1
|
Knutsen HK, Åkesson A, Bampidis V, Bignami M, Bodin L, Chipman JK, Degen G, Hernández‐Jerez A, Hofer T, Landi S, Leblanc J, Machera K, Ntzani E, Rychen G, Sand S, Schwerdtle T, Vejdovszky K, Viviani B, Benford D, Hart A, Rose M, Schroeder H, Vleminckx C, Vrijheid M, Gkimprixi E, Kouloura E, Riolo F, Bordajandi LR, Hogstrand C. Update of the risk assessment of brominated phenols and their derivatives in food. EFSA J 2024; 22:e9034. [PMID: 39444985 PMCID: PMC11496907 DOI: 10.2903/j.efsa.2024.9034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
The European Commission asked EFSA to update its 2012 risk assessment on brominated phenols and their derivatives in food, focusing on five bromophenols and one derivative: 2,4,6-tribromophenol (2,4,6-TBP), 2,4-dibromophenol (2,4-DBP), 4-bromophenol (4-BP), 2,6-dibromophenol (2,6-DBP), tetrabrominated bisphenol S (TBBPS), tetrabromobisphenol S bismethyl ether (TBBPS-BME). Based on the overall evidence, the CONTAM Panel considered in vivo genotoxicity of 2,4,6-TBP to be unlikely. Effects in liver and kidney were considered as the critical effects of 2,4,6-tribromophenol (2,4,6-TBP) in studies in rats. A BMDL10 of 353 mg/kg body weight (bw) per day for kidney papillary necrosis in male rats was identified and was selected as the reference point for the risk characterisation. The derivation of a health-based guidance value was not considered appropriate due to major limitations in the toxicological database. Instead, the margin of exposure (MOE) approach was applied to assess possible health concerns. Around 78,200 analytical results for 2,4,6-TBP in food were used to estimate dietary exposure for the European population. Considering the resulting MOE values, all far above an MOE of 6000 that does not raise a health concern, and accounting for the uncertainties affecting the exposure and hazard assessments, the CONTAM Panel concluded with at least 95% probability that the current dietary exposure to 2,4,6-TBP does not raise a health concern. Due to lack of occurrence data, no risk assessment could be performed for breastfed or formula-fed infants. No risk characterisation could be performed for any of the other brominated phenols and derivatives included in the assessment, due to lack of data both on the toxicity and occurrence.
Collapse
|
2
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Wallace H, Benford D, Hart A, Schroeder H, Rose M, Vrijheid M, Kouloura E, Bordajandi LR, Riolo F, Vleminckx C. Update of the scientific opinion on tetrabromobisphenol A (TBBPA) and its derivatives in food. EFSA J 2024; 22:e8859. [PMID: 39010865 PMCID: PMC11247339 DOI: 10.2903/j.efsa.2024.8859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024] Open
Abstract
The European Commission asked EFSA to update its 2011 risk assessment on tetrabromobisphenol A (TBBPA) and five derivatives in food. Neurotoxicity and carcinogenicity were considered as the critical effects of TBBPA in rodent studies. The available evidence indicates that the carcinogenicity of TBBPA occurs via non-genotoxic mechanisms. Taking into account the new data, the CONTAM Panel considered it appropriate to set a tolerable daily intake (TDI). Based on decreased interest in social interaction in male mice, a lowest observed adverse effect level (LOAEL) of 0.2 mg/kg body weight (bw) per day was identified and selected as the reference point for the risk characterisation. Applying the default uncertainty factor of 100 for inter- and intraspecies variability, and a factor of 3 to extrapolate from the LOAEL to NOAEL, a TDI for TBBPA of 0.7 μg/kg bw per day was established. Around 2100 analytical results for TBBPA in food were used to estimate dietary exposure for the European population. The most important contributors to the chronic dietary LB exposure to TBBPA were fish and seafood, meat and meat products and milk and dairy products. The exposure estimates to TBBPA were all below the TDI, including those estimated for breastfed and formula-fed infants. Accounting for the uncertainties affecting the assessment, the CONTAM Panel concluded with 90%-95% certainty that the current dietary exposure to TBBPA does not raise a health concern for any of the population groups considered. There were insufficient data on the toxicity of any of the TBBPA derivatives to derive reference points, or to allow a comparison with TBBPA that would support assignment to an assessment group for the purposes of combined risk assessment.
Collapse
|
3
|
Zeng X, Ma S, Luo Y, Zhang Y, Wang Q, Zhang Z, Ke W, Ma Y, Hu H, Hartung T, Wei Y, Zhong X. Environmentally Relevant Concentrations of Tetrabromobisphenol A Exposure Impends Neurovascular Formation through Perturbing Mitochondrial Metabolism in Zebrafish Embryos and Human Primary Endothelial Cells. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5267-5278. [PMID: 38478874 DOI: 10.1021/acs.est.3c10132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Tetrabromobisphenol A (TBBPA), the most extensively utilized brominated flame retardant, has raised growing concerns regarding its environmental and health risks. Neurovascular formation is essential for metabolically supporting neuronal networks. However, previous studies primarily concerned the neuronal injuries of TBBPA, its impact on the neurovascularture, and molecular mechanism, which are yet to be elucidated. In this study, 5, 30, 100, 300 μg/L of TBBPA were administered to Tg (fli1a: eGFP) zebrafish larvae at 2-72 h postfertilization (hpf). The findings revealed that TBBPA impaired cerebral and ocular angiogenesis in zebrafish. Metabolomics analysis showed that TBBPA-treated neuroendothelial cells exhibited disruption of the TCA cycle and the Warburg effect pathway. TBBPA induced a significant reduction in glycolysis and mitochondrial ATP production rates, accompanied by mitochondrial fragmentation and an increase in mitochondrial reactive oxygen species (mitoROS) production in neuroendothelial cells. The supplementation of alpha-ketoglutaric acid, a key metabolite of the TCA cycle, mitigated TBBPA-induced mitochondrial damage, reduced mitoROS production, and restored angiogenesis in zebrafish larvae. Our results suggested that TBBPA exposure impeded neurovascular injury via mitochondrial metabolic perturbation mediated by mitoROS signaling, providing novel insight into the neurovascular toxicity and mode of action of TBBPA.
Collapse
Affiliation(s)
- Xiangyu Zeng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shengtao Ma
- School of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Yijun Luo
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yangjian Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qi Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhuyi Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Weijian Ke
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ya Ma
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Haichen Hu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Thomas Hartung
- Center for Alternatives to Animal Testing, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21230, United States
- University of Konstanz, Konstanz 78464, Germany
| | - Yanhong Wei
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiali Zhong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
4
|
Rawn DFK, Corrigan C, Ménard C, Sun WF, Breton F, Arbuckle TE. Novel halogenated flame retardants in Canadian human milk from the MIREC study (2008-2011). CHEMOSPHERE 2024; 350:141065. [PMID: 38159732 DOI: 10.1016/j.chemosphere.2023.141065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
Novel halogenated flame retardants (NHFRs) have been developed to replace those brominated flame retardants that have been restricted due to their persistence, bioaccumulation potential and toxicity, therefore, it is important to determine whether these replacement products are present at detectable concentrations in Canadians. NHFRs were measured in human milk samples (n = 541) collected from across Canada between 2008 and 2011, which is the first pan-Canadian dataset for these chemicals in human milk. Among the 15 measured NHFRs and eight methoxy-polybrominated diphenyl ethers (MeO-PBDEs), nine NHFRs and two MeO-PBDEs (6-MeO-PBDE 47 and 2-MeO-PBDE 68) were detected at a frequency of more than 9%. Despite benzene, 1,1'-(1,2-ethanediyl)bis [2,3,4,5,6-pentabromo-]/decabromodiphenylethane [DBDPE] being detected less frequently than the other observed NHFRs, its relative contribution to the sum of nine NHFRs was important when it was present. The maximum ΣNHFR concentration in Canadian human milk was 6930 pg g-1 lipid while the maximum ΣMeO-PBDEs was 1600 pg g-1 lipid. While most NHFR concentrations were significantly correlated with each other, no relationships between maternal age, parity or pre-pregnancy BMI were identified with ΣNHFR concentrations in the milk. In contrast, maternal age was significantly correlated with ΣMeO-PBDE concentrations (r = 0.237, p < 0.001). ΣNHFR concentrations were similarly not related to maternal education, although ΣMeO-PBDE concentrations were found to be higher in milk from women who had graduated from trade schools relative to the other education levels considered. NHFR detection frequency and concentrations observed in the Canadian human milk seem to align well with Europe.
Collapse
Affiliation(s)
- Dorothea F K Rawn
- Food Research Division, Bureau of Chemical Safety, Health Products and Food Branch, Health Canada, Sir Frederick Banting Research Centre, 251 Sir Frederick Banting Driveway, Address Locator 2203C, Tunney's Pasture, Ottawa, ON, K1A 0K9, Canada.
| | - Catherine Corrigan
- Food Research Division, Bureau of Chemical Safety, Health Products and Food Branch, Health Canada, Sir Frederick Banting Research Centre, 251 Sir Frederick Banting Driveway, Address Locator 2203C, Tunney's Pasture, Ottawa, ON, K1A 0K9, Canada
| | - Cathie Ménard
- Food Research Division, Bureau of Chemical Safety, Health Products and Food Branch, Health Canada, Sir Frederick Banting Research Centre, 251 Sir Frederick Banting Driveway, Address Locator 2203C, Tunney's Pasture, Ottawa, ON, K1A 0K9, Canada
| | - Wing-Fung Sun
- Food Research Division, Bureau of Chemical Safety, Health Products and Food Branch, Health Canada, Sir Frederick Banting Research Centre, 251 Sir Frederick Banting Driveway, Address Locator 2203C, Tunney's Pasture, Ottawa, ON, K1A 0K9, Canada
| | - François Breton
- Food Research Division, Bureau of Chemical Safety, Health Products and Food Branch, Health Canada, Sir Frederick Banting Research Centre, 251 Sir Frederick Banting Driveway, Address Locator 2203C, Tunney's Pasture, Ottawa, ON, K1A 0K9, Canada; Generic Drugs Division, Bureau of Pharmaceutical Sciences, Health Products and Food Branch, Health Canada, 101 Tunney's Pasture Driveway, Address Locator 0201D, Tunney's Pasture, Ottawa, ON, K1A 0K9, Canada
| | - Tye E Arbuckle
- Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, 269 Laurier Ave, Ottawa, ON, K1A 0K9, Canada
| |
Collapse
|
5
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, (Ron) Hoogenboom L, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Wallace H, Benford D, Fürst P, Hart A, Rose M, Schroeder H, Vrijheid M, Ioannidou S, Nikolič M, Bordajandi LR, Vleminckx C. Update of the risk assessment of polybrominated diphenyl ethers (PBDEs) in food. EFSA J 2024; 22:e8497. [PMID: 38269035 PMCID: PMC10807361 DOI: 10.2903/j.efsa.2024.8497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
The European Commission asked EFSA to update its 2011 risk assessment on polybrominated diphenyl ethers (PBDEs) in food, focusing on 10 congeners: BDE-28, -47, -49, -99, -100, -138, -153, -154, -183 and ‑209. The CONTAM Panel concluded that the neurodevelopmental effects on behaviour and reproductive/developmental effects are the critical effects in rodent studies. For four congeners (BDE-47, -99, -153, -209) the Panel derived Reference Points, i.e. benchmark doses and corresponding lower 95% confidence limits (BMDLs), for endpoint-specific benchmark responses. Since repeated exposure to PBDEs results in accumulation of these chemicals in the body, the Panel estimated the body burden at the BMDL in rodents, and the chronic intake that would lead to the same body burden in humans. For the remaining six congeners no studies were available to identify Reference Points. The Panel concluded that there is scientific basis for inclusion of all 10 congeners in a common assessment group and performed a combined risk assessment. The Panel concluded that the combined margin of exposure (MOET) approach was the most appropriate risk metric and applied a tiered approach to the risk characterisation. Over 84,000 analytical results for the 10 congeners in food were used to estimate the exposure across dietary surveys and age groups of the European population. The most important contributors to the chronic dietary Lower Bound exposure to PBDEs were meat and meat products and fish and seafood. Taking into account the uncertainties affecting the assessment, the Panel concluded that it is likely that current dietary exposure to PBDEs in the European population raises a health concern.
Collapse
|
6
|
Liang J, Shao Y, Huang D, Yang C, Liu T, Zeng X, Li C, Tang Z, Juan JTH, Song Y, Liu S, Qiu X. Effects of prenatal exposure to bisphenols on newborn leucocyte telomere length: a prospective birth cohort study in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:25013-25023. [PMID: 34031828 DOI: 10.1007/s11356-021-14496-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
Telomere length (TL) at birth is related to diseases that may arise in the future and long-term health. Bisphenols exhibit toxic effects and can cross the placenta barrier. However, the effects of prenatal exposure to bisphenols on newborn TL remain unknown. We aimed to explore the effects of prenatal exposure to bisphenols (i.e., bisphenol A [BPA], bisphenol B [BPB], bisphenol F [BPF], bisphenol S [BPS] and tetrabromobisphenol A [TBBPA]) on relative TL in newborns. A total of 801 mother-infant pairs were extracted from the Guangxi Zhuang Birth Cohort. The relationship between bisphenol levels in maternal serum and relative TL in cord blood was examined by generalized linear models and restricted cubic spline (RCS) models. After adjusting for confounders, we observed a 3.19% (95% CI: -6.08%, -0.21%; P = 0.037) reduction in relative cord blood TL among mothers ≥ 28 years old, with each onefold increase in BPS. However, in each onefold increase of TBBPA, we observed a 3.31% (95% CI: 0.67%, 6.01%; P = 0.014) increase in relative cord blood TL among mothers < 28 years old. The adjusted RCS models revealed similar results (P overall < 0.05, P non-linear > 0.05). This study was the first to establish a positive association between serum TBBPA levels and relative TL in newborns born to young mothers. However, BPS levels were inversely correlated with TL in fetus born to old mothers. The results suggested that the fetus of old pregnant women may be more sensitive to BPS exposure. Moreover, BPS exposure early in life may accelerate aging or increase the risk of developing BPS-related diseases in later life.
