1
|
Li H, Zhong L, Wang L, Geng N, Xing W, Wang Z, Shi L, Sun S. Legacy and novel brominated flame retardants in outdoor settled dusts and pine needles in a megacity of Eastern China: Interpretation of plant uptake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175488. [PMID: 39147053 DOI: 10.1016/j.scitotenv.2024.175488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/03/2024] [Accepted: 08/11/2024] [Indexed: 08/17/2024]
Abstract
Brominated flame retardants, considered emerging contaminants, are widespread and persist in the environment. This study investigated the contamination of legacy and novel brominated flame retardants in paired outdoor settled dusts and pine needles sampled from a megacity in the Eastern China. The measured total concentrations of PBDEs (∑27PBDEs) in outdoor settled dusts and pine needles were in the range of 77.4-345.2 ng/g dw and 20.7-120.0 ng/g dw, respectively, and equivalent ranges for novel brominated flame retardants (∑11NBFRs) were 25.7-1917.2 ng/g dw and 9.4-38.7 ng/g dw, respectively. BDE-209 and DBDPE dominated PBDEs and NBFRs profiles, respectively, in both dusts and pine needles. Outdoor settled dusts exhibited greater potentials to accumulate high-brominated PBDE homologues and EH-TBB while pine needles tended to accumulate low-brominated PBDE homologues, BTBPE and TBC. The plant uptake of BFRs was interpreted by McLachlan's framework on the assumption that the levels of BFRs in outdoor settled dusts and particle phase of air were positively correlated. The accumulation of PBDEs in pine needles was dominated by equilibrium partitioning between the vegetation and the gas phase when log KOA values <10 and by particle-bound deposition when log KOA values >13. However, NBFRs exhibited more complicated accumulation behavior. The predicted 50th percentile of the estimated daily intakes of ∑27PBDEs via outdoor settled dusts exposure for adults and children were 3.5 × 10-2 and 1.4 × 10-1 ng/kg body weight (bw)/day, respectively, and equivalent values for ∑11NBFRs were 1.6 × 10-2 ng/kg bw/day and 6.3 × 10-2 ng/kg bw/day, respectively. The calculated hazard index (HI) values were far <1, indicating exposure of BFRs via outdoor settled dust intake would not pose potential non-carcinogenic health risks to both adults and children.
Collapse
Affiliation(s)
- He Li
- School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Liangchen Zhong
- School of Civil Engineering, Southeast University, Nanjing 211189, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Lei Wang
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Ningbo Geng
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Weilong Xing
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Zhen Wang
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Lili Shi
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Shuai Sun
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China.
| |
Collapse
|
2
|
Wu K, Chen R, Qiu Y, Zhang H, Zhu Z, Yin D. Organophosphate esters in vehicle interior dust from Chinese urban areas: What are the influencing factors of the occurrence? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177272. [PMID: 39477099 DOI: 10.1016/j.scitotenv.2024.177272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/26/2024] [Accepted: 10/26/2024] [Indexed: 11/05/2024]
Abstract
Organophosphate esters (OPEs) are a class of semi-volatile organic compounds frequently used to various products as flame retardants and plasticizers. As emerging pollutants, OPEs have attracted significant attention due to their potential impacts on human health and ecosystems. This study investigated the occurrence of OPEs in vehicle interior dust across 36 cities in China. The primary aims were to explore the correlations among OPE pollutants, identify potential emission sources, and examine the key factors influencing their distribution. The OPE concentrations ranged from 5450 ng/g to 63,700 ng/g, with the content of three categories of OPEs as follows: ΣChlorinated-OPEs (median: 17420 ng/g) > ΣAlkyl-OPEs (median: 3880 ng/g) > ΣAryl-OPEs (median: 1490 ng/g). In northern China, the aggregate concentration of OPEs in vehicle interior dust demonstrated higher levels compared to those in the western and mid-southeastern region, with the later two appeared to be comparable to each other. Coastal and inland cities displayed variations in OPE levels, with different representative OPEs. The occurrence of OPEs in vehicle interior dust was closely associated with regional economic development levels, motor vehicle parc, and road density. In contrast to other urban areas, first-tier cities showed the highest aggregate levels of OPEs in vehicle interior dust, with a significant increase observed specifically in the concentrations of Alkyl-OPEs and Aryl-OPEs.
Collapse
Affiliation(s)
- Kaixuan Wu
- Key laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Rui Chen
- Key laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yanling Qiu
- Key laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Hua Zhang
- Key laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Zhiliang Zhu
- Key laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Daqiang Yin
- Key laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
3
|
Jagić K, Dvoršćak M, Tariba Lovaković B, Klinčić D. Polybrominated diphenyl ethers in paired dust-breast milk samples: Levels, predictors of contamination, and health risk assessment for infants and mothers. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 111:104547. [PMID: 39218329 DOI: 10.1016/j.etap.2024.104547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
An integrated study on the levels of 7 polybrominated diphenyl ethers (PBDEs) in house dust and breast milk samples from women (N = 30) living in these households was conducted. ∑PBDEs ranged from
Collapse
Affiliation(s)
- Karla Jagić
- Division of Environmental Hygiene, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, Zagreb 10001, Croatia
| | - Marija Dvoršćak
- Division of Environmental Hygiene, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, Zagreb 10001, Croatia
| | - Blanka Tariba Lovaković
- Division of Toxicology, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, Zagreb 10001, Croatia
| | - Darija Klinčić
- Division of Environmental Hygiene, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, Zagreb 10001, Croatia.
