1
|
Blazer VS, Walsh HL, Smith CR, Gordon SE, Keplinger BJ, Wertz TA. Tissue distribution and temporal and spatial assessment of per- and polyfluoroalkyl substances (PFAS) in smallmouth bass (Micropterus dolomieu) in the mid-Atlantic United States. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59302-59319. [PMID: 39348015 PMCID: PMC11513725 DOI: 10.1007/s11356-024-35097-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have become an environmental issue worldwide. A first step to assessing potential adverse effects on fish populations is to determine if concentrations of concern are present in a region and if so, in which watersheds. Hence, plasma from adult smallmouth bass Micropterus dolomieu collected at 10 sites within 4 river systems in the mid-Atlantic region of the United States, from 2014 to 2019, was analyzed for 13 PFAS. These analyses were directed at better understanding the presence and associations with land use attributes in an important sportfish. Four substances, PFOS, PFDA, PFUnA, and PFDoA, were detected in every plasma sample, with PFOS having the highest concentrations. Sites with mean plasma concentrations of PFOS below 100 ng/ml had the lowest percentage of developed landcover in the upstream catchments. Sites with moderate plasma concentrations (mean PFOS concentrations between 220 and 240 ng/ml) had low (< 7.0) percentages of developed land use but high (> 30) percentages of agricultural land use. Sites with mean plasma concentrations of PFOS > 350 ng/ml had the highest percentage of developed land use and the highest number PFAS facilities that included military installations and airports. Four of the sites were part of a long-term monitoring project, and PFAS concentrations of samples collected in spring 2017, 2018, and 2019 were compared. Significant annual differences in plasma concentrations were noted that may relate to sources and climatic factors. Samples were also collected at two sites for tissue (plasma, whole blood, liver, gonad, muscle) distribution analyses with an expanded analyte list of 28 PFAS. Relative tissue distributions were not consistent even within one species of similar ages. Although the long-chained legacy PFAS were generally detected more frequently and at higher concentrations, emerging compounds such as 6:2 FTS and GEN X were detected in a variety of tissues.
Collapse
Affiliation(s)
- Vicki S Blazer
- U.S. Geological Survey, Eastern Ecological Science Center - Leetown Research Laboratory, Kearneysville, WV, 25430, USA.
| | - Heather L Walsh
- U.S. Geological Survey, Eastern Ecological Science Center - Leetown Research Laboratory, Kearneysville, WV, 25430, USA
| | - Cheyenne R Smith
- U.S. Geological Survey, Eastern Ecological Science Center - Leetown Research Laboratory, Kearneysville, WV, 25430, USA
| | - Stephanie E Gordon
- U.S. Geological Survey, Eastern Ecological Science Center - Leetown Research Laboratory, Kearneysville, WV, 25430, USA
| | | | - Timothy A Wertz
- Pennsylvania Department of Environmental Protection, Harrisburg, PA, 17101, USA
| |
Collapse
|
2
|
Hill NI, Becanova J, Vojta S, Barber LB, LeBlanc DR, Vajda AM, Pickard HM, Lohmann R. Bioconcentration of Per- and Polyfluoroalkyl Substances and Precursors in Fathead Minnow Tissues Environmentally Exposed to Aqueous Film-Forming Foam-Contaminated Waters. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1795-1806. [PMID: 38896102 DOI: 10.1002/etc.5926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/06/2024] [Accepted: 05/03/2024] [Indexed: 06/21/2024]
Abstract
Exposure to per- and polyfluoroalkyl substances (PFAS) has been associated with toxicity in wildlife and negative health effects in humans. Decades of fire training activity at Joint Base Cape Cod (MA, USA) incorporated the use of aqueous film-forming foam (AFFF), which resulted in long-term PFAS contamination of sediments, groundwater, and hydrologically connected surface waters. To explore the bioconcentration potential of PFAS in complex environmental mixtures, a mobile laboratory was established to evaluate the bioconcentration of PFAS from AFFF-impacted groundwater by flow-through design. Fathead minnows (n = 24) were exposed to PFAS in groundwater over a 21-day period and tissue-specific PFAS burdens in liver, kidney, and gonad were derived at three different time points. The ∑PFAS concentrations in groundwater increased from approximately 10,000 ng/L at day 1 to 36,000 ng/L at day 21. The relative abundance of PFAS in liver, kidney, and gonad shifted temporally from majority perfluoroalkyl sulfonamides (FASAs) to perfluoroalkyl sulfonates (PFSAs). By day 21, mean ∑PFAS concentrations in tissues displayed a predominance in the order of liver > kidney > gonad. Generally, bioconcentration factors (BCFs) for FASAs, perfluoroalkyl carboxylates (PFCAs), and fluorotelomer sulfonates (FTS) increased with degree of fluorinated carbon chain length, but this was not evident for PFSAs. Perfluorooctane sulfonamide (FOSA) displayed the highest mean BCF (8700 L/kg) in day 21 kidney. Suspect screening results revealed the presence of several perfluoroalkyl sulfinate and FASA compounds present in groundwater and in liver for which pseudo-bioconcentration factors are also reported. The bioconcentration observed for precursor compounds and PFSA derivatives detected suggests alternative pathways for terminal PFAS exposure in aquatic wildlife and humans. Environ Toxicol Chem 2024;43:1795-1806. © 2024 The Author(s). Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Nicholas I Hill
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA
| | - Jitka Becanova
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA
| | - Simon Vojta
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA
| | | | | | - Alan M Vajda
- Department of Integrative Biology, University of Colorado Denver, Denver, Colorado, USA
| | - Heidi M Pickard
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Rainer Lohmann
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA
| |
Collapse
|
3
|
Ochs C, Garrison K, Saxena P, Romme K, Sarkar A. Contamination of aquatic ecosystems by persistent organic pollutants (POPs) originating from landfills in Canada and the United States: A rapid scoping review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171490. [PMID: 38462011 DOI: 10.1016/j.scitotenv.2024.171490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/11/2024] [Accepted: 03/03/2024] [Indexed: 03/12/2024]
Abstract
Persistent organic pollutants (POPs) are organic chemical substances that threaten human health and the planet's ecosystems due to their toxicity and their ability to remain intact for a long time, wide distribution throughout the environment, and accumulation and magnification in living organisms through the food chain. Discarded products from landfills and dumpsites are potential sources of POPs due to their persistence for several decades and constant release to surrounding environment. POPs in aquatic systems signal input predominantly from landfills, wastewater treatment plants, sewage, and urban runoff, suggesting a research gap to guide policies to address these unabated releases. This scoping review aims to rapidly identify the key concepts underpinning the containment, translation, and migration of POPs in Canadian and US landfill leachate. The review targeted multidisciplinary perspectives on the topic and spanned forensic biology, environmental sciences, chemistry, and geology. Contaminated municipal solid waste (MSW) landfill characteristics, as reported by government agencies in Canada and the US, were synthesized and harmonized to illustrate the geographical scope of MSW landfills releasing POPs into the surrounding environment. The knowledge and data gaps summarized in this study highlight the need to address the inadvertent release of POPs from Canadian and US landfills, particularly in consideration of dated and degrading landfill infrastructure, the proximity of marginalized people, and the implications of climate change on the countries' more vulnerable landscapes. This review is applicable to the development of future studies that aim to guide environmental protective policies.
Collapse
Affiliation(s)
- Cory Ochs
- Division of Population Health and Applied Health Sciences, Faculty of Medicine, Memorial University of Newfoundland and Labrador, St. John's, NL, Canada
| | - Kaitlyn Garrison
- Division of Population Health and Applied Health Sciences, Faculty of Medicine, Memorial University of Newfoundland and Labrador, St. John's, NL, Canada
| | - Priyam Saxena
- Division of Population Health and Applied Health Sciences, Faculty of Medicine, Memorial University of Newfoundland and Labrador, St. John's, NL, Canada.
| | - Kristen Romme
- Health Sciences Library, Memorial University of Newfoundland and Labrador, St. John's, NL, Canada
| | - Atanu Sarkar
- Division of Population Health and Applied Health Sciences, Faculty of Medicine, Memorial University of Newfoundland and Labrador, St. John's, NL, Canada
| |
Collapse
|
4
|
Marín-García M, Fàbregas C, Argenté C, Díaz-Ferrero J, Gómez-Canela C. Accumulation and dietary risks of perfluoroalkyl substances in fish and shellfish: A market-based study in Barcelona. ENVIRONMENTAL RESEARCH 2023; 237:117009. [PMID: 37652217 DOI: 10.1016/j.envres.2023.117009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/24/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023]
Abstract
Since the 1940s, per- and polyfluoroalkyl substances (PFAS) have been widely produced and used in various applications due to their unique properties. Consequently, the principal exposure routes of PFAS have been broadly studied, leading to the conclusion that dietary exposure (more specifically, the consumption of fish and seafood) was one of their main contributors. Thus, developing an analytical method that determines the level of PFAS in fish and seafood has become a relevant subject. In this work, a previous analytical method has been optimized to determine 12 PFAS in fish muscle from salmon, tuna, cod, hake, sardine, anchovy, and sole, as well as in seven different seafood species (i.e., cuttlefish, octopus, squid, shrimp, Norway lobster, prawn, and mussel) by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Subsequently, the PFAS profile of the different species was studied to determine if it was consistent with that previously reviewed in the literature and to know the most relevant contribution of PFAS for each species. Finally, human exposure to PFAS through their consumption was estimated by the daily intake for seven different age/gender groups. PFAS were obtained from 0.014 to 0.818 ng g-1 wet weight in fish samples. Sardines, anchovies, and soles presented the highest PFAS levels. However, cod samples also showed some PFAS traces. Regarding seafood, PFAS levels range from 0.03 to 36.7 ng g-1 dry weight for the studied species. A higher concentration of PFAS has been found in the cephalopods' spleens and the crustaceans' heads. PFOS and PFBS were the predominant compounds in each seafood species, respectively. On the other hand, in the case of mussels, which are the less polluted species of the study, contamination by longer-chained PFAS was also observed. Finally, the total intake of PFAS due to fish and shellfish consumption for the Spanish adult population was estimated at 17.82 ng day-1. Nevertheless, none of the analyzed samples exceeded the European Food Safety Authority (EFSA) risk value for the supervised PFAS in any age/gender group reviewed.
Collapse
Affiliation(s)
- Marc Marín-García
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull (IQS-URL), Via Augusta 390, 08017, Barcelona, Spain
| | - Céline Fàbregas
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull (IQS-URL), Via Augusta 390, 08017, Barcelona, Spain
| | - Carla Argenté
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull (IQS-URL), Via Augusta 390, 08017, Barcelona, Spain
| | - Jordi Díaz-Ferrero
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull (IQS-URL), Via Augusta 390, 08017, Barcelona, Spain
| | - Cristian Gómez-Canela
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull (IQS-URL), Via Augusta 390, 08017, Barcelona, Spain.
| |
Collapse
|
5
|
Shi Y, Almuhtaram H, Andrews RC. Adsorption of Per- and Polyfluoroalkyl Substances (PFAS) and Microcystins by Virgin and Weathered Microplastics in Freshwater Matrices. Polymers (Basel) 2023; 15:3676. [PMID: 37765530 PMCID: PMC10535594 DOI: 10.3390/polym15183676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/23/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Microplastics and per- and polyfluoroalkyl substances (PFAS) both represent persistent groups of environmental contaminants that have been associated with human health risks. Microcystin toxins are produced and stored in the cells of cyanobacteria and may be released into sources of drinking water. Recent concerns have emerged regarding the ability of microplastics to adsorb a range of organic contaminants, including PFAS and microcystins. This study examined the adsorption of two long-chain and two short-chain PFAS, as well as two common microcystins, by both virgin and weathered microplastics in freshwater. Natural weathering of microplastic surfaces may decrease adsorption by introducing hydrophilic oxygen-containing functional groups. Up to 50% adsorption of perfluorooctanesulfonic acid (PFOS) was observed for virgin PVC compared to 38% for weathered PVC. In contrast, adsorption capacities for microcystins by virgin LDPE were approximately 5.0 µg/g whereas no adsorption was observed following weathering. These results suggest that adsorption is driven by specific polymer types and dominated by hydrophobic interactions. This is the first known study to quantify PFAS and microcystins adsorption when considering environmentally relevant concentrations as well as weathered microplastics.
Collapse
Affiliation(s)
| | - Husein Almuhtaram
- Department of Civil and Mineral Engineering, University of Toronto, 35 St George Street, Toronto, ON M5S 1A4, Canada
| | | |
Collapse
|
6
|
Brown AS, Yun X, McKenzie ER, Heron CG, Field JA, Salice CJ. Spatial and temporal variability of per- and polyfluoroalkyl substances (PFAS) in environmental media of a small pond: Toward an improved understanding of PFAS bioaccumulation in fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163149. [PMID: 37011692 DOI: 10.1016/j.scitotenv.2023.163149] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 05/27/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are highly fluorinated compounds with many industrial applications, for instance as ingredients in fire-suppressing aqueous film-forming foams (AFFF). Several PFAS have been demonstrated to be persistent, bioaccumulative and toxic. This study better characterizes the bioaccumulation of PFAS in freshwater fish through a spatial and temporal analysis of surface water and sediment from a stormwater pond in a former Naval air station (NAS) with historic AFFF use. We sampled environmental media from four locations twice per week for five weeks and sampled fish at the end of the sampling effort. The primary PFAS identified in surface water, sediment, and biota were perfluorooctane sulfonate (PFOS) and perfluorohexane sulfonate (PFHxS) followed by perfluorooctanoic acid (PFOA) in environmental media and perfluoroheptane sulfonate (PFHpS) in biota. We observed significant temporal variability in surface water concentrations at the pond headwaters following stochastic events such as heavy rainfall for many compounds, particularly PFHxS. Sediment concentrations varied most across sampling locations. In fish, liver tissue presented the highest concentrations for all compounds except PFHxS, which was highest in muscle tissue, suggesting the influence of fine-scale aqueous PFAS fluctuations on tissue distribution. Calculated log bioaccumulation factors (BAFs) ranged from 0.13 to 2.30 for perfluoroalkyl carboxylates (PFCA) and 0.29-4.05 for perfluoroalkane sulfonates (PFSA) and fluctuated greatly with aqueous concentrations. The variability of PFAS concentrations in environmental media necessitates more frequent sampling efforts in field-based studies to better characterize PFAS contamination in aquatic ecosystems as well as exercising caution when considering single time-point BAFs due to uncertainty of system dynamics.