Collapse
Affiliation(s)
- Jun Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yantao Shao
- The Third Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Dongping Huang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Chunxiu Yang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Tao Liu
- Huaihua Center for Disease Control and Prevention, Huaihua, 418000, Hunan, China
| | - Xiaoyun Zeng
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Chunling Li
- Department of Child and Adolescent Health & Maternal and Child Health, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhenghua Tang
- Department of mental health, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jennifer Tan Hui Juan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Yanye Song
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Shun Liu
- Department of Child and Adolescent Health & Maternal and Child Health, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Xiaoqiang Qiu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
7
|
Fujii Y, Harada KH, Ito Y, Yoshitake M, Matsunobu C, Kato Y, Ohta C, Koga N, Kimura O, Endo T, Koizumi A, Haraguchi K. Profiles and determinants of dicofol, endosulfans, mirex, and toxaphenes in breast milk samples from 10 prefectures in Japan. CHEMOSPHERE 2023; 311:137002. [PMID: 36419270 DOI: 10.1016/j.chemosphere.2022.137002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Human exposure to persistent organic pollutants (POPs) is reflected by POP concentrations in breast milk. Many studies of POPs in breast milk have been performed in Japan, but insufficient information is available about some legacy POPs (e.g., mirex and toxaphenes, included in the Stockholm Convention in 2001) and novel POPs (e.g., dicofol and endosulfans, included in the Stockholm Convention in 2019 and 2011, respectively). In this study, dicofol, endosulfan, mirex, and toxaphene concentrations in breast milk from 10 prefectures in Japan were determined. The samples were collected between 2005 and 2010, before Stockholm Convention restrictions on endosulfans and mirex were implemented. Common POPs (e.g., polychlorinated biphenyls) were also analyzed to allow the contamination statuses to be compared. The α-endosulfan and β-endosulfan concentrations were 0.26-13 and 0.012-0.82 ng/g lipid, respectively. The toxaphene #26 and #50 concentrations were <0.08-5.6 and < 0.1-8.5 ng/g lipid, respectively. The dicofol concentrations were <0.01-4.8 ng/g lipid. The mirex concentrations were <0.2-3.5 ng/g lipid. The α- and β-endosulfan concentrations on a lipid weight basis negatively correlated with the lipid contents of the milk samples (ρ = -0.65, p < 0.01 for α-endosulfan; ρ = -0.58, p < 0.01 for β-endosulfan). The toxaphene concentrations positively correlated with the lipid contents. The mirex concentrations positively correlated with the maternal age but negatively correlated with the maternal body mass index. No correlations between the dicofol concentrations and the factors were found. Principal component analysis divided the data into four groups, (1) chlordanes, dichlorodiphenyltrichloroethanes and related compounds, hexachlorobenzene, hexachlorocyclohexanes, hexachloroethane, and polychlorinated biphenyls, (2) endosulfans, (3) dicofol, dieldrin, and toxaphenes, and (4) bromodiphenyl ether 47. This indicated that bromodiphenyl ether 47, dicofol, endosulfans, and toxaphenes have different exposure routes or different kinetics to the other legacy POPs.
Collapse
Affiliation(s)
- Yukiko Fujii
- Department of Pharmaceutical Sciences, Daiichi University of Pharmacy, 22-1 Tamagawa, Minami-ku, Fukuoka, 815-8511, Japan.
| | - Kouji H Harada
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida Konoe, Sakyo, Kyoto, 606-8501, Japan
| | - Yoshiko Ito
- Department of Pharmaceutical Sciences, Daiichi University of Pharmacy, 22-1 Tamagawa, Minami-ku, Fukuoka, 815-8511, Japan
| | - Miho Yoshitake
- Department of Pharmaceutical Sciences, Daiichi University of Pharmacy, 22-1 Tamagawa, Minami-ku, Fukuoka, 815-8511, Japan
| | - Chiharu Matsunobu
- Department of Pharmaceutical Sciences, Daiichi University of Pharmacy, 22-1 Tamagawa, Minami-ku, Fukuoka, 815-8511, Japan
| | - Yoshihisa Kato
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa, 769-2193, Japan
| | - Chiho Ohta
- Faculty of Nutritional Sciences, Nakamura Gakuen University, 5-7-1 Befu, Johnan-ku, Fukuoka, 814-0198, Japan
| | - Nobuyuki Koga
- Faculty of Nutritional Sciences, Nakamura Gakuen University, 5-7-1 Befu, Johnan-ku, Fukuoka, 814-0198, Japan
| | - Osamu Kimura
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Tetsuya Endo
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Akio Koizumi
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida Konoe, Sakyo, Kyoto, 606-8501, Japan
| | - Koichi Haraguchi
- Department of Pharmaceutical Sciences, Daiichi University of Pharmacy, 22-1 Tamagawa, Minami-ku, Fukuoka, 815-8511, Japan.
| |
Collapse
|
8
|
Yu Y, Hao C, Xiang M, Tian J, Kuang H, Li Z. Potential obesogenic effects of TBBPA and its alternatives TBBPS and TCBPA revealed by metabolic perturbations in human hepatoma cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:154847. [PMID: 35358527 DOI: 10.1016/j.scitotenv.2022.154847] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
To date, increasing numbers of studies have shown the obesogenic effects of tetrabromobisphenol A (TBBPA). Tetrabromobisphenol S (TBBPS) and tetrachlorobisphenol A (TCBPA) are two common alternatives to TBBPA, and their environmental distributions are frequently reported. However, their toxicity and the associated potential health risks are poorly documented. Herein, we performed untargeted metabolomics to study the metabolic perturbations in HepG2 cells exposed to TBBPA and its alternatives. Consequently, no loss of cellular viability was observed in HepG2 cells exposed to 0.1 μmol/L and 1 μmol/L TBBPA, TBBPS and TCBPA. However, multivariate analysis and metabolic profiles revealed significant perturbations in glycerophospholipid and fatty acyl levels in HepG2 cells exposure to TBBPS and TCBPA. The evident increases in the glucose 1-phosphate and fructose 6-phosphate levels in HepG2 cells were proposed to be induced by the promotion of PGM1/PGM2 and GPI gene expression and the suppression of UPG2 and GFPT1/GFPT2 gene expression. Our results suggest that TBBPS and TCBPA are more likely to disrupt liver metabolic homeostasis and potentially drive liver dysfunction than TBBPA. Our study is significant for the re-evaluation of the health risks associated with TBBPA and its alternatives TBBPS and TCBPA.
Collapse
Affiliation(s)
- Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| | - Chaojie Hao
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; School of Public Health, China Medical University, Liaoning 110122, China
| | - Mingdeng Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Jinglin Tian
- Chemistry Department, Hong Kong Baptist University, Hongkong 999077, China
| | - Hongxuan Kuang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Zhenchi Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| |
Collapse
|
9
|
Sunday OE, Bin H, Guanghua M, Yao C, Zhengjia Z, Xian Q, Xiangyang W, Weiwei F. Review of the environmental occurrence, analytical techniques, degradation and toxicity of TBBPA and its derivatives. ENVIRONMENTAL RESEARCH 2022; 206:112594. [PMID: 34973196 DOI: 10.1016/j.envres.2021.112594] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/08/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
BFRs (brominated flame retardants) are a class of compounds that are added to or applied to polymeric materials to avoid or reduce the spread of fire. Tetrabromobisphenol A (TBBPA) is one of the known BFR used many in industries today. Due to its wide application as an additive flame retardant in commodities, TBBPA has become a common indoor contaminant. Recent researches have raised concerns about the possible hazardous effect of exposure to TBBPA and its derivatives in humans and wildlife. This review gives a thorough assessment of the literature on TBBPA and its derivatives, as well as environmental levels and human exposure. Several analytical techniques/methods have been developed for sensitive and accurate analysis of TBBPA and its derivatives in different compartments. These chemicals have been detected in practically every environmental compartment globally, making them a ubiquitous pollutant. TBBPA may be subject to adsorption, biological degradation or photolysis, photolysis after being released into the environment. Treatment of TBBPA-containing waste, as well as manufacturing and usage regulations, can limit the release of these chemicals to the environment and the health hazards associated with its exposure. Several methods have been successfully employed for the treatment of TBBPA including but not limited to adsorption, ozonation, oxidation and anaerobic degradation. Previous studies have shown that TBBPA and its derivative cause a lot of toxic effects. Diet and dust ingestion and have been identified as the main routes of TBBPA exposure in the general population, according to human exposure studies. Toddlers are more vulnerable than adults to be exposed to indoor dust through inadvertent ingestion. Furthermore, TBBP-A exposure can occur during pregnancy and through breast milk. This review will go a long way in closing up the knowledge gap on the silent and over ignored deadly effects of TBBPA and its derivatives and their attendant consequences.
Collapse
Affiliation(s)
- Okeke Emmanuel Sunday
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, 212013, PR China; Department of Biochemistry, Faculty of Biological Sciences & Natural Science Unit, SGS, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Huang Bin
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, 212013, PR China
| | - Mao Guanghua
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, 212013, PR China
| | - Chen Yao
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, 212013, PR China
| | - Zeng Zhengjia
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, 212013, PR China
| | - Qian Xian
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, 212013, PR China
| | - Wu Xiangyang
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, 212013, PR China.
| | - Feng Weiwei
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, 212013, PR China.
| |
Collapse
|
10
|
Critical review of analytical methods for the determination of flame retardants in human matrices. Anal Chim Acta 2022; 1193:338828. [PMID: 35058002 DOI: 10.1016/j.aca.2021.338828] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/25/2021] [Accepted: 07/02/2021] [Indexed: 11/21/2022]
Abstract
Human biomonitoring is a powerful approach in assessing exposure to environmental pollutants. Flame retardants (FRs) are of particular concern due to their wide distribution in the environment and adverse health effects. This article reviews studies published in 2009-2020 on the chemical analysis of FRs in a variety of human samples and discusses the characteristics of the analytical methods applied to different FR biomarkers of exposure, including polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCD), novel halogenated flame retardants (NHFRs), bromophenols, incl. tetrabromobisphenol A (TBBPA), and organophosphorous flame retardants (PFRs). Among the extraction techniques, liquid-liquid extraction (LLE) and solid phase extraction (SPE) were used most frequently due to the good efficiencies in the isolation of the majority of the FR biomarkers, but with challenges for highly lipophilic FRs. Gas chromatography-mass spectrometry (GC-MS) is mainly applied in the instrumental analysis of PBDEs and most NHFRs, with recent inclusions of GC-MS/MS and high resolution MS techniques. Liquid chromatography-MS/MS is mainly applied to HBCD, bromophenols, incl. TBBPA, and PFRs (including metabolites), however, GC-based analysis following derivatization has also been used for phenolic compounds and PFR metabolites. Developments are noticed towards more universal analytical methods, which enable widening method scopes in the human biomonitoring of FRs. Challenges exist with regard to sensitivity required for the low concentrations of FRs in the general population and limited sample material for some human matrices. A strong focus on quality assurance/quality control (QA/QC) measures is required in the analysis of FR biomarkers in human samples, related to their variety of physical-chemical properties, low levels in most human samples and the risk of contamination.
Collapse
|
11
|
Iribarne-Durán LM, Peinado FM, Freire C, Castillero-Rosales I, Artacho-Cordón F, Olea N. Concentrations of bisphenols, parabens, and benzophenones in human breast milk: A systematic review and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150437. [PMID: 34583069 DOI: 10.1016/j.scitotenv.2021.150437] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Breast milk is the main source of nutrition for infants but may be responsible for their exposure to environmental chemicals, including endocrine-disrupting chemicals. AIM To review available evidence on the presence and concentrations of bisphenols, parabens (PBs), and benzophenones (BPs) in human milk and to explore factors related to exposure levels. METHODS A systematic review was carried out using Medline, Web of Science, and Scopus databases, conducting a comprehensive search of peer-reviewed original articles published during the period 2000-2020, including epidemiological and methodological studies. Inclusion criteria were met by 50 studies, which were compiled by calculating weighted detection frequencies and arithmetic mean concentrations of the chemicals. Their risk of bias was assessed using the ROBINS-I checklist. RESULTS Among the 50 reviewed studies, concentrations of bisphenols were assessed by 37 (74.0%), PBs by 21 (42.0%), and BPs by 10 (20.0%). Weighted detection frequencies were 63.6% for bisphenol-A (BPA), 27.9-63.4% for PBs, and 39.5% for benzophenone-3 (BP-3). Weighted mean concentrations were 1.4 ng/mL for BPA, 0.2-14.2 ng/mL for PBs, and 24.4 ng/mL for BP-3. Mean concentrations ranged among studies from 0.1 to 3.9 ng/mL for BPA, 0.1 to 1063.6 ng/mL for PBs, and 0.5 to 72.4 ng/mL for BP-3. The highest concentrations of BPA and PBs were reported in samples from Asia (versus America and Europe). Higher BPA and lower methyl-paraben concentrations were observed in samples collected after 2010. Elevated concentrations of these chemicals were associated with socio-demographic and lifestyle factors in eight studies (16.0%). Two epidemiological studies showed moderate/serious risk of bias. CONCLUSIONS This systematic review contributes the first overview of the widespread presence and concentrations of bisphenols, PBs, and BPs in human breast milk, revealing geographical and temporal variations. The methodological heterogeneity of published studies underscores the need for well-conducted studies to assess the magnitude of exposure to these chemicals from human milk.
