1
|
Lin XQ, Li ZL, Chen XQ, Wang L, Wang AJ. Simultaneous deep removal of nitrate and tetrabromobisphenol A in microbial electrochemical system-constructed wetland. BIORESOURCE TECHNOLOGY 2025; 416:131723. [PMID: 39477166 DOI: 10.1016/j.biortech.2024.131723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/29/2024] [Accepted: 10/27/2024] [Indexed: 11/05/2024]
Abstract
Microbial electrochemical system-constructed wetland (MES-CW) is environmentally friendly in removing organic contaminants from wastewater. Tetrabromobisphenol A (TBBPA) is an emerging pollutant that is inefficiently removed in conventional wastewater treatment. The feasibility of deep removal of TBBPA and nitrate and the related mechanism in MES-CW remains unclear. This study demonstrated the enhanced TBBPA detoxification in MES-CW accompanied by nitrate removal. Nitrate significantly suppressed the TBBPA reductive debromination and methane generation. It altered the microbial community and enriched Acinetobacter in the electrode, stimulating the TBBPA hydrolytic debromination and metabolite oxidation. The biocathode supplied electrons for dehalogenators in TBBPA reductive debromination, while the anode served as the electron acceptor for function bacteria in TBBPA metabolite oxidation. Nitrate and anodic electricity optimized the microbial community and provided electron acceptors for TBBPA metabolites oxidation in MES-CW, guiding the deep removal of nitrate and emerging pollutants in wastewater.
Collapse
Affiliation(s)
- Xiao-Qiu Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhi-Ling Li
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Xue-Qi Chen
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ling Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266000, China
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
2
|
Zhang X, Kong Y, He Z, Yu W, Shao W, Gong C, Zhou W, Hu X. Exploring the effects of perfluorooctanoic acid (PFOA) and tetrabromobisphenol A (TBBP-A) on silkworm from the insights of metabolome. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117444. [PMID: 39632329 DOI: 10.1016/j.ecoenv.2024.117444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/30/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Perfluorooctanoic acid (PFOA) and tetrabromobisphenol A (TBBP-A) are emerging environmental contaminants with recognized potential health and ecological risks. This study investigated the effects of PFOA and TBBP-A exposure on the global of metabolites of silkworm gut with GC-MS metabolomics. Our results revealed distinct metabolic alterations in silkworms exposed to PFOA and TBBP-A, highlighting their differential impacts on silkworm health and productivity. Exposure to these chemicals significantly altered metabolic profiles, leading to disruptions in pathways related to lipid, carbohydrate, and amino acid metabolism. These findings suggest that PFOA and TBBP-A disrupt crucial metabolic processes in silkworms, indicating potential toxicity and prompting further investigation into their effects on human health and the environment. Ongoing research is crucial to develop safer alternatives and mitigate the risks associated with these persistent contaminants.
Collapse
Affiliation(s)
- Xing Zhang
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yifei Kong
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zihan He
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Wenbin Yu
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Wenjing Shao
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Chengliang Gong
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Wenlin Zhou
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaolong Hu
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China.
| |
Collapse
|
3
|
Liao Y, Wang Y, Lin Y, Xiao Y, Mohan M, Jaman R, Dong H, Zhu J, Li X, Zhang C, Chen G, Zhou J. Molecular mechanisms of tetrabromobisphenol A (TBBPA) toxicity: Insights from various biological systems. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117418. [PMID: 39612681 DOI: 10.1016/j.ecoenv.2024.117418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/03/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
Tetrabromobisphenol A (TBBPA) is a ubiquitous brominated flame retardant extensively incorporated into a wide range of products. As its utilization has escalated, its environmental exposure risks have concomitantly increased. The molecular properties of TBBPA allow it to persist in the environment and within organisms. In this review, we comprehensively examine the toxicity of TBBPA across different organ systems and elucidate the underlying molecular mechanisms. We particularly emphasize TBBPA's impact on biological signaling pathways, protein functionality, cellular architecture, and epigenetic regulation, which collectively lead to disruptions in endocrine, hepatic, neurological, reproductive, and other biological systems. The analysis of these toxicological phenomena and their fundamental molecular mechanisms has substantially enhanced our understanding of TBBPA's hazardous characteristics. This review also examines potential avenues for future research, with a focus on uncovering novel molecular mechanisms and assessing the toxicological impacts of TBBPA exposure, particularly in relation to interactions with other environmental contaminants. We propose a greater focus on examining the toxic effects and molecular mechanisms of long-term TBBPA exposure at environmentally relevant concentrations to facilitate more accurate assessments of human health risks.
Collapse
Affiliation(s)
- Yuxing Liao
- School of Basic Medical Sciences, Dali University, Dali, Yunnan 671000, China
| | - Yilin Wang
- College of Clinical Medicine, Dali University, Dali, Yunnan 671000, China
| | - YaJie Lin
- College of Clinical Medicine, Dali University, Dali, Yunnan 671000, China
| | - Yuxi Xiao
- College of Clinical Medicine, Dali University, Dali, Yunnan 671000, China
| | - Mohith Mohan
- College of Clinical Medicine, Dali University, Dali, Yunnan 671000, China
| | - Rummana Jaman
- College of Clinical Medicine, Dali University, Dali, Yunnan 671000, China
| | - Hao Dong
- College of Clinical Medicine, Dali University, Dali, Yunnan 671000, China
| | - Jiao Zhu
- College of Clinical Medicine, Dali University, Dali, Yunnan 671000, China
| | - Xuerui Li
- College of Clinical Medicine, Dali University, Dali, Yunnan 671000, China
| | - Conglin Zhang
- Department rehabilitation medicine, the First Affiliated Hospital of Dali University, Dali, Yunnan 671000, China
| | - Guiyuan Chen
- School of Basic Medical Sciences, Dali University, Dali, Yunnan 671000, China
| | - Jiaqi Zhou
- School of Basic Medical Sciences, Dali University, Dali, Yunnan 671000, China.
| |
Collapse
|
4
|
Lv M, Liu Y, Wang M, Wang Y, Xiang T, Guo Y, Song XC, Yan Y, Gao J, Shi C, Pan W, Liu A, Yao L, Yan X, Chen L, Liu R, Shi J, Yan B, Cai Z, Qu G, Jiang G. Biotransformation of Tetrabromobisphenol A and Its Analogs by Selected Gut Bacteria Strains: Implications for Human Health. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20894-20905. [PMID: 39536133 DOI: 10.1021/acs.est.4c10434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Knowledge of the biotransformation of tetrabromobisphenol A (TBBPA) and its related contaminants by human gut microbiota (GM) remains unexplored. Here, TBBPA and its four analogs were incubated with mixed GM strains, and nine rhamnosylated or debrominated transformation products (TPs) were discovered. Remarkably, rhamnosylation was identified as a common and unique microbial transformation pathway for these contaminants, and six of the seven rhamnosylated TPs were reported for the first time. Additionally, a kinetic transformation study also showed a rapid and strong bioaccumulation of TBBPA and TPs by Clostridium manihotivorum. Genomic analysis and phylogenetic studies identified C1.1_02053 as the gene encoding the C. manihotivorum working rhamnosyltransferase (CmRT), showing elevated gene expression with higher TBBPA exposure. Molecular docking identified five critical amino acid residues in CmRT that catalyze TBBPA rhamnosylation, and molecular dynamics simulations further confirmed the stability of the CmRT-TBBPA complex. Dynamic metabolomics analysis showed microbial growth-dependent disturbing effects in C. manihotivorum upon TBBPA exposure, and key metabolic pathways related to rhamnosyltransferase showed changes closely related to the transformation process. These findings provide insights into the unique transformation of environmental contaminants by the GM and highlight the disturbing effects of exogenous chemicals on the GM, as well as the potential impacts on overall human health.
Collapse
Affiliation(s)
- Meilin Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yanna Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Minghao Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yi Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Tongtong Xiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yunhe Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xue-Chao Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yuhao Yan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jie Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chunzhen Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Wenxiao Pan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Aifeng Liu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Linlin Yao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiliang Yan
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Liqun Chen
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Runzeng Liu
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon 999077, Hong Kong SAR, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Guibin Jiang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
5
|
Suteau V, Zuzic L, Hansen DH, Kjølbye LR, Sibilia P, Gourdin L, Briet C, Thomas M, Bourdeaud E, Tricoire-Leignel H, Schiøtt B, Carato P, Rodien P, Munier M. Effects and risk assessment of halogenated bisphenol A derivatives on human follicle stimulating hormone receptor: An interdisciplinary study. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135619. [PMID: 39217935 DOI: 10.1016/j.jhazmat.2024.135619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Halogenated bisphenol A (BPA) derivatives are produced during disinfection treatment of drinking water or are synthesized as flame retardants (TCBPA or TBBPA). BPA is considered as an endocrine disruptor especially on human follicle-stimulating hormone receptor (FSHR). Using a global experimental approach, we assessed the effect of halogenated BPA derivatives on FSHR activity and estimated the risk of halogenated BPA derivatives to the reproductive health of exposed populations. For the first time, we show that FSHR binds halogenated BPA derivatives, at 10 nM, a concentration lower than those requires to modulate the activity of nuclear receptors and/or steroidogenesis enzymes. Indeed, bioluminescence assays show that FSHR response is lowered up to 42.36 % in the presence of BPA, up to 32.79 % by chlorinated BPA derivatives and up to 27.04 % by brominated BPA derivatives, at non-cytotoxic concentrations and without modification of basal receptor activity. Moreover, molecular docking, molecular dynamics simulations, and site-directed mutagenesis experiments demonstrate that the halogenated BPA derivatives bind the FSHR transmembrane domain reducing the signal transduction efficiency which lowers the cellular cAMP production and in fine disrupts the physiological effect of FSH. The potential reproductive health risk of exposed individuals was estimated by comparing urinary concentrations (through a collection of human biomonitoring data) with the lowest effective concentrations derived from in vitro cell assays. Our results suggest a potentially high concern for the risk of inhibition of the FSHR pathway. This global approach based on FSHR activity could enable the rapid characterization of the toxicity of halogenated BPA derivatives (or other compounds) and assess the associated risk of exposure to these halogenated BPA derivatives.
Collapse
Affiliation(s)
- Valentine Suteau
- Angers University, MITOVASC, CarMe Team, CNRS UMR 6015, INSERM U1083, Angers, France; Department of Endocrinology, Diabetology and Nutrition, University Hospital Angers, Angers, France
| | - Lorena Zuzic
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| | | | | | - Paul Sibilia
- Angers University, MITOVASC, CarMe Team, CNRS UMR 6015, INSERM U1083, Angers, France; Department of Endocrinology, Diabetology and Nutrition, University Hospital Angers, Angers, France
| | - Louis Gourdin
- Angers University, MITOVASC, CarMe Team, CNRS UMR 6015, INSERM U1083, Angers, France; Centre de Référence des Maladies Rares de la Thyroïde et des Récepteurs Hormonaux, University Hospital Angers, Angers, France
| | - Claire Briet
- Angers University, MITOVASC, CarMe Team, CNRS UMR 6015, INSERM U1083, Angers, France; Department of Endocrinology, Diabetology and Nutrition, University Hospital Angers, Angers, France; Centre de Référence des Maladies Rares de la Thyroïde et des Récepteurs Hormonaux, University Hospital Angers, Angers, France
| | - Mickaël Thomas
- Poitiers University, Ecology & Biology of Interactions Laboratory, CNRS UMR 7285, INSERM CIC1402, IHES Research Group, Poitiers, France
| | - Eric Bourdeaud
- Poitiers University, Ecology & Biology of Interactions Laboratory, CNRS UMR 7285, INSERM CIC1402, IHES Research Group, Poitiers, France
| | | | - Birgit Schiøtt
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark; Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark
| | - Pascal Carato
- Poitiers University, Ecology & Biology of Interactions Laboratory, CNRS UMR 7285, INSERM CIC1402, IHES Research Group, Poitiers, France
| | - Patrice Rodien
- Angers University, MITOVASC, CarMe Team, CNRS UMR 6015, INSERM U1083, Angers, France; Department of Endocrinology, Diabetology and Nutrition, University Hospital Angers, Angers, France; Centre de Référence des Maladies Rares de la Thyroïde et des Récepteurs Hormonaux, University Hospital Angers, Angers, France
| | - Mathilde Munier
- Angers University, MITOVASC, CarMe Team, CNRS UMR 6015, INSERM U1083, Angers, France; Department of Endocrinology, Diabetology and Nutrition, University Hospital Angers, Angers, France; Centre de Référence des Maladies Rares de la Thyroïde et des Récepteurs Hormonaux, University Hospital Angers, Angers, France.
| |
Collapse
|
6
|
Yang J, Geng Y, Zhao B, Liu T, Luo JL, Gao XJ. Green tea polyphenols alleviate TBBPA-induced gastric inflammation and apoptosis by modulating the ROS-PERK/IRE-1/ATF6 pathway in mouse models. Food Funct 2024; 15:10179-10189. [PMID: 39301672 DOI: 10.1039/d4fo03012e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Green tea polyphenols (GTP), an important phytochemical in the daily human diet, bind to various cellular receptors and exert anti-inflammatory and antioxidant benefits. The environmental contaminant tetrabromobisphenol A (TBBPA) enters the digestive system through multiple pathways, resulting in oxidative stress (OS), gastroenteritis, and mucosal injury. The aim of this study was to explore the molecular mechanisms of TBBPA-induced gastritis in mice treated with GTP in vivo and in an in vitro model. The results showed that exposure to TBBPA increased reactive oxygen species (ROS) levels, activated oxidative stress (OS) induced endoplasmic reticulum stress (ERS), and the expression of endoplasmic reticulum stress-related factors (e.g., GRP78, PERK, IRE-1, ATF-6, etc.) increased. The inflammatory pathway NF-κB was activated, and the pro-inflammatory factors TNF-α, IL-1β, and IL-6 increased, while triggering a cascade reaction mediated by caspase-3. However, the addition of GTP could inhibit OS, restore the balance of endoplasmic reticulum homeostasis, and improve the inflammatory infiltration and apoptosis of gastric mucosal epithelial cells. Therefore, GTP alleviated ERS, reduced inflammation and apoptosis, and restored the gastric mucosal barrier by alleviating TBBPA-induced OS in mouse gastric tissues and GES-1 cells. This provides basic information for exploring the antioxidant mechanism of GTP and further investigating the toxic effects of TBBPA on mouse gastric mucosa.