| |
Collapse
|
4
|
Li M, Gong X, Tan Q, Xie Y, Tong Y, Ma J, Wang D, Ai L, Gong Z. A review of occurrence, bioaccumulation, and fate of novel brominated flame retardants in aquatic environments: A comparison with legacy brominated flame retardants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:173224. [PMID: 38763187 DOI: 10.1016/j.scitotenv.2024.173224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/08/2024] [Accepted: 05/12/2024] [Indexed: 05/21/2024]
Abstract
Novel brominated flame retardants (NBFRs) have been developed as replacements for legacy brominated flame retardants (BFRs) such as polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecanes (HBCDs). The prevalence of NBFRs in aquatic environments has initiated intense concerns that they resemble to BFRs. To comprehensively elucidate the fate of NBFRs in aquatic environments, this review summarizes the physico-chemical properties, distribution, bioaccumulation, and fates in aquatic environments. 1,2-bis(2,3,4,5,6-pentabromophenyl) ethane (DBDPE) as the major substitute for PBDEs is the primary NBFR. The release from industrial point sources such as e-waste recycling stations is the dominant way for NBFRs to enter the environment, which results in significant differences in the regional distribution of NBFRs. Sediment is the major sink of NBFRs attributed to the high hydrophobicity. Significantly, there is no decreasing trend of NBFRs concentrations, while PBDEs achieved the peak value in 1970-2000 and decreased gradually. The bioaccumulation of NBFRs is reported in both field studies and laboratory studies, which is regulated by the active area, lipid contents, trophic level of aquatic organisms, and the log KOW of NBFRs. The biotransformation of NBFRs showed similar metabolism patterns to that of BFRs, including debromination, hydroxylation, methoxylation, hydrolysis, and glycosylation. In addition, NBFRs show great potential in trophic magnification along the aquatic food chain, which could pose a higher risk to high trophic-level species. The passive uptake by roots dominates the plant uptake of NBFRs, followed by acropetal and basipetal bidirectional transportation between roots and leaves in plants. This review will provide the support to understand the current pollution characteristics of NBFRs and highlight perspectives for future research.
Collapse
Affiliation(s)
- Mao Li
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Xinying Gong
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 611756, China; Chengdu Research Academy of Environmental Protection Science, Chengdu 610072, China
| | - Qinwen Tan
- Chengdu Research Academy of Environmental Protection Science, Chengdu 610072, China
| | - Yonghong Xie
- Sichuan Province Ecological Environment Monitoring Station, Chengdu 610074, China
| | - Yuanjun Tong
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Junyi Ma
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Dongmei Wang
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Lian Ai
- Sichuan Province Ecological Environment Monitoring Station, Chengdu 610074, China
| | - Zhengjun Gong
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 611756, China.
| |
Collapse
|
5
|
van der Schyff V, Kalina J, Abballe A, Iamiceli AL, Govarts E, Melymuk L. Has Regulatory Action Reduced Human Exposure to Flame Retardants? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19106-19124. [PMID: 37992205 PMCID: PMC10702444 DOI: 10.1021/acs.est.3c02896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/10/2023] [Accepted: 09/29/2023] [Indexed: 11/24/2023]
Abstract
Flame retardant (FR) exposure has been linked to several environmental and human health effects. Because of this, the production and use of several FRs are regulated globally. We reviewed the available records of polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecanes (HBCDDs) in human breast milk from literature to evaluate the efficacy of regulation to reduce the exposure of FRs to humans. Two-hundred and seven studies were used for analyses to determine the spatial and temporal trends of FR exposure. North America consistently had the highest concentrations of PBDEs, while Asia and Oceania dominated HBCDD exposure. BDE-49 and -99 indicated decreasing temporal trends in most regions. BDE-153, with a longer half-life than the aforementioned isomers, typically exhibited a plateau in breast milk levels. No conclusive trend could be established for HBCDD, and insufficient information was available to determine a temporal trend for BDE-209. Breakpoint analyses indicated a significant decrease in BDE-47 and -99 in Europe around the time that regulation has been implemented, suggesting a positive effect of regulation on FR exposure. However, very few studies have been conducted globally (specifically in North America) after 2013, during the time when the most recent regulations have been implemented. This meta-analysis provides insight into global trends in human exposure to PBDEs and HBCDD, but the remaining uncertainty highlights the need for ongoing evaluation and monitoring, even after a compound group is regulated.
Collapse
Affiliation(s)
| | - Jiří Kalina
- RECETOX,
Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech
Republic
| | - Annalisa Abballe
- Department
of Environment and Health, Italian National
Institute for Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Anna Laura Iamiceli
- Department
of Environment and Health, Italian National
Institute for Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Eva Govarts
- VITO
Health, Flemish Institute for Technological
Research (VITO), 2400 Mol, Belgium
| | - Lisa Melymuk
- RECETOX,
Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech
Republic
| |
Collapse
|
6
|
Wang R, Cheng H, Gong Y, Huang T. New brominated flame retardant decabromodiphenyl ethane (DBDPE) in water sediments: A review of contamination characteristics, exposure pathways, ecotoxicological effects and health risks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122121. [PMID: 37385359 DOI: 10.1016/j.envpol.2023.122121] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
As an alternative to polybrominated diphenyl ethers (PBDEs), decabromodiphenyl ethane (DBDPE) has become one of the most important new brominated flame retardants (NBFRs). However, little is known about whether this emerging contaminant may has an environmental fate similar to PBDEs. Sediments are the main sink for DBDPE in the aqueous phase. Worldwide concentration data, since it was first found in sediments to date, have been collated, and the following conclusions have been drawn. (1) DBDPE concentrations in sediments have increased rapidly, often with a higher risk of contamination in source discharge areas. Compared with other countries, DBDPE contamination in China is more severe, especially in Guangdong Province, which is closely related to its being an e-waste dismantling area. (2) The amount of DBDPE in surface sediments has exceeded that of legacy brominated flame retardants (BFRs), and data recorded in sediment cores also corroborate that DBDPE is replacing decabromodiphenyl ether (BDE-209) as one of the most dominant NBFRs in the environment. (3) The exposure pathways of DBDPE include dietary intake, air or indoor dust intake, cutaneous absorption and endogenous exposure. For sediments, dietary exposure and endogenous exposure pathways need to be considered. Sediment DBDPE can enter the human body through bioenrichment such as contaminated seafood and the food chain. (4) DBDPE can exhibit neurotoxicity, thyrotoxicity, reproductive and developmental toxicity, hepatotoxicity and oxidative stress in organisms. Long-term DBDPE exposure may increase hyperthyroidism risk and inhibit normal cells activity. This review focuses on the distribution characteristics and exposure risks of DBDPE in global water sediments, providing a strong reference for environmental management and related legal policy formulation. The next steps are to focus on continuous source monitoring, process control and sediment clean-up of DBDPE. The development of sustainable water management options for waste microplastics (MPs) and e-waste spiked with DBDPE is a priority.