Collapse
Affiliation(s)
- Abbi S Brown
- Environmental Science and Studies Program, Towson University, Towson, MD, USA
| | - Xiaoyan Yun
- Civil and Environmental Engineering Department, Temple University, Philadelphia, PA, USA
| | - Erica R McKenzie
- Civil and Environmental Engineering Department, Temple University, Philadelphia, PA, USA
| | - Christopher G Heron
- Department of Environmental and Molecular Toxicology, College of Agricultural Sciences, Oregon State University, Corvallis, OR, USA
| | - Jennifer A Field
- Department of Environmental and Molecular Toxicology, College of Agricultural Sciences, Oregon State University, Corvallis, OR, USA
| | | |
Collapse
|
7
|
Carrizo JC, Munoz G, Vo Duy S, Liu M, Houde M, Amé MV, Liu J, Sauvé S. PFAS in fish from AFFF-impacted environments: Analytical method development and field application at a Canadian international civilian airport. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163103. [PMID: 36972881 DOI: 10.1016/j.scitotenv.2023.163103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/09/2023] [Accepted: 03/23/2023] [Indexed: 05/17/2023]
Abstract
Methods targeting anionic per- and polyfluoroalkyl substances (PFAS) in aquatic biota are well established, but commonly overlook many PFAS classes present in aqueous film-forming foams (AFFFs). Here, we developed an analytical method for the expanded analysis of negative and positive ion mode PFAS in fish tissues. Eight variations of extraction solvents and clean-up protocols were first tested to recover 70 AFFF-derived PFAS from the fish matrix. Anionic, zwitterionic, and cationic PFAS displayed the best responses with methanol-based ultrasonication methods. The response of long-chain PFAS was improved for extracts submitted to graphite filtration alone compared with those involving solid-phase extraction. The validation included an assessment of linearity, absolute recovery, matrix effects, accuracy, intraday/interday precision, and trueness. The method was applied to a set of freshwater fish samples collected in 2020 in the immediate vicinity (creek, n = 15) and downstream (river, n = 15) of an active fire-training area at an international civilian airport in Ontario, Canada. While zwitterionic fluorotelomer betaines were major components of the subsurface AFFF source zone, they were rarely detected in fish, suggesting limited bioaccumulation potential. PFOS largely dominated the PFAS profile, with record-high concentrations in brook sticklebacks (Culaea inconstans) from the creek (16000-110,000 ng/g wet weight whole-body). These levels exceeded the Canadian Federal Environmental Quality Guidelines (FEQG) for PFOS pertaining to the Federal Fish Tissue Guideline (FFTG) for fish protection and Federal Wildlife Diet Guidelines (FWiDG) for the protection of mammalian and avian consumers of aquatic biota. Perfluorohexane sulfonamide and 6:2 fluorotelomer sulfonate were among the precursors detected at the highest levels (maximum of ∼340 ng/g and ∼1100 ng/g, respectively), likely reflecting extensive degradation and/or biotransformation of C6 precursors originally present in AFFF formulations.
Collapse
Affiliation(s)
- Juan Cruz Carrizo
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada; CONICET, CIBICI and Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Dpto. Bioquímica Clínica, Córdoba, Argentina
| | - Gabriel Munoz
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada
| | - Sung Vo Duy
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada
| | - Min Liu
- Department of Civil Engineering, McGill University, Montréal, QC, Canada
| | - Magali Houde
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Montréal, QC, Canada
| | - María Valeria Amé
- CONICET, CIBICI and Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Dpto. Bioquímica Clínica, Córdoba, Argentina
| | - Jinxia Liu
- Department of Civil Engineering, McGill University, Montréal, QC, Canada
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
8
|
Guo M, Wu F, Geng Q, Wu H, Song Z, Zheng G, Peng J, Zhao X, Tan Z. Perfluoroalkyl substances (PFASs) in aquatic products from the Yellow-Bohai Sea coasts, China: Concentrations and profiles across species and regions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121514. [PMID: 36990342 DOI: 10.1016/j.envpol.2023.121514] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/03/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Perfluoroalkyl substances (PFASs) are emerging contaminants capable of harming human health, primarily via ingesting aquatic products. The current study monitored a survey of 23 PFASs in 1049 aquatic products from the coasts of the Yellow-Bohai Sea in China to comprehensively investigate the concentrations and distributions of PFASs. PFOA, PFOS, PFNA, PFOSA, and PFUdA were more predominantly and frequently detected than other PFASs in all samples, dominating PFAS patterns in aquatic products. The mean levels of ∑PFASs in different species followed the order: marine shellfish > marine crustaceans > fish > cephalopods > sea cucumber. Profiles of PFASs differ between species, suggesting species-specific accumulation plays a role. Various aquatic species are potential environmental bioindicators that signal individual PFAS contamination. For instance, clams can act as a potential PFOA bioindicator. High ∑PFAS levels in some sites (such as Binzhou, Dongying, Cangzhou, and Weifang) could be attributed to industrial activities involving fluoropolymer manufacture. The differences between PFAS concentrations and profiles in aquatic products across the study regions have been proposed as PFAS fingerprints of the Yellow-Bohai Sea coasts. Analyses of principal components and Spearman correlations indicated that the precursor biodegradation possibly contribute to C8-C10 PFCAs in the study samples. This study reported a wide presence of PFASs in different species of aquatic products across the Yellow-Bohai Sea coasts. The potential health risks that PFASs pose in certain species (such as marine shellfish and marine crustaceans) should not be neglected.
Collapse
Affiliation(s)
- Mengmeng Guo
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Feng Wu
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Qianqian Geng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Haiyan Wu
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Zhiling Song
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Guanchao Zheng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Jixing Peng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Xinnan Zhao
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Zhijun Tan
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071, China.
| |
Collapse
|
9
|
Medon B, Pautler BG, Sweett A, Roberts J, Risacher FF, D'Agostino LA, Conder J, Gauthier JR, Mabury SA, Patterson A, McIsaac P, Mitzel R, Hakimabadi SG, Pham ALT. A field-validated equilibrium passive sampler for the monitoring of per- and polyfluoroalkyl substances (PFAS) in sediment pore water and surface water. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:980-995. [PMID: 37128709 DOI: 10.1039/d2em00483f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A simple equilibrium passive sampler, consisting of water in an inert container capped with a rate-limiting barrier, for the monitoring of per- and polyfluoroalkyl substances (PFAS) in sediment pore water and surface water was developed and tested through a series of laboratory and field experiments. The objectives of the laboratory experiments were to determine (1) the membrane type that could serve as the sampler's rate-limiting barrier, (2) the mass transfer coefficient of environmentally relevant PFAS through the selected membrane, and (3) the performance reference compounds (PRCs) that could be used to infer the kinetics of PFAS diffusing into the sampler. Of the membranes tested, the polycarbonate (PC) membrane was deemed the most suitable rate-limiting barrier, given that it did not appreciably adsorb the studied PFAS (which have ≤8 carbons), and that the migration of these compounds through this membrane could be described by Fick's law of diffusion. When employed as the PRC, the isotopically labelled PFAS M2PFOA and M4PFOS were able to predict the mass transfer coefficients of the studied PFAS analytes. In contrast, the mass transfer coefficients were underpredicted by Br- and M3PFPeA. For validation, the PC-based passive samplers consisting of these four PRCs, as well as two other PRCs (i.e., M8PFOA and C8H17SO3-), were deployed in the sediment and water at a PFAS-impacted field site. The concentration-time profiles of the PRCs indicated that the samplers deployed in the sediment required at least 6 to 7 weeks to reach 90% equilibrium. If the deployment times are shorter (e.g., 2 to 4 weeks), PFAS concentrations at equilibrium could be estimated based on the concentrations of the PRCs remaining in the sampler at retrieval. All PFAS concentrations determined via this approach were within a factor of two compared to those measured in the mechanically extracted sediment pore water and surface water samples obtained adjacent to the sampler deployment locations. Neither biofouling of the rate-limiting barrier nor any physical change to it was observed on the sampler after retrieval. The passive sampler developed in this study could be a promising tool for the monitoring of PFAS in pore water and surface water.
Collapse
Affiliation(s)
- Blessing Medon
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | | | | | | | - Florent F Risacher
- Geosyntec Consultants International Inc., Ottawa, Ontario, K1P 5J2, Canada
| | - Lisa A D'Agostino
- Geosyntec Consultants International Inc., Ottawa, Ontario, K1P 5J2, Canada
| | - Jason Conder
- Geosyntec Consultants Inc., Costa Mesa, California, 92626, USA
| | - Jeremy R Gauthier
- Department of Chemistry, Lash Miller Chemical Labs, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Scott A Mabury
- Department of Chemistry, Lash Miller Chemical Labs, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Andrew Patterson
- Eurofins Environment Testing America, West Sacramento, California, 95605, USA
| | - Patricia McIsaac
- Eurofins Environment Testing America, Oakton, Virginia, 22124, USA
| | - Robert Mitzel
- Eurofins Environment Testing America, West Sacramento, California, 95605, USA
| | - Seyfollah Gilak Hakimabadi
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Anh Le-Tuan Pham
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
10
|
Young W, Wiggins S, Limm W, Fisher CM, DeJager L, Genualdi S. Analysis of Per- and Poly(fluoroalkyl) Substances (PFASs) in Highly Consumed Seafood Products from U.S. Markets. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13545-13553. [PMID: 36251396 PMCID: PMC9614959 DOI: 10.1021/acs.jafc.2c04673] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Seafood consumption has been identified as one of the major contributors of per- and poly(fluoroalkyl) substances (PFASs) to the human diet. To assess dietary exposure, highly consumed seafood products in the United States were selected for analysis. The analytical method previously used for processed food was extended to include four additional long-chain perflurocarboxylic acids (PFCAs), which have been reported in seafood samples. This method was single-lab-validated, and method detection limits were reported at 345 ng kg-1 for perfluorobutanoic acid (PFBA) and 207 ng kg-1 for perfluoropentanoic acid (PFPeA) and below 100 ng kg-1 for the rest of the PFAS analytes. The 81 seafood samples (clams, crab, tuna, shrimp, tilapia, cod, salmon, pollock) were analyzed for 20 PFASs using the updated analytical method. Most of the seafood packaging was also analyzed by Fourier transform infrared-attenuated total reflectance (FTIR-ATR) to identify packaging potentially coated with PFASs. None of the packaging samples in this study were identified as having PFASs. A wide range of concentrations was observed among the seafood samples, ranging from below the method detection limit to the highest concentration of 23 μg kg-1 for the sum of PFASs in one of the canned clam samples. Such a wide range is consistent with those reported in previous studies. The highest concentrations were reported in clams and crabs, followed by cod, tuna, pollock, tilapia, salmon, and shrimp. Technical perfluorooctanoic acid (PFOA) dominated the profile of the clam samples, which has been consistently found in other clam samples, especially in Asia. Long-chain PFCAs, specifically perfluoroundecanoic (PFUdA) and perfluorododecanoic (PFDoA), were the most frequently detected analytes across all seafood samples. The trends observed are comparable with those in the literature where benthic organisms tend to have the highest PFAS concentrations, followed by lean fish, fatty fish, and aquaculture. The results from this study will be used to prioritize future studies and to inform steps to reduce consumer exposure to PFASs.
Collapse
|
11
|
Jane L Espartero L, Yamada M, Ford J, Owens G, Prow T, Juhasz A. Health-related toxicity of emerging per- and polyfluoroalkyl substances: Comparison to legacy PFOS and PFOA. ENVIRONMENTAL RESEARCH 2022; 212:113431. [PMID: 35569538 DOI: 10.1016/j.envres.2022.113431] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are highly persistent, manufactured chemicals used in various manufacturing processes and found in numerous commercial products. With over 9000 compounds belonging to this chemical class, there is increasing concern regarding human exposure to these compounds due to their persistent, bioaccumulative, and toxic nature. Human exposure to PFAS may occur from a variety of exposure sources, including, air, food, indoor dust, soil, water, from the transfer of PFAS from non-stick wrappers to food, use of cosmetics, and other personal care products. This critical review presents recent research on the health-related impacts of PFAS exposure, highlighting compounds other than Perfluorooctanoic acid (PFOA) and Perfluoroctane sulfonate (PFOS) that cause adverse health effects, updates the current state of knowledge on PFAS toxicity, and, where possible, elucidates cause-and-effect relationships. Recent reviews identified that exposure to PFAS was associated with adverse health impacts on female and male fertility, metabolism in pregnancy, endocrine function including pancreatic dysfunction and risk of developing Type 2 diabetes, lipid metabolism and risk of childhood adiposity, hepatic and renal function, immune function, cardiovascular health (atherosclerosis), bone health including risk for dental cavities, osteoporosis, and vitamin D deficiency, neurological function, and risk of developing breast cancer. However, while cause-and-effect relationships for many of these outcomes were not able to be clearly elucidated, it was identified that 1) the evidence derived from both animal models and humans suggested that PFAS may exert harmful impacts on both animals and humans, however extrapolating data from animal to human studies was complicated due to differences in exposure/elimination kinetics, 2) PFAS precursor kinetics and toxicity mechanism data are still limited despite ongoing exposures, and 3) studies in humans, which provide contrasting results require further investigation of the long-term-exposed population to better evaluate the biological toxicity of chronic exposure to PFAS.
Collapse
Affiliation(s)
- Lore Jane L Espartero
- Future Industries Institute (FII), University of South Australia, Mawson Lakes, South Australia, Australia
| | - Miko Yamada
- Future Industries Institute (FII), University of South Australia, Mawson Lakes, South Australia, Australia
| | - Judith Ford
- University of Sydney, New South Wales, United Kingdom
| | - Gary Owens
- Future Industries Institute (FII), University of South Australia, Mawson Lakes, South Australia, Australia
| | - Tarl Prow
- Future Industries Institute (FII), University of South Australia, Mawson Lakes, South Australia, Australia; Skin Research Centre, York Biomedical Research Institute, Hull York Medical School, University of York, United Kingdom
| | - Albert Juhasz
- Future Industries Institute (FII), University of South Australia, Mawson Lakes, South Australia, Australia.
| |
Collapse
|
12
|
Vi PT, Ngoc NT, Quang PD, Dam NT, Tue NM, Tuyen LH, Viet PH, Anh DH. Perfluoroalkyl substances in freshwater and marine fish from northern Vietnam: Accumulation levels, profiles, and implications for human consumption. MARINE POLLUTION BULLETIN 2022; 182:113995. [PMID: 35939932 DOI: 10.1016/j.marpolbul.2022.113995] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
The accumulation profiles of nine perfluoroalkyl substances (PFASs) were determined in 95 muscle samples of seven freshwater (n = 65) and seven marine (n = 30) fish species collected in Northern Vietnam. In both groups of fish, perfluorooctane sulfonic acid (PFOS) was the most prevalent component, accounting for roughly 29 % of total PFASs. The total PFASs in freshwater fish species ranged from 0.08 to 8.06 ng/g wet weight (w.w), with the highest concentration found in topmouth culter (7.01 ± 1.23 ng/g w.w). In marine fish, the highest mean concentration of PFASs was detected in Asian sea bass (2.75 ± 0.54 ng/g, w.w). Estimation on the human dietary intake of PFASs from fish consumption resulted in hazard ratios (HR) ranging from 0.019 to 0.238 for freshwater fish and from 0.016 to 0.074 for marine fish, indicating low exposure risks associated with PFASs.