Collapse
Affiliation(s)
- Jie Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150000, China.
| | - Yuan Geng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150000, China.
| | - Bing Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150000, China.
| | - Tianjing Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150000, China.
| | - Ji-Long Luo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150000, China.
| | - Xue-Jiao Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150000, China.
| |
Collapse
|
7
|
Song S, Li Y, Lv L, Dong M, Qin Z. Tetrabromobisphenol A exerts thyroid disrupting effects but has little overt impact on postnatal brain development and neurobehaviors in mice. J Environ Sci (China) 2024; 142:1-10. [PMID: 38527875 DOI: 10.1016/j.jes.2023.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 03/27/2024]
Abstract
Tetrabromobisphenol A (TBBPA) is a widely used brominated flame retardant. There is evidence showing that TBBPA can exert thyroid disrupting effects in mammals, but different results were also reported, along with inconsistent reports regarding its neurotoxicity. Here, we investigated thyroid disrupting effects and neurotoxicity of TBBPA (5, 50, 500 µg/(kg·day)) to male mice following maternal and direct exposure through drinking water, with the anti-thyroid drug propylthiouracil (PTU) as the positive control. On postnatal day (PND) 15, we expectedly observed severe thyroid compensatory hyperplasia and cerebellar developmental retardation in PTU-treated pups. The highest dose of TBBPA also caused thyroid histological alteration but had no effects on cerebellar development in terms of Purkinje cell morphology and the thickness of the internal granular layer and the molecular layer of the cerebellum. During puberty and adulthood, the thyroid morphological alterations became more pronounced in the TBBPA-treated animals, accompanied by decreased serum thyroid hormone levels. Furthermore, the 50 and 500 µg/(kg·day) TBBPA groups showed a significant decrease in the serum level of serotonin, a neurotransmitter associated with anxiety behaviors. Correspondingly, the highest dose group displayed anxiety-like behaviors in the elevated plus-maze test on PND 35, but this neurobehavioral alteration disappeared on PND 56. Moreover, no changes in neurobehavioral parameters tested were found in TBBPA-treated animals at puberty and adulthood. Altogether, all observations show that TBBPA can exert thyroid disrupting effects but has little overt impact on brain development and neurobehaviors in mice, suggesting that thyroid disruption does not necessarily cause overtly adverse neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Shilin Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengqi Dong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Tsinghua University, Beijing 100084, China.
| | - Zhanfen Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Wallace H, Benford D, Hart A, Schroeder H, Rose M, Vrijheid M, Kouloura E, Bordajandi LR, Riolo F, Vleminckx C. Update of the scientific opinion on tetrabromobisphenol A (TBBPA) and its derivatives in food. EFSA J 2024; 22:e8859. [PMID: 39010865 PMCID: PMC11247339 DOI: 10.2903/j.efsa.2024.8859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024] Open
Abstract
The European Commission asked EFSA to update its 2011 risk assessment on tetrabromobisphenol A (TBBPA) and five derivatives in food. Neurotoxicity and carcinogenicity were considered as the critical effects of TBBPA in rodent studies. The available evidence indicates that the carcinogenicity of TBBPA occurs via non-genotoxic mechanisms. Taking into account the new data, the CONTAM Panel considered it appropriate to set a tolerable daily intake (TDI). Based on decreased interest in social interaction in male mice, a lowest observed adverse effect level (LOAEL) of 0.2 mg/kg body weight (bw) per day was identified and selected as the reference point for the risk characterisation. Applying the default uncertainty factor of 100 for inter- and intraspecies variability, and a factor of 3 to extrapolate from the LOAEL to NOAEL, a TDI for TBBPA of 0.7 μg/kg bw per day was established. Around 2100 analytical results for TBBPA in food were used to estimate dietary exposure for the European population. The most important contributors to the chronic dietary LB exposure to TBBPA were fish and seafood, meat and meat products and milk and dairy products. The exposure estimates to TBBPA were all below the TDI, including those estimated for breastfed and formula-fed infants. Accounting for the uncertainties affecting the assessment, the CONTAM Panel concluded with 90%-95% certainty that the current dietary exposure to TBBPA does not raise a health concern for any of the population groups considered. There were insufficient data on the toxicity of any of the TBBPA derivatives to derive reference points, or to allow a comparison with TBBPA that would support assignment to an assessment group for the purposes of combined risk assessment.
Collapse
|
9
|
Yu G, Xi H, Sheng T, Lin J, Luo Z, Xu J. Sub-inhibitory concentrations of tetrabromobisphenol A induce the biofilm formation of methicillin-resistant Staphylococcus aureus. Arch Microbiol 2024; 206:301. [PMID: 38874781 DOI: 10.1007/s00203-024-04022-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 06/15/2024]
Abstract
Biofilm formation by methicillin-resistant Staphylococcus aureus (MRSA) on indwelling medical devices complicates the treatment of infection. Tetrabromobisphenol A (TBBPA), a synthetic, lipophilic, halogenated aromatic compound widely used as an additive in plastics and electronic products, has raised environmental concerns due to its potential for bioaccumulation. This study investigated the impact of sub-inhibitory concentrations of TBBPA on MRSA biofilm formation. Crystal violet staining and confocal laser scanning microscopy analysis demonstrated that 1/8 MIC (0.5 µg/mL) of TBBPA significantly stimulated MRSA biofilm formation (P < 0.0001). MTT assays indicated that the metabolic activity within the biofilms increased by 15.60-40.85% compared to untreated controls. Dot blot immunoassay, autolysis assay, and extracellular DNA (eDNA) quantification further revealed TBBPA enhanced the production of polysaccharide intercellular adhesin (PIA) and eDNA, which are key biofilm components. Additionally, TBBPA was found to enhance the production of staphyloxanthin, facilitating MRSA survival under oxidative conditions and in human whole blood. RT-qPCR analysis showed that TBBPA significantly upregulated genes associated with biofilm formation (icaA, atlA, sarA), staphyloxanthin biosynthesis (crtM and sigB), and oxidative stress responses (sodA and katA). These findings suggest that TBBPA promotes MRSA biofilm development and enhances bacterial resistance to adverse conditions, thereby potentially exacerbating risks to human health.
Collapse
Affiliation(s)
- Guofang Yu
- Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Huimin Xi
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Tianle Sheng
- Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Jin Lin
- Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Zhaoxia Luo
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| | - Jianqing Xu
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| |
Collapse
|
10
|
Gong Y, Sun J, Wang X, Barrett H, Peng H. Identification of Hydrocarbon Sulfonates as Previously Overlooked Transthyretin Ligands in the Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10227-10239. [PMID: 38817092 DOI: 10.1021/acs.est.3c10973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Incidences of thyroid disease, which has long been hypothesized to be partially caused by exposure to thyroid hormone disrupting chemicals (TDCs), have rapidly increased in recent years. However, known TDCs can only explain a small portion (∼1%) of in vitro human transthyretin (hTTR) binding activities in environmental samples, indicating the existence of unknown hTTR ligands. In this study, we aimed to identify the major environmental hTTR ligands by employing protein Affinity Purification with Nontargeted Analysis (APNA). hTTR binding activities were detected in all 11 indoor dust and 9 out of 10 sewage sludge samples by the FITC-T4 displacement assay. By using APNA, 31 putative hTTR ligands were detected including perfluorooctanesulfonate (PFOS). Two of the most abundant ligands were identified as hydrocarbon surfactants (e.g., dodecyl benzenesulfonate). Moreover, another abundant ligand was surprisingly identified as a disulfonate fluorescent brightener, 4,4'-bis(2-sulfostyryl)biphenyl sodium (CBS). CBS was validated as a nM-affinity hTTR ligand with an IC50 of 345 nM. In total, hydrocarbon surfactants and fluorescent brighteners explain 1.92-17.0 and 5.74-54.3% of hTTR binding activities in dust and sludge samples, respectively, whereas PFOS only contributed <0.0001%. Our study revealed for the first time that hydrocarbon sulfonates are previously overlooked hTTR ligands in the environment.
Collapse
Affiliation(s)
- Yufeng Gong
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Jianxian Sun
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Xiaoyun Wang
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Holly Barrett
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Hui Peng
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- School of the Environment, University of Toronto, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
11
|
Ma G, Ma K, Zhang J, Zhao X, Wang Q, Chen Y, Lu J, Wei X, Wang X, Yu H. Mechanistic insight into biotransformation of novel triazine-based flame retardant 1,3,5-tris(2,3-dibromopropyl)-1,3,5-triazinane-2,4,6-trione by human cytochrome P450s. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123883. [PMID: 38548154 DOI: 10.1016/j.envpol.2024.123883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/21/2024]
Abstract
The escalating focus on the environmental occurrence and toxicology of emerging pollutants underscores the imperative need for a profound exploration of their metabolic transformations mediated by human CYP450 enzymes. Such investigations have the potential to unravel the intricate metabolite profiles, substantially altering the toxicological outcomes. In this study, we integrated the computational simulations with in vitro metabolism experiments to investigate the metabolic activity and mechanism of an emerging pollutant, 1,3,5-tris(2,3-dibromopropyl)-1,3,5-triazinane-2,4,6-trione (TDBP-TAZTO), catalyzed by human CYP450s. The results highlight the important contributions of CYP2E1, 3A4 and 2C9 to the biotransformation of TDBP-TAZTO, leading to the identification of four distinct metabolites. The effective binding conformations governing biotransformation reactions of TDBP-TAZTO within active CYP450s are unveiled. Structural instability of primary hydroxyTDBP-TAZTO products suggests three potential outcomes: (1) generation of an alcohol metabolite through successive debromination and reduction reactions, (2) formation of a dihydroxylated metabolite through secondary hydroxylation by CYP450, and (3) production of an N-dealkylated metabolite via decomposition and isomerization reactions in the aqueous environment. The formation of a desaturated debrominated metabolite may arise from H-abstraction and barrier-free Br release during the primary oxidation, potentially competing with the generation of hydroxyTDBP-TAZTO. These findings provide detailed mechanistic insight into TDBP-TAZTO biotransformation by CYP450s, which can enrich our understanding of the metabolic fate and associated health risk of this chemical.
Collapse
Affiliation(s)
- Guangcai Ma
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004, Jinhua, China
| | - Kan Ma
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004, Jinhua, China
| | - Jing Zhang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004, Jinhua, China
| | - Xianglong Zhao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004, Jinhua, China
| | - Qiuyi Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004, Jinhua, China
| | - Yewen Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004, Jinhua, China
| | - Jiayu Lu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004, Jinhua, China
| | - Xiaoxuan Wei
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004, Jinhua, China
| | - Xueyu Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004, Jinhua, China
| | - Haiying Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004, Jinhua, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shuren Street 8, 310015, Hangzhou, China.
| |
Collapse
|
12
|
Wang S, Chen Y, Long M, Li W, Huang Y, Lai S, Yang G, Song Y, Chen J, Yu G. Fabrication of well-aligned Co-MOF arrays through a controlled and moderate process for the development of a flexible tetrabromobisphenol A sensor. Analyst 2024; 149:1807-1816. [PMID: 38334483 DOI: 10.1039/d3an01950k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Tetrabromobisphenol A (TBBPA) has attracted a great deal of attention due to its side effects and potential bioaccumulation properties. It is of great importance to construct and develop novel electrochemical sensors for the sensitive and selective detection of TBBPA. In the present study, cobalt (Co) based metal-organic frameworks (MOFs) were synthesized on carbon cloth (CC) by using cobalt nitrate hexahydrate and 2-methylimidazole. The morphological characterization was carried out by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). The results showed that Co-MOFs/CC have a leaf-like structure and abundant surface functional groups. The electrochemical properties of the sensor were investigated by differential pulse voltammetry (DPV). The effects of different ratios of metal ions to organic ligands, reaction temperature, time, concentration, pH value of the electrolyte, and incubation time on the oxidation peak current of TBBPA were studied. Under the optimal conditions, the linear range of the designed sensor was 0.1 μM-100 μM, and the limit of detection was 40 nM. The proposed sensor is simple, of low cost and efficient, which can greatly facilitate the detection tasks of environmental monitoring workers.
Collapse
Affiliation(s)
- Shiyuan Wang
- Key Lab of Environment and Health, Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| | - Yao Chen
- Key Lab of Environment and Health, Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| | - Mei Long
- Department of Cardiology, ZiBo Central Hospital, Zibo, China
| | - Wanyu Li
- Key Lab of Environment and Health, Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| | - Yiran Huang
- Key Lab of Environment and Health, Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| | - Shiyi Lai
- Key Lab of Environment and Health, Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| | - Guiping Yang
- Key Lab of Environment and Health, Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| | - Yang Song
- Key Lab of Environment and Health, Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| | - Jinfa Chen
- The Center of Laboratory, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| | - Guangxia Yu
- Key Lab of Environment and Health, Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| |
Collapse
|
13
|
Hanioka N, Isobe T, Saito K, Nagaoka K, Mori Y, Jinno H, Ohkawara S, Tanaka-Kagawa T. Hepatic glucuronidation of tetrabromobisphenol A and tetrachlorobisphenol A: interspecies differences in humans and laboratory animals and responsible UDP-glucuronosyltransferase isoforms in humans. Arch Toxicol 2024; 98:837-848. [PMID: 38182911 DOI: 10.1007/s00204-023-03659-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/07/2023] [Indexed: 01/07/2024]
Abstract
Tetrabromobisphenol A (TBBPA) and tetrachlorobisphenol A (TCBPA), bisphenol A (BPA) analogs, are endocrine-disrupting chemicals predominantly metabolized into glucuronides by UDP-glucuronosyltransferase (UGT) enzymes in humans and rats. In the present study, TBBPA and TCBPA glucuronidation by the liver microsomes of humans and laboratory animals (monkeys, dogs, minipigs, rats, mice, and hamsters) and recombinant human hepatic UGTs (10 isoforms) were examined. TBBPA glucuronidation by the liver microsomes followed the Michaelis-Menten model kinetics in humans, rats, and hamsters and the biphasic model in monkeys, dogs, minipigs, and mice. The CLint values based on the Eadie-Hofstee plots were mice (147) > monkeys (122) > minipigs (108) > humans (100) and rats (98) > dogs (81) > hamsters (47). TCBPA glucuronidation kinetics by the liver microsomes followed the biphasic model in all species except for minipigs, which followed the Michaelis-Menten model. The CLint values were monkeys (172) > rats (151) > mice (134) > minipigs (104), dogs (102), and humans (100) > hamsters (88). Among recombinant human UGTs examined, UGT1A1 and UGT1A9 showed higher TBBPA and TCBPA glucuronidation abilities. The kinetics of TBBPA and TCBPA glucuronidation followed the substrate inhibition model in UGT1A1 and the Michaelis-Menten model in UGT1A9. The CLint values were UGT1A1 (100) > UGT1A9 (42) for TBBPA glucuronidation and UGT1A1 (100) > UGT1A9 (53) for TCBPA glucuronidation, and the activities at high substrate concentration ranges were higher in UGT1A9 than in UGT1A1 for both TBBPA and TCBPA. These results suggest that the glucuronidation abilities toward TBBPA and TCBPA in the liver differ extensively across species, and that UGT1A1 and UGT1A9 expressed in the liver mainly contribute to the metabolism and detoxification of TBBPA and TCBPA in humans.