Collapse
Affiliation(s)
- Rui Wang
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Hongguang Cheng
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Yiwei Gong
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Tao Huang
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
7
|
Luo K, Qiao Z, Liang W, Lu C, Fu M, Zhou S, Han Y, Peng C, Zhang W. Contamination characteristics and potential health risk of brominated flame retardants in paddy soils and rice plants around a typical e-waste recycling site in south China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122160. [PMID: 37437756 DOI: 10.1016/j.envpol.2023.122160] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023]
Abstract
Brominated flame retardants (BFRs) are widely used in various productions. As typical BFRs, polybrominated diphenyl ethers (PBDEs) are prohibited because of their toxicity and persistence. Some of the alternatives to PBDEs, new brominated flame retardants (NBFRs), have also been found in the environment and some have assigned hazardous properties and were categorized as persistent. In this study, a typical e-waste dismantling area was chosen as the study area, and the soil and rice samples were collected from the paddy fields around the circular economy park in Guiyu, China. The contaminations of PBDEs and NBFRs in soils and rice plants were detected, and the health risks associated with consumption and exposure to the environment were calculated as well. The concentrations of ∑PBDEs and ∑NBFRs in soil ranged from 283 to 928 μg/kg and 54.7-437 μg/kg, respectively. In rice plants, the majority of BFRs were concentrated in the following order: root > leaf > stem > grain. Additionally, only the PBT exhibited a stronger bioaccumulation ability in rice with the bioconcentration factors more than 1.00. The results of the health quotient calculation shown that BDE-47 might have an impact on people's health that only the HQ of BDE-47 in the soil was higher than 1.00, while there had no significant health risk in grain of BFRs. We believe that our work could assist researchers in investigating and revealing the human health effects of BFRs in soil and rice.
Collapse
Affiliation(s)
- Kailun Luo
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Zhihua Qiao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Weiyu Liang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Cong Lu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Mengru Fu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Shanqi Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yanna Han
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
| |
Collapse
|
8
|
Xu M, Wang W, Feng J, Ruan Z, Le Y, Liu Y, Zhang Q, Wang C. The mechanism underlying pentabromoethylbenzene-induced adipogenesis and the obesogenic outcome in both cell and mouse model. ENVIRONMENT INTERNATIONAL 2023; 178:108088. [PMID: 37429055 DOI: 10.1016/j.envint.2023.108088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/12/2023]
Abstract
Convergent evidence links traditional brominated flame retardants (BFRs) exposure to weight gain, while the obesogenic potency of new BFRs (NBFRs) remain largely unknown. Aiding by luciferase-reporter gene assay, the present study revealed only pentabromoethylbenzene (PBEB), an alternative for penta-BDEs, binds with retinoid X receptor α (RXRα) but not peroxisomeproliferator receptor γ (PPARγ) among the seven testing NBFRs. An apparent induction of adipogenesis in 3T3-L1 cells was observed at nanomolar of PBEB, much lower than penta-BFRs. Mechanistic research uncovered PBEB initiated the adipogenesis by demethylated CpG sites in the PPARγ promoter region. Specifically, activation RXRα by PBEB strengthened the activity of RXRα/PPARγ heterodimer, tightened the interaction between the heterodimer and PPAR response elements, and further enhanced adipogenesis. RNA sequencing combined with k-means clustering analysis exposed adenosine 5'-monophosphate (AMP)-activated protein kinase and phosphoinositide-3-kinase (PI3K)/protein kinase B (AKT) signaling as two predominant pathways that enriched in PBEB-induced lipogenesis. The obesogenic outcome was further corroborated in offspring mice when the maternal mice exposed to environmental relevant doses of PBEB. We found the male offspring exhibited adipocyte hypertrophy and increased weight gain in the epididymal white adipose tissue (eWAT). Consistent with in vitro findings, the reduction in protein phosphorylation of both AMPK and PI3K/AKT were observed within eWAT. Thus, we posited PBEB disrupts the pathways controlling adipogenesis and adipose tissue maintenance, supporting its potential as an environmental obesogen.
Collapse
Affiliation(s)
- Mengting Xu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, People's Republic of China
| | - Wanyue Wang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, People's Republic of China
| | - Jiafan Feng
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, People's Republic of China
| | - Zheng Ruan
- School of Public Health, Hangzhou Medical College, Hangzhou 310013, Zhejiang, People's Republic of China
| | - Yifei Le
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, People's Republic of China
| | - Ying Liu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, People's Republic of China
| | - Quan Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
| | - Cui Wang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, People's Republic of China.