Collapse
Affiliation(s)
- Phung Thi Vi
- Research Centre for Environmental Technology and Sustainable Development (CETASD), University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, Viet Nam; Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), University of Science, Vietnam National University, Hanoi, Nguyen Trai Street 334, Hanoi, Viet Nam
| | - Nguyen Thuy Ngoc
- Research Centre for Environmental Technology and Sustainable Development (CETASD), University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, Viet Nam; Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), University of Science, Vietnam National University, Hanoi, Nguyen Trai Street 334, Hanoi, Viet Nam
| | - Phan Dinh Quang
- Research Centre for Environmental Technology and Sustainable Development (CETASD), University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, Viet Nam
| | - Nguyen Thanh Dam
- Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), University of Science, Vietnam National University, Hanoi, Nguyen Trai Street 334, Hanoi, Viet Nam
| | - Nguyen Minh Tue
- Research Centre for Environmental Technology and Sustainable Development (CETASD), University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, Viet Nam; Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), University of Science, Vietnam National University, Hanoi, Nguyen Trai Street 334, Hanoi, Viet Nam
| | - Le Huu Tuyen
- Research Centre for Environmental Technology and Sustainable Development (CETASD), University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, Viet Nam
| | - Pham Hung Viet
- Research Centre for Environmental Technology and Sustainable Development (CETASD), University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, Viet Nam; Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), University of Science, Vietnam National University, Hanoi, Nguyen Trai Street 334, Hanoi, Viet Nam
| | - Duong Hong Anh
- Research Centre for Environmental Technology and Sustainable Development (CETASD), University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, Viet Nam; Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), University of Science, Vietnam National University, Hanoi, Nguyen Trai Street 334, Hanoi, Viet Nam.
| |
Collapse
|
13
|
Semerád J, Horká P, Filipová A, Kukla J, Holubová K, Musilová Z, Jandová K, Frouz J, Cajthaml T. The driving factors of per- and polyfluorinated alkyl substance (PFAS) accumulation in selected fish species: The influence of position in river continuum, fish feed composition, and pollutant properties. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151662. [PMID: 34780822 DOI: 10.1016/j.scitotenv.2021.151662] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Per- and polyfluorinated alkyl substances (PFASs) represent a group of highly recalcitrant micropollutants, that continuously endanger the environment. The present work describes the geographical trends of fish contamination by individual PFASs (including new compounds, e.g., Gen-X) assessed by analyzing the muscle tissues of 5 separate freshwater fish species from 10 locations on the Czech section of the Elbe River and its largest tributary, the Vltava River. The data of this study also showed that the majority of the detected PFASs consisted of long-chain representatives (perfluorooctane sulfonate (PFOS), perfluorononanoic acid, perfluorodecanoic acid, and perfluoroundecanoic acid), whereas short-chain PFASs as well as other compounds such as Gen-X were detected in relatively small quantities. The maximum concentrations of the targeted 32 PFASs in fish were detected in the lower stretches of the Vltava and Elbe Rivers, reaching 289.9 ng/g dw, 140.5 ng/g dw, and 162.7 ng/g dw for chub, roach, and nase, respectively. Moreover, the relationships between the PFAS (PFOS) concentrations in fish muscle tissue and isotopic ratios (δ15N and δ13C) were studied to understand the effect of feed composition and position in the river continuum as a proxy for anthropogenic activity. Redundancy analysis and variation partitioning showed that the largest part of the data variability was explained by the interaction of position in the river continuum and δ15N (δ13C) of the fish. The PFAS concentrations increased downstream and were positively correlated with δ15N and negatively correlated with δ13C. A detailed study at one location also demonstrated the significant relationship between δ15N (estimated trophic position) and PFASs (PFOS) concentrations. From the tested physicochemical properties, the molecular mass and number of fluorine substituents seem to play crucial roles in PFAS bioaccumulation.
Collapse
Affiliation(s)
- Jaroslav Semerád
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20, Prague 4, Czech Republic
| | - Petra Horká
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Prague 2, Czech Republic
| | - Alena Filipová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20, Prague 4, Czech Republic
| | - Jaroslav Kukla
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Prague 2, Czech Republic
| | - Kateřina Holubová
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Prague 2, Czech Republic
| | - Zuzana Musilová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, CZ-128 44 Prague 2, Czech Republic
| | - Kateřina Jandová
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Prague 2, Czech Republic
| | - Jan Frouz
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Prague 2, Czech Republic
| | - Tomáš Cajthaml
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20, Prague 4, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Prague 2, Czech Republic.
| |
Collapse
|
14
|
Kumar E, Koponen J, Rantakokko P, Airaksinen R, Ruokojärvi P, Kiviranta H, Vuorinen PJ, Myllylä T, Keinänen M, Raitaniemi J, Mannio J, Junttila V, Nieminen J, Venäläinen ER, Jestoi M. Distribution of perfluoroalkyl acids in fish species from the Baltic Sea and freshwaters in Finland. CHEMOSPHERE 2022; 291:132688. [PMID: 34718016 DOI: 10.1016/j.chemosphere.2021.132688] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/20/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
Occurrence and distribution of perfluoroalkyl acids (PFAAs), a sub-category of per- and polyfluoroalkyl substances (PFASs), is widespread in the environment. Food, especially fish meat, is a major pathway via which humans are exposed to PFAAs. As fish is an integral part of Nordic diet, therefore, in this study, several fish species, caught in selected Baltic Sea basins and freshwater bodies of Finland, were analysed for PFAAs. Perfluorooctane sulfonate (PFOS) was detected in all Baltic Sea fish samples and in >80% fish samples from freshwaters. PFOS contributed between 46 and 100% to the total PFAA concentration in Baltic Sea fish samples and between 19 and 28% in fish samples from freshwaters. Geographically, concentration ratios of PFOS to other PFAAs differed between fish from the Baltic Sea and Finnish lakes suggesting that distribution of PFAAs differ in these environments. Results were compared with current safety thresholds - environmental quality standard for biota (EQSbiota) set by the European Commission and a group tolerable weekly intake (TWI) for the sum of four PFASs (∑PFAS-4) i.e. perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorohexane sulfonate (PFHxS) and PFOS, recommended by the European Food Authority (EFSA). EQSbiota compliance was observed for PFOS in all species except smelt caught in the Baltic Sea and also in the River Aurajoki, where smelt had migrated from the Baltic Sea for spawning. Moderate consumption of most Baltic fishes (200 g week-1) results in an exceedance of the new TWI (4.4 ng kg-1 body weight week-1) for ∑PFAS-4.
Collapse
Affiliation(s)
- Eva Kumar
- Department of Health Security, Finnish Institute for Health and Welfare, FI-70701, Kuopio, Finland.
| | - Jani Koponen
- Department of Health Security, Finnish Institute for Health and Welfare, FI-70701, Kuopio, Finland
| | - Panu Rantakokko
- Department of Health Security, Finnish Institute for Health and Welfare, FI-70701, Kuopio, Finland
| | - Riikka Airaksinen
- Department of Health Security, Finnish Institute for Health and Welfare, FI-70701, Kuopio, Finland
| | - Päivi Ruokojärvi
- Department of Health Security, Finnish Institute for Health and Welfare, FI-70701, Kuopio, Finland
| | - Hannu Kiviranta
- Department of Health Security, Finnish Institute for Health and Welfare, FI-70701, Kuopio, Finland
| | - Pekka J Vuorinen
- Natural Resources Institute Finland, Latokartanonkaari 9, FI-00790, Helsinki, Finland
| | - Timo Myllylä
- Natural Resources Institute Finland, Itäinen Pitkäkatu 4 A, FI-20520, Turku, Finland
| | - Marja Keinänen
- Natural Resources Institute Finland, Latokartanonkaari 9, FI-00790, Helsinki, Finland
| | - Jari Raitaniemi
- Natural Resources Institute Finland, Itäinen Pitkäkatu 4 A, FI-20520, Turku, Finland
| | - Jaakko Mannio
- Finnish Environment Institute, Latokartanonkaari 11, FI-00790, Helsinki, Finland
| | - Ville Junttila
- Finnish Environment Institute, Latokartanonkaari 11, FI-00790, Helsinki, Finland
| | - Janne Nieminen
- Finnish Food Authority, Chemistry Research Unit, Mustialankatu 3, FI-00790, Helsinki, Finland
| | - Eija-Riitta Venäläinen
- Finnish Food Authority, Chemistry Research Unit, Mustialankatu 3, FI-00790, Helsinki, Finland
| | - Marika Jestoi
- Finnish Food Authority, Chemistry Research Unit, Mustialankatu 3, FI-00790, Helsinki, Finland
| |
Collapse
|
15
|
Birgersson L, Jouve J, Jönsson E, Asker N, Andreasson F, Golovko O, Ahrens L, Sturve J. Thyroid function and immune status in perch (Perca fluviatilis) from lakes contaminated with PFASs or PCBs. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112495. [PMID: 34265536 DOI: 10.1016/j.ecoenv.2021.112495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
The environment contains a multitude of man-made chemicals, some of which can act as endocrine disruptors (EDCs), while others can be immunotoxic. We evaluated thyroid disruption and immunotoxic effects in wild female perch (Perca fluviatilis) collected from two contaminated areas in Sweden; one site contaminated with per- and polyfluoroalkyl substances (PFASs) and two sites contaminated with polychlorinated biphenyls (PCBs), with one reference site included for each area. The hepatic mRNA expression of thyroid receptors α and β, and the thyroid hormone metabolising iodothyronine deiodinases (dio1, dio2 and dio3) were measured using real-time PCR, while the levels of thyroid hormone T3 in plasma was analysed using a radioimmunoassay. In addition, lymphocytes, granulocytes, and thrombocytes were counted microscopically. Our results showed lower levels of T3 as well as lower amounts of lymphocytes and granulocytes in perch collected from the PFAS-contaminated site compared to reference sites. In addition, expressions of mRNA coding for thyroid hormone metabolising enzymes (dio2 and dio3) and thyroid receptor α (thra) were significantly different in these fish compared to their reference site. For perch collected at the two PCB-contaminated sites, there were no significant differences in T3 levels or in expression levels of the thyroid-related genes, compared to the reference fish. Fish from one of the PCB-contaminated sites had higher levels of thrombocytes compared with both the second PCB lake and their reference lake; hence PCBs are unlikely to be the cause of this effect. The current study suggests that lifelong exposure to PFASs could affect both the thyroid hormone status and immune defence of perch in the wild.
Collapse
Affiliation(s)
- Lina Birgersson
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-405 30 Göteborg, Sweden
| | - Justin Jouve
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-405 30 Göteborg, Sweden
| | - Elisabeth Jönsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-405 30 Göteborg, Sweden
| | - Noomi Asker
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-405 30 Göteborg, Sweden
| | - Fredrik Andreasson
- Department for Nature and Climate, County Administrative Board of Blekinge, SE-371 86 Karlskrona, Sweden
| | - Oksana Golovko
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), SE-75 007 Uppsala, Sweden
| | - Lutz Ahrens
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), SE-75 007 Uppsala, Sweden
| | - Joachim Sturve
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-405 30 Göteborg, Sweden.
| |
Collapse
|
16
|
Bursian SJ, Link JE, McCarty M, Harr K, Roberts J, Simcik MF. Dietary Exposure of Japanese Quail (Coturnix japonica) to Perfluorooctane Sulfonate (PFOS) and a Legacy Aqueous Film-Forming Foam (AFFF) Containing PFOS: Effects on Reproduction and Chick Survivability and Growth. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:2521-2537. [PMID: 34157787 DOI: 10.1002/etc.5138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/23/2021] [Accepted: 06/07/2021] [Indexed: 05/20/2023]
Abstract
Effects of perfluorooctane sulfonate (PFOS) and a legacy aqueous film-forming foam (AFFF) containing 91% PFOS (AFFF PFOS) on reproduction, chick survivability, and growth of Japanese quail (Coturnix japonica) were determined. Day-old Japanese quail were administered PFOS or AFFF PFOS at 6 dietary concentrations ranging from 0 to 21 mg kg-1 feed for a total of 20 wk. At the age of 4 wk, 16 male/female pairs per treatment were assigned to cages, and egg laying was induced by the age of 10 wk. Eggs were collected daily, set weekly, and incubated for 18 d for the following 10 wk. Hatchlings were fed uncontaminated feed for 2 wk and euthanized to collect blood and liver. After 10 wk of egg collection, adults were euthanized to collect blood, liver, and kidneys. Significantly increased myofiber numbers in the liver and glomerular sclerosis in the kidneys of adults indicated damage at greater doses. Perfluorooctane sulfonate or AFFF PFOS did not significantly affect egg production; however, hatchability was decreased at the highest PFOS dose. The no-observed-adverse-effect levels for chick survivability, considered the critical effect, were 4.1 mg PFOS kg feed-1 (0.55 mg kg body wt-1 d-1 ) and 5.0 mg AFFF PFOS kg feed-1 (0.66 mg kg body wt-1 d-1 ), resulting in calculated average toxicity reference values of 0.25 mg kg feed-1 and 0.034 mg kg body weight-1 d-1 . Environ Toxicol Chem 2021;40:2521-2537. © 2020 SETAC.
Collapse
Affiliation(s)
- Steven J Bursian
- Department of Animal Science, Michigan State University, East Lansing, Michigan, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Jane E Link
- Department of Animal Science, Michigan State University, East Lansing, Michigan, USA
| | - Michael McCarty
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - John Roberts
- URIKA Pathology, Mukilteo, Washington, USA
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Matt F Simcik
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
17
|
McCarthy CJ, Roark SA, Wright D, O'Neal K, Muckey B, Stanaway M, Rewerts JN, Field JA, Anderson TA, Salice CJ. Toxicological Response of Chironomus dilutus in Single-Chemical and Binary Mixture Exposure Experiments with 6 Perfluoralkyl Substances. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:2319-2333. [PMID: 33835531 DOI: 10.1002/etc.5066] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/03/2020] [Accepted: 04/03/2021] [Indexed: 06/12/2023]
Abstract
Few studies have determined the toxicity of perfluoralkyl substances (PFAS) to aquatic invertebrates. We exposed Chironomus dilutus to 6 different PFAS to assess single-chemical toxicity and relative or proportional toxicity among substances. A 10-d range-finding test was conducted to inform 20-d assays for the following PFAS: perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorobutanesulfonic acid (PFBS), perfluorohexanesulfonic acid (PFHxS), and perfluoroheptanoic acid (PFHpA). A 20-d binary mixture study of PFOS+PFHxS followed the single-chemical tests. Measurement endpoints for 20-d tests included larval survival and biomass. Log-logistic concentration response models were used to estimate 10, 20, and 50% effect concentrations (EC20, EC50) for PFOS, PFHxS, and PFOA. Survival EC50s for PFOS, PFHxS, and PFOA were 2.49, 3860, and 192 000 µg/L, respectively, whereas survival EC20s were 1.70, 913, and 119 000 µg/L for PFOS, PFHxS, and PFOA, respectively. Biomass as a combined survival and growth endpoint resulted in EC20s of 1.89, 896, and 137 000 µg/L for PFOS, PFHxS, and PFOA, respectively. Maximum concentrations tested (no-observed-effect concentrations) for PFNA, PFBS, and PFHpA were 2 to 3 orders of magnitude greater than the PFOS EC50s and showed no toxicity to C. dilutus, even at exposure concentrations well above what would be considered environmentally relevant. The binary mixture of 2.5 µg/L PFOS+1000 µg/L PFHxS showed reduced survival compared to controls and some indication of potential additive or synergistic interaction between PFOS and PFHxS. Overall, the present study supports previous studies showing PFOS to be the most toxic PFAS to aquatic life and suggests that PFOS could be more toxic to the freshwater midge than previously reported. Environ Toxicol Chem 2021;40:2319-2333. © 2021 SETAC.