Collapse
Affiliation(s)
- L M Iribarne-Durán
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), E-18012 Granada, Spain
| | - F M Peinado
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), E-18012 Granada, Spain
| | - C Freire
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), E-18012 Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), E-28029 Madrid, Spain
| | | | - F Artacho-Cordón
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), E-18012 Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), E-28029 Madrid, Spain; Departamento de Radiología y Medicina Física, Universidad de Granada, E-18016 Granada, Spain.
| | - N Olea
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), E-18012 Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), E-28029 Madrid, Spain; Departamento de Radiología y Medicina Física, Universidad de Granada, E-18016 Granada, Spain; Unidad de Medicina Nuclear, Hospital Universitario San Cecilio, E-18016 Granada, Spain
| |
Collapse
|
12
|
Chen S, Che S, Li S, Wan J, Ruan Z. High-fat diet exacerbated decabromodiphenyl ether-induced hepatocyte apoptosis via intensifying the transfer of Ca 2+ from endoplasmic reticulum to mitochondria. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118297. [PMID: 34624399 DOI: 10.1016/j.envpol.2021.118297] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/03/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
Polybrominated diphenyl ether (PBDE) as the flame retardant is heavily used in daily necessities, causing adverse health effects on humans. This study aimed to evaluate the hepatotoxicity of decabromodiphenyl ether (BDE-209), the most widely used PBDE, in lean and high-fat diet (HFD)-treated obese mice and elucidate the underlying mechanism. Firstly, the increasing levels of TG and proinflammatory factors in the liver and ALT and AST in serum demonstrated the hepatic damage caused by BDE-209 and further exacerbated by HFD. Tunel image revealed that BDE-209 induced more severe hepatocyte apoptosis with the assistant of HFD. Next, the mechanism analysis showed that the pro-apoptotic action of BDE-209 was in an endoplasmic reticulum (ER)/Ca2+ flux/mitochondria-dependent manner, concluded from the impairment of mitochondrial membrane potential, the enhancive protein expression of p-PERK/PERK, p-IRE1/IRE1, ATF6, CHOP, Bax/Bcl-2, cleaved caspase-3/caspase-3, IP3R1 and Sig-1R, and the over-transfer of Ca2+ from ER to mitochondria. Such proposed mechanism was further confirmed by the IP3R1 siRNA transfection cell experiment, where apoptotic rate was reduced in parallel with the reduced mitochondrial Ca2+ level. Finally, the higher expression of PACS-2 protein and the expanded ER contributed to the enriched ER-mitochondria interaction, reflected by the closer distance between ER and mitochondria visually displayed in the TEM image in HFD groups. This change was conducive to the rapid delivery of apoptosis signals via Ca2+, as proven, mechanically explaining the strengthening effect of HFD on BDE-209 hepatotoxicity. These findings detailedly explained the mechanism of BDE-209 hepatotoxicity and clarified the auxiliary effect of HFD, providing a theoretical basis for further studying other analogs.
Collapse
Affiliation(s)
- Sunni Chen
- State Key Laboratory of Food Science and Technology, Nanchang Key Laboratory of Fruits and Vegetables Nutrition and Processing, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, 330047, China
| | - Siyan Che
- State Key Laboratory of Food Science and Technology, Nanchang Key Laboratory of Fruits and Vegetables Nutrition and Processing, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, 330047, China
| | - Shiqi Li
- State Key Laboratory of Food Science and Technology, Nanchang Key Laboratory of Fruits and Vegetables Nutrition and Processing, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, 330047, China
| | - Jin Wan
- State Key Laboratory of Food Science and Technology, Nanchang Key Laboratory of Fruits and Vegetables Nutrition and Processing, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, 330047, China
| | - Zheng Ruan
- State Key Laboratory of Food Science and Technology, Nanchang Key Laboratory of Fruits and Vegetables Nutrition and Processing, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, 330047, China.
| |
Collapse
|
13
|
Wang MY, Zhang LF, Wu D, Cai YQ, Huang DM, Tian LL, Fang CL, Shi YF. Simulation experiment on OH-PCB being ingested through daily diet: Accumulation, transformation and distribution of hydroxylated-2, 2', 4, 5, 5'-pentachlorobiphenyl (OH-PCB101) in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149891. [PMID: 34474296 DOI: 10.1016/j.scitotenv.2021.149891] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/06/2021] [Accepted: 08/21/2021] [Indexed: 05/16/2023]
Abstract
Animals exposure to polychlorinated biphenyls (PCBs) may result in retention of hydroxylated PCBs (OH-PCBs). OH-PCBs can be accumulated in animals, including humans, through the transmission of food chain. However, there are few studies on the accumulation and metabolism of OH-PCBs exposed to the body through daily diet. Therefore, this study was conducted to investigate the fate of OH-PCBs after being ingested through dietary intake. By adding 3-OH-PCB101 and 4-OH-PCB101 to the edible tissue of crucian carp, which were used as raw materials to prepare mouse feed, with an exposure concentration of 2.5 μg/kg ww. The exposure experiment lasted for a total of 80 days. The blood, feces and 11 tissues of mice at different times were analyzed qualitatively and quantitatively. It was found that major OH-PCB101 were accumulated in intestine or excreted with feces. A small part was accumulated in heart, lung and spleen. For the first time that the conversion from OH-PCB101 to PCB101 in mice was discovered, which shows from another perspective that persistent organic pollutants are difficult to be completely degraded in the environment. 4-MeO-PCB101, 3-MeSO2-PCB101, and 4-MeSO2-PCB101 were also found in various tissues. The results of this study show that after OH-PCBs accumulated in animals re-enter the organism through the food chain, they can be metabolized again and may be reversely transformed into the parent compounds. The present research shed new light on simulating the metabolic transformation process of OH-PCBs exposed to mammals through ingestion of fish. Available data show that second-generation persistent organic pollutants in the environment still need to be continuously concerned.
Collapse
Affiliation(s)
- Meng-Yuan Wang
- Fishery Products Quality Inspection and Test Centre (Shanghai), East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs of China, Shanghai 200090, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Long-Fei Zhang
- Fishery Products Quality Inspection and Test Centre (Shanghai), East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs of China, Shanghai 200090, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Di Wu
- Fishery Products Quality Inspection and Test Centre (Shanghai), East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs of China, Shanghai 200090, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - You-Qiong Cai
- Fishery Products Quality Inspection and Test Centre (Shanghai), East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs of China, Shanghai 200090, China
| | - Dong-Mei Huang
- Fishery Products Quality Inspection and Test Centre (Shanghai), East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs of China, Shanghai 200090, China
| | - Liang-Liang Tian
- Fishery Products Quality Inspection and Test Centre (Shanghai), East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs of China, Shanghai 200090, China
| | - Chang-Ling Fang
- Fishery Products Quality Inspection and Test Centre (Shanghai), East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs of China, Shanghai 200090, China
| | - Yong-Fu Shi
- Fishery Products Quality Inspection and Test Centre (Shanghai), East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs of China, Shanghai 200090, China.
| |
Collapse
|
14
|
Belova L, Fujii Y, Cleys P, Śmiełowska M, Haraguchi K, Covaci A. Identification of novel halogenated naturally occurring compounds in marine biota by high-resolution mass spectrometry and combined screening approaches. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117933. [PMID: 34426206 DOI: 10.1016/j.envpol.2021.117933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Marine animals, plants or bacteria are a source of bioactive naturally-occurring halogenated compounds (NHCs) such as bromophenols (BPs), bromoanisoles (BAs) and hydroxylated or methoxylated analogues of polybrominated diphenyl ethers (HO-PBDEs, MeO-PBDEs) and bromobiphenyls (HO-BBs, MeO-BBs). This study applied a comprehensive screening approach using liquid chromatography high-resolution mass spectrometry and combining target, suspect and non-target screening with the aim to identify new hydroxylated NHCs which might be missed by commonly applied gas chromatographic methods. 24 alga samples, 4 sea sponge samples and 7 samples of other invertebrates were screened. Target screening was based on 19 available reference standards of BPs, (di)OH-BDEs and diOH-BBs and yielded seven unequivocally identified compounds. 6-OH-BDE47 was the most frequently detected compound with a detection frequency of 31%. Suspect screening yielded two additional compounds identified in alga samples as well as 17 and 8 compounds identified in sea sponge samples of Lamellodysidea sp. and Callyspongia sp., respectively. The suspect screening results presented here confirmed the findings of previous studies conducted on sea sponge samples of Lamellodysidea sp. and Callyspongia sp. Additionally, in Lamellodysidea sp. and Callyspongia sp. 13 and 4 newly identified NHCs are reported including heptabrominated diOH-BDE, monochlorinated pentabrominated diOH-BDE, hexabrominated OH-MeO-BDE and others. Non-target screening allowed the identification of 31 and 20 polyhalogenated compounds in Lamellodysidea sp. and Callyspongia sp. samples, respectively. Based on the obtained fragmentation spectra, polybrominated dihydroxylated diphenoxybenzenes (diOH-PBDPBs), such as hepta-, octa- and nonabrominated diOH-BDPBs, could be identified in both species. To our knowledge, this study is the first report on the environmental presence of OH-PBDPBs.
Collapse
Affiliation(s)
- Lidia Belova
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Yukiko Fujii
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium; Department of Pharmaceutical Sciences, Daiichi University of Pharmacy, Tamagawamachi 22-1, Minamiku, 815-8511, Fukuoka, Japan
| | - Paulien Cleys
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Monika Śmiełowska
- Department of Analytical Chemistry, Gdańsk University of Technology, 80-233, Gdańsk, Poland
| | - Koichi Haraguchi
- Department of Pharmaceutical Sciences, Daiichi University of Pharmacy, Tamagawamachi 22-1, Minamiku, 815-8511, Fukuoka, Japan
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| |
Collapse
|
15
|
Feiteiro J, Mariana M, Cairrão E. Health toxicity effects of brominated flame retardants: From environmental to human exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117475. [PMID: 34087639 DOI: 10.1016/j.envpol.2021.117475] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/14/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Hexabromocyclododecane (HBCD) and Tetrabromobisphenol A (TBBP-A) are brominated flame retardants widely used in variety of industrial and consumer products (e.g., automobiles, electronics, furniture, textiles and plastics) to reduce flammability. HBCD and TBBPA can also contaminate the environment, mainly water, dust, air and soil, from which human exposure occurs. This constant exposure has raised some concerns against human health. These compounds can act as endocrine disruptors, a property that gives them the ability to interfere with hormonal function and quantity, when HBCD and TBBPA bind target tissues in the body. Studies in human and animals suggest a correlation between HBCD and TBBPA exposure and adverse health outcomes, namely thyroid disorders, neurobehavior and development disorders, reproductive health, immunological, oncological and cardiovascular diseases. However, in humans these effects are still poorly understood, once only a few data evaluated the human health effects. Thus, the purpose of this review is to present the toxicity effects of HBCD and TBBPA and how these compounds affect the environment and health, resorting to data and knowledge of 255 published papers from 1979 to 2020.
Collapse
Affiliation(s)
- Joana Feiteiro
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, University of Beira Interior, Covilhã, Portugal; FCS-UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Melissa Mariana
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, University of Beira Interior, Covilhã, Portugal
| | - Elisa Cairrão
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, University of Beira Interior, Covilhã, Portugal; FCS-UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
16
|
Yu Y, Hou Y, Dang Y, Zhu X, Li Z, Chen H, Xiang M, Li Z, Hu G. Exposure of adult zebrafish (Danio rerio) to Tetrabromobisphenol A causes neurotoxicity in larval offspring, an adverse transgenerational effect. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125408. [PMID: 33647619 DOI: 10.1016/j.jhazmat.2021.125408] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Tetrabromobisphenol A (TBBPA) is one of the most extensively used brominated flame retardants and is universally detected in the environment. However, information related to its transgenerational toxicity is sparse. Using zebrafish as a study model, adult fish were exposed to TBBPA at different concentrations (0, 3, 30, or 300 μg/L) for 42 d and then, the exposed adults were spawned in TBBPA-free water. The neurobehavior of adults and larval offspring was evaluated, and the levels of thyroxine (T4), triiodothyronine (T3) and neurotransmitters (acetylcholine, dopamine and gamma-aminobutyric acid) were quantified in larvae and embryos. Our results showed that TBBPA was detected in embryo and the locomotor activity of larval offspring was significantly reduced, suggesting that TBBPA can transfer to offspring and result in neurotoxicity in larval offspring. Furthermore, a reduction in T3 levels was observed in both the larvae and embryos. We also found a significantly decreased content of dopamine in larval offspring, accompanied by downregulated mRNA expression of rdr2b and drd3. Our results demonstrated that TBBPA can be transferred to offspring embryos, and subsequently induce neurotoxicity in larval offspring by affecting the amount of T3 transferred from the parents to embryos and the production of dopamine in larvae.