| |
Collapse
|
9
|
Qi J, Wang X, Fan L, Gong S, Wang X, Wang C, Li L, Liu H, Cao Y, Liu M, Han X, Su L, Yao X, Tysklind M, Wang X. Levels, distribution, childhood exposure assessment, and influencing factors of polybrominated diphenyl ethers (PBDEs) in household dust from nine cities in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162612. [PMID: 36871734 DOI: 10.1016/j.scitotenv.2023.162612] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/20/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Household dust is an important source of premature exposure to polybrominated diphenyl ethers (PBDEs), especially for children. In this onsite study, 246 dust samples were collected from 224 households in nine Chinese cities during 2018-2019. Questionnaires were administered to explore the association between household-related information and PBDEs in household dust. The median concentration of Σ12PBDEs in household dust from 9 cities was 138 ng/g (94-227 ng/g), with the arithmetic mean of 240 ± 401 ng/g. Among the nine cities, the highest median concentration of Σ12PBDEs in household dust was found in Mianyang (295.57 ng/g), while the lowest was found in Wuxi (23.15 ng/g). BDE-71 was the most dominant congener, ranging from 42.08 % to 98.15 % of the 12 PBDE congeners among 9 cities. Three potential sources for the indoor environment were Penta-BDE, Octa-BDE commercial products, and photolytic bromine from Deca-BDEs based on the largest contribution (81.24 %). Under the moderate exposure scenario, the exposure levels through ingestion and dermal absorption for children were 7.30 × 10-1 ng/kg BW/day and 3.26 × 10-2 ng/kg BW/day, respectively. Temperature, CO2, years of residence, income, family size, household size, use of computers, heating, use of insecticide, and use of humidifiers were influential factors for PBDE concentrations in household dust. Based on the evidence of the correlation between PBDEs and these household parameters, it can be applied to reduce PBDE concentrations in household dust, which is a basis for controlling PBDEs pollution in Chinese households and protecting population health.
Collapse
Affiliation(s)
- Jing Qi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; School of Public Health, Nanjing Medical University, Nanjing, Jiangsu Province 210000, China
| | - Xiaoli Wang
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Lin Fan
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Shuhan Gong
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xinqi Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Chong Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Li Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Hang Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yun Cao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Mengmeng Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xu Han
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Liqin Su
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xiaoyuan Yao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Mats Tysklind
- Department of Chemistry, Umea University, SE-901 87 Umea, Sweden
| | - Xianliang Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; School of Public Health, Nanjing Medical University, Nanjing, Jiangsu Province 210000, China.
| |
Collapse
|
10
|
Zhu L, Hajeb P, Fauser P, Vorkamp K. Endocrine disrupting chemicals in indoor dust: A review of temporal and spatial trends, and human exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162374. [PMID: 36828075 DOI: 10.1016/j.scitotenv.2023.162374] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/19/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Several chemicals with widespread consumer uses have been identified as endocrine-disrupting chemicals (EDCs), with a potential risk to humans. The occurrence in indoor dust and resulting human exposure have been reviewed for six groups of known and suspected EDCs, including phthalates and non-phthalate plasticizers, flame retardants, bisphenols, per- and polyfluoroalkyl substances (PFAS), biocides and personal care product additives (PCPs). Some banned or restricted EDCs, such as polybrominated diphenyl ethers (PBDEs), di-(2-ethylhexyl) phthalate (DEHP), bisphenol A (BPA), perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA), are still widely detected in indoor dust in most countries, even as the predominating compounds of their group, but generally with decreasing trends. Meanwhile, alternatives that are also potential EDCs, such as bisphenol S (BPS), bisphenol F (BPF), decabromodiphenyl ethane (DBDPE) and organophosphate flame retardants (OPFRs), and PFAS precursors, such as fluorotelomer alcohols, have been detected in indoor dust with increasing frequencies and concentrations. Associations between some known and suspected EDCs, such as phthalate and non-phthalate plasticizers, FRs and BPs, in indoor dust and paired human samples indicate indoor dust as an important human exposure pathway. Although the estimated daily intake (EDI) of most of the investigated compounds was mostly below reference values, the co-exposure to a multitude of known or suspected EDCs requires a better understanding of mixture effects.
Collapse
Affiliation(s)
- Linyan Zhu
- Aarhus University, Department of Environmental Science, Roskilde, Denmark.
| | - Parvaneh Hajeb
- Aarhus University, Department of Environmental Science, Roskilde, Denmark
| | - Patrik Fauser
- Aarhus University, Department of Environmental Science, Roskilde, Denmark
| | - Katrin Vorkamp
- Aarhus University, Department of Environmental Science, Roskilde, Denmark
| |
Collapse
|
11
|
Wu Y, Gao S, Zeng X, Liang Y, Liu Z, He L, Yuan J, Yu Z. Levels and diverse composition profiles of chlorinated paraffins in indoor dust: possible sources and potential human health related concerns. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023:10.1007/s10653-023-01524-9. [PMID: 36881246 DOI: 10.1007/s10653-023-01524-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Chlorinated paraffins (CPs), a group of mixtures with different carbon chain lengths and chlorine contents, are widely used as plasticizers and flame retardants in various indoor materials. CPs could be released from CP-containing materials into the ambient environment and then enter the human body via inhalation, dust ingestion and dermal absorption, resulting in potential effects on human health. In this study, we collected residential indoor dust in Wuhan, the largest city in central China, and focused on the co-occurrence and composition profiles of CPs as well as the resultant human risk via dust ingestion and dermal absorption. The results indicated that CPs with C9-40 were ubiquity in indoor dust with medium-chain CPs (MCCPs, C14-17) as the main components (6.70-495 μg g-1), followed by short-chain CPs (SCCPs, C10-13) (4.23-304 μg g-1) and long-chain (LCCPs, C≥18) CPs (3.68-331 μg g-1). Low levels (not detected-0.469 μg g-1) of very short-chain CPs (vSCCPs, C9) were also found in partial indoor dust. The dominant homolog groups were C9 and Cl6-7 groups for vSCCPs, C13 and Cl6-8 groups for SCCPs, C14 and Cl6-8 groups for MCCPs, and C18 and Cl8-9 groups for LCCPs. Based on the measured concentrations, vSCCPs, SCCPs, MCCPs, and LCCPs posed limited human health risks to local residents via dust ingestion and dermal absorption.