Collapse
Affiliation(s)
- Nobumitsu Hanioka
- Department of Health Pharmacy, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama, 245-0066, Japan.
| | - Takashi Isobe
- Department of Health Pharmacy, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama, 245-0066, Japan
| | - Keita Saito
- School of Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Naka-ku, Okayama, 703-8516, Japan
| | - Kenjiro Nagaoka
- College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, 790-8578, Japan
| | - Yoko Mori
- Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, 305-8506, Japan
| | - Hideto Jinno
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, 468-8503, Japan
| | - Susumu Ohkawara
- Department of Health Pharmacy, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama, 245-0066, Japan
| | - Toshiko Tanaka-Kagawa
- Department of Health Pharmacy, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama, 245-0066, Japan
| |
Collapse
|
14
|
Chao X, Yao D, Chen C, Sheng Z, Zhu B. Tetrabromobisphenol A induces neuronal cytotoxicity by inhibiting PINK1-Parkin-mediated mitophagy via upregulating ATF3 expression. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169175. [PMID: 38065503 DOI: 10.1016/j.scitotenv.2023.169175] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/30/2023] [Accepted: 12/05/2023] [Indexed: 01/18/2024]
Abstract
Tetrabromobisphenol A (TBBPA), as a widely used brominated flame retardant, has been implicated as a potential neurotoxicant. However, the mechanism of TBBPA-induced neurotoxicity has not been fully elucidated yet. In this study, using mouse hippocampal neuron cell HT22 as the in vitro model, the neuronal cytotoxicity of TBBPA and the mechanism by focusing on mitophagy have been studied. We found that neuronal cytotoxic effects were indeed induced by TBBPA exposure at concentrations of >20 μM for 24 h, including decreased cell viability (to 92.38 % at 20 μM; 18.25 % at 80 μM), enhanced ROS (enhanced 53.26 % at IC50 of 60 μM, compared with that in the control group) and mitochondrial ROS (mtROS) levels (enhanced 24.12 % at 60 μM), reduced mitochondrial membrane potential (MMP) (decreased 33.60 % at 60 μM). As a protective mechanism in cells, autophagy was initiated; however, mitophagy was inhibited, where PINK1 (PINK1-Parkin activation is critical in the depolarized MMP-induced mitophagy) expression was found to be repressed and decreased, further leading to the failure of Parkin recruitment to the damaged mitochondria. Mitophagy activator, nicotinamide mononucleotide (β-NMN) that activates the PINK1-Parkin pathway, could alleviate TBBPA-induced mitophagy deficiency and further reduce the neuronal cytotoxicity, demonstrating that TBBPA-induced PINK1-Parkin-mediated mitophagy deficiency contributed to the neuronal cytotoxicity. Furthermore, we found TBBPA caused the upregulation of Atf3 (activating transcription factor 3) gene transcription and expression levels, alongside reduced Pink1 levels; whereas enhanced Pink1 transcript levels were observed after ATF3 depletion even under TBBPA treatment, demonstrating TBBPA-induced overexpression of ATF3 should be responsible for the reduced PINK1 expression. Therefore, for the first time, here we demonstrate that TBBPA can inhibit PINK1-Parkin-mediated mitophagy via upregulating ATF3 expression, which further contributes to its neuronal cytotoxicity. This study should be able to improve our understanding of the mechanism of TBBPA-induced neuronal cytotoxicity.
Collapse
Affiliation(s)
- Xijuan Chao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Dezhi Yao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Chuxuan Chen
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zhiguo Sheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, The Chinese Academy of Sciences, Beijing 100085, China
| | - Benzhan Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, The Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
15
|
Wang L, Yu Y, Liu G, Hu B, Lu J. Degradation of Tetrabromobisphenol S by thermo-activated Persulphate Oxidation: reaction Kinetics, transformation Mechanisms, and brominated By-products. ENVIRONMENTAL TECHNOLOGY 2024; 45:988-998. [PMID: 36215213 DOI: 10.1080/09593330.2022.2135027] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Brominated flame retardants (BFRs) are a group of contaminants of emerging environmental concern. In this study, systematic exploration was carried out to investigate the degradation of tetrabromobisphenol S (TBBPS), a typical emerging BFRs, by thermally activated persulfate (PDS) oxidation. The removal of 5.0 μM TBBPS was 100% after 60 min oxidation treatment under 60°C. Increasing the temperature or initial PDS concentration facilitated the degradation efficiency of TBBPS. The quenching test indicated that TBBPS degradation occurred via the attack of both sulphate radicals and hydroxyl radicals. Natural organic matter (NOM) decreased the removal rate, however, complete disappearance of TBBPS could still be obtained. Six intermediate products were formed during reactions between TBBPS and radicals. Transformation pathways including debromination, β-Scission, and cross-coupling were proposed. Brominated disinfection by-products (DBPs) in situ formed during the degradation of TBBPS were also investigated, such as bromoform and dibromoacetic acid. The presence of NOM reduced the formation rates of brominated DBPs. Results reveal that although thermo-activated PDS is a promising method for TBBPS-contaminated water, it can lead to potential brominated DBPs risks, which should be paid more attention to when SO4•--based oxidation technology is applied.
Collapse
Affiliation(s)
- Lu Wang
- School of Life Science, Shaoxing University, Shaoxing, People's Republic of China
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Yaqun Yu
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Guoqiang Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing, People's Republic of China
| | - Baowei Hu
- School of Life Science, Shaoxing University, Shaoxing, People's Republic of China
| | - Junhe Lu
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing, People's Republic of China
| |
Collapse
|
16
|
Michel ME, Wen CC, Yee SW, Giacomini KM, Hamdoun A, Nicklisch SCT. TICBase: Integrated Resource for Data on Drug and Environmental Chemical Interactions with Mammalian Drug Transporters. Clin Pharmacol Ther 2023; 114:1293-1303. [PMID: 37657924 DOI: 10.1002/cpt.3036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 07/28/2023] [Indexed: 09/03/2023]
Abstract
Environmental health science seeks to predict how environmental toxins, chemical toxicants, and prescription drugs accumulate and interact within the body. Xenobiotic transporters of the ATP-binding cassette (ABC) and solute carrier (SLC) superfamilies are major determinants of the uptake and disposition of xenobiotics across the kingdoms of life. The goal of this study was to integrate drug and environmental chemical interactions of mammalian ABC and SLC proteins in a centralized, integrative database. We built upon an existing publicly accessible platform-the "TransPortal"-which was updated with novel data and searchable features on transporter-interfering chemicals from manually curated literature data. The integrated resource TransPortal-TICBase (https://transportal.compbio.ucsf.edu) now contains information on 46 different mammalian xenobiotic transporters of the ABC- and SLC-type superfamilies, including 13 newly added rodent and 2 additional human drug transporters, 126 clinical drug-drug interactions, and a more than quadrupled expansion of the initial in vitro chemical interaction data from 1,402 to 6,296 total interactions. Based on our updated database, environmental interference with major human and rodent drug transporters occurs across the ABC- and SLC-type superfamilies, with kinetics indicating that some chemicals, such as the ionic liquid 1-hexylpyridinium chloride and the antiseptic chlorhexidine, can act as strong inhibitors with potencies similar or even higher than pharmacological model inhibitors. The new integrated web portal serves as a central repository of current and emerging data for interactions of prescription drugs and environmental chemicals with human drug transporters. This archive has important implications for predicting adverse drug-drug and drug-environmental chemical interactions and can serve as a reference website for the broader scientific community of clinicians and researchers.
Collapse
Affiliation(s)
- Matthew E Michel
- Department of Environmental Toxicology, University of California, Davis, Davis, California, USA
| | | | - Sook Wah Yee
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Kathleen M Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Amro Hamdoun
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, USA
| | - Sascha C T Nicklisch
- Department of Environmental Toxicology, University of California, Davis, Davis, California, USA
| |
Collapse
|
17
|
Yu Y, Tong D, Yu Y, Tian D, Zhou W, Zhang X, Shi W, Liu G. Toxic effects of four emerging pollutants on cardiac performance and associated physiological parameters of the thick-shell mussel (Mytilus coruscus). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122244. [PMID: 37482340 DOI: 10.1016/j.envpol.2023.122244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/01/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
Robust cardiac performance is critical for the health and even survival of an animal; however, it is sensitive to environmental stressors. At present, little is known about the cardiotoxicity of emerging pollutants to bivalve mollusks. Thus, in this study, the cardiotoxic effects of four emergent pollutants, carbamazepine (CBZ), bisphenol A (BPA), tetrabromobisphenol A (TBBPA), and tris(2-chloroethyl) phosphate (TCEP), on the thick-shell mussel, Mytilus coruscus, were evaluated by heartbeat monitoring and histological examinations. In addition, the impacts of these pollutants on parameters that closely related to cardiac function including neurotransmitters, calcium homeostasis, energy supply, and oxidative status were assessed. Our results demonstrated that 28-day exposure of the thick-shell mussel to these pollutants resulted in evident heart tissue lesions (indicated by hemocyte infiltration and myocardial fibrosis) and disruptions of cardiac performance (characterized by bradyrhythmia and arrhythmia). In addition to obstructing neurotransmitters and calcium homeostasis, exposure to pollutants also led to constrained energy supply and induced oxidative stress in mussel hearts. These findings indicate that although do differ somehow in their effects, these four pollutants may exert cardiotoxic impacts on mussels, which could pose severe threats to this important species and therefore deserves more attention.
Collapse
Affiliation(s)
- Yingying Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Difei Tong
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Yihan Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Dandan Tian
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Weishang Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Xunyi Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China.
| |
Collapse
|
18
|
Jiang Y, Wang Q, Du Y, Yang D, Xu J, Yan C. Occurrence and Distribution of Tetrabromobisphenol A and Diversity of Microbial Community Structure in the Sediments of Mangrove. BIOLOGY 2023; 12:biology12050757. [PMID: 37237569 DOI: 10.3390/biology12050757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
The occurrence and distribution characteristics of tetrabromobisphenol A (TBBPA) and its relationship with microbial community diversity in different mangrove sediments need further investigation. The results of this study indicated levels of TBBPA in mangrove sediments from the Zhangjiang Estuary (ZJ), Jiulongjiang Estuary (JLJ), and Quanzhou Bay (QZ) in Southeast China ranging from 1.80 to 20.46, 3.47 to 40.77, and 2.37 to 19.83 ng/g dry weight (dw), respectively. Mangrove sediments from JLJ contained higher levels of TBBPA, possibly due to agricultural pollution. A correlation analysis revealed a significant correlation between total organic carbon (TOC), total nitrogen (TN), and TBBPA distribution in ZJ and JLJ mangrove sediments, but not in QZ mangrove sediments. TOC significantly affected the distribution of TBBPA in mangrove sediments, but pH had no effect. High-throughput 16S rRNA gene sequencing showed that Pseudomonadota dominated the sediment bacteria followed by Chloroflexota, Actinobacteota, Bacillota, Acidobacteriota, Bacteroidota, and Aminicenantes in mangrove sediments. Although the microbial community structure of the ZJ, JLJ, and QZ mangrove sediments was similar, the taxonomic profile of their sensitive responders differed markedly. The genus Anaerolinea was dominant in the mangrove sediments and was responsible for the in situ dissipation of TBBPA. Based on redundancy analysis, there was a correlation between TBBPA, TOC, TN, C/N, pH, and microbial community structure at the genus level. Combining TBBPA, TN, and TOC may induce variations in the microbial community of mangrove sediments.
Collapse
Affiliation(s)
- Yongcan Jiang
- PowerChina Huadong Engineering Corporation Ltd., Hangzhou 311122, China
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Qiang Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Yunling Du
- PowerChina Huadong Engineering Corporation Ltd., Hangzhou 311122, China
| | - Dong Yang
- PowerChina Huadong Engineering Corporation Ltd., Hangzhou 311122, China
| | - Jianming Xu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chongling Yan
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| |
Collapse
|
19
|
Miao B, Yakubu S, Zhu Q, Issaka E, Zhang Y, Adams M. A Review on Tetrabromobisphenol A: Human Biomonitoring, Toxicity, Detection and Treatment in the Environment. Molecules 2023; 28:2505. [PMID: 36985477 PMCID: PMC10054480 DOI: 10.3390/molecules28062505] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
Tetrabromobisphenol A (TBBPA) is a known endocrine disruptor employed in a range of consumer products and has been predominantly found in different environments through industrial processes and in human samples. In this review, we aimed to summarize published scientific evidence on human biomonitoring, toxic effects and mode of action of TBBPA in humans. Interestingly, an overview of various pretreatment methods, emerging detection methods, and treatment methods was elucidated. Studies on exposure routes in humans, a combination of detection methods, adsorbent-based treatments and degradation of TBBPA are in the preliminary phase and have several limitations. Therefore, in-depth studies on these subjects should be considered to enhance the accurate body load of non-invasive matrix, external exposure levels, optimal design of combined detection techniques, and degrading technology of TBBPA. Overall, this review will improve the scientific comprehension of TBBPA in humans as well as the environment, and the breakthrough for treating waste products containing TBBPA.