Collapse
|
18
|
Bhagwat G, Tran TKA, Lamb D, Senathirajah K, Grainge I, O'Connor W, Juhasz A, Palanisami T. Biofilms Enhance the Adsorption of Toxic Contaminants on Plastic Microfibers under Environmentally Relevant Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8877-8887. [PMID: 34152751 DOI: 10.1021/acs.est.1c02012] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Microplastics (MPs) exposed to the natural environment provide an ideal surface for biofilm formation, which potentially acts as a reactive phase facilitating the sorption of hazardous contaminants. Until now, changes in the contaminant sorption capacity of MPs due to biofilm formation have not been quantified. This is the first study that compared the capacity of naturally aged, biofilm-covered microplastic fibers (BMFs) to adsorb perfluorooctane sulfonate (PFOS) and lead (Pb) at environmentally relevant concentrations. Changes in the surface properties and morphology of aged microplastic fibers (MF) were studied by surface area analysis, infrared spectroscopy, and scanning electron microscopy. Results revealed that aged MFs exhibited higher surface areas because of biomass accumulation compared to virgin samples and followed the order polypropylene>polyethylene>nylon>polyester. The concentrations of adsorbed Pb and PFOS were 4-25% and 20-85% higher in aged MFs and varied among the polymer types. The increased contaminant adsorption was linked with the altered surface area and the hydrophobic/hydrophilic characteristics of the samples. Overall, the present study demonstrates that biofilms play a decisive role in contaminant-plastic interactions and significantly enhance the vector potential of MFs for toxic environmental contaminants. We anticipate that knowledge generated from this study will help refine the planetary risk assessment of MPs.
Collapse
Affiliation(s)
- Geetika Bhagwat
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Thi Kim Anh Tran
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Dane Lamb
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Kala Senathirajah
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Ian Grainge
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Wayne O'Connor
- NSW Department of Primary Industries, Port Stephens Fisheries Institute, Taylors Beach, New South Wales 2316, Australia
| | - Albert Juhasz
- Future Industries Institute, University of South Australia, Adelaide, South Australia 5095 Australia
| | - Thava Palanisami
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| |
Collapse
|
19
|
Genualdi S, Young W, DeJager L, Begley T. Method Development and Validation of Per- and Polyfluoroalkyl Substances in Foods from FDA's Total Diet Study Program. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5599-5606. [PMID: 33983731 DOI: 10.1021/acs.jafc.1c01777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Human exposure to per- and polyfluoroalkyl substances (PFAS) through the US diet has not been well-characterized. Highly consumed foods are routinely monitored through FDA's Total Diet Study program. Portions of these samples were used to develop and validate a method for PFAS in a wide variety of foods. The extraction of 16 PFAS was performed using the quick, easy, cheap, effective, rugged, and safe (QuEChERS) method and analyzed by liquid chromatography/mass spectrometry. Method optimizations are described including investigations into the QuEChERS sorbents, matrix effects, and solid-phase extraction (SPE) cartridges. The use of a custom push-through SPE cartridge showed promising results as a rapid cleanup option for food samples. Challenges in ion confirmation are discussed, and the use of enhanced product ion (EPI) full-scan MS/MS spectra is presented as a potential option for verifying false positives. The validated method was then used for the analysis of 179 total diet study samples, and positive detects for perfluorooctanesulfonic acid (PFOS) were found in two fish and one meat sample.
Collapse
Affiliation(s)
- Susan Genualdi
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, 5001 Campus Drive, College Park, Maryland 20740, United States
| | - Wendy Young
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, 5001 Campus Drive, College Park, Maryland 20740, United States
| | - Lowri DeJager
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, 5001 Campus Drive, College Park, Maryland 20740, United States
| | - Timothy Begley
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, 5001 Campus Drive, College Park, Maryland 20740, United States
| |
Collapse
|
20
|
Bursian SJ, Link JE, McCarty M, Simcik MF. The Subacute Toxicity of Perfluorooctane Sulfonate and/or Perfluorooctanoic Acid and Legacy Aqueous Film-Forming Foams to Japanese Quail (Coturnix japonica) Chicks. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:695-710. [PMID: 32060944 DOI: 10.1002/etc.4684] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/18/2019] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
As part of an effort to develop avian ecotoxicity information for poly- and perfluoroalkyl substances (PFAS) including perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) associated with aqueous film-forming foam (AFFF) used by the Department of Defense, the subacute toxicity of PFOS, PFOA, PFOS + PFOA, 3M AFFF, and Ansul AFFF to Japanese quail (Coturnix japonica) chicks was determined. Ten-day-old Japanese quail were administered treated feed for 5 d and then fed untreated feed for 18 d. Analyzed concentrations of PFOS, PFOA, and PFOS + PFOA ranged from 62 to 1955, 162 to 1208, and 43 + 45 to 296 + 292 mg kg feed-1 . Analyzed concentrations of PFOS in feed containing the 3M AFFF ranged from 73 to 1399 mg kg feed-1 , and formulated concentrations of 6:2 fluorotelomer thioamido sulfonate in feed containing the Ansul AFFF ranged from 9 to 1118 mg kg feed-1 . Average daily doses resulting in 50% mortality at day 5 were 38 (34-43), 68 (63-74), 55 (51-59), and 130 (103-164) mg PFOS, PFOA, PFOS + PFOA, and PFOS in 3M AFFF kg body weight-1 d-1 . Ansul AFFF did not result in any mortalities. Dietary concentrations resulting in 50% mortality at day 5 were 351 (275-450), 496 (427-575), 398 (339-468), and 467 (390-559) mg PFOS, PFOA, PFOS + PFOA, and PFOS in 3M AFFF kg feed-1 . Environ Toxicol Chem 2021;40:695-710. © 2020 SETAC.
Collapse
Affiliation(s)
- Steven J Bursian
- Department of Animal Science, Michigan State University, East Lansing, Michigan, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Jane E Link
- Department of Animal Science, Michigan State University, East Lansing, Michigan, USA
| | - Michael McCarty
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Matt F Simcik
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
21
|
Ruffle B, Vedagiri U, Bogdan D, Maier M, Schwach C, Murphy-Hagan C. Perfluoroalkyl Substances in U.S. market basket fish and shellfish. ENVIRONMENTAL RESEARCH 2020; 190:109932. [PMID: 32798898 DOI: 10.1016/j.envres.2020.109932] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 05/25/2023]
Abstract
Over the past two decades the class of per- and polyfluoroalkyl substances (PFAS) has emerged as a widespread contaminant in environmental media globally. As awareness and understanding of its prevalence, persistence, and potential health risks grows, so have concerns about human exposure. While drinking water has received substantial attention, dietary intakes have also been reported to contribute significantly to total exposure, with fish consumption in particular. Most studies of U.S. fish have targeted sport fish from areas of known or suspected contamination. This study was undertaken to improve data on PFAS levels in the U.S. commercial seafood supply. A total of 70 samples of finfish and shellfish were purchased at U.S. grocery stores and fish markets and analyzed for 26 PFAS compounds. The samples included a range of marine and freshwater species from four regions of the U.S. and seven countries with significant imports to the U.S. Up to ten PFAS were detected in 21 samples, with PFOS the predominant compound. There were no detections in the remaining 49 samples (detection limits of approximately 0.4-0.5 ppb). Total PFAS concentrations in most samples were single digit or sub-ppb levels. The exception was commercial finfish from the Great Lakes area, for which higher levels (up to 22 ppb) were observed in whitefish, walleye, and yellow perch fillet. Study findings suggest PFAS is present at low or non-detect levels in the U.S. commercial seafood supply and exposure is low for consumers of market basket fish and shellfish.
Collapse
Affiliation(s)
- Betsy Ruffle
- AECOM. 250 Apollo Drive, Chelmsford, MA, 01824, USA.
| | - Usha Vedagiri
- Wood. 10940 White Rock Road, Suite 190, Rancho Cordova, CA, 95670, USA
| | - Dorin Bogdan
- AECOM. 3950 Sparks Drive, SE, Grand Rapids, MI 49546, USA
| | - Martha Maier
- Vista Analytical Laboratory, 1104 Windfield Way, El Dorado, CA, 95762, USA
| | | | | |
Collapse
|
22
|
Liu Y, Li A, Buchanan S, Liu W. Exposure characteristics for congeners, isomers, and enantiomers of perfluoroalkyl substances in mothers and infants. ENVIRONMENT INTERNATIONAL 2020; 144:106012. [PMID: 32771830 DOI: 10.1016/j.envint.2020.106012] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 05/24/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are ubiquitous in the environment, making it inevitable for humans to be exposed to these pollutants. The exposure begins while in utero and continues in infancy, during the potentially most sensitive early stages of life. This review summarizes the current knowledge on pre- and neo-natal exposures based on more than 200 articles published from 2000 to date. All relevant biological matrices used in the cited studies were included, such as maternal blood, umbilical cord blood, breast milk, placenta, amniotic fluid, fetal organs, newborns' dried blood spots, and infant serum. We show that such exposures are geographically global with significant discrepancies among countries and continents, and that while the levels of major legacy PFASs (PFOS and PFOA) have declined since 2000, those of others may have not. We also show that levels of PFOS and PFOA exceed those of some major environmental toxins, such as p,p'-DDE, BDE-47, PCB-153, PBB-153, and OH-PBDEs in maternal blood. Given that the behavior and potential effects have an origin in molecular structure, biomonitoring and research at the levels of isomers and enantiomers are critically important. Through critical analysis of these works, we summarize the major achievements, consensus, and the deficiencies of existing research. To our knowledge, this is the first review on the overall internal exposure status of mothers and infants to PFASs during pregnancy and lactation.
Collapse
Affiliation(s)
- Yingxue Liu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, Institution of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - An Li
- School of Public Health, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Susan Buchanan
- School of Public Health, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Weiping Liu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, Institution of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
23
|
Hung MD, Jung HJ, Jeong HH, Lam NH, Cho HS. Perfluoroalkyl substances (PFASs) in special management sea areas of Korea: Distribution and bioconcentration in edible fish species. MARINE POLLUTION BULLETIN 2020; 156:111236. [PMID: 32510380 DOI: 10.1016/j.marpolbul.2020.111236] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/15/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Thirteen PFASs in water (n = 58), sediment (n = 58) and edible fish samples (n = 81) collected from three special management sea areas of Korea including Gwangyang bay, Masan bay and Busan harbor in July 2018 were investigated. The mean PFASs concentration in water (ng/L) were in order Masan (5.09) > Busan (2.82) > Gwangyang (1.74). PFASs levels were found as the low concentration in sediment. The greatest total PFASs concentration in each fish tissue was found as 3.04 (ng/g ww) in a Japanese amberjack fish for muscle in Busan, 66.23 (ng/mL) in Japanese amberjack fish for blood in Masan and 125.03 (ng/g ww) flathead grey mullet in Busan bay. The BCF (L/kg) of PFDoDA was found as the highest in muscle of all species with values from 30,922 (grey mullet in Gwangyang) to 69,131 (grey mullet in Busan). PFDS was the highest BCF's PFASs (110,599 L/kg) in muscle which was found in Japanese amberjack in Busan bay.
Collapse
Affiliation(s)
- Mai Duc Hung
- College of Fisheries and Ocean Sciences, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Hyeon Ji Jung
- College of Fisheries and Ocean Sciences, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Hui Ho Jeong
- College of Fisheries and Ocean Sciences, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Nguyen Hoang Lam
- College of Fisheries and Ocean Sciences, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Hyeon Seo Cho
- College of Fisheries and Ocean Sciences, Chonnam National University, Yeosu 59626, Republic of Korea.
| |
Collapse
|
24
|
Lin Y, Jiang JJ, Rodenburg LA, Cai M, Wu Z, Ke H, Chitsaz M. Perfluoroalkyl substances in sediments from the Bering Sea to the western Arctic: Source and pathway analysis. ENVIRONMENT INTERNATIONAL 2020; 139:105699. [PMID: 32305742 DOI: 10.1016/j.envint.2020.105699] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/23/2020] [Accepted: 03/27/2020] [Indexed: 05/21/2023]
Abstract
Although perfluoroalkyl substances (PFASs) are ubiquitous in the Arctic, their dominant pathways to the Arctic remain unclear. Most modeling studies support major oceanic transport for PFASs in the Arctic seawater, but this conclusion contradicts the rapid response of PFASs to global emissions in some biota species. Sediments, which act as important PFAS sinks for seawater and potential PFAS source to the benthic food web, are important for interpreting the fate of PFASs in the Arctic. Here we investigate the occurrence of 9 PFASs in one core (1945-2014) and 29 surface sediments from the Bering Sea to the western Arctic. Total PFAS concentrations (0.06-1.73 ng/g dw) in surface sediments were dominated by perfluorooctane sulfonate (PFOS), perfluorononanoic acid (PFNA) and perfluorobutyl sulfonate (PFBS), with higher levels in the Bering Sea slope and the northeast Chukchi Sea. Historical trends in PFASs varied among individuals, with PFOS declining in the early 2000s while PFNA showing an increasing up-core trend. Analysis of positive matrix factorization model identified that the major PFAS sources in the sediment core were dominated by the atmospheric oxidation of consumer use of PFOS precursor-based products (45.0%), while the oceanic transport of fluoropolymer manufacture of polyvinylidene fluoride (mainly PFNA) exhibited an increasing trend over time, becoming dominant in surface sediments (42.8%). Besides, local input of possible aqueous fire-fighting foams (mainly PFOS and PFBS) also acted as an important source currently (30.1%) and historically (34.9%). Our study revealed that the pathways of PFASs in Arctic sediments varied greatly for individuals and the conclusion of PFOS originating from mainly atmospheric oxidation was different from seawater modeling results. This, together with the high possibility of sediments as direct source to Arctic food web (supported by similar PFAS compositions and temporal variations), help provide additional evidence regarding PFAS pathways to the Arctic.