Collapse
Affiliation(s)
- Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| | - Yunbo Hou
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Yao Dang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| | - Xiaohui Zhu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Zhenchi Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Haibo Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Mingdeng Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Zongrui Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Guocheng Hu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| |
Collapse
|
17
|
Mahmoud MAM, Abdel-Mohsein H, Mahmoud U, Lyu Z, Soleman SR, Li M, Fujitani T, Harada Sassa M, Fujii Y, Cao Y, Hitomi T, Harada KH. Systematic Review Protocol for the Current State of Chemical Exposure in Infants via Breast Milk, Artificial Milk and Dairy Products. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:4436. [PMID: 33922006 PMCID: PMC8122520 DOI: 10.3390/ijerph18094436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 11/16/2022]
Abstract
Many studies have shown that human breast milk is contaminated with various chemicals. In the proposed systematic review, the aim is to identify and summarize the available literature regarding chemical exposure via breastfeeding or the feeding of artificial formula. MEDLINE (PubMed) will be the primary source in this literature search. Primary studies that analyzed one or more chemicals of interest in breast milk or artificial milk and that reported information on concentrations will be eligible for this review. Conference abstracts will not be included in the review unless access to the data is easy. First, the titles and abstracts of identified articles will be screened by two or more researchers. Then, a full-text review will be conducted to extract data from the included articles and code them for classification. The results of the search and classification will be summarized narratively and bibliometrically. The aim of the review is to analyze trends in publications according to year and region from the viewpoint of target chemicals, location, range of concentrations, and health outcomes.
Collapse
Affiliation(s)
- Manal A. M. Mahmoud
- Department of Animal Hygiene, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt;
| | - Hosnia Abdel-Mohsein
- Department of Animal Hygiene, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt;
| | - Usama Mahmoud
- Department of Animal and Poultry Behavior and Management, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt;
| | - Zhaoqing Lyu
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan; (Z.L.); (S.R.S.); (M.L.); (T.F.); (M.H.S.)
| | - Sani Rachman Soleman
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan; (Z.L.); (S.R.S.); (M.L.); (T.F.); (M.H.S.)
- Department of Public Health, Faculty of Medicine, Universitas Islam Indonesia, Yogyakarta 55584, Indonesia
| | - Meng Li
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan; (Z.L.); (S.R.S.); (M.L.); (T.F.); (M.H.S.)
| | - Tomoko Fujitani
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan; (Z.L.); (S.R.S.); (M.L.); (T.F.); (M.H.S.)
| | - Mariko Harada Sassa
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan; (Z.L.); (S.R.S.); (M.L.); (T.F.); (M.H.S.)
| | - Yukiko Fujii
- Department of Pharmaceutical Sciences, Daiichi University of Pharmacy, Fukuoka 815-8511, Japan;
| | - Yang Cao
- Department of Preventive Medicine, St. Marianna University School of Medicine, Kawasaki 216-8511, Japan; (Y.C.); (T.H.)
| | - Toshiaki Hitomi
- Department of Preventive Medicine, St. Marianna University School of Medicine, Kawasaki 216-8511, Japan; (Y.C.); (T.H.)
| | - Kouji H. Harada
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan; (Z.L.); (S.R.S.); (M.L.); (T.F.); (M.H.S.)
| |
Collapse
|
18
|
Zhang X, Cheng X, Yu Y, Lei B, Yu Y. Insight into the transplacental transport mechanism of methoxylated polybrominated diphenyl ethers using a BeWo cell monolayer model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114836. [PMID: 32454380 DOI: 10.1016/j.envpol.2020.114836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/02/2020] [Accepted: 05/16/2020] [Indexed: 06/11/2023]
Abstract
Methoxylated polybrominated diphenyl ethers (MeO-PBDEs), a type of emerging environmental contaminants, can accumulate through the food chain and eventually enter the human body. For pregnant women, these chemicals may be transplacentally transported to their fetuses, causing early intrauterine exposure. This study was designed to explore the transport process and characteristics of MeO-PBDEs using a BeWo cell monolayer model to simulate the placental barrier effect. Concentration-dependent transplacental transport indicates that the transport of MeO-PBDEs may be dominated by passive diffusion within the studied concentration range. According to the apparent permeability coefficients, MeO-BDE congeners investigated can be classified as poorly transported compounds, with the exception of MeO-BDE28. Time-dependent transplacental transport was observed (R2 = 0.97-0.99), which showed that the intracellular accumulation of MeO-PBDEs followed pseudo-first-order kinetics process. The transport process of MeO-PBDEs in the BeWo cell assay was not found to be sensitive to the pH of 6.5-7.4. An efflux transporter, breast cancer resistance protein, may be involved in the transport process of some MeO-PBDE congeners, and influx transporters, including organic anion transporters and organic cation transporters, may also be involved in the transport process. Although the present results indicated the possible transplacental transport mechanism, more molecular biological studies should be conducted to advance the understanding of the transport mechanisms.
Collapse
Affiliation(s)
- Xiaolan Zhang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Xiaomeng Cheng
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Yuling Yu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Bingli Lei
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Yingxin Yu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China.
| |
Collapse
|
19
|
Liang J, Liu S, Liu T, Yang C, Wu Y, Jennifer Tan HJ, Wei B, Ma X, Feng B, Jiang Q, Huang D, Qiu X. Association of prenatal exposure to bisphenols and birth size in Zhuang ethnic newborns. CHEMOSPHERE 2020; 252:126422. [PMID: 32199162 DOI: 10.1016/j.chemosphere.2020.126422] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 05/28/2023]
Abstract
Prenatal exposure to bisphenol A (BPA) and its analogues can affect fetal growth and development. However, epidemiologic findings were inconsistent and there was a lack of study for BPA analogues. We aimed to examine the associations between prenatal exposure to BPA, bisphenol B (BPB), bisphenol F (BPF), bisphenol S (BPS), and tetrabromobisphenol A (TBBPA) and birth size. 2023 mother-infant pairs were included in this study. The associations between serum bisphenol levels and birth size were analyzed by multivariate linear regression models. After adjusting for covariates, one log10-unit increase in serum BPA was correlated with a 32.10 g (95% CI: -61.10, -3.10) decrease in birth weight for all infants, and the inverse association was only observed in males when stratified analysis by gender. Additionally, higher BPF concentrations were associated with decreasing birth weight (P for trend = 0.031), ponderal index (P for trend = 0.021), and birth weight Z-scores (P for trend = 0.039) in all infants, and the inverse associations were also only observed in males when stratified analysis by gender. Similarly, higher TBBPA levels were also correlated with decreased birth weight (P for trend = 0.023). However, after gender stratification, higher TBBPA concentrations were associated with a decrease in birth weight (P for trend = 0.007), birth length (P for trend = 0.026), and birth weight Z-scores (P for trend = 0.039) in males. Our data suggested an inverse association of prenatal exposure to BPA, BPF, and TBBPA and birth size, which may be more pronounced in male infants.
Collapse
Affiliation(s)
- Jun Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Shun Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Tao Liu
- Huaihua Center for Disease Control and Prevention, Huaihua, 418000, Hunan, China
| | - Chunxiu Yang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yanan Wu
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Hui Juan Jennifer Tan
- School of Life Sciences & Chemical Technology, Ngee Ann Polytechnic, 535 Clementi Rd, 599489, Singapore
| | - Bincai Wei
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiaoyun Ma
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Baoying Feng
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Qunjiao Jiang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Dongping Huang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Xiaoqiang Qiu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
20
|
Yang Y, Lin M, Tang J, Ma S, Yu Y. Derivatization gas chromatography negative chemical ionization mass spectrometry for the analysis of trace organic pollutants and their metabolites in human biological samples. Anal Bioanal Chem 2020; 412:6679-6690. [PMID: 32556566 DOI: 10.1007/s00216-020-02762-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/20/2020] [Accepted: 06/05/2020] [Indexed: 11/24/2022]
Abstract
Gas chromatography negative chemical ionization mass spectrometry (GC-NCI-MS) is a preferred instrumental approach for the trace and ultra-trace analysis of various toxic organics and their metabolites in human biological fluids. Specifically, the method has played an important role in the highly sensitive and specific quantitative detection of persistent highly halogenated compounds in environmental matrices and biota during the past few decades. However, for the analysis of toxic metabolites with active hydrogen atoms, such as acids, alcohols, and phenolic compounds, from biological matrixes or organics without electronegative atoms or groups, a derivatization step is often needed prior to GC analysis. Such derivatization aims to change the properties of targets to improve their separation, increase their volatility, and enhance the sensitivity of instrumental detection. This review summarizes three derivatization strategies commonly used for GC methods, i.e., alkylation, silylation, and acylation, together with their application combined with GC-NCI-MS for the high sensitivity analysis of toxic organic metabolites in the human body. The advantages and disadvantages of each derivatization method and potential directions for future applications are discussed. Given the broad variety of applications as well as the compound-specific sensitivity for the ultra-trace analysis of target xenobiotics in human biological fluids, subsequent studies are required to develop convenient, faster derivatization procedures and reagents better suited for routine analysis. Graphical abstract.
Collapse
Affiliation(s)
- Yan Yang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China.,Synergy Innovation Institute of GDUT, Shantou, 515100, Guangdong, China
| | - Meiqing Lin
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China
| | - Jian Tang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China
| | - Shengtao Ma
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China. .,Synergy Innovation Institute of GDUT, Shantou, 515100, Guangdong, China.
| | - Yingxin Yu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China
| |
Collapse
|
21
|
Tan F, Lu B, Liu Z, Chen G, Liu Y, Cheng F, Zhou Y. Identification and quantification of TBBPA and its metabolites in adult zebrafish by high resolution liquid chromatography tandem mass spectrometry. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Butryn DM, Chi LH, Gross MS, McGarrigle B, Schecter A, Olson JR, Aga DS. Retention of polybrominated diphenyl ethers and hydroxylated metabolites in paired human serum and milk in relation to CYP2B6 genotype. JOURNAL OF HAZARDOUS MATERIALS 2020; 386:121904. [PMID: 31901712 DOI: 10.1016/j.jhazmat.2019.121904] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/30/2019] [Accepted: 12/14/2019] [Indexed: 05/06/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) and their hydroxylated metabolites (OH-BDEs) are endocrine disrupting compounds prevalent in human serum and breast milk. Retention of PBDEs and OH-BDEs in humans may be affected by differences in PBDE metabolism due to variants in cytochrome P450 2B6 (CYP2B6). The objectives of this study are to assess the partitioning profiles of PBDEs and OH-BDEs in forty-eight paired human serum and milk samples, and to evaluate the relationship between variants in CYP2B6 genotype and PBDE and OH-BDE accumulation in humans. Results show that the geometric mean (GM) concentrations of PBDEs are similar in serum (GM = 43.4 ng/g lipid) and milk samples (GM = 52.9 ng/g lipid), while OH-BDEs are retained primarily in serum (GM = 2.31 ng/g lipid), compared to milk (GM = 0.045 ng/g lipid). Participants with CYP2B6*6 genotype had a greater relative retention of PBDEs in serum and milk, and significant relationships (p < 0.05) were also observed for PBDE-47, 5-OH-BDE-47 and 6-OH-BDE-47 concentrations relative to CYP2B6*5 and CYP2B6*6 genotypes. These results are the first to show that CYP2B6 genotype is significantly related to the relative retention of PBDEs in humans, which may have direct implications for variability in the susceptibility of individuals to the potential adverse effects of these contaminants.