Collapse
Affiliation(s)
- Baoji Miao
- Henan International Joint Laboratory of Nano-Photoelectric Magnetic Materials, School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Salome Yakubu
- Henan International Joint Laboratory of Nano-Photoelectric Magnetic Materials, School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Qingsong Zhu
- Henan International Joint Laboratory of Nano-Photoelectric Magnetic Materials, School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Eliasu Issaka
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yonghui Zhang
- Henan International Joint Laboratory of Nano-Photoelectric Magnetic Materials, School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Mabruk Adams
- School of Civil Engineering, National University of Ireland, H91 TK33 Galway, Ireland
| |
Collapse
|
20
|
Berger ML, Shaw SD, Rolsky C, Harris JH, Guo Y, Kannan K. Occurrence and tissue-specific partitioning of alternative brominated flame retardants in northwest Atlantic harbor seal pups (Phoca vitulina vitulina). CHEMOSPHERE 2023; 318:137968. [PMID: 36708778 DOI: 10.1016/j.chemosphere.2023.137968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Brominated flame retardants such as polybrominated diphenyl ethers (PBDEs) have been used for decades until evidence of negative health effects led to bans in many countries. PBDEs have since been replaced by alternative legacy compounds or newly developed chemicals. In this study, eight alternative brominated flame retardants were analyzed in blubber and liver of harbor seal pups (≤6 months) from the Northwest Atlantic collected during 2001-2010 to elucidate concentrations, patterns, contamination trends, potential maternal transfer, and tissue partitioning. All compounds were detected in liver and blubber tissues with hexabromocyclododecane (HBCD) isomers and 2-ethylhexyl 2,3,4,5-tetrabromobenzoate (TBB) predominating. Overall, α-HBCD was the dominant HBCD isomer in both tissues although the concentrations of γ-HBCD exceeded those of α-HBCD in seven pups, indicating their mothers may have had alternative dietary patterns or recent exposure to the commercial mixture. Although it was detected in less than half of the samples, to our knowledge, this is the first study to report tetrabromobisphenol A (TBBPA) concentrations in multiple tissues of a top marine predator. For the brominated components of Firemaster® flame retardants, TBB concentrations exceeded bis-(2-ethylhexyl)-tetrabromophthalate (TBPH). This pattern may result from recent exposure to commercial mixtures in which TBB exceeds TBPH 4:1 or from differences in perinatal or lactational transfer efficiency of the two compounds. Between the two tissues, lipid-normalized β-HBCD, γ-HBCD, TBB and decabromodiphenyl ethane (DBDPE) concentrations were significantly higher in liver than blubber. This indicates that the bioaccumulation of these chemicals is not simply related to lipid dynamics but may be linked to blood proteins. This study demonstrates that harbor seal pups from this region are contaminated with alternative flame retardants passed to them via placental or lactational transfer. Given the evidence for negative health effects of these chemicals, this contamination adds additional pressure on the first year survival of these young, developing animals.
Collapse
Affiliation(s)
- Michelle L Berger
- Shaw Institute, Blue Hill Research Center, 55 Main Street, Blue Hill, ME, 04614, USA.
| | - Susan D Shaw
- Shaw Institute, Blue Hill Research Center, 55 Main Street, Blue Hill, ME, 04614, USA
| | - Charles Rolsky
- Shaw Institute, Blue Hill Research Center, 55 Main Street, Blue Hill, ME, 04614, USA
| | - Jennifer H Harris
- Shaw Institute, Blue Hill Research Center, 55 Main Street, Blue Hill, ME, 04614, USA
| | - Ying Guo
- School of Environment, Jinan University, Guangzhou, 510632, China
| | - Kurunthachalam Kannan
- Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, 550 First Avenue, 698 MSB 6th Floor, New York, NY, 10016, USA
| |
Collapse
|
21
|
Zhang A, Wang R, Liu Q, Yang Z, Lin X, Pang J, Li X, Wang D, He J, Li J, Zhang M, Yu Y, Cao XC, Chen X, Tang NJ. Breast adipose metabolites mediates the association of tetrabromobisphenol a with breast cancer: A case-control study in Chinese population. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120701. [PMID: 36423888 DOI: 10.1016/j.envpol.2022.120701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Studies exploring the association of tetrabromobisphenol A (TBBPA) with breast cancer and related mechanisms are limited. To investigate the relationship between TBBPA levels in breast adipose and breast cancer, we carried out case-control research. As well as further examine the mediating role of adipose metabolites between TBBPA and breast cancer using the metabolomics approach. In this study, the concentration of TBBPA was determined utilizing ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) after a solid phase extraction (SPE) pretreatment. High-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) was employed to analyze adipose metabolomics. Evaluation of metabolites linked to TBBPA exposure and breast cancer was performed utilizing mediation analysis. With an estimated OR (95%CI) of 1.153 (1.023, 1.299), TBBPA was firmly linked with breast cancer. We also used propensity score matching analysis and sensitivity analysis to reduce the effect of confounding factors on the results. Metabolomics of adipose suggested significant perturbation in the linoleic acid metabolism pathway. In addition, for PC (16:0/16:0) as phospholipids, a mediation effect on the associations of TBBPA exposure with breast cancer risks was observed (estimated mediation percentage: 56.58%). Understanding the relationship between TBBPA exposure and the risk of breast cancer may be facilitated by the findings, which point to potential mediation metabolites.
Collapse
Affiliation(s)
- Ai Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Rui Wang
- Health Inspection and Testing Institute Integrated Operations Section, Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China
| | - Qianfeng Liu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Zhengjun Yang
- Tianjin Medical University Cancer Institute and Hospital: Tianjin Tumor Hospital, Tianjin, 300060, China
| | - Xiaohui Lin
- Health Inspection and Testing Institute Physical and Chemical Section, Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China
| | - Jing Pang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Xiaoyu Li
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Dan Wang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Jiayu He
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Jianping Li
- Health Inspection and Testing Institute Physical and Chemical Section, Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China
| | - Mingyue Zhang
- Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China
| | - Yue Yu
- Tianjin Medical University Cancer Institute and Hospital: Tianjin Tumor Hospital, Tianjin, 300060, China
| | - Xu-Chen Cao
- Tianjin Medical University Cancer Institute and Hospital: Tianjin Tumor Hospital, Tianjin, 300060, China
| | - Xi Chen
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Nai-Jun Tang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
22
|
Li S, Yang R, Yin N, Zhao M, Zhang S, Faiola F. Developmental toxicity assessments for TBBPA and its commonly used analogs with a human embryonic stem cell liver differentiation model. CHEMOSPHERE 2023; 310:136924. [PMID: 36272632 DOI: 10.1016/j.chemosphere.2022.136924] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 09/05/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Tetrabromobisphenol A (TBBPA) is widely used in industrial production as a halogenated flame retardant (HFR). Its substitutes and derivatives are also commonly employed as HFRs. Consequently, they can be frequently detected in environmental and human samples. The potential developmental toxicity of TBBPA and its analogs, particularly to the human liver, is still controversial or not thoroughly assessed. Therefore, in this study, we focused on the early stages of human liver development to explore the toxic effects of those HFRs, by using a human embryonic stem cell liver differentiation model. We concluded that nanomolar treatments (1, 10, and 100 nM) of those pollutants may not exert significant interference to liver development and functions. However, at 5 μM doses, TBBPA and its analogs severely affected liver functions, such as glycogen storage, and caused lipid accumulation. Furthermore, TBBPA-bis(allyl ether) showed the most drastic effects among the six compounds tested. Taken together, our findings support the view that TBBPA can be used safely, provided its amounts are strictly controlled. Nonetheless, TBBPA alternatives or derivatives may exhibit stronger adverse effects than TBBPA itself, and may not be safer choices for manufacturing applications when utilized in a large and unrestricted way.
Collapse
Affiliation(s)
- Shichang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Renjun Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Miaomiao Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuxian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
23
|
He H, Pan T, Shi X, Yang S, Jasbi P, Jin Y, Cui JY, Gu H. An integrative cellular metabolomic study reveals downregulated tricarboxylic acid cycle and potential biomarkers induced by tetrabromobisphenol A in human lung A549 cells. ENVIRONMENTAL TOXICOLOGY 2023; 38:7-16. [PMID: 36106841 DOI: 10.1002/tox.23657] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/22/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Tetrabromobisphenol A (TBBPA) is extensively utilized as a brominated flame retardant in numerous chemical products. As an environmental contaminant, the potential human toxicity of TBBPA has been attracting increasing attention. Nonetheless, the exact underlying mechanisms of toxicological effects caused by TBBPA remain uncertain. In this study, we investigated the potential mechanisms of TBBPA toxicity in vitro in the A549 cell line, one of the widely used type II pulmonary epithelial cell models in toxicology research. Cell viability was determined after treatment with varying concentrations of TBBPA. Liquid chromatography-mass spectrometry (LC-MS) metabolomics and metabolic flux approaches were utilized to evaluate metabolite and tricarboxylic acid (TCA) cycle oxidative flux changes. Our findings demonstrated that TBBPA significantly reduced the viability of cells and attenuated mitochondrial respiration in A549 cells. Additionally, LC-MS data showed significant reductions in TCA cycle metabolites including citrate, malate, fumarate, and alpha-ketoglutarate in 50 μM TBBPA-treated A549 cells. Metabolic flux analysis indicated reduced oxidative capacity in mitochondrial metabolism following TBBPA exposure. Moreover, diverse metabolic pathways, particularly alanine, aspartate, and glutamate metabolism and the TCA cycle, were found to be dysregulated. In total, 12 metabolites were significantly changed (p < .05) in response to 50 μM TBBPA exposure. Our results provide potential biomarkers of TBBPA toxicity in A549 cells and help elucidate the molecular mechanisms of pulmonary toxicity induced by TBBPA exposure.
Collapse
Affiliation(s)
- Hailang He
- Department of Respiratory Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Scottsdale, Arizona, USA
| | - Tingyu Pan
- Department of Respiratory Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Xiaojian Shi
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Scottsdale, Arizona, USA
| | - Shuang Yang
- Department of Respiratory Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Paniz Jasbi
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Scottsdale, Arizona, USA
- School of Molecular Sciences, College of Liberal Arts and Sciences, Arizona State University, Tempe, Arizona, USA
| | - Yan Jin
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Scottsdale, Arizona, USA
- Center for Translational Science, Florida International University, Port St. Lucie, Florida, USA
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Haiwei Gu
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Scottsdale, Arizona, USA
- Center for Translational Science, Florida International University, Port St. Lucie, Florida, USA
| |
Collapse
|
24
|
Wang S, Yu C, Chen X, Zhang K, Gao H, Yu X, Zhao X, Fang L, Chen X, Zhang J. Synthesis and Characterization of BaTiO
3
/TiO
2
Heterojunction Photocatalyst for Novel Application in Photocatalytic Degradation of TBBPA under Simulated Sunlight Irradiation. ChemistrySelect 2022. [DOI: 10.1002/slct.202202764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Shifa Wang
- School of Electronic and Information Engineering Chongqing Three Gorges University Wanzhou 404000 Chongqing China
- Chongqing Key Laboratory of Geological Environment Monitoring and Disaster Early-warning in Three Gorges Reservoir Area Chongqing Three Gorges University Wanzhou 404000 Chongqing China
| | - Chuan Yu
- School of Electronic and Information Engineering Chongqing Three Gorges University Wanzhou 404000 Chongqing China
- Chongqing Key Laboratory of Geological Environment Monitoring and Disaster Early-warning in Three Gorges Reservoir Area Chongqing Three Gorges University Wanzhou 404000 Chongqing China
| | - Xiangyu Chen
- School of Electronic and Information Engineering Chongqing Three Gorges University Wanzhou 404000 Chongqing China
- Chongqing Key Laboratory of Geological Environment Monitoring and Disaster Early-warning in Three Gorges Reservoir Area Chongqing Three Gorges University Wanzhou 404000 Chongqing China
| | - Kening Zhang
- School of Electronic and Information Engineering Chongqing Three Gorges University Wanzhou 404000 Chongqing China
- Chongqing Key Laboratory of Geological Environment Monitoring and Disaster Early-warning in Three Gorges Reservoir Area Chongqing Three Gorges University Wanzhou 404000 Chongqing China
| | - Huajing Gao
- School of Electronic and Information Engineering Chongqing Three Gorges University Wanzhou 404000 Chongqing China
- Chongqing Key Laboratory of Geological Environment Monitoring and Disaster Early-warning in Three Gorges Reservoir Area Chongqing Three Gorges University Wanzhou 404000 Chongqing China
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals Lanzhou University of Technology 730050 Lanzhou China
| | - Xianlun Yu
- School of Electronic and Information Engineering Chongqing Three Gorges University Wanzhou 404000 Chongqing China
- Chongqing Key Laboratory of Geological Environment Monitoring and Disaster Early-warning in Three Gorges Reservoir Area Chongqing Three Gorges University Wanzhou 404000 Chongqing China
| | - Xinxin Zhao
- School of Electronic and Information Engineering Chongqing Three Gorges University Wanzhou 404000 Chongqing China
- Chongqing Key Laboratory of Geological Environment Monitoring and Disaster Early-warning in Three Gorges Reservoir Area Chongqing Three Gorges University Wanzhou 404000 Chongqing China
| | - Leiming Fang
- Institute of Nuclear Physics and Chemistry China Academy of Engineering Physics 621900 Mianyang Sichuan China
| | - Xiping Chen
- Institute of Nuclear Physics and Chemistry China Academy of Engineering Physics 621900 Mianyang Sichuan China
| | - Jing Zhang
- School of Electronic and Information Engineering Chongqing Three Gorges University Wanzhou 404000 Chongqing China
- Chongqing Key Laboratory of Geological Environment Monitoring and Disaster Early-warning in Three Gorges Reservoir Area Chongqing Three Gorges University Wanzhou 404000 Chongqing China
| |
Collapse
|
25
|
Sole M, Bassols A, Labrada-Martagón V. Plasmatic B-esterases as potential biomarkers of exposure to marine plastics in loggerhead turtles. ENVIRONMENTAL RESEARCH 2022; 213:113639. [PMID: 35688215 DOI: 10.1016/j.envres.2022.113639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/30/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
Sea turtles are particularly vulnerable to plastic exposures, and the associated chemical additives, due to their feeding strategies. The species Caretta caretta is a proposed sentinel of plastic pollution worldwide. Thus, there is a need to find adequate biomarkers of plastic exposure through non-invasive protocols for this IUCN protected species. Plasmatic acetylcholinesterase (AChE), butyrylcholinesterase (BuChE) and carboxylesterase (CE) which participate in xenobiotic and endogenous metabolic reactions could all serve as biomarkers, as they are responsive to plasticizers and have already proved adequate for identifying organophosphorus esters exposures. Here we measured plasmatic B-esterases in wild specimens captured as accidental by-catch. Measurements were taken in each individual either at entry into the rehabilitation program or immediately before release after a recovery period. For CE measurements, 4 commercial substrates were used as potentially indicative of distinct enzyme isoforms. Increased activity was seen with the butyrate-derived substrates. Plasmatic CE activities were over one order of magnitude higher than AChE and BuChE substrates. Moreover, an in vitro protocol with the inclusion of plastic additives such as tetrabromobisphenol A (TBBPA), bisphenol A and some of its analogues was considered a proxy of enzymatic interactions. A clear inhibition by TBBPA was found when using commercially purified AChE and recombinant CE proteins. Overall, from in vitro and in vivo evidences, CEs in plasma are sensitive and easily measurable and have been shown to significantly increase after turtles have been rehabilitated in rescue centres. Nevertheless, the inclusion of plastic (or plasticizers) characterisation would help to confirm its association with plasmatic enzyme modifications before they can be adopted as biomarkers of plastic contamination.