Collapse
Affiliation(s)
- Yang Wu
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Shutao Gao
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Xiangying Zeng
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
- CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China.
| | - Yi Liang
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Zhiyang Liu
- Institute of Atmospheric Environment, Guangdong Provincial Academy of Environmental Science, Guangzhou, 510045, China
| | - Lixiong He
- Fujian Academy of Environmental Sciences, Fuzhou, 350013, China
| | - Jing Yuan
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhiqiang Yu
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| |
Collapse
|
12
|
He H, Ding T, Zhang T, Geng W, Xu J, Wei Y, Zhai J. BDE-209 disturbed proliferation and differentiation of spermatogonia during mitotic process through estrogen receptor α. Reprod Biol 2023; 23:100737. [PMID: 36821943 DOI: 10.1016/j.repbio.2023.100737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/16/2023] [Accepted: 02/06/2023] [Indexed: 02/24/2023]
Abstract
Deca-bromodiphenyl ether (BDE-209) exposure caused spermatogenesis disorder resulting in poor sperm quality has become a public concern in recent years. Spermatogenesis refers to the process by which the division of spermatogonia stem cells (SSCs) produces haploid spermatozoa, including mitosis, meiosis, and spermiogenesis. However, the mechanism of mitosis including proliferation and differentiation of spermatogonia dysfunction induced by BDE-209 remains largely unclear. Here, our data showed that BDE-209 exposure caused a decline in sperm quality with seminiferous tubule structure disorder in rats. In addition, BDE-209 exposure damage spermatogonia proliferation and differentiation with decreasing level of PLZF and cKit in testis. Moreover, rats exposed to BDE-209 decreased the expression of ERα, whereas an elevated expression of Wnt3a and Wnt5a. Mechanistically, supplementation with propipyrazole triol (PPT, a selective ERα pathway agonist) rescued sperm quality and attenuated impairment of proliferation and differentiation of spermatogonia in BDE-209-induced rats. Therefore, ERα plays a crucial role in the proliferation and differentiation of spermatogonia during mitotic process. In conclusion, our study clarified the role of ERα in BDE-209-induced spermatogonia proliferation and differentiation in rats and provides a potential therapeutic application on poor sperm quality caused by BDE-209 exposure.
Collapse
Affiliation(s)
- Huan He
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei 230032, China
| | - Tao Ding
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei 230032, China; Guangming District Center for Disease Control and Prevention, Shenzhen, Guangdong 518106, China
| | - Taifa Zhang
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei 230032, China
| | - Wenfeng Geng
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei 230032, China
| | - Jixiang Xu
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei 230032, China
| | - Yu Wei
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei 230032, China
| | - Jinxia Zhai
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei 230032, China.
| |
Collapse
|
13
|
Yu X, Liu B, Yu Y, Li H, Li Q, Cui Y, Ma Y. Polybrominated diphenyl ethers (PBDEs) in household dust: A systematic review on spatio-temporal distribution, sources, and health risk assessment. CHEMOSPHERE 2023; 314:137641. [PMID: 36584828 DOI: 10.1016/j.chemosphere.2022.137641] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Much attention has been paid on polybrominated diphenyl ethers (PBDEs) in household dust due to their ubiquitous occurrences in the environment. Based on the data from 59 articles sampled from 2005 to 2020, we investigated the spatio-temporal distribution, sources, and health risk of 8 PBDE homologues in household dusts worldwide. BDE-209 is the predominant PBDE in household dusts, followed by BDE-99 and BDE-47. The total concentrations of PBDEs (∑8PBDEs) are found to be high in household dusts sampled from 2005 to 2008 and show a significant decline trend from 2009 to 2016 (p < 0.05) and a little upward tendency from 2017 to 2020. The concentrations of PBDEs in household dusts vary greatly in different countries of the world. The use of penta-BDE is the main source of three to five bromo-biphenyl ether monomers contributing 17.4% of ∑8PBDEs, while BDE-209 and BDE-183 are derived from the use of household appliances contributing 82.6% of ∑8PBDEs. Ingestion is the main exposure route for adults and toddlers, followed by dermal contact. The values of hazard index (HI) exposed to PBDEs in household dusts are all less than 1 for both adults and toddlers, indicating a low non-cancer risk. The incremental lifetime cancer risks (ILCRs) of BDE-209 are less than 10-6 for both adults and toddlers, suggesting a negligible risk. However, the total carcinogenic risk of toddlers is higher than that of adults, indicating that much attention should be paid to toddlers exposed to BDE-209 in household dust.
Collapse
Affiliation(s)
- Xin Yu
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| | - Baolin Liu
- College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Yong Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - He Li
- Jilin Chunguang Environmental Protection Technology Co., LTD, Changchun, 130032, China
| | - Qiuyan Li
- Jilin Chunguang Environmental Protection Technology Co., LTD, Changchun, 130032, China
| | - Yuan Cui
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China.
| | - Yuqin Ma
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China.
| |
Collapse
|
14
|
Dong L, Wang S, Zhang L, Liu D, You H. DBDPE and ZnO NPs synergistically induce neurotoxicity of SK-N-SH cells and activate mitochondrial apoptosis signaling pathway and Nrf2-mediated antioxidant pathway. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129872. [PMID: 36084461 DOI: 10.1016/j.jhazmat.2022.129872] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/07/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Decabromodiphenyl ethane (DBDPE), a new brominated flame retardant, could negatively affect neurobehavior and pose health risks to humans. Humans are also exposed to widely used nanomaterials. This study investigated the combined toxic effects and action types of DBDPE and Zinc oxide nanoparticles (ZnO NPs) on human neuroblastoma SK-N-SH cells and the toxicity mechanisms. DBDPE inhibited the viability of SK-N-SH cells by 21.87% at 25 mg/L. ZnO NPs synergistically exacerbated the toxic effects of DBDPE. DBDPE and ZnO NPs caused excessive ROS production and inhibition of antioxidant enzyme (SOD and GSH) activity in cells, thus causing oxidative cellular damage. Moreover, DBDPE and ZnO NPs caused apoptosis by disrupting mitochondrial kinetic homeostasis, reducing mitochondrial membrane potential (MMP), increasing cytochrome C release and regulating Bax/Bcl-2 and Caspase-3 mRNA and protein expression. DBDPE and ZnO NPs increased the mRNA expression of nuclear factor erythroid 2- related factor (Nrf2) and its downstream genes. The molecular mechanisms revealed that oxidative stress, apoptosis and mitochondrial dysfunction were the critical factors in combined cytotoxicity. The bioinformatics analysis further indicated that co-exposure affected Nrf2 activation, apoptotic factors expression and mitochondrial fusion. The findings enrich the risk perception of neurotoxicity caused by DBDPE and ZnO NPs.