Collapse
Affiliation(s)
- Yan Lin
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361102, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Jheng-Jie Jiang
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan 32023, China
| | - Lisa A Rodenburg
- Department of Environmental Sciences, Rutgers University, New Brunswick 08901, USA
| | - Minggang Cai
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361102, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China.
| | - Zhai Wu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Hongwei Ke
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Mahdi Chitsaz
- Department of Environmental Sciences, Rutgers University, New Brunswick 08901, USA
| |
Collapse
|
25
|
Yang D, Han J, Hall DR, Sun J, Fu J, Kutarna S, Houck KA, LaLone CA, Doering JA, Ng CA, Peng H. Nontarget Screening of Per- and Polyfluoroalkyl Substances Binding to Human Liver Fatty Acid Binding Protein. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:5676-5686. [PMID: 32249562 PMCID: PMC7477755 DOI: 10.1021/acs.est.0c00049] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
More than 1000 per- and polyfluoroalkyl substances (PFASs) have been discovered by nontarget analysis (NTA), but their prioritization for health concerns is challenging. We developed a method by incorporating size-exclusion column co-elution (SECC) and NTA, to screen PFASs binding to human liver fatty acid binding protein (hL-FABP). Of 74 PFASs assessed, 20 were identified as hL-FABP ligands in which eight of them have high binding affinities. Increased PFAS binding affinities correlate with stronger responses in electrospray ionization (ESI-) and longer retention times on a C18 column. This is well explained by a mechanistic model, which revealed that both polar and hydrophobic interactions are crucial for binding affinities. Encouraged by this, we then developed an SECC method to identify hL-FABP ligands, and all eight high-affinity ligands were selectively captured from 74 PFASs. The method was further applied to an aqueous film-forming foam (AFFF) product in which 31 new hL-FABP ligands were identified. Suspect and nontargeted screening revealed these ligands as analogues of perfluorosulfonic acids and homologues of alkyl ether sulfates (C8- and C10/EOn, C8H17(C2H4O)nSO4-, and C10H21(C2H4O)nSO4-). The SECC method was then applied to AFFF-contaminated surface waters. In addition to perfluorooctanesulfonic acid and perfluorohexanesulfonic acid, eight other AFFF chemicals were discovered as novel ligands, including four C14- and C15/EOn. This study implemented a high-throughput method to prioritize PFASs and revealed the existence of many previously unknown hL-FABP ligands.
Collapse
Affiliation(s)
- Diwen Yang
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Jiajun Han
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - David Ross Hall
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Jianxian Sun
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Jesse Fu
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Steven Kutarna
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Keith A. Houck
- Center for Computational Toxicology and Exposure, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC, 27711 USA
| | - Carlie A. LaLone
- Great Lakes Toxicology and Ecology Division, U.S. Environmental Protection Agency, Duluth, Minnesota 55804 United States
| | - Jon A. Doering
- Great Lakes Toxicology and Ecology Division, U.S. Environmental Protection Agency, Duluth, Minnesota 55804 United States
- National Research Council, U.S. Environmental Protection Agency, Duluth, Minnesota 55804 USA
| | - Carla A. Ng
- Department of Civil & Environmental Engineering, University of Pittsburgh, 3700 O’Hara St, Pittsburgh, USA
| | - Hui Peng
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- School of the Environment, University of Toronto, Toronto, ON, Canada
- Corresponding author: Hui Peng, , Department of Chemistry, University of Toronto, Toronto, Ontario, M5S3H6, Canada
| |
Collapse
|
26
|
Mejia-Avendaño S, Zhi Y, Yan B, Liu J. Sorption of Polyfluoroalkyl Surfactants on Surface Soils: Effect of Molecular Structures, Soil Properties, and Solution Chemistry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:1513-1521. [PMID: 31922402 DOI: 10.1021/acs.est.9b04989] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Zwitterionic, cationic, and anionic per- and polyfluoroalkyl substances (PFASs) are identified in aqueous film-forming foam (AFFF) concentrates and AFFF-impacted sites. However, the mobility potential of zwitterionic and cationic PFASs is poorly understood, preventing reliable site assessment. The study aimed to elucidate the mobility behaviors of PFASs of various charge states in saturated soil-water systems and assess critical influencing factors. Five anionic, three zwitterionic, and one cationic PFASs were investigated in five soils through batch sorption experiments. Pairwise comparison revealed that the quaternary ammonium group imparted a strong affinity of cationic perfluorooctaneamide ammonium compound (PFOAAmS) for soils. The influence of the quaternary ammonium group is mitigated in polyfluoroalkyl betaines, yet perfluorooctane sulfonamidoalkyl betaine (PFOSB) showed strong sorption in selected soils. Two soil bulk properties showed some correlations with the soil-water distribution coefficient (Kd). A positive correlation with the fraction of soil organic carbon was found only for anionic PFASs, whereas cation exchange capacity had an approximate positive correlation with Kd only for PFOAAmS. Water chemistry (Ca2+ and pH) influences the sorption of nonanionic PFASs in very distinct fashions or even in opposite trends to what was known for anionic PFASs. Sorption was insensitive to pH changes except for PFOSB; PFOSB underwent profound sorption reduction because its speciation occurs around neutral pH, while the two other betaines and PFOAAmS have pKa values that are outside of the environmentally relevant range. The lack of correlations suggests that the transport potential of PFASs is probably highly site-specific. It remains a challenge in deciphering PFAS sorption mechanisms and predicting how AFFF plumes migrate.
Collapse
Affiliation(s)
- Sandra Mejia-Avendaño
- Department of Civil Engineering , McGill University , Montréal , Québec H3A 0C3 , Canada
| | - Yue Zhi
- Department of Civil Engineering , McGill University , Montréal , Québec H3A 0C3 , Canada
| | - Bei Yan
- Department of Civil Engineering , McGill University , Montréal , Québec H3A 0C3 , Canada
| | - Jinxia Liu
- Department of Civil Engineering , McGill University , Montréal , Québec H3A 0C3 , Canada
| |
Collapse
|
27
|
Kim Lazcano R, de Perre C, Mashtare ML, Lee LS. Per- and polyfluoroalkyl substances in commercially available biosolid-based products: The effect of treatment processes. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:1669-1677. [PMID: 31260167 DOI: 10.1002/wer.1174] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 06/09/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have been used in a variety of consumer and industrial products and are known to accumulate in sewage sludge due to sorption and their recalcitrant nature. Treatment processes ensure safe and high-quality biosolids by reducing the potential for adverse environmental impacts such as pathogen levels; however, they have yet to be evaluated for their impact on the fate of PFAS. The objective of this study was to compare PFAS concentrations in four commercially available biosolid-based products that received different types of treatments: heat treatment, composting, blending, and thermal hydrolysis. Seventeen perfluoroalkyl acids (PFAAs) were quantified using liquid chromatography with tandem quadrupole time-of-flight mass spectrometry followed by screening for 30 PFAA precursors. Treatment processes did not reduce PFAA loads except for blending, which served only to dilute concentrations. Several PFAA precursors were identified with 6:2 and 8:2 fluorotelomer phosphate diesters in all samples pre- and post-treatment. PRACTITIONER POINTS: Heat treatment and composting increased perfluoroalkyl acid (PFAA) concentrations. Only dilution from blending with non-PFAS material decreased PFAA concentrations. Thermal hydrolysis process had no apparent effect on PFAA concentrations. PFAS sources are a greater driver of PFAS loads in biosolid-based products than treatment processes.
Collapse
Affiliation(s)
- Rooney Kim Lazcano
- Department of Agronomy, College of Agriculture, Purdue University, West Lafayette, Indiana, USA
- Ecological Sciences & Engineering, Interdisciplinary Graduate Program, Purdue University, West Lafayette, Indiana, USA
| | - Chloé de Perre
- Department of Agronomy, College of Agriculture, Purdue University, West Lafayette, Indiana, USA
| | - Michael L Mashtare
- Department of Agronomy, College of Agriculture, Purdue University, West Lafayette, Indiana, USA
- Ecological Sciences & Engineering, Interdisciplinary Graduate Program, Purdue University, West Lafayette, Indiana, USA
- Environmental & Ecological Engineering, College of Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Linda S Lee
- Department of Agronomy, College of Agriculture, Purdue University, West Lafayette, Indiana, USA
- Ecological Sciences & Engineering, Interdisciplinary Graduate Program, Purdue University, West Lafayette, Indiana, USA
- Environmental & Ecological Engineering, College of Engineering, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
28
|
Fitzgerald NJM, Temme HR, Simcik MF, Novak PJ. Aqueous film forming foam and associated perfluoroalkyl substances inhibit methane production and Co-contaminant degradation in an anaerobic microbial community. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:1915-1925. [PMID: 31454014 DOI: 10.1039/c9em00241c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Aqueous film forming foams (AFFF) can contain gram per liter concentrations of per- and polyfluoroalkyl substances (PFAS) and are often released in large quantities directly to the environment as they are used to fight fires. AFFF composition is complex and contains many unknown PFAS in addition to ingredients such as hydrocarbons, solvents, and corrosion inhibitors. While biological effects of single PFAS have been studied, the effects of PFAS-containing mixtures, such as AFFF, are unknown. The effect of PFAS on microorganisms is also not well understood; nevertheless, we rely on microorganisms in locations containing elevated PFAS concentrations to perform certain functions, such as carbon cycling and co-contaminant degradation. This study focused on determining the functional consequences of AFFF and PFAS exposure in a microbial community in both the presence and the absence of a co-contaminant. AFFF, select PFAS, and a PFAS mixture were tested to determine the effect of AFFF on an anaerobic microbial community and the characteristics of the PFAS that drive toxicity in such mixtures. To study this, anaerobic digester communities were exposed to PFAS and a co-contaminant (2,4-dichlorophenol, DCP); methane production, as an indicator of toxicity and the community's ability to cycle carbon, and co-contaminant degradation were monitored. Results showed that PFAS and AFFF can alter the toxicity of DCP, inhibit DCP degradation, decrease the number of methanogens present, and change the microbial community structure. DCP was also able to decrease the toxicity of the PFAS perfluorooctane sulfonate (PFOS), possibly by changing the sorption of PFOS to the microorganisms present. Additionally, it was determined that while PFOS was responsible for AFFF toxicity, no single PFAS or simple PFAS mixture accurately accounted for the inhibition of DCP degradation caused by AFFF exposure.
Collapse
Affiliation(s)
- Nicole J M Fitzgerald
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota, 500 Pillsbury Drive SE, Minneapolis, Minnesota 55455, USA.
| | - Hanna R Temme
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota, 500 Pillsbury Drive SE, Minneapolis, Minnesota 55455, USA.
| | - Matt F Simcik
- School of Public Health, University of Minnesota, 420 Delaware St. S.E., Minneapolis, MN 55455, USA
| | - Paige J Novak
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota, 500 Pillsbury Drive SE, Minneapolis, Minnesota 55455, USA.
| |
Collapse
|
29
|
Qiu X, Iwasaki N, Chen K, Shimasaki Y, Oshima Y. Tributyltin and perfluorooctane sulfonate play a synergistic role in promoting excess fat accumulation in Japanese medaka (Oryzias latipes) via in ovo exposure. CHEMOSPHERE 2019; 220:687-695. [PMID: 30605811 DOI: 10.1016/j.chemosphere.2018.12.191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/26/2018] [Accepted: 12/28/2018] [Indexed: 06/09/2023]
Abstract
The ubiquitous environmental obesogens tributyltin (TBT) and perfluorooctane sulfonate (PFOS) may accumulate in parent and be transferred to their offspring, resulting in trans-generational adverse effects. In this study, we investigated the combined toxic and obesogenic effects of TBT and PFOS on the early life stages of Japanese medaka (Oryzias latipes). In ovo nanoinjection was used to simulate the maternal transfer process. Doses were controlled at 0, 0.05, 0.5, and 2.5 ng/egg (TBT) and at 0, 0.05, 0.5, and 5.0 ng/egg (PFOS), with a full factorial design for mixture formulations. Relatively high doses of agents in mixtures were needed to induce significant mortality (TBT ≥ 0.5 ng/egg) or delayed hatching (PFOS = 5.0 ng/egg) of embryos. The interaction between TBT and PFOS in mixtures had significant effects on the observed hatching delay, but not on acute mortality. Compared with controls, separate exposure to TBT (or PFOS) notably elevated adipose areas at the doses of 0.05 and 0.5 ng/egg, but not at the highest doses. Combined exposure significantly promoted the fat accumulation in newly hatched larvae, even when the doses of TBT and PFOS were both at the levels that did not show obesogenic effect. The interactive effect of TBT and PFOS could aggravate the total obesogenic effect of their mixtures, indicating a synergistic interaction. These results highlight the importance of paying close attention to interaction effects when addressing the impacts of mixtures of environmental obesogens.
Collapse
Affiliation(s)
- Xuchun Qiu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China; Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Fukuoka, 812-8581, Japan
| | - Naoto Iwasaki
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Fukuoka, 812-8581, Japan
| | - Kun Chen
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China; Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Fukuoka, 812-8581, Japan
| | - Yohei Shimasaki
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Fukuoka, 812-8581, Japan
| | - Yuji Oshima
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Fukuoka, 812-8581, Japan.
| |
Collapse
|
30
|
Fair PA, Wolf B, White ND, Arnott SA, Kannan K, Karthikraj R, Vena JE. Perfluoroalkyl substances (PFASs) in edible fish species from Charleston Harbor and tributaries, South Carolina, United States: Exposure and risk assessment. ENVIRONMENTAL RESEARCH 2019; 171:266-277. [PMID: 30703622 PMCID: PMC6943835 DOI: 10.1016/j.envres.2019.01.021] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 05/17/2023]
Abstract
Concentrations of 11 PFASs were determined in muscle and whole fish for six species collected from Charleston, South Carolina (SC) for the assessment of potential health risks to humans and wildlife. Across all species and capture locations, total PFAS levels in whole fish were significantly higher than fillets by a factor of two- to three-fold. Mean ∑PFAS concentrations varied from 12.7 to 33.0 ng/g wet weight (ww) in whole fish and 6.2-12.7 ng/g ww in fillets. For individual whole fish, ∑PFASs ranged from 12.7 ng/g ww in striped mullet to 85.4 ng/g ww in spotted seatrout, and in fillets individual values ranged from 6.2 ng/g ww in striped mullet to 27.9 ng/g ww in spot. The most abundant compound in each species was perfluorooctane sulfonate (PFOS), comprising 25.5-69.6% of the ∑PFASs. Striped mullet had significantly lower relative amounts of PFOS compared to all other species and higher relative amounts of PFUnDA compared to Atlantic croaker, spotted seatrout, and spot. Unlike whole fish, PFAS levels in fillets varied significantly by location with higher ∑PFOS from the Ashley River than the Cooper River and Charleston Harbor, which reflects the levels of PFASs contamination in these systems. In whole fish, differences in relative concentrations of PFOS, PFNA, and PFDA occurred by capture location, suggestive of different sources. PFOS concentrations for southern flounder and spotted seatrout fillets were within the advisory range to limit fish consumption to 4 meals a month. PFOS levels exceeded screening values to protect mammals in 83% of whole fish examined and represent a potential risk to wildlife predators such as dolphins.