Collapse
Affiliation(s)
- M Sole
- Institut de Ciències del Mar, CSIC, Psg. Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain.
| | - A Bassols
- Fundació per a la Conservació i Recuperació d'Animals Marins-CRAM, Psg. de la Platja 28-30, 08820, El Prat de Llobregat, Spain
| | - V Labrada-Martagón
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, UASLP, Av. Chapultepec #1570, Col. Privadas del Pedregal, CP 78295, San Luis Potosí, S.L.P., Mexico
| |
Collapse
|
26
|
Rezania S, Talaiekhozani A, Oryani B, Cho J, Barghi M, Rupani PF, Kamali M. Occurrence of persistent organic pollutants (POPs) in the atmosphere of South Korea: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119586. [PMID: 35680069 DOI: 10.1016/j.envpol.2022.119586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/28/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Numerous studies found the presence of persistent organic pollutants (POPs) in various environmental compartments, including air, water, and soil. POPs have been discovered in various industrial and agricultural products with severe environmental and human health consequences. According to the data, South Korea is a hotspot for POP pollution in the southern part of Asia; hence, South Korea has implemented the Stockholm Convention's National Implementation Plan (NIP) to address this worldwide issue. The purpose of this review is to assess the distribution pattern of POPs pollution in South Korea's atmosphere. According to findings, PAHs, PCBs, BFRs, and PBDEs significantly polluted the atmosphere of South Korea; however, assessing their exposure nationwide is difficult due to a shortage of data. The POPs temporal trend and meta-analysis disclosed no proof of a decrease in PAHs and BFRs residues in the atmosphere. However, POP pollution in South Korea tends to decrease compared to contamination levels in neighboring countries like Japan and China.
Collapse
Affiliation(s)
- Shahabaldin Rezania
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea.
| | - Amirreza Talaiekhozani
- Department of Civil Engineering, Jami Institute of Technology, Isfahan, 84919-63395, Iran
| | - Bahareh Oryani
- Technology Management, Economics and Policy Program, College of Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jinwoo Cho
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea
| | | | - Parveen Fatemeh Rupani
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium
| | - Mohammadreza Kamali
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium
| |
Collapse
|
27
|
Wang L, Yu Y, Liu G, Lu J. Formation of brominated by-products during the degradation of tetrabromobisphenol S by Co 2+/peroxymonosulfate oxidation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 314:115091. [PMID: 35472837 DOI: 10.1016/j.jenvman.2022.115091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/28/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Tetrabromobisphenol S (TBBPS), an emerging brominated flame retardant, can cause neurotoxic and cytotoxic effects to human physiology. In this study, the degradation of TBBPS in Co2+ activated peroxymonosulfate (PMS) oxidation process was explored. In particular, brominated by-products formed during the degradation of the TBBPS were examined. It was found that TBBPS could be effectively removed in the Co2+/PMS oxidation process. The pseudo-first-order rate constants were 0.13 min-1 at 0.2 mM PMS and 0.5 μM Co2+ initially. It appeared that TBBPS degradation occurred via and HO attacks, but played a dominant role. The presence of natural organic matter (NOM) greatly inhibited the transformation of the TBBPS, which can be explained by the scavenging of the radical species. β-Scission, debromination, and cross-coupling were identified as the main reaction pathways of TBBPS degradation in the Co2+/PMS system. Further oxidation and ring-opening of the intermediates generated brominated by-products including bromoform, monobromoacetic acid, and dibromoacetic acid. The formation of the brominated by-products increased gradually in approximately 48 h. But, the presence of NOM reduced the yields of the brominated -by-products. The findings of this study indicate that organic bromine contaminants can be effectively removed but lead to brominated by-products in the activated PMS oxidation process, which should be taken into consideration when -based oxidation technology is applied.
Collapse
Affiliation(s)
- Lu Wang
- School of Life Science, Shaoxing University, Shaoxing, 312000, China; Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yaqun Yu
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guoqiang Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing, 210042, China
| | - Junhe Lu
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
28
|
Sunday OE, Bin H, Guanghua M, Yao C, Zhengjia Z, Xian Q, Xiangyang W, Weiwei F. Review of the environmental occurrence, analytical techniques, degradation and toxicity of TBBPA and its derivatives. ENVIRONMENTAL RESEARCH 2022; 206:112594. [PMID: 34973196 DOI: 10.1016/j.envres.2021.112594] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/08/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
BFRs (brominated flame retardants) are a class of compounds that are added to or applied to polymeric materials to avoid or reduce the spread of fire. Tetrabromobisphenol A (TBBPA) is one of the known BFR used many in industries today. Due to its wide application as an additive flame retardant in commodities, TBBPA has become a common indoor contaminant. Recent researches have raised concerns about the possible hazardous effect of exposure to TBBPA and its derivatives in humans and wildlife. This review gives a thorough assessment of the literature on TBBPA and its derivatives, as well as environmental levels and human exposure. Several analytical techniques/methods have been developed for sensitive and accurate analysis of TBBPA and its derivatives in different compartments. These chemicals have been detected in practically every environmental compartment globally, making them a ubiquitous pollutant. TBBPA may be subject to adsorption, biological degradation or photolysis, photolysis after being released into the environment. Treatment of TBBPA-containing waste, as well as manufacturing and usage regulations, can limit the release of these chemicals to the environment and the health hazards associated with its exposure. Several methods have been successfully employed for the treatment of TBBPA including but not limited to adsorption, ozonation, oxidation and anaerobic degradation. Previous studies have shown that TBBPA and its derivative cause a lot of toxic effects. Diet and dust ingestion and have been identified as the main routes of TBBPA exposure in the general population, according to human exposure studies. Toddlers are more vulnerable than adults to be exposed to indoor dust through inadvertent ingestion. Furthermore, TBBP-A exposure can occur during pregnancy and through breast milk. This review will go a long way in closing up the knowledge gap on the silent and over ignored deadly effects of TBBPA and its derivatives and their attendant consequences.
Collapse
Affiliation(s)
- Okeke Emmanuel Sunday
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, 212013, PR China; Department of Biochemistry, Faculty of Biological Sciences & Natural Science Unit, SGS, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Huang Bin
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, 212013, PR China
| | - Mao Guanghua
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, 212013, PR China
| | - Chen Yao
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, 212013, PR China
| | - Zeng Zhengjia
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, 212013, PR China
| | - Qian Xian
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, 212013, PR China
| | - Wu Xiangyang
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, 212013, PR China.
| | - Feng Weiwei
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, 212013, PR China.
| |
Collapse
|
29
|
Feiteiro J, Rocha SM, Mariana M, Maia CJ, Cairrão E. Pathways involved in the human vascular Tetrabromobisphenol A response: calcium and potassium channels and nitric oxide donors. Toxicology 2022; 470:153158. [DOI: 10.1016/j.tox.2022.153158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 01/28/2023]
|
30
|
Reed JM, Spinelli P, Falcone S, He M, Goeke CM, Susiarjo M. Evaluating the Effects of BPA and TBBPA Exposure on Pregnancy Loss and Maternal-Fetal Immune Cells in Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:37010. [PMID: 35343813 PMCID: PMC8959013 DOI: 10.1289/ehp10640] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/22/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Bisphenol A (BPA) exposure has been linked to miscarriages and pregnancy complications in humans. In contrast, the potential reproductive toxicity of BPA analogs, including tetrabromobisphenol A (TBBPA), is understudied. Furthermore, although environmental exposure has been linked to altered immune mediators, the effects of BPA and TBBPA on maternal-fetal immune tolerance during pregnancy have not been studied. The present study investigated whether exposure resulted in higher rates of pregnancy loss in mice, lower number of regulatory T cells (Tregs), and lower indoleamine 2,3 deoxygenase 1 (Ido1) expression, which provided evidence for mechanisms related to immune tolerance in pregnancy. OBJECTIVES The purpose of this investigation was to characterize the effects of BPA and TBBPA exposure on pregnancy loss in mice and to study the percentage and number of Tregs and Ido1 expression and DNA methylation. METHODS Analysis of fetal resorption and quantification of maternal and fetal immune cells by flow cytometry were performed in allogeneic and syngeneic pregnancies. Ido1 mRNA and protein expression, and DNA methylation in placentas from control and BPA- and TBBPA-exposed mice were analyzed using real-time quantitative polymerase chain reaction, immunofluorescence, and bisulfite sequencing analyses. RESULTS BPA and TBBPA exposure resulted in higher rates of hemorrhaging in early allogeneic, but not syngeneic, conceptuses. In allogeneic pregnancies, BPA and TBBPA exposure was associated with higher fetal resorption rates and lower maternal Treg number. Importantly, these differences were associated with lower IDO1 protein expression in trophoblast giant cells and higher mean percentage Ido1 DNA methylation in embryonic day 9.5 placentas from BPA- and TBBPA-exposed mice. DISCUSSION BPA- and TBBPA-induced pregnancy loss in mice was associated with perturbed IDO1-dependent maternal immune tolerance. https://doi.org/10.1289/EHP10640.
Collapse
Affiliation(s)
- Jasmine M. Reed
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Philip Spinelli
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Sierra Falcone
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Miao He
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Calla M. Goeke
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Martha Susiarjo
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
31
|
Liu J, Yu L, Castro L, Yan Y, Clayton NP, Bushel P, Flagler ND, Scappini E, Dixon D. Short-term tetrabromobisphenol A exposure promotes fibrosis of human uterine fibroid cells in a 3D culture system through TGF-beta signaling. FASEB J 2022; 36:e22101. [PMID: 35032343 PMCID: PMC8852695 DOI: 10.1096/fj.202101262r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/12/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022]
Abstract
Tetrabromobisphenol A (TBBPA), a derivative of BPA, is a ubiquitous environmental contaminant with weak estrogenic properties. In women, uterine fibroids are highly prevalent estrogen-responsive tumors often with excessive accumulation of extracellular matrix (ECM) and may be the target of environmental estrogens. We have found that BPA has profibrotic effects in vitro, in addition to previous reports of the in vivo fibrotic effects of BPA in mouse uterus. However, the role of TBBPA in fibrosis is unclear. To investigate the effects of TBBPA on uterine fibrosis, we developed a 3D human uterine leiomyoma (ht-UtLM) spheroid culture model. Cell proliferation was evaluated in 3D ht-UtLM spheroids following TBBPA (10-6 -200 µM) administration at 48 h. Fibrosis was assessed using a Masson's Trichrome stain and light microscopy at 7 days of TBBPA (10-3 µM) treatment. Differential expression of ECM and fibrosis genes were determined using RT² Profiler™ PCR arrays. Network and pathway analyses were conducted using Ingenuity Pathway Analysis. The activation of pathway proteins was analyzed by a transforming growth factor-beta (TGFB) protein array. We found that TBBPA increased cell proliferation and promoted fibrosis in 3D ht-UtLM spheroids with increased deposition of collagens. TBBPA upregulated the expression of profibrotic genes and corresponding proteins associated with the TGFB pathway. TBBPA activated TGFB signaling through phosphorylation of TGFBR1 and downstream effectors-small mothers against decapentaplegic -2 and -3 proteins (SMAD2 and SMAD3). The 3D ht-UtLM spheroid model is an effective system for studying environmental agents on human uterine fibrosis. TBBPA can promote fibrosis in uterine fibroid through TGFB/SMAD signaling.