Collapse
Affiliation(s)
- Deena M Butryn
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, 611 Natural Sciences Complex, Buffalo, NY, 14260, USA
| | - Lai-Har Chi
- Department of Pharmacology and Toxicology, University at Buffalo, The State University of New York. 102 Farber Hall, 3435 Main St, Buffalo, NY, 14214, USA; Department of Epidemiology and Environmental Health, University at Buffalo, The State University of New York, 102 Farber Hall, 3435 Main St, Buffalo, NY, 14214, USA
| | - Michael S Gross
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, 611 Natural Sciences Complex, Buffalo, NY, 14260, USA
| | - Barbara McGarrigle
- Department of Pharmacology and Toxicology, University at Buffalo, The State University of New York. 102 Farber Hall, 3435 Main St, Buffalo, NY, 14214, USA; Department of Epidemiology and Environmental Health, University at Buffalo, The State University of New York, 102 Farber Hall, 3435 Main St, Buffalo, NY, 14214, USA
| | - Arnold Schecter
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, 323 East Chesnut Street, Louisville, KY, 40202, USA; University of Louisville School of Public Health and Information Sciences, 485 E Gray St. Louisville, KY, 40202, USA
| | - James R Olson
- Department of Pharmacology and Toxicology, University at Buffalo, The State University of New York. 102 Farber Hall, 3435 Main St, Buffalo, NY, 14214, USA; Department of Epidemiology and Environmental Health, University at Buffalo, The State University of New York, 102 Farber Hall, 3435 Main St, Buffalo, NY, 14214, USA
| | - Diana S Aga
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, 611 Natural Sciences Complex, Buffalo, NY, 14260, USA.
| |
Collapse
|
23
|
Liang Z, Li G, Mai B, An T. Biodegradation of typical BFRs 2,4,6-tribromophenol by an indigenous strain Bacillus sp. GZT isolated from e-waste dismantling area through functional heterologous expression. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 697:134159. [PMID: 31491624 DOI: 10.1016/j.scitotenv.2019.134159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/22/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
Legacy wastewater contaminants from e-waste dismantling process such as 2,4,6-tribromophenol (TBP), one of the most widely used brominated flame retardants (BFRs), have raised concern owing to their toxicity and recalcitrance. Our previously isolated Bacillus sp. GZT from river sludge in e-waste dismantling area is a good candidate for bioremediation of BFRs contaminated sites considering its remarkable degradability of TBP and its intermediates. However, there exists a new challenge because bio-degrader cannot produce enough biomass or metabolic activity to cleanup TBP in practice complex environment. Here, we heterologously expressed and functionally characterized the genes and enzymes responsible for TBP degradation to examine the feasibility of enhancing the ability of this microorganism to detoxify TBP. Results demonstrated that five recombinant strains containing functional genes, designated tbpA, tbpB, tbpC, tbpD, and tbpE, become more tolerant toward a wide range of brominated compounds than the nontransgenic strain. Cytochrome P450 reductase encoded by tbpA gene could greatly increase efficiency to remove TBP (98.8%), as compared to wild-type strain GZT (93.2%). Its debromination intermediates 2,4-dibromophenol, 2,6-dibromo-4-methylphenol and 2-bromophenol were significantly metabolized by halophenol dehalogenases encoded by tbpB, tbpC, and tbpD, respectively. Finally, under the function of tbpE gene encoding enzyme, further debrominated product (phenol) was dramatically detoxified. To reduce the risk of these xenobiotics, the expression of these genes can be induced and significantly up-regulated during exposure to them. These results open broad scope for future study in developing genetic engineering technologies for more efficient remediation wastewater of e-waste recycling sites contaminated with TBP, which would certainly be important steps to lower TBP exposures and prevent potential health effects.
Collapse
Affiliation(s)
- Zhishu Liang
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Taicheng An
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
24
|
Yu Y, Yu Z, Chen H, Han Y, Xiang M, Chen X, Ma R, Wang Z. Tetrabromobisphenol A: Disposition, kinetics and toxicity in animals and humans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 253:909-917. [PMID: 31351299 DOI: 10.1016/j.envpol.2019.07.067] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/29/2019] [Accepted: 07/13/2019] [Indexed: 06/10/2023]
Abstract
Tetrabromobisphenol A (TBBPA) is a nonregulated brominated flame retardant with a high production volume, and it is applied in a wide variety of consumer products. TBBPA is ubiquitous in abiotic matrices, wildlife and humans around the world. This paper critically reviews the published scientific data concerning the disposition, metabolism or kinetics and toxicity of TBBPA in animals and humans. TBBPA is rapidly absorbed and widely distributed among tissues, and is excreted primarily in the feces. In rats, TBBPA and its metabolites have limited systemic bioavailability. TBBPA has been detected in human milk in the general population. It is available to both the developing fetus and the nursing pups following maternal exposure. It has been suggested that TBBPA causes acute toxicity, endocrine disruptor activity, immunotoxicity, neurotoxicity, nephrotoxicity, and hepatotoxicity in animals. Cell-based assays have shown that TBBPA can induce reactive oxygen species in a concentration-dependent manner, and it promotes the production of inflammatory factors such as TNF α, IL-6, and IL-8. Cells exposed to high levels of TBBPA exhibit seriously injured mitochondria and a dilated smooth endoplasmic reticulum. This review will enhance the understanding of the potential risks of TBBPA exposure to ecological and human health.
Collapse
Affiliation(s)
- Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| | - Ziling Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Haibo Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Yajing Han
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Mingdeng Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Xichao Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Ruixue Ma
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Zhengdong Wang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| |
Collapse
|
25
|
Trexler AW, Knudsen GA, Nicklisch SCT, Birnbaum LS, Cannon RE. 2,4,6-Tribromophenol Exposure Decreases P-Glycoprotein Transport at the Blood-Brain Barrier. Toxicol Sci 2019; 171:463-472. [PMID: 31368499 PMCID: PMC6760274 DOI: 10.1093/toxsci/kfz155] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/12/2019] [Accepted: 07/09/2019] [Indexed: 01/24/2023] Open
Abstract
2,4,6-Tribromophenol (TBP, CAS No. 118-79-6) is a brominated chemical used in the production of flame-retardant epoxy resins and as a wood preservative. In marine environments, TBP is incorporated into shellfish and consumed by predatory fish. Food processing and water treatment facilities produce TBP as a byproduct. 2,4,6-Tribromophenol has been detected in human blood and breast milk. Biologically, TBP interferes with estrogen and thyroid hormone signaling, which regulate important transporters of the blood-brain barrier (BBB). The BBB is a selectively permeable barrier characterized by brain microvessels which are composed of endothelial cells mortared by tight-junction proteins. ATP-binding cassette (ABC) efflux transporters on the luminal membrane facilitate the removal of unwanted endobiotics and xenobiotics from the brain. In this study, we examined the in vivo and ex vivo effects of TBP on two important transporters of the BBB: P-glycoprotein (P-gp, ABCB1) and Multidrug Resistance-associated Protein 2 (MRP2, ABCC2), using male and female rats and mice. 2,4,6-Tribromophenol exposure ex vivo resulted in a time- (1-3 h) and dose- (1-100 nM) dependent decrease in P-gp transport activity. MRP2 transport activity was unchanged under identical conditions. Immunofluorescence and western blotting measured decreases in P-gp expression after TBP treatment. ATPase assays indicate that TBP is not a substrate and does not directly interact with P-gp. In vivo dosing with TBP (0.4 µmol/kg) produced decreases in P-gp transport. Co-treatment with selective protein kinase C (PKC) inhibitors prevented the TBP-mediated decreases in P-gp transport activity.
Collapse
Affiliation(s)
- Andrew W Trexler
- NCI Laboratory of Toxicology and Toxicokinetics, Research Triangl Park, North Carolina, 27709
| | - Gabriel A Knudsen
- NCI Laboratory of Toxicology and Toxicokinetics, Research Triangl Park, North Carolina, 27709
| | - Sascha C T Nicklisch
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla 92093, California
- Department of Environmental Toxicology, University of California Davis 95616, Davis, California
| | - Linda S Birnbaum
- NCI Laboratory of Toxicology and Toxicokinetics, Research Triangl Park, North Carolina, 27709
| | - Ronald E Cannon
- NCI Laboratory of Toxicology and Toxicokinetics, Research Triangl Park, North Carolina, 27709
| |
Collapse
|
26
|
Knudsen GA, Trexler AW, Richards AC, Hall SM, Hughes MF, Birnbaum LS. 2,4,6-Tribromophenol Disposition and Kinetics in Rodents: Effects of Dose, Route, Sex, and Species. Toxicol Sci 2019; 169:167-179. [PMID: 30768125 PMCID: PMC6804416 DOI: 10.1093/toxsci/kfz044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
2,4,6-tribromophenol (TBP, CAS No. 118-79-6) is widely used as a brominated flame retardant and wood antifungal agent. TBP is frequently detected in environmental matrices, biota, and humans. In female SD rats, systemically available TBP (10 µmol/kg, IV) was rapidly excreted primarily via urine, with approximately 61% of the dose recovered after 4 h, and 89%-94% in 24 h; 5% was recovered in feces; and 1%-2% in blood/tissues. TBP administered to female SD rats (0.1-1000 µmol/kg) by gavage was well absorbed, with approximately 25% eliminated via urine after 4 h and approximately 88% after 24 h. Approximately 11% of a single oral dose was recovered in bile. Male SD rats and B6C3F1/J mice of both sexes had similar disposition profiles when administered a single oral dose of TBP (10 µmol/kg). Following administration, fecal recoveries varied only slightly by dose, sex, or species. TBP readily passed unchanged through both human (ex vivo only) and rat skin with between 55% and 85% of a 100 nmol/cm2 passing into or through skin. Concentrations of TBP in blood fit a two-compartment model after IV-dosing and a one-compartment model after oral dosing. Urine contained a mixture of TBP, TBP-glucuronide, and TBP-sulfate. Fecal extracts contained only parent TBP whereas bile contained only TBP-glucuronide. TBP did not appear to bioaccumulate or alter its own metabolism after repeated administration. TBP was readily absorbed at all doses and routes tested with an oral bioavailability of 23%-27%; 49% of TBP is expected to be dermally bioavailable in humans. From these data, we conclude that humans are likely to have significant systemic exposure when TBP is ingested or dermal exposure occurs.
Collapse
Affiliation(s)
- Gabriel A Knudsen
- NCI Laboratory of Toxicology and Toxicokinetics, Research Triangle Park, North Carolina
| | - Andrew W Trexler
- NCI Laboratory of Toxicology and Toxicokinetics, Research Triangle Park, North Carolina
| | - Alicia C Richards
- NCI Laboratory of Toxicology and Toxicokinetics, Research Triangle Park, North Carolina
| | - Samantha M Hall
- NCI Laboratory of Toxicology and Toxicokinetics, Research Triangle Park, North Carolina
| | - Michael F Hughes
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina
| | - Linda S Birnbaum
- NCI Laboratory of Toxicology and Toxicokinetics, Research Triangle Park, North Carolina
| |
Collapse
|
27
|
Fujii Y, Kato Y, Kozai M, Matsuishi T, Harada KH, Koizumi A, Kimura O, Endo T, Haraguchi K. Different profiles of naturally produced and anthropogenic organohalogens in the livers of cetaceans from the Sea of Japan and the North Pacific Ocean. MARINE POLLUTION BULLETIN 2018; 136:230-242. [PMID: 30509803 DOI: 10.1016/j.marpolbul.2018.08.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 06/25/2018] [Accepted: 08/23/2018] [Indexed: 05/03/2023]
Abstract
Levels and profiles of naturally produced halogenated bipyrroles (Br4Cl2-DBP and Cl7-MBP), methoxylated tetrabromodiphenyl ethers (6-MeO-BDE47), anthropogenic perfluoroalkyl substances (PFASs) and legacy persistent organic pollutants (POPs) were investigated in the livers of 14 cetaceans from the Sea of Japan and the North Pacific Ocean. The concentrations of Br4Cl2-DBP (4 to 4900 ng/g-wet), Cl7-MBP (16 to 3960 ng/g-wet) and 6-MeO-BDE47 (7 to 190 ng/g-wet) were higher in the order of killer whales > toothed whales > baleen whales. Profiles of PFASs were dominated by perfluoroundecanoic and perfluorotridecanoic acids (10 to 540 ng/g-wet), sum of which accounted for 70% of total measured PFASs. Regional difference was observed for Cl7-MBP and PFASs, which were higher in the Sea of Japan, whereas Br4Cl2-DBP was in the North Pacific Ocean. Specific accumulation pattern of these natural contaminants in cetaceans around northern Japan could help compare the exposure profile of PFASs and POPs among other geographic regions.
Collapse
Affiliation(s)
- Yukiko Fujii
- Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511, Japan
| | - Yoshihisa Kato
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1, Sanuki, Kagawa 769-2193, Japan
| | - Mai Kozai
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1, Sanuki, Kagawa 769-2193, Japan
| | - Takashi Matsuishi
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1, Minato-cho, Hakodate, Hokkaido 041-8611, Japan
| | - Kouji H Harada
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida Konoe, Sakyo, Kyoto 606-8501, Japan
| | - Akio Koizumi
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida Konoe, Sakyo, Kyoto 606-8501, Japan
| | - Osamu Kimura
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Tetsuya Endo
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Koichi Haraguchi
- Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511, Japan.
| |
Collapse
|
28
|
de Souza Salgado YC, Boia Ferreira M, Zablocki da Luz J, Filipak Neto F, Oliveira Ribeiro CAD. Tribromophenol affects the metabolism, proliferation, migration and multidrug resistance transporters activity of murine melanoma cells B16F1. Toxicol In Vitro 2018; 50:40-46. [DOI: 10.1016/j.tiv.2018.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 01/18/2018] [Accepted: 02/06/2018] [Indexed: 12/19/2022]
|
29
|
Fujii Y, Kato Y, Masuda N, Harada KH, Koizumi A, Haraguchi K. Contamination trends and factors affecting the transfer of hexabromocyclododecane diastereomers, tetrabromobisphenol A, and 2,4,6-tribromophenol to breast milk in Japan. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 237:936-943. [PMID: 29572047 DOI: 10.1016/j.envpol.2018.03.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 03/06/2018] [Accepted: 03/06/2018] [Indexed: 06/08/2023]
Abstract
This study investigated contamination trends and factors affecting the levels of brominated flame retardants (BFRs), including hexabromocyclododecane (HBCD) diastereomers, tetrabromobisphenol A (TBBP-A), and 2,4,6-tribromophenol (2,4,6-TBP), in breast milk in Japan. Breast milk samples (n = 64) were collected from mothers living in six prefectures in Japan. The mean concentrations were 2.2, 0.19, 0.29, 3.0, and 0.59 ng/g lipid weight for α-HBCD, β-HBCD, γ-HBCD, TBBP-A, and 2,4,6-TBP, respectively. Based on the previous studies, the levels of ΣHBCD in Japanese women's milk appear to be increasing, and the levels of TBBP-A are higher than those in other Asian countries. Although ΣHBCD were not correlated to phenolic BFRs, the concentration of β-HBCD was significantly correlated to the concentrations of TBBP-A (r = 0.440, p < 0.01) and 2,4,6-TBP (r = 0.320, p < 0.01). The concentration of γ-HBCD increased significantly with maternal age (r = 0.378, p < 0.01), but the concentrations of the other analytes were not dependent on age. The concentration of α-HBCD was higher in primiparae than in multiparae (p < 0.05), while TBBP-A was higher in multiparae. No significant correlation was found between the phenolic BFR levels in milk and mothers' age, working place, and drinking/smoking habits. These results suggest that exposure to α- and γ-HBCD diastereomers could be affected by maternal age and parity, respectively, because of their different kinetics and sources. Therefore, these factors should be considered when conducting infant risk assessments.