Collapse
Affiliation(s)
- Patricia A Fair
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29412, USA; NOAA's Ocean Service, National Centers for Coastal Ocean Science, Charleston, SC 29412, USA.
| | - Beth Wolf
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29412, USA
| | - Natasha D White
- NOAA's Ocean Service, National Centers for Coastal Ocean Science, Charleston, SC 29412, USA
| | - Stephen A Arnott
- Marine Resources Research Institute, South Carolina Department of Natural Resources, Charleston, SC 29412, USA
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Empire State Plaza, PO Box 509, Albany, NY 12201-0509, USA
| | - Rajendiran Karthikraj
- Wadsworth Center, New York State Department of Health, Empire State Plaza, PO Box 509, Albany, NY 12201-0509, USA
| | - John E Vena
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29412, USA
| |
Collapse
|
31
|
Dauchy X, Boiteux V, Colin A, Bach C, Rosin C, Munoz JF. Poly- and Perfluoroalkyl Substances in Runoff Water and Wastewater Sampled at a Firefighter Training Area. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 76:206-215. [PMID: 30515647 DOI: 10.1007/s00244-018-0585-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/27/2018] [Indexed: 05/27/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are key ingredients of firefighting foams designed to suppress fires involving flammable and combustible liquids. Such foams are used by firefighters during fire training at dedicated sites. Because PFASs are very persistent chemicals, substantial soil and groundwater contamination has been observed in the vicinity of firefighter training areas. However, very few data are available on PFAS contamination of wastewater and runoff water on such sites. The purpose of this study was to evaluate the occurrence of more than 50 PFASs in 43 water samples (effluent from a wastewater treatment plant (WWTP), lagoon, runoff water, and wastewater drained from firefighter training areas) collected from a large firefighter training site, using target and suspect screening. A comparison of the PFAS classes analyzed revealed the overwhelming contribution of fluorotelomers. This indicates that the PFAS emission from the use of firefighting foams cannot be monitored only by measuring perfluoroalkyl acids. Based on the PFAS concentrations measured through target screening, the PFAS mass discharged into the river receiving WWTP effluent and the lagoon was on average 387 ± 183 kg and 56 ± 15 kg per year respectively. Due to the unavailability of standards, it was impossible to take into account the PFASs detected with suspect screening. The present study emphasizes that, above and beyond soil and groundwater contamination, such sites also contribute to the PFAS burden of surface water.
Collapse
Affiliation(s)
- Xavier Dauchy
- Nancy Laboratory for Hydrology, Water Chemistry Department, ANSES, 40 Rue Lionnois, 54000, Nancy, France.
| | - Virginie Boiteux
- Nancy Laboratory for Hydrology, Water Chemistry Department, ANSES, 40 Rue Lionnois, 54000, Nancy, France
| | - Adeline Colin
- Nancy Laboratory for Hydrology, Water Chemistry Department, ANSES, 40 Rue Lionnois, 54000, Nancy, France
| | - Cristina Bach
- Nancy Laboratory for Hydrology, Water Chemistry Department, ANSES, 40 Rue Lionnois, 54000, Nancy, France
| | - Christophe Rosin
- Nancy Laboratory for Hydrology, Water Chemistry Department, ANSES, 40 Rue Lionnois, 54000, Nancy, France
| | - Jean-François Munoz
- Nancy Laboratory for Hydrology, Water Chemistry Department, ANSES, 40 Rue Lionnois, 54000, Nancy, France
| |
Collapse
|
32
|
Salice CJ, Anderson TA, Anderson RH, Olson AD. Ecological risk assessment of perfluooroctane sulfonate to aquatic fauna from a bayou adjacent to former fire training areas at a US Air Force installation. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:2198-2209. [PMID: 29691889 DOI: 10.1002/etc.4162] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/08/2017] [Accepted: 04/05/2018] [Indexed: 05/23/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) continue to receive significant attention, with particular concern for PFASs such as perfluorooctane sulfonate (PFOS), which was a constituent of aqueous film-forming foam used widely as a fire suppressant for aircraft since the 1970s. We were interested in the potential for risk to ecological receptors inhabiting Cooper Bayou, which is adjacent to 2 former fire-training areas at Barksdale Air Force Base (LA, USA). Previous research showed higher PFOS concentrations in surface water and biota from Cooper Bayou compared to reference sites. To estimate risk, we compared surface water concentrations from multiple sites within Cooper Bayou with several PFOS chronic toxicity benchmarks for freshwater aquatic organisms (∼0.4-5.1 μg PFOS/L) and showed probability of exceedances from 0.04 to 0.5, suggesting a potential for adverse effects in the most contaminated habitats. A tissue-residue assessment similarly showed some exceedance of benchmarks but with a lower probability (maximum = 0.17). Both fire-training areas have been inactive for more than a decade, so exposures (and, thus, risks) are expected to decline. Several uncertainties limit confidence in our risk estimates including highly dynamic surface water concentrations and limited chronic toxicity data for relevant species. Also, we have little data concerning organisms higher in the food chain which may receive higher lifetime exposures given the potential for PFOS to bioaccumulate and the longevity of many of these organisms. Overall, the present study suggests that PFOS can occur at concentrations that may cause adverse effects to ecological receptors, although additional, focused research is needed to reduce uncertainties. Environ Toxicol Chem 2018;37:2198-2209. © 2018 SETAC.
Collapse
Affiliation(s)
- Christopher J Salice
- Environmental Science and Studies Program, Towson University, Towson, Maryland, USA
| | - Todd A Anderson
- Department of Environmental Toxicology, Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas, USA
| | - Richard H Anderson
- Technical Support Branch, Civil Engineering Center, Lackland Air Force Base, US Air Force, Texas, USA
| | - Adric D Olson
- Department of Environmental Toxicology, Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
33
|
Taylor MD, Beyer-Robson J, Johnson DD, Knott NA, Bowles KC. Bioaccumulation of perfluoroalkyl substances in exploited fish and crustaceans: Spatial trends across two estuarine systems. MARINE POLLUTION BULLETIN 2018; 131:303-313. [PMID: 29886951 DOI: 10.1016/j.marpolbul.2018.04.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/12/2018] [Accepted: 04/11/2018] [Indexed: 05/15/2023]
Abstract
Spatial patterns in perfluoroalkyl substances were quantified for exploited fish and crustaceans across two contrasting Australian estuaries (Port Stephens and Hunter River). Perfluorooctane sulfonate (PFOS) was detected in 77% of composites from Port Stephens and 100% of composites from Hunter River. Most species from Port Stephens showed a clear trend with distance to source. In contrast, only a subset of species showed this trend in the Hunter River, potentially due to species movement patterns and differing hydrology. Spatial modelling showed that PFOS concentrations were expected to exceed the relevant trigger value up to ~13,500 m from the main point source for Port Stephens and ~9000 m for the Hunter River. These results represent the first major investigation of bioaccumulation of PFASs in exploited species in Australian estuaries, and highlight various factors that can contribute to spatial patterns in bioaccumulation.
Collapse
Affiliation(s)
- Matthew D Taylor
- Port Stephens Fisheries Institute, New South Wales Department of Primary Industries, Locked Bag 1, Nelson Bay, New South Wales 2315, Australia; School of Environmental and Life Sciences, University of Newcastle, New South Wales, Australia.
| | - Janina Beyer-Robson
- New South Wales Office of Environment and Heritage, Goulburn St, Haymarket, New South Wales, Australia
| | - Daniel D Johnson
- Port Stephens Fisheries Institute, New South Wales Department of Primary Industries, Locked Bag 1, Nelson Bay, New South Wales 2315, Australia
| | - Nathan A Knott
- Port Stephens Fisheries Institute, New South Wales Department of Primary Industries, Locked Bag 1, Nelson Bay, New South Wales 2315, Australia
| | - Karl C Bowles
- New South Wales Office of Environment and Heritage, Goulburn St, Haymarket, New South Wales, Australia; CSIRO Land and Water (Visiting Scientist), Locked Bag 2007, Kirrawee, New South Wales 2232, Australia
| |
Collapse
|
34
|
Jedidi Yaich B, Ould Amanatoullah A, Mekni NH, Romdhani-Younes M. Study of the zinc action on the 2-chloroethyl 2-bromo-2-perfluoroalkylethanoates. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2018. [DOI: 10.1080/16583655.2018.1465265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Balsem Jedidi Yaich
- Laboratory of Structural Organic Chemistry, Department of Chemistry, Faculty of Science of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Abakar Ould Amanatoullah
- Laboratory of Structural Organic Chemistry, Department of Chemistry, Faculty of Science of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Nejib Hussein Mekni
- Laboratory of Structural Organic Chemistry, Department of Chemistry, Faculty of Science of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Moufida Romdhani-Younes
- Laboratory of Structural Organic Chemistry, Department of Chemistry, Faculty of Science of Tunis, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
35
|
D'Agostino LA, Mabury SA. Certain Perfluoroalkyl and Polyfluoroalkyl Substances Associated with Aqueous Film Forming Foam Are Widespread in Canadian Surface Waters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:13603-13613. [PMID: 29110476 DOI: 10.1021/acs.est.7b03994] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The presence of perfluoroalkyl and polyfluoroalkyl substances (PFASs) commonly associated with aqueous film forming foams (AFFFs) at sites without known AFFF contamination is a largely unexplored area, which may reveal widespread environmental contaminants requiring further investigation. Sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) screening for 23 classes of PFASs, followed by quantitative analysis was used to investigate surface waters from rural, urban, and AFFF-impacted sites in Canada. The PFASs detected included perfluorohexane sulfonamide (FHxSA), 6:2 fluorotelomer sulfonamide (FTSAm), fluorotelomer sulfonamide alkylbetaines (FTABs), fluorotelomer betaines (FTBs), 6:2 fluorotelomer mercaptoalkylamido sulfonate sulfone (FTSAS-SO2), 6:2 fluorotelomerthiohydroxyl ammonium sulfoxide (FTSHA-SO), 6:2 fluorotelomer sulfonamide alkylamine (FTAA) and C3 to C6 perfluoroalkane sulfonamido amphoterics. Detection of FHxSA in all urban and AFFF-impacted sites (0.04-19 ng/L) indicates the widespread presence of rarely considered perfluorohexanesulfonate (PFHxS) precursors in Canadian waters. FTABs and FTBs were especially abundant with up to 16-33 ng/L of 6:2 FTAB in urban and AFFF-impacted water suggesting it may have additional applications, while FTBs were only in AFFF-impacted sites (qualitative; ∑FTBs 80 ng/L). The distributions of PFASs moving downstream along the AFFF-impacted Welland River and between water and sediment suggested differences in the persistence of various AFFF components and enhanced sorption of long-chain fluorotelomer betaines. Total organofluorine combustion-ion chromatography (TOF-CIC) revealed that fluorotelomer betaines were a substantial portion of the organofluorine in some waters and 36-99.7% of the total organofluorine was not measured in the targeted analysis.
Collapse
Affiliation(s)
- Lisa A D'Agostino
- Department of Chemistry, University of Toronto , 80 St. George Street, Toronto, M5S 3H6, Ontario Canada
| | - Scott A Mabury
- Department of Chemistry, University of Toronto , 80 St. George Street, Toronto, M5S 3H6, Ontario Canada
| |
Collapse
|
36
|
Stubleski J, Salihovic S, Lind PM, Lind L, Dunder L, McCleaf P, Eurén K, Ahrens L, Svartengren M, van Bavel B, Kärrman A. The effect of drinking water contaminated with perfluoroalkyl substances on a 10-year longitudinal trend of plasma levels in an elderly Uppsala cohort. ENVIRONMENTAL RESEARCH 2017; 159:95-102. [PMID: 28780137 DOI: 10.1016/j.envres.2017.07.050] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 07/26/2017] [Accepted: 07/28/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND In 2012, drinking water contaminated with per- and polyfluoroalkyl substances (PFASs), foremost perfluorooctanesulfonic acid (PFOS) and perfluorohexanesulfonic acid (PFHxS) at levels over 20ng/L and 40ng/L, respectively, was confirmed in Uppsala, Sweden. OBJECTIVES We assessed how a longitudinally sampled cohort's temporal trend in PFAS plasma concentration was influenced by their residential location and determined the plausible association or disparity between the PFASs detected in the drinking water and the trend in the study cohort. METHODS The Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) cohort provided plasma samples three times from 2001 to 2014. Individuals maintaining the same zip code throughout the study (n = 399) were divided into a reference (no known PFAS exposure), low, intermediate and high exposure area depending on the proportion of contaminated drinking water received. Eight PFASs detected in the majority (75%) of the cohort's plasma samples were evaluated for significant changes in temporal PFAS concentrations using a random effects (mixed) model. RESULTS PFHxS plasma concentrations continued to significantly increase in individuals living in areas receiving the largest percentage of contaminated drinking water (p < 0.0001), while PFOS showed an overall decrease. The temporal trend of other PFAS plasma concentrations did not show an association to the quality of drinking water received. CONCLUSIONS The distribution of contaminated drinking water had a direct effect on the trend in PFHxS plasma levels among the different exposure groups, resulting in increased concentrations over time, especially in the intermediate and high exposure areas. PFOS and the remaining PFASs did not show the same relationship, suggesting other sources of exposure influenced these PFAS plasma trends.
Collapse
Affiliation(s)
- Jordan Stubleski
- MTM Research Centre, School of Science and Technology, Örebro University, 70182 Örebro, Sweden
| | - Samira Salihovic
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, 75141 Uppsala, Sweden
| | - P Monica Lind
- Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University, 75185 Uppsala, Sweden
| | - Lars Lind
- Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, 751 85 Uppsala, Sweden
| | - Linda Dunder
- Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University, 75185 Uppsala, Sweden
| | | | - Karin Eurén
- Uppsala Vatten och Avfall AB, Box 1105, 754 141 Uppsala
| | - Lutz Ahrens
- Swedish University of Agricultural Sciences (SLU), Department of Aquatic Sciences and Assessment, Gerda Nilssons väg 5, 756 51 Uppsala, Sweden
| | - Magnus Svartengren
- Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University, 75185 Uppsala, Sweden
| | - Bert van Bavel
- MTM Research Centre, School of Science and Technology, Örebro University, 70182 Örebro, Sweden; Norwegian Institute for Water Research, NIVA, 0349 Oslo, Norway
| | - Anna Kärrman
- MTM Research Centre, School of Science and Technology, Örebro University, 70182 Örebro, Sweden.
| |
Collapse
|
37
|
Platinum modified indium oxide nanorods with enhanced photocatalytic activity on degradation of perfluorooctanoic acid (PFOA). J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.09.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
38
|
Baduel C, Mueller JF, Rotander A, Corfield J, Gomez-Ramos MJ. Discovery of novel per- and polyfluoroalkyl substances (PFASs) at a fire fighting training ground and preliminary investigation of their fate and mobility. CHEMOSPHERE 2017; 185:1030-1038. [PMID: 28763938 DOI: 10.1016/j.chemosphere.2017.06.096] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/20/2017] [Accepted: 06/22/2017] [Indexed: 06/07/2023]
Abstract
Aqueous film forming foams (AFFFs) have been released at fire training facilities for several decades resulting in the contamination of soil and groundwater by per- and polyfluoroalkyl substances (PFASs). AFFF compositions are proprietary and may contain a broad range of PFASs for which the chemical structures and degradation products are not known. In this study, high resolution quadrupole-time-of-flight tandem mass spectrometry (LC-QTOF-MS/MS) in combination with data processing using filtering strategies was applied to characterize and elucidate the PFASs present in concrete extracts collected at a fire training ground after the historical use of various AFFF formulations. Twelve different fluorochemical classes, representing more than 60 chemicals, were detected and identified in the concrete extracts. Novel PFASs homologues, unmonitored before in environmental samples such as chlorinated PFSAs, ketone PFSAs, dichlorinated PFSAs and perfluoroalkane sulphonamides (FASAs) were detected in soil samples collected in the vicinity of the fire training ground. Their detection in the soil cores (from 0 to 2 m) give an insight on the potential mobility of these newly identified PFASs.