Collapse
Affiliation(s)
- Jingli Liu
- Mechanistic Toxicology Branch (MTB)Division of the National Toxicology Program (DNTP)National Institute of Environmental Health Sciences (NIEHS), NIHResearch Triangle ParkNorth CarolinaUSA
| | - Linda Yu
- Mechanistic Toxicology Branch (MTB)Division of the National Toxicology Program (DNTP)National Institute of Environmental Health Sciences (NIEHS), NIHResearch Triangle ParkNorth CarolinaUSA
| | - Lysandra Castro
- Mechanistic Toxicology Branch (MTB)Division of the National Toxicology Program (DNTP)National Institute of Environmental Health Sciences (NIEHS), NIHResearch Triangle ParkNorth CarolinaUSA
| | - Yitang Yan
- Mechanistic Toxicology Branch (MTB)Division of the National Toxicology Program (DNTP)National Institute of Environmental Health Sciences (NIEHS), NIHResearch Triangle ParkNorth CarolinaUSA
| | - Natasha P. Clayton
- Cellular & Molecular Pathogenesis BranchDNTP NIEHS, NIHResearch Triangle ParkNorth CarolinaUSA
| | - Pierre Bushel
- Biostatistics & Computational Biology Branch, Division of Intramural Research (DIR)NIEHS, NIHResearch Triangle ParkNorth CarolinaUSA
| | - Norris D. Flagler
- Cellular & Molecular Pathogenesis BranchDNTP NIEHS, NIHResearch Triangle ParkNorth CarolinaUSA
| | - Erica Scappini
- Signal Transduction Laboratory, DIRNIEHS, NIHResearch Triangle ParkNorth CarolinaUSA
| | - Darlene Dixon
- Mechanistic Toxicology Branch (MTB)Division of the National Toxicology Program (DNTP)National Institute of Environmental Health Sciences (NIEHS), NIHResearch Triangle ParkNorth CarolinaUSA
| |
Collapse
|
32
|
Chen Y, Chen Q, Zhang Q, Zuo C, Shi H. An Overview of Chemical Additives on (Micro)Plastic Fibers: Occurrence, Release, and Health Risks. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 260:22. [PMCID: PMC9748405 DOI: 10.1007/s44169-022-00023-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/02/2022] [Indexed: 07/21/2023]
Abstract
Plastic fibers are ubiquitous in daily life with additives incorporated to improve their performance. Only a few restrictions exist for a paucity of common additives, while most of the additives used in textile industry have not been clearly regulated with threshold limits. The production of synthetic fibers, which can shed fibrous microplastics easily (< 5 mm) through mechanical abrasion and weathering, is increasing annually. These fibrous microplastics have become the main composition of microplastics in the environment. This review focuses on additives on synthetic fibers; we summarized the detection methods of additives, compared concentrations of different additive types (plasticizers, flame retardants, antioxidants, and surfactants) on (micro)plastic fibers, and analyzed their release and exposure pathways to environment and human beings. Our prediction shows that the amounts of predominant additives (phthalates, organophosphate esters, bisphenols, per- and polyfluoroalkyl substances, and nonylphenol ethoxylates) released from clothing microplastic fibers (MFs) are estimated to reach 35, 10, 553, 0.4, and 568 ton/year to water worldwide, respectively; and 119, 35, 1911, 1.4, and 1965 ton/year to air, respectively. Human exposure to MF additives via inhalation is estimated to be up to 4.5–6440 µg/person annually for the above five additives, and via ingestion 0.1–204 µg/person. Notably, the release of additives from face masks is nonnegligible that annual human exposure to phthalates, organophosphate esters, per- and polyfluoroalkyl substances from masks via inhalation is approximately 491–1820 µg/person. This review helps understand the environmental fate and potential risks of released additives from (micro)plastic fibers, with a view to providing a basis for future research and policy designation of textile additives.
Collapse
Affiliation(s)
- Yuye Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241 China
| | - Qiqing Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241 China
- Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai Science and Technology Committee, Shanghai, China
| | - Qun Zhang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241 China
| | - Chencheng Zuo
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241 China
| | - Huahong Shi
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241 China
| |
Collapse
|
33
|
He H, Li Y, Shen R, Shim H, Zeng Y, Zhao S, Lu Q, Mai B, Wang S. Environmental occurrence and remediation of emerging organohalides: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118060. [PMID: 34479159 DOI: 10.1016/j.envpol.2021.118060] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/02/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
As replacements for "old" organohalides, such as polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs), "new" organohalides have been developed, including decabromodiphenyl ethane (DBDPE), short-chain chlorinated paraffins (SCCPs), and perfluorobutyrate (PFBA). In the past decade, these emerging organohalides (EOHs) have been extensively produced as industrial and consumer products, resulting in their widespread environmental distribution. This review comprehensively summarizes the environmental occurrence and remediation methods for typical EOHs. Based on the data collected from 2015 to 2021, these EOHs are widespread in both abiotic (e.g., dust, air, soil, sediment, and water) and biotic (e.g., bird, fish, and human serum) matrices. A significant positive correlation was found between the estimated annual production amounts of EOHs and their environmental contamination levels, suggesting the prohibition of both production and usage of EOHs as a critical pollution-source control strategy. The strengths and weaknesses, as well as the future prospects of up-to-date remediation techniques, such as photodegradation, chemical oxidation, and biodegradation, are critically discussed. Of these remediation techniques, microbial reductive dehalogenation represents a promising in situ remediation method for removal of EOHs, such as perfluoroalkyl and polyfluoroalkyl substances (PFASs) and halogenated flame retardants (HFRs).
Collapse
Affiliation(s)
- Haozheng He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yiyang Li
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China
| | - Rui Shen
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China
| | - Hojae Shim
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau SAR, 999078, China
| | - Yanhong Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Siyan Zhao
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Qihong Lu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China; State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Shanquan Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
34
|
Feiteiro J, Mariana M, Cairrão E. Health toxicity effects of brominated flame retardants: From environmental to human exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117475. [PMID: 34087639 DOI: 10.1016/j.envpol.2021.117475] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/14/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Hexabromocyclododecane (HBCD) and Tetrabromobisphenol A (TBBP-A) are brominated flame retardants widely used in variety of industrial and consumer products (e.g., automobiles, electronics, furniture, textiles and plastics) to reduce flammability. HBCD and TBBPA can also contaminate the environment, mainly water, dust, air and soil, from which human exposure occurs. This constant exposure has raised some concerns against human health. These compounds can act as endocrine disruptors, a property that gives them the ability to interfere with hormonal function and quantity, when HBCD and TBBPA bind target tissues in the body. Studies in human and animals suggest a correlation between HBCD and TBBPA exposure and adverse health outcomes, namely thyroid disorders, neurobehavior and development disorders, reproductive health, immunological, oncological and cardiovascular diseases. However, in humans these effects are still poorly understood, once only a few data evaluated the human health effects. Thus, the purpose of this review is to present the toxicity effects of HBCD and TBBPA and how these compounds affect the environment and health, resorting to data and knowledge of 255 published papers from 1979 to 2020.
Collapse
Affiliation(s)
- Joana Feiteiro
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, University of Beira Interior, Covilhã, Portugal; FCS-UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Melissa Mariana
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, University of Beira Interior, Covilhã, Portugal
| | - Elisa Cairrão
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, University of Beira Interior, Covilhã, Portugal; FCS-UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
35
|
Lin XQ, Li ZL, Nan J, Su JH, Liang B, Li CJ, Wang AJ. Biodegradation and metabolism of tetrabromobisphenol A in microbial fuel cell: Behaviors, dynamic pathway and the molecular ecological mechanism. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126104. [PMID: 34229393 DOI: 10.1016/j.jhazmat.2021.126104] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/29/2021] [Accepted: 05/10/2021] [Indexed: 06/13/2023]
Abstract
Tetrabromobisphenol A (TBBPA) has aroused widespread pollution in industrial wastewater. Microbial fuel cell (MFC) was proved powerful in organics degradation and simultaneous resource recovery during wastewater treatment. However, the TBBPA biotransformation potential, pathway and the related molecular mechanism remain poorly understood. In this study, the enhanced degradation and detoxification performance of TBBPA in MFC anode was confirmed, evidenced by the shorter degradation period (2.3 times shorter) and less generation of bisphenol A. UPLC-QTOF-MS analysis verified TBBPA metabolism went through reductive debromination, hydrolytic debromination, oxidative ring cleavage and o-methylation. Accompanied with those biochemical processes, the metabolites underwent dynamic changes. The distinctly decreased abundance and fewer interactions with other functional genera for the potential reductive dehalogenators (Pseudomonas, etc.) possibly led to the suppressed reductive debromination (5.1%) in the closed bioanode. Otherwise, the more abundant potential function bacteria with more collaborated interrelations, including hydrolytic dehalogenators (Acinetobacter, etc.), aromatics degrading bacteria (Geobacter, Holophaga, etc.) and electroactive bacteria (Geobacter, Desulfovibrio, etc.) made great sense to the enhanced hydrolytic debromination and detoxification of TBBPA. This study revealed that MFC anode was beneficial to TBBPA degradation and provided theoretical support for the decomposition and transformation of micro-pollutants in the municipal sewage treatment coupled with MFC process.
Collapse
Affiliation(s)
- Xiao-Qiu Lin
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhi-Ling Li
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Jun Nan
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jian-Hong Su
- 514 Geological Brigade, Nanyuan Road, Shuangqiao District, Chengde City, Hebei Province, China
| | - Bin Liang
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Cong-Ju Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
36
|
Silva EZM, Dorta DJ, de Oliveira DP, Leme DM. A review of the success and challenges in characterizing human dermal exposure to flame retardants. Arch Toxicol 2021; 95:3459-3473. [PMID: 34436642 DOI: 10.1007/s00204-021-03130-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/03/2021] [Indexed: 12/01/2022]
Abstract
Since organic flame retardants (FRs) have several industrial applications, they have been largely detected in environmental and biological samples, and humans have been highly exposed to them. Although the effects of oral and inhaled FRs have been well studied, dermal exposure to them has only recently been pointed out as a potential route of human exposure. Consequently, the effects of FRs on the skin and secondary target organs have been poorly investigated. This review article summarizes the main findings regarding dermal exposure to FRs, points the limitation of the published studies, and suggests future perspectives for better understanding of how dermal exposure to FRs impacts the human health. This review lists some gaps that must be filled in future studies, including characterization of the bioavailable fraction and assessment of exposure for new FRs, to establish their physiological significance and to improve the development of 3D dermal tissue for more reliable results to be obtained.
Collapse
Affiliation(s)
- Enzo Zini Moreira Silva
- Departamento de Genética, Setor de Ciências Biológicas, Universidade Federal do Paraná (UFPR), Rua Cel. Francisco H. dos Santos, s/n. Jardim das Américas, Curitiba, PR, 81531-990, Brazil
| | - Daniel Junqueira Dorta
- Departament of Chemistry, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.,National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, Araraquara, SP, Brazil
| | - Danielle Palma de Oliveira
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.,National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, Araraquara, SP, Brazil
| | - Daniela Morais Leme
- Departamento de Genética, Setor de Ciências Biológicas, Universidade Federal do Paraná (UFPR), Rua Cel. Francisco H. dos Santos, s/n. Jardim das Américas, Curitiba, PR, 81531-990, Brazil. .,National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, Araraquara, SP, Brazil.
| |
Collapse
|
37
|
Solé M, Montemurro N, Pérez S. Biomarker responses and metabolism in Lumbricus terrestris exposed to drugs of environmental concern, an in vivo and in vitro approach. CHEMOSPHERE 2021; 277:130283. [PMID: 33774234 DOI: 10.1016/j.chemosphere.2021.130283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 06/12/2023]
Abstract
The earthworm Lumbricus terrestris is an anecic species living in natural soils but it is also a sentinel in pollution monitoring. Specimens of L.terrestris were exposed for 48 h though the filter paper contact test at 1 mg/mL of the chemicals: Lamotrigine (LMG), Cocaine (COC), Fipronil (FIP) and the pesticide bis-4-nitrophenyl phosphate (BNPP). After that period, the activities of Acetylcholinesterase, Glutathione S-transferase, Carboxylesterase (CE) using different substrates, and lipid peroxidation levels were evaluated in the exposed whole tissue earthworms. The results revealed differences only in CE activity, with 4-nitrophenyl butyrate (4NPB) and 1-naphthyl butyrate (1NB) the most responsive substrates to COC. The kinetic parameters of CE were characterized, for the first time, in whole tissue of this species. The chemical analysis by LC-MS/MS, confirmed the exposure to the parent compounds, identified metabolites and evidenced biotransformation pathways in earthworms. Metabolic reactions included oxidation (LMG and FIP), hydrolysis (COC and FIP) as well as glycosylation (LMG, COC and FIP). A hitherto unknown metabolite of LMG due to the conjugation with phenylalanine glutamine was formed. The in vivo results on CE activity with the specific inhibitor, BNPP, were confirmed in vitro. Moreover, in the in vitro approach, the inclusion of other contaminants of environmental concern supports the potential of CE as biomarker. This study identifies the main metabolites formed by earthworms for further in vivo exposures under more realistic conditions and the potential use of CE measures as biomarker of emerging contaminants.
Collapse
Affiliation(s)
- M Solé
- Renewable Marine Resources Department, Institute of Marine Sciences (ICM-CSIC), Barcelona, Spain.
| | - N Montemurro
- ENFOCHEM, Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
| | - S Pérez
- ENFOCHEM, Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
| |
Collapse
|
38
|
Jin X, Su H, Xu L, Wang Y, Su R, Zhang Z, Guan G, Li Z. Different co-culture models reveal the pivotal role of TBBPA-promoted M2 macrophage polarization in the deterioration of endometrial cancer. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125337. [PMID: 33609860 DOI: 10.1016/j.jhazmat.2021.125337] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/18/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Tetrabromobisphenol A (TBBPA), an emerging organic pollutant widely detected in human samples, has a positive correlation with the development of endometrial cancer (EC), but its underlying mechanisms have not yet been fully elucidated. Tumor-associated macrophages (TAM), one of the most vital components in tumor microenvironment (TME), play regulatory roles in the progression of EC. Consequently, this study mainly focuses on the macrophage polarization in TME to unveil the influence of TBBPA on the progression of EC and involved mechanisms. Primarily, low doses of TBBPA treatment up-regulated M2-like phenotype biomarkers in macrophage. The data from in vitro co-culture models suggested TBBPA-driven M2 macrophage polarization was responsible for the EC deterioration. Results from in vivo study further confirmed the malignant proliferation of EC promoted by TBBPA. Mechanistically, TBBPA-mediated miR-19a bound to the 3'-UTR regions of SOCS1, resulting in down-regulation of SOCS1 followed by the phosphorylation of JAK and STAT6. The present study not only revealed for the first time the molecular mechanism of TBBPA-induced EC's deterioration based on macrophage polarization, but also established co-culture models, thus providing a further evaluation method for the exploration of environmental pollutants-induced tumor effects from the role of TME.