Collapse
Affiliation(s)
- Yukiko Fujii
- Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka, 815-8511, Japan
| | - Yoshihisa Kato
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa, 769-2193, Japan
| | - Nanako Masuda
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa, 769-2193, Japan
| | - Kouji H Harada
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida, Kyoto, 606-8501, Japan
| | - Akio Koizumi
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida, Kyoto, 606-8501, Japan
| | - Koichi Haraguchi
- Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka, 815-8511, Japan.
| |
Collapse
|
30
|
Saquib Q, Siddiqui MA, Ahmad J, Ansari SM, Al-Wathnani HA, Rensing C. 6-OHBDE-47 induces transcriptomic alterations of CYP1A1, XRCC2, HSPA1A, EGR1 genes and trigger apoptosis in HepG2 cells. Toxicology 2018; 400-401:40-47. [DOI: 10.1016/j.tox.2018.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 03/17/2018] [Accepted: 03/26/2018] [Indexed: 12/19/2022]
|
31
|
Shi Z, Zhang L, Li J, Wu Y. Legacy and emerging brominated flame retardants in China: A review on food and human milk contamination, human dietary exposure and risk assessment. CHEMOSPHERE 2018; 198:522-536. [PMID: 29428767 DOI: 10.1016/j.chemosphere.2018.01.161] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/18/2018] [Accepted: 01/29/2018] [Indexed: 06/08/2023]
Abstract
Brominated flame retardants (BFRs) are a large group of widely used chemicals, which have been produced and used since 1970s. As a consequence of substantial and long-term usage, BFRs have been found to be ubiquitous in humans, wildlife, and abiotic matrices around the world. Although several reports have reviewed BFRs contamination in general, none have focused specifically on foods and human milk, and the corresponding dietary exposure. Foods (including human milk) have long been recognized as a major pathway of BFRs intake for non-occupationally exposed persons. This review summarizes most available BFRs data in foods and human milk from China in recent years, and emphasizes several specific aspects, i.e., contamination levels of legacy and emerging BFRs, dietary exposure assessment and related health concerns, comparison between various BFRs, and temporal changes in BFRs contamination.
Collapse
Affiliation(s)
- Zhixiong Shi
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Lei Zhang
- The Key Laboratory of Food Safety Risk Assessment, Ministry of Health, and China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Jingguang Li
- The Key Laboratory of Food Safety Risk Assessment, Ministry of Health, and China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Yongning Wu
- The Key Laboratory of Food Safety Risk Assessment, Ministry of Health, and China National Center for Food Safety Risk Assessment, Beijing 100021, China.
| |
Collapse
|
32
|
Liu Y, Liu J, Yu M, Zhou Q, Jiang G. Hydroxylated and methoxylated polybrominated diphenyl ethers in a marine food web of Chinese Bohai Sea and their human dietary exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 233:604-611. [PMID: 29107900 DOI: 10.1016/j.envpol.2017.10.105] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/03/2017] [Accepted: 10/26/2017] [Indexed: 06/07/2023]
Abstract
Hydroxylated (OH-) and methoxylated (MeO-) polybrominated diphenyl ethers (PBDEs) have been identified ubiquitous in wildlife and environment. However, understanding on their trophic accumulation and human exposure was hitherto limited. In this study, the occurrences and trophic behaviors were demonstrated for OH- and MeO-PBDEs using the biota samples collected from Dalian, a coastal city near Chinese Bohai Sea. ∑OH-PBDEs exhibited a wider concentration range (<MDL (method detection limit)-25 ng/g dry weight (dw)) compared with ∑MeO-PBDEs (<MDL-2 ng/g dw) and ∑PBDEs (<MDL-2 ng/g dw). The congener profiles and distribution patterns revealed that majority of OH- and MeO-PBDEs in marine biota were naturally produced and largely attributed to preying on lower trophic level biota. Though tertiary consumers accumulated more MeO-PBDEs and PBDEs, these chemicals did not show statistically significant biomagnification in the selected food web. Conversely, trophic dilution was determined for ortho-substituted OH-tetraBDEs and OH-pentaBDEs, revealing that trophic dilution was prevalent for naturally produced OH-PBDEs. The dietary intake evaluation of OH-PBDEs (0.4 ng/kg/d) and MeO-PBDEs (0.8 ng/kg/d) via seafood consumption showed that coastal residents were in higher exposure risks to OH-PBDEs and MeO-PBDEs via the massive seafood consumption.
Collapse
Affiliation(s)
- Yanwei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiyan Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Miao Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
33
|
Knudsen GA, Hall SM, Richards AC, Birnbaum LS. TBBPA disposition and kinetics in pregnant and nursing Wistar Han IGS rats. CHEMOSPHERE 2018; 192:5-13. [PMID: 29091796 PMCID: PMC5696050 DOI: 10.1016/j.chemosphere.2017.10.122] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/16/2017] [Accepted: 10/23/2017] [Indexed: 06/07/2023]
Abstract
Tetrabromobisphenol-A (TBBPA) is a brominated flame retardant (BFR) commonly used in electronics to meet fire safety standards and has the largest worldwide production of any BFR. TBBPA has been detected in human breast milk and maternal/cord serum, indicating exposure to mothers, fetuses, and breastfeeding newborns although exposure to fetuses and newborns is poorly understood. Pregnant or nursing Wistar Han IGS rats were administered [14C]-TBBPA in a single dose (25 mg/kg, 2.5 μCi/kg) and euthanized between 0.5&24 h post dose to determine disposition in pregnant and nursing rats and their pups. Systemic exposure was largely unchanged between 1&8 h post dose in pregnant rats; [14C]-radioactivity in blood varied only slightly between 0.5&8 h (2.6 ± 0.6 → 2.6 ± 0.8 nmol-eq/mL) but was below the limit of detection at 24 h with an absorption half-life of 16min and elimination half-life of 17 h. Cmax was observed at 30min in lactating rats and concentrations fell steadily through 8 h. Plasma from pregnant rats contained a mixture of TBBPA and TBBPA-conjugates at 30min but only metabolites in subsequent samples. TBBPA was not detected in lactating dam plasma in this study. Placental concentrations increased through 8 h while whole-fetus Cmax occurred at 2 h post dose. In lactating animals, liver, uterus, and mammary time-concentration curves lagged slightly behind blood-concentration curves. It was clear from these studies that TBBPA is available to both the developing fetus and nursing pup following maternal exposure, and nursing pups are continuously exposed via contaminated milk produced by their mother. This research was supported in part by the Intramural Research Program of NIH/NCI.
Collapse
Affiliation(s)
- Gabriel A Knudsen
- NCI Laboratory of Toxicology and Toxicokinetics, Research Triangle Park, NC, USA.
| | - Samantha M Hall
- NCI Laboratory of Toxicology and Toxicokinetics, Research Triangle Park, NC, USA
| | - Alicia C Richards
- NCI Laboratory of Toxicology and Toxicokinetics, Research Triangle Park, NC, USA
| | - Linda S Birnbaum
- NCI Laboratory of Toxicology and Toxicokinetics, Research Triangle Park, NC, USA
| |
Collapse
|
34
|
Shi Z, Zhang L, Zhao Y, Sun Z, Zhou X, Li J, Wu Y. A national survey of tetrabromobisphenol-A, hexabromocyclododecane and decabrominated diphenyl ether in human milk from China: Occurrence and exposure assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 599-600:237-245. [PMID: 28477480 DOI: 10.1016/j.scitotenv.2017.04.237] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/29/2017] [Accepted: 04/29/2017] [Indexed: 06/07/2023]
Abstract
A national survey of three currently used brominated flame retardants (BFRs), tetrabromobisphenol A (TBBPA), hexabromocyclododecane (HBCD) and decabrominated diphenyl ether (BDE-209) in human milk was conducted in 2011. Human milk from 16 provinces of China were collected, pooled and measured. The estimated daily intake (EDI) via human milk ingestion for nursing infant and the related health risks were evaluated. The median levels of TBBPA, HBCD and BDE-209 were 1.21, 6.83 and 0.556ng/g lipid weight (lw), respectively. Levels of BDE-209 were lower than those of TBBPA, indicating that the production and application of deca-BDE in China has been below that of TBBPA after the restriction of PBDEs. Moreover, contamination levels of TBBPA and HBCD in this survey were higher than those observed in last national survey conducted in 2007, indicating an increase of TBBPA and HBCD in the environment from 2007 to 2011. The mean estimated daily intakes (EDIs) of TBBPA, HBCD and BDE-209 via human milk for 1-6months old infant were 39.2, 51.7 and 3.65ng/kgbw/day, respectively. For risk assessment, margin of exposure (MOE) was calculated by comparing the BMDL10 (benchmark dose lower confidence limit for a benchmark response of 10%) to the EDI of each BFR. Large MOEs indicates that the estimated dietary exposure to these three BFRs for nursing infant is unlikely to raise significant health concerns. Compared with some currently used novel BFRs which also measured in this survey, higher contamination levels were found in some non-PBDE BFRs, indicating that the consumption pattern of BFRs has shifted from PBDEs to non-PBDE BFRs in China.
Collapse
Affiliation(s)
- Zhixiong Shi
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| | - Lei Zhang
- The Key Laboratory of Food Safety Risk Assessment, Ministry of Health, and China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Yunfeng Zhao
- The Key Laboratory of Food Safety Risk Assessment, Ministry of Health, and China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Zhiwei Sun
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xianqing Zhou
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Jingguang Li
- The Key Laboratory of Food Safety Risk Assessment, Ministry of Health, and China National Center for Food Safety Risk Assessment, Beijing 100021, China.
| | - Yongning Wu
- The Key Laboratory of Food Safety Risk Assessment, Ministry of Health, and China National Center for Food Safety Risk Assessment, Beijing 100021, China
| |
Collapse
|
35
|
Dufour P, Pirard C, Charlier C. Determination of phenolic organohalogens in human serum from a Belgian population and assessment of parameters affecting the human contamination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 599-600:1856-1866. [PMID: 28545212 DOI: 10.1016/j.scitotenv.2017.05.157] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/03/2017] [Accepted: 05/17/2017] [Indexed: 06/07/2023]
Abstract
Many in vitro or in vivo studies highlighted the potential deleterious effects of phenolic organohalogenated compounds (POHs) on the health, particularly on the thyroid system homeostasis, however few large scale human epidemiological studies have been carried out, especially in Europe. Further studies monitoring the human contamination by POHs, the sources of exposure and the influence of these compounds on thyroid health are still needed. Therefore we determined the concentrations of 16 POHs (pentachlorophenol (PCP), tetrabromobisphenol A (TBBPA), 4 bromophenols (BPs), 3 hydroxy-polybromodiphenylethers (OH-PBDEs) and 7 hydroxy-polychlorobiphenyls (OH-PCBs)) in serum from 274 people aged from 18 to 76years old living in Liege (Belgium) and the surrounding area. A questionnaire about their alimentary habits, life style and home environment was also administered to the volunteers. The predominant compound measured in the population was PCP (median concentration of 593.0pgmL-1). 4-OH-CB 107, 4-OH-CB 146 and 4-OH-CB 187 were detected in all samples and contributed for 75% of the sum of OH-PCBs (ΣOH-PCBs). The median measured in our population for ΣOH-PCBs was 143.7pgmL-1. TBBPA and 2,4,6-tribromophenol were detected in 31% and 63.8% of the samples respectively while the detection frequency observed for the other BPs and the OH-PBDEs was close to zero. We computed multivariate regression models in order to assess the influence of demographic and lifestyle parameters on the PCP and ΣOH-PCBs contamination levels. Significant correlation was found between the PCP concentration and sex, smoker status, sea fish consumption and level of education, although the model seemed to be a poor (R2=0.14) predictor of the PCP concentration. The model computed for ΣOH-PCBs was more explanatory (R2=0.61) and involved age, BMI and sea fish consumption. Finally, we assessed the parameters affecting the ΣOH-PCBs/ΣPCBs ratio. The model proposed involved age, BMI, smoker status and parent PCB level, and explained 41% of the variability of the ΣOH-PCBs/ΣPCBs ratio.