Collapse
Affiliation(s)
- Liying Dong
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin150090, China.
| | - Shutao Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin150090, China.
| | - Lin Zhang
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi'an 710129, China.
| | - Dongmei Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin150090, China.
| | - Hong You
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin150090, China.
| |
Collapse
|
15
|
Morel C, Schroeder H, Emond C, Turner JD, Lichtfouse E, Grova N. Brominated flame retardants, a cornelian dilemma. ENVIRONMENTAL CHEMISTRY LETTERS 2023; 21:9-14. [PMID: 35095379 PMCID: PMC8783781 DOI: 10.1007/s10311-022-01392-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Affiliation(s)
- Chloé Morel
- Calbinotox, Faculty of Science and Technology, University of Lorraine, Campus Aiguillettes, B.P. 70239, 54506 Vandoeuvre-lès-Nancy, France
| | - Henri Schroeder
- Calbinotox, Faculty of Science and Technology, University of Lorraine, Campus Aiguillettes, B.P. 70239, 54506 Vandoeuvre-lès-Nancy, France
- UMR Inserm 1256 nGERE, Nutrition-Génétique et Exposition aux risques environnementaux, Institute of Medical Research (Pôle BMS, University of Lorraine, B.P. 184, 54511 Vandoeuvre-lès-Nancy, France
| | - Claude Emond
- Calbinotox, Faculty of Science and Technology, University of Lorraine, Campus Aiguillettes, B.P. 70239, 54506 Vandoeuvre-lès-Nancy, France
- PKSH Inc, Mascouche, QC Canada
- School of Public Health, DSEST, University of Montreal, Montreal, QC Canada
| | - Jonathan D. Turner
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354 Esch-Sur-Alzette, Grand Duchy of Luxembourg
| | - Eric Lichtfouse
- Aix-Marseille Univ, CNRS, IRD, INRAE, CEREGE, 13100 Aix en Provence, France
| | - Nathalie Grova
- Calbinotox, Faculty of Science and Technology, University of Lorraine, Campus Aiguillettes, B.P. 70239, 54506 Vandoeuvre-lès-Nancy, France
- UMR Inserm 1256 nGERE, Nutrition-Génétique et Exposition aux risques environnementaux, Institute of Medical Research (Pôle BMS, University of Lorraine, B.P. 184, 54511 Vandoeuvre-lès-Nancy, France
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354 Esch-Sur-Alzette, Grand Duchy of Luxembourg
| |
Collapse
|
16
|
Hoang AQ, Takahashi S, Tue NM, Tuyen LH, Tran TM, Yen NTH, Tu MB. Occurrence, emission sources, and risk assessment of polybrominated diphenyl ethers and current-use brominated flame retardants in settled dust from end-of-life vehicle processing, urban, and rural areas, northern Vietnam. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:2061-2074. [PMID: 35927405 DOI: 10.1007/s11356-022-22396-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Settled dust samples from Vietnamese end-of-life vehicle (ELV) processing, urban, and rural areas were analyzed for polybrominated diphenyl ethers (PBDEs) and other current-use brominated flame retardants (BFRs). PBDE levels found in dust samples collected from ELV workshops (median 390; range 120-520 ng/g) and nearby living areas (110; 36-650 ng/g) were generally higher than those in common house dust (25-170 ng/g). BDE-209 was the most predominant congener detected in almost all the samples, indicating extensive application of products containing deca-BDE mixtures. The dust samples from ELV workplaces showed a more abundance of lower brominated congeners (e.g., tetra- to hexa-BDEs) that may originate from car interior materials treated by penta-BDE formulations. Concentrations of other BFRs decreased in the order urban > rural > ELV dust, reflecting the current use of these compounds in new consumer products. Decabromodiphenyl ethane (DBDPE) and 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE) were the major alternative BFRs. Daily intake doses and hazard indexes of PBDEs and some other BFRs through dust ingestion were estimated and showed acceptable levels of risk. However, more comprehensive risk assessment considering multiple exposure pathways should be performed, especially for ELV workers and children in the ELV processing and urban areas.
Collapse
Affiliation(s)
- Anh Quoc Hoang
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, 11000, Vietnam.