Collapse
Affiliation(s)
- Xiaoting Jin
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan, China; School of Public Health, Qingdao University, Qingdao, China
| | - Huilan Su
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan, China; Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Liting Xu
- School of Public Health, Qingdao University, Qingdao, China
| | - Yu Wang
- School of Public Health, Qingdao University, Qingdao, China
| | - Ruijun Su
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan, China; Department of Biology, Taiyuan Normal University, Taiyuan, China
| | - Ze Zhang
- School of Public Health, Qingdao University, Qingdao, China
| | - Ge Guan
- School of Public Health, Qingdao University, Qingdao, China
| | - Zhuoyu Li
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan, China; Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China.
| |
Collapse
|
39
|
Li XY, Peng P, Wang WK, Wang SY, Feng L, Zhang YC, Xu J. Particle electrode materials dependent tetrabromobisphenol A degradation in three-dimensional biofilm electrode reactors. ENVIRONMENTAL RESEARCH 2021; 197:111089. [PMID: 33811867 DOI: 10.1016/j.envres.2021.111089] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
The completely biological degradation of Tetrabromobisphenol A (TBBPA) contaminant is challenging. Bio-electrochemical systems are efficient to promote electrons transfer between microbes and pollutants to improve the degradation of refractory contaminants. In particular, three-dimensional biofilm electrode reactors (3DBERs), integrating the biofilm with particle electrodes, represent a novel bio-electrochemical technology with superior treatment performances. In this study, the electroactive biofilm is cultured and acclimated on two types of particle electrodes, granular activated carbon (GAC) and granular zeolite (GZ), to degrade the target pollutant TBBPA in 3DBERs. Compared to GZ, GAC materials are more favorable for biofilm formation in terms of high specific surface area and good conductivity. The genus of Thauera is efficiently enriched on both GAC and GZ particles, whose growth is promoted by the electricity. By applying 5 V voltage, TBBPA can be removed by over 95% in 120 min whether packing GAC or GZ particle electrodes in 3DBERs. The synergy of electricity and biofilm in TBBPA degradation was more significant in GAC packed 3DBER, because the improved microbial activity by electrical stimulation accelerates debromination rate and hence the decomposition of TBBPA. Applying electricity also promotes TBBPA degradation in GZ packed 3DBER mainly due to the enhanced electrochemical effects. Roles of particle electrode materials in TBBPA removal are distinguished in this work, bringing new insights into refractory wastewater treatment by 3DBERs.
Collapse
Affiliation(s)
- Xiu-Yan Li
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Organic Solid Wastes Biotransformation Engineering Technical Research Center, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Pin Peng
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Organic Solid Wastes Biotransformation Engineering Technical Research Center, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Wei-Kang Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Organic Solid Wastes Biotransformation Engineering Technical Research Center, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Si-Yuan Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Organic Solid Wastes Biotransformation Engineering Technical Research Center, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Lei Feng
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Organic Solid Wastes Biotransformation Engineering Technical Research Center, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Yan-Chen Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Organic Solid Wastes Biotransformation Engineering Technical Research Center, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Juan Xu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Organic Solid Wastes Biotransformation Engineering Technical Research Center, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China; Institute of Eco-Chongming (IEC), No.20 Cuiniao Road, Chenjiazhen, Shanghai, 202162, China.
| |
Collapse
|
40
|
Solé M, Freitas R, Rivera-Ingraham G. The use of an in vitro approach to assess marine invertebrate carboxylesterase responses to chemicals of environmental concern. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 82:103561. [PMID: 33307128 DOI: 10.1016/j.etap.2020.103561] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Carboxylesterases (CEs) are key enzymes which catalyse the hydrolysis reactions of multiple xenobiotics and endogenous ester moieties. Given their growing interest in the context of marine pollution and biomonitoring, this study focused on the in vitro sensitivity of marine invertebrate CEs to some pesticides, pharmaceuticals, personal care products and plastic additives to assess their potential interaction on this enzymatic system and its suitability as biomarkers. Three bivalves, one gastropod and two crustaceans were used and CEs were quantified following current protocols set for mammalian models. Four substrates were screened for CEs determination and to test their adequacy in the hepatic fraction measures of the selected invertebrates. Two commercial recombinant human isoforms (hCE1 and hCE2) were also included for methodological validation. Among the invertebrates, mussels were revealed as the most sensitive to xenobiotic exposures while gastropods were the least as well as with particular substrate-specific preferences. Among chemicals of environmental concern, the plastic additive tetrabromobisphenol A displayed the highest CE-inhibitory capacity in all species. Since plastic additives easily breakdown from the polymer and may accumulate and metabolise in marine biota, their interaction with the CE key metabolic/detoxification processes may have consequences in invertebrate's physiology, affect bioaccumulation and therefore trophic web transfer and, ultimately, human health as shellfish consumers.
Collapse
Affiliation(s)
- Montserrat Solé
- Institute of Marine Sciences (ICM-CSIC), Pg. Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain.
| | - Rosa Freitas
- Department of Biology & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Georgina Rivera-Ingraham
- Laboratorio de Fisiología y Genética Marina, Centro de Estudios Avanzados en Zonas Áridas, Universidad Católica del Norte, Larrondo, 1281, Coquimbo, Chile
| |
Collapse
|
41
|
Schreckenbach SA, Simmons D, Ladak A, Mullin L, Muir DCG, Simpson MJ, Jobst KJ. Data-Independent Identification of Suspected Organic Pollutants Using Gas Chromatography-Atmospheric Pressure Chemical Ionization-Mass Spectrometry. Anal Chem 2021; 93:1498-1506. [PMID: 33355455 DOI: 10.1021/acs.analchem.0c03733] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The identity of an unknown environmental pollutant is reflected by the mass and dissociation chemistry of its (quasi)molecular ion. Gas chromatography-atmospheric pressure chemical ionization-mass spectrometry (GC-APCI-MS) increases the yield of molecular ions (compared to conventional electron ionization) by collisional cooling. Scanning quadrupole data-independent acquisition (SQDIA) permits unbiased, unattended selection of (quasi)molecular ions and acquisition of structure-diagnostic collision-induced dissociation mass spectra, while minimizing interferences, by sequentially cycling a quadrupole isolation window through the m/z range. This study reports on the development of a suspect screening method based on industrial compounds with bioaccumulation potential. A comparison of false and correct identifications in a mixed standard containing 30 analytes suggests that SQDIA results in a markedly lower false-positive rate than standard DIA: 5 for SQDIA and 82 for DIA. Electronic waste dust was analyzed using GC and quadrupole time-of-flight MS with APCI and SQDIA acquisition. A total of 52 brominated, chlorinated, and organophosphorus compounds were identified by suspect screening; 15 unique elemental compositions were identified using nontargeted screening; 17 compounds were confirmed using standards and others identified to confidence levels 2, 3, or 4. SQDIA reduced false-positive identifications, compared to experiments without quadrupole isolation. False positives also varied by class: 20% for Br, 37% for Cl, 75% for P, and >99% for all other classes. The structure proposal of a previously reported halogenated compound was revisited. The results underline the utility of GC-SQDIA experiments that provide information on both the (quasi)molecular ions and its dissociation products for a more confident structural assignment.
Collapse
Affiliation(s)
- Sophia A Schreckenbach
- Department of Chemistry, University of Toronto, Toronto, Ontario, M1C 1A4, Canada.,Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| | - Denina Simmons
- Depertment of Biology, University of Ontario Institute of Technology, Oshawa, Ontario L1G 0C5, Canada
| | - Adam Ladak
- Waters Corporation, Milford, Massachusetts 01757, United States
| | - Lauren Mullin
- Waters Corporation, Milford, Massachusetts 01757, United States
| | - Derek C G Muir
- Environment and Climate Change Canada, Burlington, Ontario ON L7S 1A1, Canada
| | - Myrna J Simpson
- Department of Chemistry, University of Toronto, Toronto, Ontario, M1C 1A4, Canada.,Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| | - Karl J Jobst
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X7, Canada
| |
Collapse
|
42
|
Yang R, Liu S, Liang X, Yin N, Jiang L, Zhang Y, Faiola F. TBBPA, TBBPS, and TCBPA disrupt hESC hepatic differentiation and promote the proliferation of differentiated cells partly via up-regulation of the FGF10 signaling pathway. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123341. [PMID: 32653787 DOI: 10.1016/j.jhazmat.2020.123341] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/18/2020] [Accepted: 06/27/2020] [Indexed: 06/11/2023]
Abstract
Halogenated flame retardants (HFRs), including Tetrabromobisphenol A (TBBPA), Tetrabromobisphenol S (TBBPS), and Tetrachlorobisphenol A (TCBPA), are widely applied in the manufacturing industry to improve fire safety and can be detected in pregnant women's serum at nanomolar levels. Thus, it is necessary to pay attention to the three HFR potential development toxicity, which has not been conclusively addressed yet. The liver is the main organ that detoxifies our body; TBBPA exposure may lead to increased liver weight in rodents. Therefore, in this study, we assessed the developmental hepatic toxicity of the three HFRs with a human embryonic stem cell hepatic differentiation-based system and transcriptomics analyses. We mostly evaluated lineage fate alterations and demonstrated the three HFRs may have common disruptive effects on hepatic differentiation, with TCBPA being significantly more potent. More specifically, the three HFRs up-regulated genes related to cell cycle and FGF10 signaling, at late stages of the hepatic differentiation. This indicates the three chemicals promoted hepatoblast proliferation likely via up-regulating the FGF10 cascade. At the same time, we also presented a powerful way to combine in vitro differentiation and in silico transcriptomic analyses, to efficiently evaluate hazardous materials' adverse effects on lineage fate decisions during early development.
Collapse
Affiliation(s)
- Renjun Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuyu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; Wellcome Trust/CRUK Gurdon Institute, Department of Pathology, University of Cambridge, Cambridge, CB2 1QN, UK
| | - Xiaoxing Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Linshu Jiang
- Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing, 102206, China
| | - Yang Zhang
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
43
|
Castro L, Liu J, Yu L, Burwell AD, Saddler TO, Santiago LA, Xue W, Foley JF, Staup M, Flagler ND, Shi M, Birnbaum LS, Darlene D. Differential Receptor Tyrosine Kinase Phosphorylation in the Uterus of Rats Following Developmental Exposure to Tetrabromobisphenol A. TOXICOLOGY RESEARCH AND APPLICATION 2021; 5. [PMID: 35071781 DOI: 10.1177/23978473211047164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Tetrabromobisphenol A (TBBPA) is a brominated flame retardant that induces endometrial adenocarcinoma and other uterine tumors in Wistar Han rats; however, early molecular events or biomarkers of TBBPA exposure remain unknown. We investigated the effects of TBBPA on growth factor receptor activation (phospho-RTK) in uteri of rats following early-life exposures. Pregnant Wistar Han rats were exposed to TBBPA (0, 0.1, 25, 250 mg/kg/day) via oral gavage on gestation day 6 through weaning of pups (PND 21). Pups were exposed in utero, through lactation, and by daily gavage from PND 22 to PND 90. Uterine horns were collected (at PND 21, PND 33, PND 90) and formalin-fixed or frozen for histologic, immunohistochemical, phospho-RTK arrays, or western blot analysis. At PND 21, the phosphor-RTKs, FGFR2, FGFR3, TRKC and EPHA1 were significantly increased at different treatment concentrations. Several phospho-RTKs were also significantly overexpressed at PND 33 which included epithelial growth factor receptor (EGFR), Fibroblast Growth Factor Receptor 3-4 (FGFR2, FGFR3, FGFR4), insulin-like growth factor receptor 1 (IGF1R), INSR, AXL, MERTK, PDGFRa and b, RET, Tyrosine Kinase with Immunoglobulin Like and EGF Like Domains 1 and 2 (TIE1; TIE2), TRKA, VEGFR2 and 3, and EPHA1 at different dose treatments. EGFR, an RTK overexpressed in endometrial cancer in women, remained significantly increased for all treatment groups at PND 90. Erb-B2 Receptor Tyrosine Kinase 2 (ERBB2) and IGF1R were overexpressed at PND 33 and remained increased through PND 90, although ERBB2 was statistically significant at PND 90. The phospho-RTKs, FGFR3, AXL, DTK, HGFR, TRKC, VEGFR1 and EPHB2 and 4 were also statistically significant at PND 90 at different dose treatments. The downstream effector, phospho-MAPK44/42 was also increased in uteri of treated rats. Our findings show RTKs are dysregulated following early life TBBPA exposures and their sustained activation may contribute to TBBPA-induced uterine tumors observed in rats later in life.
Collapse
Affiliation(s)
- Lysandra Castro
- Mechanistic Toxicology Branch, Division of the National Toxicology Program (DNTP), National Institute of Environmental Health Sciences (NIEHS), 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Jingli Liu
- Mechanistic Toxicology Branch, Division of the National Toxicology Program (DNTP), National Institute of Environmental Health Sciences (NIEHS), 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Linda Yu
- Mechanistic Toxicology Branch, Division of the National Toxicology Program (DNTP), National Institute of Environmental Health Sciences (NIEHS), 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Alanna D Burwell
- Mechanistic Toxicology Branch, Division of the National Toxicology Program (DNTP), National Institute of Environmental Health Sciences (NIEHS), 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Trey O Saddler
- Office of Data Science, DNTP, NIEHS, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Lindsay A Santiago
- Mechanistic Toxicology Branch, Division of the National Toxicology Program (DNTP), National Institute of Environmental Health Sciences (NIEHS), 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - William Xue
- Mechanistic Toxicology Branch, Division of the National Toxicology Program (DNTP), National Institute of Environmental Health Sciences (NIEHS), 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Julie F Foley
- Mechanistic Toxicology Branch, Division of the National Toxicology Program (DNTP), National Institute of Environmental Health Sciences (NIEHS), 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Michael Staup
- Charles River Laboratories, Inc., Durham, NC 27703, USA
| | - Norris D Flagler
- Cellular and Molecular Pathogenesis Branch, DNTP, NIEHS, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Min Shi
- Biostatistics and Computational Biology Branch, Division of the Intramural Program, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC 27709, USA
| | - Linda S Birnbaum
- Mechanistic Toxicology Branch, Division of the National Toxicology Program (DNTP), National Institute of Environmental Health Sciences (NIEHS), 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Dixon Darlene
- Mechanistic Toxicology Branch, Division of the National Toxicology Program (DNTP), National Institute of Environmental Health Sciences (NIEHS), 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| |
Collapse
|
44
|
Guan G, Su H, Wei X, Zheng Y, Jin X. The promotion of tetrabromobisphenol A exposure on Ishikawa cells proliferation and pivotal role of ubiquitin-mediated IκB' degradation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111254. [PMID: 32890954 DOI: 10.1016/j.ecoenv.2020.111254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/05/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Tetrabromobisphenol A (TBBPA), one of the highly common industrial brominated flame retardants (BFRs), has been recently reported to influence the progression of endometrial carcinoma. However, the underlying mechanism between them has not been fully illuminated. Our findings demonstrated that treatment with low concentrations of TBBPA significantly induced the proliferation of Ishikawa cells in a concentration- and time-dependent manner. Mechanically, TBBPA stimulation led to the elevation of NF-κB expression, accompanied by the occurrence of ubiquitin-mediated IκB' degradation. Additionally, the upregulation of pro-inflammatory cytokines upon TBBPA exposure was observed in both mRNA and protein levels. Interestingly, the above toxic effects of TBBPA on Ishikawa cells were markedly attenuated by the addition of MG-132, a proteasome inhibitor, suggesting the crucial role of ubiquitin-mediated IκB' degradation in the TBBPA-stimulated proliferation of Ishikawa cells. Confirmation using in vivo model was also presented in this work. Accordingly, our data indicated that ubiquitin-mediated IκB' degradation and inflammatory response could serve as critical and sensitive biomarkers for the TBBPA-induced endometrial carcinoma, which would be helpful for the future carcinogenic risk assessments of TBBPA exposure on uterus.