Collapse
Affiliation(s)
- Christine Baduel
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Coopers Plains QLD, Australia.
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Coopers Plains QLD, Australia
| | - Anna Rotander
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Coopers Plains QLD, Australia; Man-Technology-Environment (MTM) Research Centre, Örebro University, Örebro, Sweden
| | | | - Maria-José Gomez-Ramos
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Coopers Plains QLD, Australia; Agrifood Campus of International Excellence (CeiA3), Department of Chemistry and Physics, University of Almeria, European Union Reference Laboratory for Pesticide Residues in Fruit and Vegetables, Almería, Spain
| |
Collapse
|
39
|
Dauchy X, Boiteux V, Bach C, Rosin C, Munoz JF. Per- and polyfluoroalkyl substances in firefighting foam concentrates and water samples collected near sites impacted by the use of these foams. CHEMOSPHERE 2017; 183:53-61. [PMID: 28531559 DOI: 10.1016/j.chemosphere.2017.05.056] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 05/27/2023]
Abstract
To extinguish large-scale fuel fires, fluorosurfactant based foams (FSBFs) were developed in the 1960s and have been used ever since. In this study, 154 per- and polyfluoroalkyl substances (PFASs) including 122 emerging PFASs used as surfactants in FSBFs were sought in nine different foam concentrates. Field investigations were also carried out in the vicinity of four sites where FSBFs are or were intensively used (two airports, a training center for firefighters and an oil storage depot after a large explosion). In the foam concentrates, only three PFASs were quantified with concentrations ranging from 22,500 to 3,188,000 μg/L. Thirteen emerging PFASs were also identified in these samples based on their mass transitions and intensities. Overall, each foam was a mixture of at least two classes of PFASs. In three concentrates, none of the 122 emerging PFASs were identified as the main ingredient. A perfluoroalkyl acid precursor oxidation assay was therefore performed, and revealed the presence of high amounts of unidentified PFASs. In the vicinity of the four investigated sites, several PFASs were systematically quantified in all of the samples collected downstream of the sites. PFAS profiles were heavily influenced by parameters such as route of PFAS transport after use (runoff, seepage, direct discharge), time elapsed since the cessation of firefighting activities, and firefighting foam composition. The PFAS concentrations found around the investigated sites are the highest recorded in France and resulted in the closure of certain drinking water resources.
Collapse
Affiliation(s)
- Xavier Dauchy
- ANSES, Nancy Laboratory for Hydrology, Water Chemistry Department, 40 rue Lionnois, 54000, Nancy, France.
| | - Virginie Boiteux
- ANSES, Nancy Laboratory for Hydrology, Water Chemistry Department, 40 rue Lionnois, 54000, Nancy, France
| | - Cristina Bach
- ANSES, Nancy Laboratory for Hydrology, Water Chemistry Department, 40 rue Lionnois, 54000, Nancy, France
| | - Christophe Rosin
- ANSES, Nancy Laboratory for Hydrology, Water Chemistry Department, 40 rue Lionnois, 54000, Nancy, France
| | - Jean-François Munoz
- ANSES, Nancy Laboratory for Hydrology, Water Chemistry Department, 40 rue Lionnois, 54000, Nancy, France
| |
Collapse
|
40
|
Lanza HA, Cochran RS, Mudge JF, Olson AD, Blackwell BR, Maul JD, Salice CJ, Anderson TA. Temporal monitoring of perfluorooctane sulfonate accumulation in aquatic biota downstream of historical aqueous film forming foam use areas. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:2022-2029. [PMID: 28029183 DOI: 10.1002/etc.3726] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/02/2016] [Accepted: 12/25/2016] [Indexed: 05/20/2023]
Abstract
Perfluoroalkyl substances (PFAS) have recently received increased research attention, particularly concerning aquatic organisms and in regions of exposure to aqueous film forming foams (AFFFs). Air Force bases historically applied AFFFs in the interest of fire training exercises and have since expressed concern for PFAS contamination in biota from water bodies surrounding former fire training areas. Six PFAS were monitored, including perfluorooctane sulfonate (PFOS), in aquatic species from 8 bayou locations at Barksdale Air Force Base in Bossier City, Louisiana (USA) over the course of 1 yr. The focus was to evaluate temporal and spatial variability in PFAS concentrations from historic use of AFFF. The PFOS concentrations in fish peaked in early summer, and also increased significantly downstream of former fire training areas. Benthic organisms had lower PFOS concentrations than pelagic species, contrary to previous literature observations. Bioconcentration factors varied with time but were reduced compared with previously reported literature values. The highest concentration of PFOS in whole fish was 9349 ng/g dry weight, with 15% of samples exceeding what is believed to be the maximum whole fish concentration reported to date of 1500 ng/g wet weight. Further studies are ongoing, to measure PFAS in larger fish and tissue-specific partitioning data to compare with the current whole fish values. The high concentrations presently observed could have effects on higher trophic level organisms in this system or pose a potential risk to humans consuming contaminated fish. Environ Toxicol Chem 2017;36:2022-2029. © 2016 SETAC.
Collapse
Affiliation(s)
- Heather A Lanza
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas, USA
| | - Rebecca S Cochran
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas, USA
| | - Joseph F Mudge
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas, USA
| | - Adric D Olson
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas, USA
| | - Brett R Blackwell
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas, USA
| | - Jonathan D Maul
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas, USA
| | - Christopher J Salice
- Department of Environmental Science and Studies, Towson University, Towson, Maryland, USA
| | - Todd A Anderson
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
41
|
Multi-residue analysis of 36 priority and emerging pollutants in marine echinoderms ( Holothuria tubulosa ) and marine sediments by solid-liquid extraction followed by dispersive solid phase extraction and liquid chromatography–tandem mass spectrometry analysis. Talanta 2017; 166:336-348. [DOI: 10.1016/j.talanta.2017.01.062] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/20/2017] [Accepted: 01/24/2017] [Indexed: 01/18/2023]
|
42
|
Kariuki MN, Nagato EG, Lankadurai BP, Simpson AJ, Simpson MJ. Analysis of Sub-Lethal Toxicity of Perfluorooctane Sulfonate (PFOS) to Daphnia magna Using ¹H Nuclear Magnetic Resonance-Based Metabolomics. Metabolites 2017; 7:metabo7020015. [PMID: 28420092 PMCID: PMC5487986 DOI: 10.3390/metabo7020015] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/05/2017] [Accepted: 04/12/2017] [Indexed: 01/29/2023] Open
Abstract
1H nuclear magnetic resonance (NMR)-based metabolomics was used to characterize the response of Daphnia magna after sub-lethal exposure to perfluorooctane sulfonate (PFOS), a commonly found environmental pollutant in freshwater ecosystems. Principal component analysis (PCA) scores plots showed significant separation in the exposed samples relative to the controls. Partial least squares (PLS) regression analysis revealed a strong linear correlation between the overall metabolic response and PFOS exposure concentration. More detailed analysis showed that the toxic mode of action is metabolite-specific with some metabolites exhibiting a non-monotonic response with higher PFOS exposure concentrations. Our study indicates that PFOS exposure disrupts various energy metabolism pathways and also enhances protein degradation. Overall, we identified several metabolites that are sensitive to PFOS exposure and may be used as bioindicators of D. magna health. In addition, this study also highlights the important utility of environmental metabolomic methods when attempting to elucidate acute and sub-lethal pollutant stressors on keystone organisms such as D. magna.
Collapse
Affiliation(s)
- Martha N Kariuki
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C1A4, Canada.
| | - Edward G Nagato
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C1A4, Canada.
| | - Brian P Lankadurai
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C1A4, Canada.
| | - André J Simpson
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C1A4, Canada.
| | - Myrna J Simpson
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C1A4, Canada.
| |
Collapse
|
43
|
Taylor MD, Bowles KC, Johnson DD, Moltschaniwskyj NA. Depuration of perfluoroalkyl substances from the edible tissues of wild-caught invertebrate species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 581-582:258-267. [PMID: 28057344 DOI: 10.1016/j.scitotenv.2016.12.116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/17/2016] [Accepted: 12/17/2016] [Indexed: 06/06/2023]
Abstract
Detection and quantification of poly- and perfluoroalkyl substances (PFASs) in aquatic organisms is increasing, particularly for saltwater species. Depuration can remove PFASs from the tissues of some species once they are removed from the contaminant source, but it is not known if this process occurs for saltwater crustaceans. Such information is important for managing human health risks for exploited migratory species following exposure. We present the results of a depuration trial for School Prawn (Metapenaeus macleayi) and Mud Crab (Scylla serrata), two commercially important crustaceans in Australia. Perfluorooctane sulfonate (PFOS), perfluorohexane sulfonate (PFHxS), and perfluorooctanoic acid (PFOA) were present in samples of both species collected following exposure under natural conditions in contaminated estuaries. Depuration was tested in uncontaminated water for 33days. PFOA was present at levels close to LOR in both species, and was not detected after 4.5h and 72h in School Prawn and Mud Crab respectively. PFHxS was rapidly depurated by School Prawn, and had a depuration half-life of 5.7h. PFOS was also depurated by School Prawn, with a depuration half-life of 158.5h. PFHxS and PFOS concentrations were highly variable in Mud Crab both at the start, and during the depuration experiment, and a depuration model could not be fitted to the data. For School Prawn, depuration of total PFASs to the relevant screening value for protection of human health (9.1μgkg-1) occurred within 7.1h. Rapid depuration of PFASs in School Prawn indicates that human health risks associated with consumption may decrease as this species migrates away from the contamination source. Further research is required to better understand the relationships between contaminant load and life-history characteristics (such as growth, reproduction, and moult cycle) in Mud Crab, and future work should target broader time frames for depuration in this species.
Collapse
Affiliation(s)
- Matthew D Taylor
- Port Stephens Fisheries Institute, New South Wales Department of Primary Industries, Taylors Beach Rd, Taylors Beach, New South Wales, Australia; School of Environmental and Life Sciences, University of Newcastle, New South Wales, Australia.
| | - Karl C Bowles
- New South Wales Office of Environment and Heritage, Goulburn St, Haymarket, NSW, Australia; CSIRO Land and Water, Locked Bag 2007, Kirrawee, NSW 2232, Australia
| | - Daniel D Johnson
- Port Stephens Fisheries Institute, New South Wales Department of Primary Industries, Taylors Beach Rd, Taylors Beach, New South Wales, Australia
| | - Natalie A Moltschaniwskyj
- Port Stephens Fisheries Institute, New South Wales Department of Primary Industries, Taylors Beach Rd, Taylors Beach, New South Wales, Australia; School of Environmental and Life Sciences, University of Newcastle, New South Wales, Australia
| |
Collapse
|
44
|
Hale SE, Arp HPH, Slinde GA, Wade EJ, Bjørseth K, Breedveld GD, Straith BF, Moe KG, Jartun M, Høisæter Å. Sorbent amendment as a remediation strategy to reduce PFAS mobility and leaching in a contaminated sandy soil from a Norwegian firefighting training facility. CHEMOSPHERE 2017; 171:9-18. [PMID: 28002769 DOI: 10.1016/j.chemosphere.2016.12.057] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/09/2016] [Accepted: 12/11/2016] [Indexed: 05/12/2023]
Abstract
Aqueous film-forming foams (AFFF) containing poly- and perfluoroalkyl substances (PFAS) used for firefighting have led to the contamination of soil and water at training sites. The unique physicochemical properties of PFAS results in environmental persistency, threatening water quality and making remediation of such sites a necessity. This work investigated the role of sorbent amendment to PFAS contaminated soils in order to immobilise PFAS and reduce mobility and leaching to groundwater. Soil was sampled from a firefighting training facility at a Norwegian airport and total and leachable PFAS concentrations were quantified. Perfluorooctanesulfonic acid (PFOS) was the most dominant PFAS present in all soil samples (between 9 and 2600 μg/kg). Leaching was quantified using a one-step batch test with water (L/S 10). PFOS concentrations measured in leachate water ranged between 1.2 μg/L and 212 μg/L. Sorbent amendment (3%) was tested by adding activated carbon (AC), compost soil and montmorillonite to selected soils. The extent of immobilisation was quantified by measuring PFAS concentrations in leachate before and after amendment. Leaching was reduced between 94 and 99.9% for AC, between 29 and 34% for compost soil and between 28 and 40% for the montmorillonite amended samples. Sorbent + soil/water partitioning coefficients (KD) were estimated following amendment and were around 8 L/kg for compost soil and montmorillonite amended soil and ranged from 1960 to 16,940 L/kg for AC amended soil. The remediation of AFFF impacted soil via immobilisation of PFAS following sorbent amendment with AC is promising as part of an overall remediation strategy.