| | - Shin Takahashi
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan
| | - Nguyen Minh Tue
- Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, 11400, Vietnam
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577, Japan
| | - Le Huu Tuyen
- University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, 11400, Vietnam
| | - Tri Manh Tran
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, 11000, Vietnam
| | - Nguyen Thi Hong Yen
- National Institute of Hygiene and Epidemiology, Hai Ba Trung, Hanoi, Vietnam
| | - Minh Binh Tu
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, 11000, Vietnam
| |
Collapse
|
17
|
McGrath TJ, Christia C, Poma G, Covaci A. Seasonal variation of short-, medium- and long-chain chlorinated paraffin distribution in Belgian indoor dust. ENVIRONMENT INTERNATIONAL 2022; 170:107616. [PMID: 36370602 DOI: 10.1016/j.envint.2022.107616] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Chlorinated paraffins (CPs) are high production volume plasticizers and flame retardants, which have exhibited bioaccumulative and toxic properties. CPs may be released from treated consumer goods and bind with indoor dust, leading to human exposure via unintentional dust ingestion. In this study, the concentrations and homologue distribution of CPs were measured in 50 indoor dust samples collected in paired winter and summer sampling campaigns from 25 homes in Flanders, Belgium. Short-, medium- and long-chain CPs (SCCPs (C10-13), MCCPs (C14-17) and LCCPs (C18-20), respectively) were each detected in all Belgian indoor dust samples with overall median concentrations of 6.1 µg/g (range 0.61 to 120 µg/g), 45 µg/g (range 4.5 to 520 µg/g) and 4.5 µg/g (range 0.3 to 50 µg/g), respectively. Concentrations were significantly higher in the winter samples than summer for each of the three groups (p < 0.05). LCCPs homologues ranging from C21-32 were also detected in dust samples and accounted for approximately half of the LCCP relative abundance based on instrumental peak area, although a lack of appropriate analytical standards prevented quantification of these homologues. While clear sources of CP contamination in dust could not be identified, significant associations between concentrations of ∑SCCPs, ∑MCCPs and ∑LCCPs (C18-20) (p < 0.05) suggested the combined application within materials or products in homes. Based on typical exposure scenarios, estimated daily intake of ∑CPs (C10-20) for adults and toddlers were 14 and 270 ng/kg bw/day, respectively, though margin of exposure assessments for SCCPs and MCCPs indicated that adverse health effects were unlikely for all exposure scenarios. This study presents the first evidence of seasonal variation in the levels and distribution for each of the SCCP, MCCP and LCCP classes in indoor dust and highlights the urgent need for appropriate analytical standards for LCCP quantification.
Collapse
Affiliation(s)
- Thomas J McGrath
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Christina Christia
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Giulia Poma
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
18
|
Xiong S, Hao Y, Fu J, Wang P, Yang R, Pei Z, Li Y, Li A, Zhang Q, Jiang G. Legacy and novel brominated flame retardants in air of Ny-Ålesund, Arctic from 2011 to 2019. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120195. [PMID: 36126770 DOI: 10.1016/j.envpol.2022.120195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
Concentrations of polybrominated diphenyl ethers (PBDEs) and novel brominated flame retardants (NBFRs) in the atmosphere of Ny-Ålesund, Svalbard, were investigated. Passive air samples were collected for eight consecutive one-year periods from August 2011 to August 2019 at seven Arctic sampling sites. High-resolution gas chromatography coupled with high-resolution mass spectrometry (HRGC-HRMS) and gas chromatography coupled with election capture negative ionization mass spectrometry (GC-NCI-MS) were employed for PBDE and NBFR analysis, respectively. The median concentrations of Ʃ11PBDEs and Ʃ6NBFRs were 0.6 pg/m3 and 4.0 pg/m3, respectively. Hexabromobenzene and BDE-47 were the most abundant NBFR and PBDE congeners in the atmosphere, accounting for 31% and 24% of ƩNBFR and ƩPBDE concentrations, respectively. ƩNBFR concentration was approximately six times higher than that of ƩPBDEs in the same samples. Among NBFRs, the concentrations of 1,2,3,4,5-pentabromobenzene, 2,3,4,5,6-pentabromobenzene, and 2,3-dibromopropyl-2,4,6-tribromophenyl ether showed increasing temporal variations, with estimated doubling times of 3.0, 3.3, and 2.8 years, respectively. The concentrations of almost all PBDE congeners showed a decreasing variation, with halving times ranging from 2.1 to 9.5 years.
Collapse
Affiliation(s)
- Siyuan Xiong
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanfen Hao
- Hubei Key Laboratory of Industrial Fume and Dust Pollution Control, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Jianjie Fu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pu Wang
- Hubei Key Laboratory of Industrial Fume and Dust Pollution Control, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Ruiqiang Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiguo Pei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - An Li
- School of Public Health, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Qinghua Zhang
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
19
|
Jin M, Zhang S, Ye N, Zhou S, Xu Z. Distribution and source of and health risks associated with polybrominated diphenyl ethers in dust generated by public transportation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119700. [PMID: 35780998 DOI: 10.1016/j.envpol.2022.119700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Carcinogenic and neurotoxic polybrominated diphenyl ethers (PBDEs) are environmentally ubiquitous and have been widely investigated. However, little is understood regarding their pollution status, sources, and potential risk to persons in public transportation microenvironments (PTMs). We collected 60 dust samples from PTMs and then selected four materials typical of bus interiors to determine the sources of PBDEs in dust using principal component analysis coupled with Mantel tests. We then evaluated the risk of PBDEs to public health using Monte Carlo simulations. We found that PBDE concentrations in dust were 2-fold higher in buses than at bus stops and that brominated diphenyl ether (BDE)-209 was the main pollutant. The number of buses that passed through a bust stop contributed to the extent of PBDE pollution, and the primary potential sources of PBDEs in dust were plastic handles and curtains inside buses; BDE-209 and BDE-154 were the main contributors of pollution. We found that health risk was 8-fold higher in toddlers than in adults and that the reference doses of PBDEs in dust were far below the United States Environmental Protection Agency limits. Our findings provide a scientific basis that may aid in preventing PBDE pollution and guiding related pollution management strategies in PTMs.