Collapse
Affiliation(s)
- Ge Guan
- School of Public Health, Qingdao University, Qingdao, China
| | - Huilan Su
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Xiaoran Wei
- School of Public Health, Qingdao University, Qingdao, China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao, China
| | - Xiaoting Jin
- School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
45
|
Ren XM, Yao L, Xue Q, Shi J, Zhang Q, Wang P, Fu J, Zhang A, Qu G, Jiang G. Binding and Activity of Tetrabromobisphenol A Mono-Ether Structural Analogs to Thyroid Hormone Transport Proteins and Receptors. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:107008. [PMID: 33095664 PMCID: PMC7584160 DOI: 10.1289/ehp6498] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
BACKGROUND Tetrabromobisphenol A (TBBPA) mono-ether structural analogs, identified as the by-products or transformation products of commercial TBBPA bis-ether derivatives, have been identified as emerging widespread pollutants. However, there is very little information regarding their toxicological effects. OBJECTIVE We aimed to explore the potential thyroid hormone (TH) system-disrupting effect of TBBPA mono-ether structural analogs. METHODS The binding potencies of chemicals toward human TH transport proteins [transthyretin (TTR) and thyroxine-binding globulin (TBG)] and receptors [TRα ligand-binding domain (LBD) and TRβ-LBD] were determined by fluorescence competitive binding assays. Molecular docking was used to simulate the binding modes of the chemicals with the proteins. The cellular TR-disrupting potencies of chemicals were assessed by a GH3 cell proliferation assay. The intracellular concentrations of the chemicals were measured by high-performance liquid chromatography and mass spectrometry. RESULTS TBBPA mono-ether structural analogs bound to TTR with half maximal inhibitory concentrations ranging from 0.1μM to 1.0μM but did not bind to TBG. They also bound to both subtypes of TR-LBDs with 20% maximal inhibitory concentrations ranging from 4.0μM to 50.0μM. The docking results showed that the analogs fit into the ligand-binding pockets of TTR and TR-LBDs with binding modes similar to that of TBBPA. These compounds likely induced GH3 cell proliferation via TR [with the lowest effective concentrations (LOECs) ranging from 0.3μM to 2.5μM] and further enhanced TH-induced GH3 cell proliferation (with LOECs ranging from 0.3μM to 1.2μM). Compared with TBBPA, TBBPA-mono(2,3-dibromopropyl ether) showed a 4.18-fold higher GH3 cell proliferation effect and 105-fold higher cell membrane transportation ability. CONCLUSION This study provided a possible mechanism underlying the difference in TTR or TR binding by novel TBBPA structural analogs. These compounds might exert TH system-disrupting effects by disrupting TH transport in circulation and TR activity in TH-responsive cells. https://doi.org/10.1289/EHP6498.
Collapse
Affiliation(s)
- Xiao-Min Ren
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Linlin Yao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Qiao Xue
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences (UCAS), Beijing, China
- Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China
- Institute of Environment and Health, Jianghan University, Wuhan, China
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences (UCAS), Beijing, China
- Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China
- Institute of Environment and Health, Jianghan University, Wuhan, China
| | - Pu Wang
- Institute of Environment and Health, Jianghan University, Wuhan, China
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences (UCAS), Beijing, China
- Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China
| | - Aiqian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences (UCAS), Beijing, China
- Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences (UCAS), Beijing, China
- Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China
- Institute of Environment and Health, Jianghan University, Wuhan, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences (UCAS), Beijing, China
- Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China
| |
Collapse
|
46
|
Li Y, Fan C, Wang L, Wang L, Zhang W, Zhang H, Niu L. Interaction type of tetrabromobisphenol A and copper manipulates ammonia-oxidizing archaea and bacteria communities in co-contaminated river sediments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114671. [PMID: 32375092 DOI: 10.1016/j.envpol.2020.114671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 04/07/2020] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
The combined contamination of brominated flame retardants (BFRs) and heavy metals in electronic waste (e-waste) recycling and disposal areas has been a serious concern owing to their environmental persistence and chronic toxicities. Ammonia oxidizers, e.g., ammonia-oxidizing archaea (AOA) and bacteria (AOB) play essential roles in nitrogen cycling and can serve as ideal indicators that reflect the changes in sediment health in response to environmental variables. There is currently very little information available on the combined toxic effects of BFRs and heavy metals on AOA and AOB communities. In this study, two typical e-waste pollutants, tetrabromobisphenol A (TBBPA) and copper (Cu), were selected as target contaminants to investigate the individual and combined effects of both pollutants on AOA and AOB communities in river sediments. Respective treatments of TBBPA (1, 10, and 20 mg/kg wet weight), Cu (100 mg/kg wet weight) and their combined treatments (weight ratios of 1:100, 1:10, and 1:5) were performed in laboratory experiments. High-throughput sequencing was applied to explore the response of ammonia oxidizers to TBBPA and Cu. The interaction types of TBBPA and Cu were calculated by the directional classification system to reveal the individual and combined toxicities of both contaminants to the ammonia oxidizers. On days 15 and 30, the dominant interaction type of TBBPA and Cu was synergistic (62.50%), and the combined contamination exacted selective pressure and inhibition on the AOB and AOA communities. On days 45 and 90, the interaction type shifted to be antagonistic (83.33%), with both the AOB and AOA communities gradually reaching stable population equilibria. The alteration of the interaction type is attributed to the elevated TBBPA/Cu tolerance as the incubation time increased. This study disclosed the interaction types of TBBPA and Cu in contaminated river sediments, and revealed that the combined effect could potentially manipulate AOB and AOA communities.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu, 210098, PR China
| | - Chenyang Fan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu, 210098, PR China
| | - Linqiong Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu, 210098, PR China
| | - Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu, 210098, PR China.
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu, 210098, PR China
| | - Huanjun Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu, 210098, PR China
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu, 210098, PR China
| |
Collapse
|
47
|
Zhou Q, Zhao D, Sun Y, Sheng X, Zhao J, Guo J, Zhou B. g-C 3N 4- and polyaniline-co-modified TiO 2 nanotube arrays for significantly enhanced photocatalytic degradation of tetrabromobisphenol A under visible light. CHEMOSPHERE 2020; 252:126468. [PMID: 32197178 DOI: 10.1016/j.chemosphere.2020.126468] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/09/2020] [Indexed: 06/10/2023]
Abstract
An ordered g-C3N4- and polyaniline-modified titanium oxide nanotube array (g-C3N4- and PANI-co-modified TiO2 NTAs) was successfully synthesized and used as a photocatalyst. Polyaniline (PANI) was coated onto TiO2 NTAs by electrochemical polycondensation, and g-C3N4 was deposited via the soaking adsorption method. The photocatalysts were examined by several technologies. The experiments demonstrated that the amount of g-C3N4 and PANI, as well as the initial pH value, had significant effects on the photocatalytic efficiency. The resulting photocatalysts exhibited high visible light photocatalytic ability for tetrabromobisphenol A (TBBPA) for two reasons. First, PANI expanded the light absorption into the visible region. Second, rapid and efficient separation of photoinduced charges from the photogenerated potential difference were produced at the contact interface of g-C3N4 and PANI-co-modified TiO2 NTAs. The •OH, [Formula: see text] and h+ were dominant components for the photocatalytic degradation of TBBPA. In addition, the g-C3N4 and PANI-co-modified TiO2 NTAs have excellent long-term stability.
Collapse
Affiliation(s)
- Qingxiang Zhou
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China.
| | - Danchen Zhao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Yi Sun
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Xueying Sheng
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Jingyi Zhao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Jinghan Guo
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Boyao Zhou
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| |
Collapse
|
48
|
Mullin L, Jobst K, DiLorenzo RA, Plumb R, Reiner EJ, Yeung LW, Jogsten IE. Liquid chromatography-ion mobility-high resolution mass spectrometry for analysis of pollutants in indoor dust: Identification and predictive capabilities. Anal Chim Acta 2020; 1125:29-40. [DOI: 10.1016/j.aca.2020.05.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/16/2020] [Accepted: 05/21/2020] [Indexed: 01/01/2023]
|
49
|
Li Z, Wang Y, Vasylieva N, Wan D, Yin Z, Dong J, Hammock BD. An Ultrasensitive Bioluminescent Enzyme Immunoassay Based on Nanobody/Nanoluciferase Heptamer Fusion for the Detection of Tetrabromobisphenol A in Sediment. Anal Chem 2020; 92:10083-10090. [PMID: 32559059 DOI: 10.1021/acs.analchem.0c01908] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Tetrabromobisphenol A (TBBPA) is a flame retardant and has become a widely concerning environmental pollutant. An ultrasensitive nanobody-based immunoassay was developed to monitor the exposure of TBBPA in sediment. First, the anti-TBBPA nanobody was fused with nanoluciferase, and then a one-step bioluminescent enzyme immunoassay (BLEIA) was developed with high sensitivity for TBBPA, with a maximum half inhibition concentration (IC50) at 187 pg/mL. Although approximately 10-fold higher sensitivity can be achieved by this developed BLEIA than by the classical two-step ELISA (IC50 at 1778 pg/mL), it is still a challenge to detect trace TBBPA in sediment samples reliably due to the relatively high matrix effect. To further improve the performance of this one-step BLEIA, a C4b-binding protein (C4BP) was inserted as a self-assembling linker between the nanobody and nanoluciferase. Therefore, a heptamer fusion containing seven binders and seven tracers was generated. This reagent improved the binding capacity and signal amplification. The one-step heptamer plus BLEIA based on this immune-reagent shows an additional 7-fold improvement of sensitivity, with the IC50 of 28.9 pg/mL and the limit of detection as low as 2.5 pg/mL. The proposed assay was further applied to determine the trace TBBPA in sediment, and the recovery was within 92-103%. Taking advantage of this heptamer fusion, one-step BLEIA can serve as a powerful tool for fast detection of trace TBBPA in the sediment samples.
Collapse
Affiliation(s)
- Zhenfeng Li
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Yi Wang
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States.,Department of Pesticides Science, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China
| | - Natalia Vasylieva
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Debin Wan
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Zihan Yin
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Jiexian Dong
- Shenzhen Forward Pharma Co., Ltd., Shenzhen 518057, China
| | - Bruce D Hammock
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| |
Collapse
|
50
|
Fatunsin OT, Oluseyi TO, Drage D, Abdallah MAE, Turner A, Harrad S. Children's exposure to hazardous brominated flame retardants in plastic toys. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137623. [PMID: 32325590 DOI: 10.1016/j.scitotenv.2020.137623] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/07/2020] [Accepted: 02/27/2020] [Indexed: 06/11/2023]
Abstract
We report concentrations of brominated flame retardants (BFRs) in 23 plastic samples from 20 new and second-hand children's toys sourced from the UK that had been previously shown to be Br-positive by XRF. The results reinforce existing evidence that the recycling of BFR-treated electronic plastics has led to the unintentional BFR contamination of articles not required to be flame-retarded. The principal BFRs detected were PBDEs (and in particular BDE-209), HBCDD and TBBP-A. PBDEs were detected in all samples with a maximum concentration of BDE-209 of 2500 mg/kg, and while TBBP-A was detected in 11 samples with a maximum concentration of 3100 mg/kg. HBCDD was detected in 14 cases and was present in four toys at concentrations (139-840 mg/kg) that would currently prevent their sale on the EU market. While estimated exposures to PBDEs via accidental ingestion of toy plastic fell well below USEPA reference doses, a child weighing 8.67 kg and ingesting 8 mg/day of a toy (the default assumption of the European Commission's Toy Safety Directive for scraped-off toy material) contaminated at our arithmetic mean concentration would be exposed to 0.2 ng/kg bw/day BDE-99. This compares closely to a health-based limit value (HBLV) proposed in The Netherlands of 0.23-0.30 ng/kg bw/day BDE-99. Of greater concern, the same child playing with a toy contaminated at the maximum concentration in this study would be exposed to 1.4 ng/kg bw/day BDE-99, thereby exceeding the HBLV. This paper is the first to consider BFR exposure via incidental ingestion of plastic from both contemporary and historical toys, revealing it to be considerable and for some children their most significant pathway of exposure.
Collapse
Affiliation(s)
| | | | - Daniel Drage
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Mohamed Abou-Elwafa Abdallah
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Andrew Turner
- School of Geography, Earth and Environmental Sciences, Plymouth University, Drake Circus, Plymouth PL4 8AA, United Kingdom
| | - Stuart Harrad
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom.
| |
Collapse
|