than indoor. No significant correlation was found between the estrogenic and AhR activity (P = 0.88) for the sites in this study.
Collapse
Affiliation(s)
- Karen Kennedy
- EnTox (The National Research Centre for Environmental Toxicology), The University of Queensland, Brisbane, QLD 4108, Australia.
| | | | | | | | | | | | | | | |
Collapse
|