Collapse
Affiliation(s)
| | | | | | | | | | - Gijs D Breedveld
- Norwegian Geotechnical Institute, Oslo, Norway; Department of Geosciences, University of Oslo, Norway
| | | | | | | | | |
Collapse
|
45
|
Munoz G, Desrosiers M, Duy SV, Labadie P, Budzinski H, Liu J, Sauvé S. Environmental Occurrence of Perfluoroalkyl Acids and Novel Fluorotelomer Surfactants in the Freshwater Fish Catostomus commersonii and Sediments Following Firefighting Foam Deployment at the Lac-Mégantic Railway Accident. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:1231-1240. [PMID: 28056502 DOI: 10.1021/acs.est.6b05432] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
UNLABELLED On July 6th 2013, an unmanned train laden with almost 8 million liters of crude oil careened off the rails downtown Lac-Mégantic (Québec, Canada). In the aftermath of the derailment accident, the emergency response entailed the deployment of 33 000 L of aqueous film forming foam (AFFF) concentrate that contained proprietary fluorosurfactants. The present study examines the environmental occurrence of perfluoroalkyl acids (PFAAs) and newly identified per and polyfluoroalkyl substances (PFASs) in the benthic fish white sucker (Catostomus commersonii) and sediments from Lake Mégantic and Chaudière River. In sediments, PFAAs displayed relatively low concentrations (∑PFAAs = 0.06-0.5 ng g-1 dw) while the sum of fluorotelomer-based PFASs was in the range < LOD-6.2 ng g-1 dw. Notably, fluorotelomer sulfonamide betaines (8:2-FTAB and 10:2-FTAB), fluorotelomer betaines (9:3-FTB, 11:3-FTB and 9:1:2 FTB) and 6:2 fluorotelomer sulfonate (6:2-FTSA) were ubiquitously identified in the sediment samples surveyed. Levels of PFAAs remained moderate in fish muscle (e.g. , PFOS 0.28-2.1 ng g-1 wet-weight), with little or no differences when comparing 2013 or 2014 fish samples with 2011 archived samples. In contrast, n:2-FTSAs emerged in the immediate weeks or months that followed the accident, as did several betaine-based PFASs (8:2-FTAB, 10:2-FTAB, 9:3-FTB, 11:3-FTB, 7:1:2 FTB and 9:1:2 FTB), observed for the first time in situ. Fluorotelomer thioether amido sulfonate (10:2-FTSAS) and fluorotelomer sulfoxide amido sulfonate (10:2-FTSAS-sulfoxide) were also occasionally reported after the AFFF spill. With time, levels of betaine-based PFASs gradually decreased in fish, possibly indicating attenuation by biodegradation of the fluorine-free moiety, supported by the observation of likely metabolites such as n:3-fluorotelomer carboxylates and n:2-fluorotelomer sulfonamides.
Collapse
Affiliation(s)
- Gabriel Munoz
- Université de Bordeaux, EPOC, UMR 5805, LPTC Research Group, 351 Cours de la Libération, F-33400 Talence, France
- Department of Chemistry, Université de Montréal , C.P. 6128, Succursale Centre-Ville, Montréal, Quebec, Canada , H3C 3J7
| | - Mélanie Desrosiers
- Centre d'expertise en analyse environnementale du Québec (CEAEQ), Ministère du Développement durable, de l'Environnement et de la Lutte contre les changements climatiques (MDDELCC), 2700 Einstein Street, Quebec City, Quebec, Canada , G1P 3W8
| | - Sung Vo Duy
- Department of Chemistry, Université de Montréal , C.P. 6128, Succursale Centre-Ville, Montréal, Quebec, Canada , H3C 3J7
| | - Pierre Labadie
- Université de Bordeaux, EPOC, UMR 5805, LPTC Research Group, 351 Cours de la Libération, F-33400 Talence, France
- CNRS, EPOC, UMR 5805, LPTC Research Group, 351 Cours de la Libération, F-33400 Talence, France
| | - Hélène Budzinski
- Université de Bordeaux, EPOC, UMR 5805, LPTC Research Group, 351 Cours de la Libération, F-33400 Talence, France
- CNRS, EPOC, UMR 5805, LPTC Research Group, 351 Cours de la Libération, F-33400 Talence, France
| | - Jinxia Liu
- McGill University , Department of Civil Engineering, 817 Sherbrooke Street West, Montreal, Quebec, Canada , H3A 0C3
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal , C.P. 6128, Succursale Centre-Ville, Montréal, Quebec, Canada , H3C 3J7
| |
Collapse
|
46
|
Wu M, Sun R, Wang M, Liang H, Ma S, Han T, Xia X, Ma J, Tang L, Sun Y, Xu G. Analysis of perfluorinated compounds in human serum from the general population in Shanghai by liquid chromatography-tandem mass spectrometry (LC-MS/MS). CHEMOSPHERE 2017; 168:100-105. [PMID: 27776227 DOI: 10.1016/j.chemosphere.2016.09.161] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 08/19/2016] [Accepted: 09/18/2016] [Indexed: 06/06/2023]
Abstract
Perfluorinated compounds (PFCs) have potential health risk to human. In this paper, human serum samples collected from Jiading District, Shanghai aged from 23 to 87 years old (12 male and 33 female) were analyzed for 17 perfluorinated compounds (PFCs). A novel method for the elimination of background contamination of perfluorooctanoic acid (PFOA) generated from instrument by the modification of high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) has also been developed and validated. The limit of detection (LOD) for all monitored PFCs range from 0.02 to 0.18 ng mL-1. The limit of quantitation (LOQ) for PFOS and PFOA was 2.23 and 1.60 ng mL-1, respectively, and for other PFCs it ranged from 0.04 to 0.88 ng mL-1. Of the 17 PFCs analyzed in Shanghai serum, eleven were found. The dominating PFCs in all samples were perfluorooctanesulfonate (PFOS) and PFOA with a fraction of 49.5%, 34.2%, respectively. The median total concentration of each serum samples was 53.43 ng mL-1 with a range from <LOD to 99.37 ng mL-1. The results indicate a high human exposure to PFCs in Shanghai region. Compared with other cities in China and some other countries, PFOA and PFDA concentrations in the serum of general population of Shanghai are highest. For all donors, no significant association between age and PFCs was found (p = 0.125-0.951) and no workplace significant correlation was found (p = 0.247-0.861). Since no signification is founded and PFCs exposure is prevalent, further investigation is needed to explore its source and potential health impact. These results will also provide significant background data of PFCs in Shanghai.
Collapse
Affiliation(s)
- Minghong Wu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Rui Sun
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Mingnan Wang
- Jiading Yingyuan Hospital, Jiading, Shanghai, China
| | - Huanhuan Liang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Sihan Ma
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Tao Han
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Xiaoyu Xia
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Jing Ma
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Liang Tang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Yanfeng Sun
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Gang Xu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China.
| |
Collapse
|
47
|
Domingo JL, Nadal M. Per- and Polyfluoroalkyl Substances (PFASs) in Food and Human Dietary Intake: A Review of the Recent Scientific Literature. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:533-543. [PMID: 28052194 DOI: 10.1021/acs.jafc.6b04683] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Because of the important environmental presence and the potential human toxicity of per- and polyfluorinated alkyl substances (PFASs), in recent years the social and scientific interest in these compounds has notably increased. Special attention has been paid to perfluorooctanesulfonate (PFOS) and perfluorooctanoic acid (PFOA), the most extensively investigated PFASs. Although human exposure to PFASs may occur through different pathways, dietary intake seems to be the main route of exposure to these compounds. In 2012, we published a wide revision on the state of the science regarding the concentrations of PFASs in foodstuffs, the human dietary exposure to these compounds, and their health risks. In the present review, we have updated the information recently (2011-2016) published in the scientific literature. As in our previous review, we have also observed considerable differences in the PFASs detected-and their concentrations-in the food items analyzed in samples from a number of regions and countries. However, fish and other seafood seem to be the food group in which more PFASs are detected and where the concentrations of these compounds are higher. On the basis of the recommendations of the EFSA on the maximum dietary intakes of PFOS and PFOA, human health risks would not be of concern for nonoccupationally exposed populations, at least in the very limited countries for which recent data are available.
Collapse
Affiliation(s)
- José L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili , Sant Llorenç 21, 43201 Reus, Spain
| | - Martí Nadal
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili , Sant Llorenç 21, 43201 Reus, Spain
| |
Collapse
|
48
|
Olivares-Rubio HF, Vega-López A. Fatty acid metabolism in fish species as a biomarker for environmental monitoring. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 218:297-312. [PMID: 27453357 DOI: 10.1016/j.envpol.2016.07.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 07/02/2016] [Accepted: 07/03/2016] [Indexed: 06/06/2023]
Abstract
Pollution by Organic Contaminants (OC) in aquatic environments is a relevant issue at the global scale. Lipids comprised of Fatty Acids (FA) play many important roles in the physiology and life history of fishes. Toxic effects of OC are partly dependent on its bioaccumulation in the lipids of aquatic organisms due its physicochemical properties. Therefore, there is an increasing interest to investigate the gene expression as well as the presence and activity of proteins involved in FA metabolism. The attention on Peroxisome Proliferation Activate Receptors (PPARs) also prevails in fish species exposed to OC and in the transport, biosynthesis and β-oxidation of FA. Several studies have been conducted under controlled conditions to evaluate these biological aspects of fish species exposed to OC, as fibrates, endocrine disrupting compounds, perfluoroalkyl acids, flame retardants, metals and mixtures of organic compounds associated with a polluted area. However, only fibrates, which are agonists of PPARs, induce biological responses suitable to be considered as biomarkers of exposure to these pollutants. According to the documented findings on this topic, it is unlikely that these physiological aspects are suitable to be employed as biomarkers with some noticeable exceptions, which depend on experimental design. This emphasises the need to investigate the responses in fish treated with mixtures of OC and in wild fish species from polluted areas to validate or refute the suitability of these biomarkers for environmental or fish health monitoring.
Collapse
Affiliation(s)
- Hugo F Olivares-Rubio
- Laboratorio de Toxicología Ambiental, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, Ciudad de México, C. P. 07738, Mexico.
| | - Armando Vega-López
- Laboratorio de Toxicología Ambiental, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, Ciudad de México, C. P. 07738, Mexico.
| |
Collapse
|
49
|
Mejia-Avendaño S, Vo Duy S, Sauvé S, Liu J. Generation of Perfluoroalkyl Acids from Aerobic Biotransformation of Quaternary Ammonium Polyfluoroalkyl Surfactants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:9923-32. [PMID: 27477739 DOI: 10.1021/acs.est.6b00140] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The aerobic biotransformation over 180 days of two cationic quaternary ammonium compounds (QACs) with perfluoroalkyl chains was determined in soil microcosms, and biotransformation pathways were proposed. This is the first time that polyfluoroalkyl cationic surfactants used in aqueous film-forming foam (AFFF) formulations were studied for their environmental fate. The biotransformation of perfluorooctaneamido quaternary ammonium salt (PFOAAmS) was characterized by a DT50 value (time necessary to consume half of the initial mass) of 142 days and significant generation of perfluoroalkyl carboxylic acid (PFOA) at a yield of 30 mol % by day 180. The biotransformation of perfluorooctane sulfonamide quaternary ammonium salt (PFOSAmS) was very slow with unobservable change of the spiked mass; yet the generation of perfluorooctanesulfonate (PFOS) at a yield of 0.3 mol % confirmed the biotransformation of PFOSAmS. Three novel biotransformation intermediates were identified for PFOAAmS and three products including perfluorooctane sulfonamide (FOSA) for PFOSAmS through high-resolution mass spectrometry (MS) analysis and t-MS(2) fragmentation. The significantly slower PFOSAmS biotransformation is hypothesized to be due to its stronger sorption to soil owing to a longer perfluoroalkyl chain and a bulkier sulfonyl group, when compared to PFOAAmS. This study has demonstrated that despite overall high stability of QACs and their biocide nature, the ones with perfluoroalkyl chains can be substantially biotransformed into perfluoroalkyl acids in aerobic soil.
Collapse
Affiliation(s)
- Sandra Mejia-Avendaño
- Department of Civil Engineering, McGill University , Montreal, Quebec H3A 0C3, Canada
| | - Sung Vo Duy
- Department of Chemistry, Université de Montréal , Montreal H3C 3J7, Canada
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal , Montreal H3C 3J7, Canada
| | - Jinxia Liu
- Department of Civil Engineering, McGill University , Montreal, Quebec H3A 0C3, Canada
| |
Collapse
|
50
|
Hansen S, Vestergren R, Herzke D, Melhus M, Evenset A, Hanssen L, Brustad M, Sandanger TM. Exposure to per- and polyfluoroalkyl substances through the consumption of fish from lakes affected by aqueous film-forming foam emissions - A combined epidemiological and exposure modeling approach. The SAMINOR 2 Clinical Study. ENVIRONMENT INTERNATIONAL 2016; 94:272-282. [PMID: 27286038 DOI: 10.1016/j.envint.2016.05.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/27/2016] [Accepted: 05/27/2016] [Indexed: 05/25/2023]
Abstract
Releases of aqueous film-forming foams (AFFFs) from airport firefighting activities have been identified as important local point sources of per- and polyfluoroalkyl substances (PFASs) in nearby waterways. PFASs can be taken up by fish, and in turn by the humans that consume them. Despite the global extent of AFFF emissions, few studies exist on related impacts on humans. We aimed to investigate the associations between the consumption of fish from AFFF-affected waters and serum PFAS concentrations in humans using a combination of statistical tools, empirical data, and toxicokinetic modeling. Participants of the SAMINOR 2 Clinical Study were the basis for this study sample, which comprised 74 persons. Fifty-nine participants who reported consuming fish from AFFF-affected waters and 15 nonconsumers completed a questionnaire and gave serum samples. Participants were classified based on their consumption of trout and char: high (n=16), moderate (n=16), low (n=27), and nonconsumers (n=15); and serum samples were tested for the presence of 15 PFASs. Perfluorooctane sulfonic acid (PFOS) was found in all participants, with the highest concentrations detected in the high consumption group (geometric means, 28ng/mL) compared to the low consumption group and nonconsumers (10 and 11ng/mL, respectively). In an analysis of variance contrast model, a significant, positive increasing trend was seen for fish consumption and PFOS, perfluorohexane sulfonic acid (PFHxS), and perfluorononanoic acid (PFNA). Toxicokinetic modeling allowed us to predict the median increases in serum concentrations of PFOS, PFHxS, and PFNA among high consumers within a factor of 2.2. The combination of statistical evaluation and toxicokinetic modeling clearly demonstrated a positive relationship between consumption of fish from AFFF-affected waters and serum PFAS concentrations. Further studies on dietary exposure to other PFASs present in AFFF and its consequences on human health are warranted.
Collapse
Affiliation(s)
- Solrunn Hansen
- Department of Community Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, P.O. Box 6050, Langnes, NO-9037 Tromsø, Norway.
| | - Robin Vestergren
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, Stockholm SE-10691, Sweden; NILU-Norwegian Institute of Air Research, Fram Centre, Hjalmar Johansens gate 14, NO-9296 Tromsø, Norway.
| | - Dorte Herzke
- NILU-Norwegian Institute of Air Research, Fram Centre, Hjalmar Johansens gate 14, NO-9296 Tromsø, Norway.
| | - Marita Melhus
- Centre for Sami Health Research, Department of Community Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, P.O. Box 6050, Langnes, NO-9037 Tromsø, Norway.
| | - Anita Evenset
- Akvaplan-niva, Fram Centre, Hjalmar Johansens Gate 14, NO-9296 Tromsø, Norway; Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, P.O. Box 6050, Langnes, NO-9037 Tromsø, Norway.
| | - Linda Hanssen
- NILU-Norwegian Institute of Air Research, Fram Centre, Hjalmar Johansens gate 14, NO-9296 Tromsø, Norway.
| | - Magritt Brustad
- Department of Community Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, P.O. Box 6050, Langnes, NO-9037 Tromsø, Norway.
| | - Torkjel M Sandanger
- Department of Community Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, P.O. Box 6050, Langnes, NO-9037 Tromsø, Norway; NILU-Norwegian Institute of Air Research, Fram Centre, Hjalmar Johansens gate 14, NO-9296 Tromsø, Norway.
| |
Collapse
|