Collapse
Affiliation(s)
- Patrice Dufour
- Laboratory of Clinical, Forensic and Environmental Toxicology, University of Liege (ULg) CHU (B35), 4000, Liege, Belgium; Center for Interdisciplinary Research on Medicines (C.I.R.M.), University of Liege (ULg) CHU (B35), 4000, Liege, Belgium.
| | - Catherine Pirard
- Laboratory of Clinical, Forensic and Environmental Toxicology, University of Liege (ULg) CHU (B35), 4000, Liege, Belgium; Center for Interdisciplinary Research on Medicines (C.I.R.M.), University of Liege (ULg) CHU (B35), 4000, Liege, Belgium
| | - Corinne Charlier
- Laboratory of Clinical, Forensic and Environmental Toxicology, University of Liege (ULg) CHU (B35), 4000, Liege, Belgium; Center for Interdisciplinary Research on Medicines (C.I.R.M.), University of Liege (ULg) CHU (B35), 4000, Liege, Belgium
| |
Collapse
|
36
|
NTP Research Report on Biological Activity of Bisphenol A (BPA) Structural Analogues and Functional Alternatives. ACTA ACUST UNITED AC 2017. [DOI: 10.22427/ntp-rr-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
37
|
Mi XB, Bao LJ, Wu CC, Wong CS, Zeng EY. Absorption, tissue distribution, metabolism, and elimination of decabrominated diphenyl ether (BDE-209) in rats after multi-dose oral exposure. CHEMOSPHERE 2017; 186:749-756. [PMID: 28820999 DOI: 10.1016/j.chemosphere.2017.08.049] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 06/07/2023]
Abstract
Human and ecological risks of BDE-209 have drawn much attention, particularly with growing e-waste recycling activities in developing countries. To further address the issue of BDE-209 biotransformation, a laboratory-controlled study was conducted. Female Sprague-Dawley rats were dosed orally by gavage at a daily dose of 1 mg kg-1 body weight for 7 d and a depuration period of 22 d, to characterize absorption, distribution, metabolism, and elimination dynamics of BDE-209 during multi-dose exposures simulating short-term oral exposure of e-waste workers. The concentrations of BDE-209 in all tissues increased exponentially during the 7-d exposure period, indicating that multi-dose exposure could lead to increased accumulation of BDE-209 in rats. The liver accumulated the greatest amount of BDE-209 on a wet-weight basis, while adipose tissue had the highest concentration by the end of the 22-d depuration period. Half-lives of BDE-209, 207, and 197 during depuration were 1.1 ± 0.1, 2.7 ± 0.3, and 10.5 ± 3.1 d in serum and 0.9 ± 0.1, 2.2 ± 0.2, and 11.8 ± 2.3 d in liver, i.e., the half-life increased with decreasing level of bromination from deca- to octa-BDEs and was similar in both serum and liver. By contrast, the half-life of the debromination metabolite BDE-207 (21.7 ± 7.7 d) was longer in small intestine than in serum and liver, suggesting slower depletion of BDE-209 metabolites in small intestine. The metabolism of BDE-209 was not responsible for the occurrence of low brominated BDE congeners and OH and MeO-PBDEs in human tissues.
Collapse
Affiliation(s)
- Xiu-Bo Mi
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lian-Jun Bao
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Chen-Chou Wu
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Charles S Wong
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China; Department of Environmental Studies and Sciences and Department of Chemistry, Richardson College for the Environment, University of Winnipeg, Winnipeg, Manitoba, R3B 2E9, Canada
| | - Eddy Y Zeng
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
38
|
Pollock T, Mantella L, Reali V, deCatanzaro D. Influence of Tetrabromobisphenol A, with or without Concurrent Triclosan, upon Bisphenol A and Estradiol Concentrations in Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:087014. [PMID: 28886593 PMCID: PMC5783675 DOI: 10.1289/ehp1329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 04/11/2017] [Accepted: 04/13/2017] [Indexed: 05/06/2023]
Abstract
BACKGROUND Humans are commonly exposed to multiple environmental chemicals, including tetrabromobisphenol A (TBBPA; a flame retardant), triclosan (an antimicrobial agent), and bisphenol A (BPA; polycarbonate plastics). These chemicals are readily absorbed and may interact with each other. OBJECTIVES We sought to determine whether TBBPA, given alone or in combination with triclosan, can modulate the concentrations of BPA and 17β-estradiol (E2). METHODS Female and male CF-1 mice were each given a subcutaneous injection of 0-27mg TBBPA, with or without concurrent 0.33mg triclosan, followed by dietary administration of 50μg/kg body weight 14C-BPA. Radioactivity was measured in blood serum and tissues through liquid scintillation counting. In subsequent experiments, female and male CF-1 mice were each given a subcutaneous injection of 0 or 1mg TBBPA and E2 was measured in urine 2-12 h after injection. RESULTS Doses as low as 1mg TBBPA significantly elevated 14C-BPA concentrations in the uterus and ovaries of females; in the testes, epididymides, vesicular-coagulating glands, and preputial glands of males; and in blood serum, heart, lungs, and kidneys of both sexes; urinary E2 concentrations were also elevated. Lower doses of TBBPA or triclosan that had no effects on their own elevated 14C-BPA concentrations when the two substances were given concurrently. CONCLUSION These data indicate that TBBPA, triclosan, and BPA interact in vivo, consistent with evidence that TBBPA and triclosan inhibit enzymes that are critical for BPA and E2 metabolism. https://doi.org/10.1289/EHP1329.
Collapse
Affiliation(s)
- Tyler Pollock
- Department of Psychology, Neuroscience & Behaviour, McMaster University , Hamilton, Ontario, Canada
| | - Leanna Mantella
- Department of Psychology, Neuroscience & Behaviour, McMaster University , Hamilton, Ontario, Canada
| | - Vanessa Reali
- Department of Psychology, Neuroscience & Behaviour, McMaster University , Hamilton, Ontario, Canada
| | - Denys deCatanzaro
- Department of Psychology, Neuroscience & Behaviour, McMaster University , Hamilton, Ontario, Canada
| |
Collapse
|
39
|
Lu D, Jin Y, Feng C, Wang D, Lin Y, Qiu X, Xu Q, Wen Y, She J, Wang G, Zhou Z. Multi-analyte method development for analysis of brominated flame retardants (BFRs) and PBDE metabolites in human serum. Anal Bioanal Chem 2017; 409:5307-5317. [DOI: 10.1007/s00216-017-0476-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/26/2017] [Accepted: 06/19/2017] [Indexed: 12/22/2022]
|
40
|
Ho KL, Yuen KK, Yau MS, Murphy MB, Wan Y, Fong BMW, Tam S, Giesy JP, Leung KSY, Lam MHW. Glucuronide and sulfate conjugates of tetrabromobisphenol A (TBBPA): Chemical synthesis and correlation between their urinary levels and plasma TBBPA content in voluntary human donors. ENVIRONMENT INTERNATIONAL 2017; 98:46-53. [PMID: 27717582 DOI: 10.1016/j.envint.2016.09.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/16/2016] [Accepted: 09/22/2016] [Indexed: 05/22/2023]
Abstract
3,3',5,5'-Tetrabromobisphenol-A (TBBPA) is an important brominated flame retardant in epoxy, vinyl esters and polycarbonate resins. Previous studies have already shown the occurrence of its Phase II metabolites, TBBPA-glucuronide and sulfate conjugates, in human urine, after oral administration of TBBPA. The main objective of this work is to examine correlations among level of TBBPA in human blood and those of its Phase II metabolites in human urine. Four water-soluble TBBPA conjugates were synthesized, purified and characterized. An analytical protocol using solid-phase extraction and liquid chromatography-electrospray tandem mass spectrometry (SPE-LC-MS/MS) quantification was developed for the simultaneous analysis of these glucuronide and sulfate conjugates in human urine samples. TBBPA and its Phase II metabolites in paired human plasma and urine samples collected randomly from 140 voluntary donors in Hong Kong SAR, China, were determined. One or more TBBPA conjugates were detected in all of the urine samples, with concentration ranging from 0.19 to 127.24μgg-1-creatinine. TBBPA was also quantified in >85% of the plasma and urine samples. Strong correlations were observed between TBBPA content in plasma and the total amount of TBBPA-related compounds in urine.
Collapse
Affiliation(s)
- Ka-Lok Ho
- State Key Laboratory for Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Hong Kong, China
| | - Ka-Ki Yuen
- State Key Laboratory for Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Hong Kong, China
| | - Man-Shan Yau
- State Key Laboratory for Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Hong Kong, China
| | - Margaret B Murphy
- State Key Laboratory for Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Hong Kong, China
| | - Yi Wan
- Department of Biomedical Veterinary Sciences, Toxicology Centre, University of Saskatchewan, Canada
| | - Bonnie M-W Fong
- Division of Clinical Biochemistry, Queen Mary Hospital, Hong Kong, China; Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Sidney Tam
- Division of Clinical Biochemistry, Queen Mary Hospital, Hong Kong, China
| | - John P Giesy
- State Key Laboratory for Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Hong Kong, China; Department of Biomedical Veterinary Sciences, Toxicology Centre, University of Saskatchewan, Canada; Department of Zoology and Center for Integrative Toxicology, Michigan State University, USA
| | - Kelvin S-Y Leung
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Michael H-W Lam
- State Key Laboratory for Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
41
|
Haraguchi K, Ito Y, Takagi M, Fujii Y, Harada KH, Koizumi A. Levels, profiles and dietary sources of hydroxylated PCBs and hydroxylated and methoxylated PBDEs in Japanese women serum samples. ENVIRONMENT INTERNATIONAL 2016; 97:155-162. [PMID: 27615405 DOI: 10.1016/j.envint.2016.08.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/03/2016] [Accepted: 08/24/2016] [Indexed: 06/06/2023]
Abstract
Human exposure to polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) may result in retention of specific congeners of hydroxylated PCBs (OH-PCBs) and hydroxylated/methoxylated PBDEs (OH-/MeO-PBDEs) in serum. However, dietary sources and biotransformation of OH-/MeO-PBDEs in humans are poorly understood. Therefore, this study was conducted to investigate the levels, profiles, and exposure sources of OH-/MeO-PBDEs along with OH-PCBs present in human serum. Twenty serum samples pooled from women of four age groups (30s/40s/50s/60s) living in four districts of Japan were analyzed for OH-/MeO-PBDEs, and their profiles were then compared with those of seafood (seaweed and fish). The major component of OH-PCBs in the phenolic fraction of serum was 4-OH-CB187 (mean: 85pgg-1 wet weight (ww)). Total OH-PCBs accounted for about 1/20 of the total PCBs (mean; 1800pgg-1 ww). In contrast, the predominant component of OH-PBDEs in serum was 6-OH-BDE47 (mean: 183pgg-1 ww), which was about 20-fold higher than BDE-47 (mean; 8.7pgg-1 ww). In the neutral fraction, 2'-MeO-BDE68 was primarily found at a similar concentration (mean 5.6pgg-1 ww) to BDE-47. Both 4-OH-PCB187 and 2'-MeO-BDE68 were significantly correlated with woman's age (p<0.01), but not with 6-OH-BDE47 or BDE-47. The profiles of OH-PBDEs in serum were consistent with those in edible seaweeds (Sargassum fusiforme) sold for human consumption, whereas MeO-PBDEs had a similar profile as those in edible fish (Serranidae sp.) from Japanese coastal waters. These findings indicate that the profiles of OH-PBDEs and MeO-PBDEs in Japanese serum are different from those in other countries, and their sources may be specific edible seaweeds and fish, respectively. This is the first report of profiles and dietary sources of OH/MeO-PBDEs in human serum from Japan.
Collapse
Affiliation(s)
- Koichi Haraguchi
- Daiichi College of Pharmaceutical Sciences, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511, Japan.
| | - Yoshiko Ito
- Daiichi College of Pharmaceutical Sciences, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511, Japan
| | - Masae Takagi
- Daiichi College of Pharmaceutical Sciences, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511, Japan
| | - Yukiko Fujii
- Daiichi College of Pharmaceutical Sciences, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511, Japan; Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida, Kyoto 606-8501, Japan
| | - Kouji H Harada
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida, Kyoto 606-8501, Japan
| | - Akio Koizumi
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida, Kyoto 606-8501, Japan
| |
Collapse
|
42
|
Synergetic signal amplification of multi-walled carbon nanotubes-Fe 3O 4 hybrid and trimethyloctadecylammonium bromide as a highly sensitive detection platform for tetrabromobisphenol A. Sci Rep 2016; 6:38000. [PMID: 27897238 PMCID: PMC5126559 DOI: 10.1038/srep38000] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/04/2016] [Indexed: 01/25/2023] Open
Abstract
In this work, we fabricated an electrochemical sensor based on trimethyloctadecylammonium bromide and multi-walled carbon nanotubes-Fe3O4 hybrid (TOAB/MWCNTs-Fe3O4) for sensitive detection of tetrabromobisphenol A (TBBPA). The nanocomposite was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FT-IR) techniques. The electrochemical behaviors of TBBPA on TOAB/MWCNTs-Fe3O4 composite film modified glassy carbon electrode (GCE) were investigated by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS) method. The experimental results indicated that the incorporation of MWCNTs-Fe3O4 with TOAB greatly enhanced the electrochemical response of TBBPA. This fabricated sensor displayed excellent analytical performance for TBBPA detection over a range from 3.0 nM to 1000.0 nM with a detection limit of 0.73 nM (S/N = 3). Moreover, the proposed electrochemical sensor exhibited good reproducibility and stability, and could be successfully applied to detect TBBPA in water samples with satisfactory results.
Collapse
|
43
|
Coelho SD, Sousa ACA, Isobe T, Kunisue T, Nogueira AJA, Tanabe S. Brominated flame retardants and organochlorine compounds in duplicate diet samples from a Portuguese academic community. CHEMOSPHERE 2016; 160:89-94. [PMID: 27367176 DOI: 10.1016/j.chemosphere.2016.06.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 05/16/2016] [Accepted: 06/09/2016] [Indexed: 06/06/2023]
Abstract
Concentrations of persistent organic pollutants (POPs), including polybrominated diphenyl ethers (PBDEs), hexabromocyclododecanes (HBCDDs), polychlorinated biphenyls (PCBs), hexachlorocyclohexane isomers (HCHs), hexachlorobenzene (HCB), chlordane compounds (CHLs) and dichlorodiphenyltrichloroethane and its metabolites (DDTs), were measured in duplicate diet samples from 21 volunteers at a Portuguese academic community (University of Aveiro). Overall, the levels of the target compounds were low, with detection frequencies varying widely depending on the compounds and with brominated flame retardants (BFRs) registering the lowest detection frequencies. Among PCB congeners, nondioxin-like PCBs were predominant and detected in the majority of the samples. Organochlorine pesticides were also detected in the majority of the samples, with 100% detection for DDTs and HCHs. Estimated daily intakes (EDIs) were calculated using lower and upper bound estimations, and in both cases values were far below the currently established tolerable daily intakes for PCBs and OCs and the reference doses for PBDEs and HBCDDs.
Collapse
Affiliation(s)
- Sónia D Coelho
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal; Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, 790-8577, Japan
| | - Ana C A Sousa
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal; Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, 790-8577, Japan; Health Sciences Research Centre (CICS), University of Beira Interior, 6200-506, Covilhã, Portugal.
| | - Tomohiko Isobe
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, 790-8577, Japan; Center for Environmental Health Sciences, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Tatsuya Kunisue
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, 790-8577, Japan
| | - António J A Nogueira
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Shinsuke Tanabe
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, 790-8577, Japan
| |
Collapse
|
44
|
Zwitterionic Surfactant Modified Acetylene Black Paste Electrode for Highly Facile and Sensitive Determination of Tetrabromobisphenol A. SENSORS 2016; 16:s16091539. [PMID: 27657078 PMCID: PMC5038812 DOI: 10.3390/s16091539] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/07/2016] [Accepted: 09/09/2016] [Indexed: 02/04/2023]
Abstract
A electrochemical sensor for the highly sensitive detection of tetrabromobisphenol A (TBBPA) was fabricated based on acetylene black paste electrode (ABPE) modified with 3-(N,N-Dimethylpalmitylammonio) propanesulfonate (SB3-16) in this study. The peak current of TBBPA was significantly enhanced at SB3-16/ABPE compared with unmodified electrodes. To further improve the electrochemical performance of the modified electrode, corresponding experimental parameters such as the length of hydrophobic chains of zwitterionic surfactant, the concentration of SB3-16, pH value, and accumulation time were examined. The peak currents of TBBPA were found to be linearly correlated with its concentrations in the range of 1 nM to 1 µM, with a detection limit of 0.4 nM. Besides, a possible mechanism was also discussed, and the hydrophobic interaction between TBBPA and the surfactants was suggested to take a leading role in enhancing the responses. Finally, this sensor was successfully employed to detect TBBPA in water samples.
Collapse
|
45
|
Abou-Elwafa Abdallah M. Environmental occurrence, analysis and human exposure to the flame retardant tetrabromobisphenol-A (TBBP-A)-A review. ENVIRONMENT INTERNATIONAL 2016; 94:235-250. [PMID: 27266836 DOI: 10.1016/j.envint.2016.05.026] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/25/2016] [Accepted: 05/25/2016] [Indexed: 05/22/2023]
Abstract
TBBP-A is a high production volume chemical applied widely as a flame retardant in printed circuit boards. Recent studies have raised concern over potential harmful implications of TBBP-A exposure in human and wildlife, leading to its classification under group 2A "Probably carcinogenic to humans" by the International Agency for Research on Cancer. This article provides a comprehensive review of the available literature on TBBP-A analysis, environmental levels and human exposure. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been identified as the method of choice for robust, accurate and sensitive analysis of TBBP-A in different matrices. TBBP-A has been detected in almost all environmental compartments all over the world, rendering it a ubiquitous contaminant. Human exposure studies revealed dust ingestion and diet as the major pathways of TBBP-A exposure in the general population. Toddlers are likely to be more exposed than adults via accidental indoor dust ingestion. Moreover, exposure to TBBP-A may occur prenatally and via breast milk. There are no current restrictions on the production of TBBP-A in the EU or worldwide. However, more research is required to characterise human exposure to TBBP-A in and around production facilities, as well as in e-waste recycling regions.
Collapse
Affiliation(s)
- Mohamed Abou-Elwafa Abdallah
- Division of Environmental Health and Risk Management, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; Department of Analytical Chemistry, Faculty of Pharmacy, Assiut University, 71526 Assiut, Egypt.
| |
Collapse
|
46
|
Liu AF, Qu GB, Yu M, Liu YW, Shi JB, Jiang GB. Tetrabromobisphenol-A/S and Nine Novel Analogs in Biological Samples from the Chinese Bohai Sea: Implications for Trophic Transfer. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:4203-11. [PMID: 27008063 DOI: 10.1021/acs.est.5b06378] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Tetrabromobisphenol-A/S (TBBPA/S) analogs have raised substantial concern because of their adverse effects and potential bioaccumulative properties, such as TBBPA bis(allyl ether) (TBBPA-BAE) and TBBPA bis(2,3-dibromopropyl ether) (TBBPA-BDBPE). In this study, a comprehensive method for simultaneous determination of TBBPA/S and nine novel analogs, including TBBPA-BAE, TBBPA-BDBPE, TBBPS-BDBPE, TBBPA mono(allyl ether) (TBBPA-MAE), TBBPA mono(2-bromoallyl ether) (TBBPA-MBAE), TBBPA mono(2,3-dibromopropyl ether) (TBBPA-MDBPE), TBBPS-MAE, TBBPS-MBAE, and TBBPS-MDBPE in biological samples was developed. The distribution patterns and trophic transfer properties of TBBPA/S and analogs in various biological samples collected from the Chinese Bohai Sea were then studied in detail. For the first time, TBBPA-MBAE and TBBPS-BDBPE were detected in biological samples and TBBPA-MBAE was identified as a byproduct. The concentrations of TBBPA and analogs ranged from ND (not detected or below the method detection limit) to 2782.8 ng/g lipid weight (lw), and for TBBPS and analogs ranged from ND to 927.8 ng/g lw. High detection frequencies (>86%) for TBBPA, TBBPS and TBBPA-MAE, TBBPA-MDBPE, TBBPS-MAE, TBBPS-MBAE, and TBBPS-MDBPE were obtained. Meanwhile, TBBPA, TBBPS, and these five analogs displayed trophic dilution tendencies due to significantly negative correlations between trophic levels and lipid-corrected concentrations together with the trophic magnification factors (from 0.31 to 0.55). The results also indicated the novel TBBPA-MAE, TBBPA-MBAE, TBBPA-MDBPE, TBBPS-MAE, TBBPS-MBAE, and TBBPS-MDBPE could be generated not only as byproducts, but also as the probable transformation products of commercial TBBPA/S derivatives.
Collapse
Affiliation(s)
- Ai-Feng Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
| | - Guang-Bo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
| | - Miao Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
| | - Yan-Wei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
| | - Jian-Bo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
- Institute of Environment and Health, Jianghan University , Wuhan 430056, China
| | - Gui-Bin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences , Beijing 100049, China
| |
Collapse
|
47
|
Liu K, Li J, Yan S, Zhang W, Li Y, Han D. A review of status of tetrabromobisphenol A (TBBPA) in China. CHEMOSPHERE 2016; 148:8-20. [PMID: 26800486 DOI: 10.1016/j.chemosphere.2016.01.023] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/03/2016] [Accepted: 01/06/2016] [Indexed: 06/05/2023]
Abstract
Tetrabromobisphenol A (TBBPA), a currently intensively used brominated flame retardant (BFR), is employed primarily as a reactive flame retardant in printed circuit boards but also has additive applications in several types of polymers. TBBPA is a ubiquitous environmental contaminant that is observed in both abiotic and biotic matrices. This paper summarizes and critically reviews the published scientific data concerning the current pollution status of TBBPA in China. To provide an indication of the seriousness of the pollution levels of TBBPA in China, the data are compared with available existing data from other countries of the world. According to the available data, the sources of TBBPA in China are mainly derived from the primitive e-waste dismantling, TBBPA manufacturing and processing of TBBPA-based materials. The most serious cases of TBBPA pollution in China are in Guiyu, Guangdong (primitive e-waste dismantling site) with concentrations of TBBPA reaching 66,010-95,040 pg m(-3) in air, Shouguang, Shandong (TBBPA manufacturing site) with concentrations of TBBPA reaching 1.64-7758 ng g(-1) dry weight in soil, and Chaohu Lake, Anhui (industry concentration site) with concentrations of TBBPA reaching 850-4870 ng L(-1) in water. In general, China is the most polluted region as affected by TBBPA compared with other countries. The present review preliminarily reveals the research status of TBBPA in China.
Collapse
Affiliation(s)
- Kou Liu
- Research Institute of Tianying in Shanghai, China Tianying Inc., Shanghai 200233, China; School of Resource and Environmental Engineering, East China University of Science and Technology, State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, Shanghai 200237, China
| | - Jun Li
- Research Institute of Tianying in Shanghai, China Tianying Inc., Shanghai 200233, China.
| | - Shengjun Yan
- Research Institute of Tianying in Shanghai, China Tianying Inc., Shanghai 200233, China
| | - Wei Zhang
- School of Resource and Environmental Engineering, East China University of Science and Technology, State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, Shanghai 200237, China.
| | - Yaojian Li
- Research Institute of Tianying in Shanghai, China Tianying Inc., Shanghai 200233, China
| | - Dan Han
- Research Institute of Tianying in Shanghai, China Tianying Inc., Shanghai 200233, China
| |
Collapse
|
48
|
Szychowski KA, Wójtowicz AK. TBBPA causes neurotoxic and the apoptotic responses in cultured mouse hippocampal neurons in vitro. Pharmacol Rep 2016; 68:20-6. [DOI: 10.1016/j.pharep.2015.06.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/09/2015] [Accepted: 06/11/2015] [Indexed: 02/06/2023]
|
49
|
Li G, Xiong J, Wong PK, An T. Enhancing tetrabromobisphenol A biodegradation in river sediment microcosms and understanding the corresponding microbial community. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 208:796-802. [PMID: 26602791 DOI: 10.1016/j.envpol.2015.11.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/30/2015] [Accepted: 11/01/2015] [Indexed: 06/05/2023]
Abstract
In situ remediation of contaminated sediment using microbes is a promising environmental treatment method. This study used bioaugmentation to investigate the biodegradation of tetrabromobisphenol A (TBBPA) in sediment microcosms collected from an electronic-waste recycling site. Treatments included adding possible biodegradation intermediates of TBBPA, including 2,4-dibromophenol (2,4-DBP), 2,4,6-tribromophenol (TBP), and bisphenol A (BPA) as co-substrates. Bioaugmentation was done with Ochrobactrum sp. T (TBBPA-degrader) and a mixed culture of Ochrobactrum sp. T, Bacillus sp. GZT (TBP-degrader) and Bacillus sp. GZB (BPA-degrader). Results showed that bioaugmentation with Ochrobactrum sp. T significantly improved TBBPA degradation efficiencies in sediment microcosms (P < 0.01); aerobic conditions increased the microbes' degradation activities. Co-substrates 2,4-DBP, TBP and BPA inhibited biodegradation of TBBPA. A metagenomic analysis of total 16S rRNA genes from the treated sediment microcosms showed that the following dominant genera: Ochrobactrum, Parasegetibacter, Thermithiobacillus, Phenylobacterium and Sphingomonas. The genus level of Ochrobactrum increased with increased degradation time, within 10-week of incubation. Microbes from genus Ochrobactrum are mainly linked to enhance the TBBPA biodegradation.
Collapse
Affiliation(s)
- Guiying Li
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Jukun Xiong
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Po Keung Wong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong Special Administrative Region
| | - Taicheng An
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| |
Collapse
|
50
|
Fromme H, Becher G, Hilger B, Völkel W. Brominated flame retardants – Exposure and risk assessment for the general population. Int J Hyg Environ Health 2016; 219:1-23. [DOI: 10.1016/j.ijheh.2015.08.004] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 08/10/2015] [Accepted: 08/12/2015] [Indexed: 01/01/2023]
|