Collapse
Affiliation(s)
- Mantong Jin
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Shunfei Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Nanxi Ye
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shanshan Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Ziyu Xu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
20
|
Li Z, Zhang X, Wang B, Shen G, Zhang Q, Zhu Y. Indoor exposure to selected flame retardants and quantifying importance of environmental, human behavioral and physiological parameters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155422. [PMID: 35461943 DOI: 10.1016/j.scitotenv.2022.155422] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/11/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
Indoor exposure to organic flame retardants (FRs) has raised extensive concern due to associated adverse health effects. Indoor-exposure induced daily intakes of six widely used FRs individually ranged 0.002-611 ng/day and 0.02-463 ng/day, respectively, for adults and 2-6-year-old children; and resulting internal exposure levels ranged 0.1-159 and 2.1-4500 ng/g lipid, respectively. A proportion of 0.001-5.9% and 0.006-10.3% of individual FRs emitted into indoor air ultimately entered bodies of adults and children respectively. Tris(2-chloroisopropyl)phosphate dominated in emissions, whilst 2-ethylhexyl-2,3,4,5-tetrabromobenzoate dominated in human bodies. Hand-to-mouth contact was the most important exposure pathway for less volatile FRs including most brominated FRs, whilst inhalation was the predominant intake pathway of tris(2-chloroisopropyl)phosphate. Relative importance of 29 environmental, behavioral and physiological parameters was ranked to explore key drivers influencing exposure and accumulation of FRs in humans. Results suggested that frequent bathing and handwashing can reduce exposure effectively, especially for children. Bodyweight and lipid fraction were only positively related to internal accumulation and body-weight-normalized concentrations of compounds with low metabolic rates (half-lives ≥103 h) in humans. Our findings help control indoor exposure to FRs and are supportive of human exposome studies in the future.
Collapse
Affiliation(s)
- Zengwei Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianming Zhang
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke Street West Montreal, Quebec H4B 1R6, Canada
| | - Bin Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Guofeng Shen
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Zhu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Environmental Protection Key Lab of Environmental Big Data and Intelligent Decision-making, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; SJTU-UNIDO Joint Institute of Inclusive and Sustainable Industrial Development, Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
21
|
Yang Y, Yang L, Chen H, Tan H, Yang J, Sun F, Sun J, Gong X, Tao L, Huang Y. Low-level alternative halogenated flame retardants (AHFRs) in indoor dust from Adelaide, South Australia decades since national legislative control on polybrominated diphenyl ethers (PBDEs). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154123. [PMID: 35219667 DOI: 10.1016/j.scitotenv.2022.154123] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/23/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Since commercial polybrominated diphenyl ethers (PBDEs) have been globally banned or restricted in 2000s, alternative halogenated flame retardants (AHFRs) appear increasingly dominant over PBDEs in many countries/regions. In this study, low levels of AHFRs were unexpectedly observed in the indoor dust from Adelaide, South Australia. Anti-dechlorane plus (anti-DP) was the most frequently detected AHFR with a median concentration of 1.28 ng/g, while other AFHRs were less detected (detection frequency < 50%). The levels of ΣPBDEs (496 ng/g, median) and ΣAHFRs (160 ng/g) and the ratio of ΣAHFRs/ΣPBDEs (0.32) were much lower than those investigated in Australian indoor dust previously. The findings were different to the trend for PBDEs and AHFRs from other countries over the past two decades. No significant correlation was determined between DP and PBDE congeners, indicating their different sources in dust. The human exposure assessment suggested that dust ingestion was the predominant pathway of PBDEs and AHFRs exposure for toddlers, while dermal absorption may be the dominant pathway for adults. The estimated daily intake (EDI) suggested low health risks via dust ingestion and dermal contact for general populations in Adelaide. This study contributes to the knowledge on region-specific FR contamination in indoor environments and related human exposure risk.
Collapse
Affiliation(s)
- Yan Yang
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Synergy Innovation Institute of GDUT, Shantou 515041, China; Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515041, Guangdong, China
| | - Liu Yang
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Haojia Chen
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Synergy Innovation Institute of GDUT, Shantou 515041, China
| | - Hongli Tan
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Jing Yang
- State Environmental Protection Key Laboratory of Quality Control in Environmental, Monitoring, China National Environmental Monitoring Center, Beijing 100012, China
| | - Fengjiang Sun
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Jiachen Sun
- College of Marine Life Science, Ocean University of China, Qingdao 266000, China
| | - Xue Gong
- School of Agriculture, Food & Wine, the University of Adelaide, Adelaide, SA 5000, Australia
| | - Lin Tao
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| | - Yichao Huang
- Department of Toxicology, School of Public Health, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China; School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
22
|
Jin M, Ye N, Lu Z, Zhang S, Zhou S, He J. Pollution characteristics and source identification of PBDEs in public transport microenvironments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153159. [PMID: 35051456 DOI: 10.1016/j.scitotenv.2022.153159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Public transport microenvironments easily accumulate pollutants due to high airtightness and poor circulation. To investigate and analyze the pollution levels and sources of polybrominated diphenyl ethers (PBDEs), air and dust samples were collected from hybrid buses, electric buses and subways in Hangzhou, China. The components of six priority control PBDE congeners (BDE-28, -47, -99, -100, -153, and -209) were analyzed. The average concentrations of Σ6PBDEs in the air and dust samples were 625.38 pg/m3 and 1200.58 ng/g from hybrid buses; 747.46 pg/m3 and 1160.07 ng/g from electric buses; and 407.57 pg/m3 and 925.93 ng/g from subways, respectively. Decabromodiphenyl ether (BDE-209) was the main proportion of Σ6PBDEs in the air and dust samples. Several types of materials were collected from the interior as samples to investigate pollutant sources. Using principal component analysis (PCA), it was found that seat cover, polyvinyl chloride (PVC) plastic, rubber, and wire shells were the primary sources. Compared with the reference dose of several PBDE congeners proposed by the U.S. Environmental Protection Agency (US EPA), the exposure level of the population in public transport microenvironments to PBDEs was estimated to be low; however, the potential danger cannot be ignored.
Collapse
Affiliation(s)
- Mantong Jin
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Nanxi Ye
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhuhao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shunfei Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shanshan Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiaqi He
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Hangzhou Environmental Group Co., Ltd, China
| |
Collapse
|
23
|
Esplugas R, Rovira J, Mari M, Fernández-Arribas J, Eljarrat E, Domingo JL, Schuhmacher M. Emerging and legacy flame retardants in indoor air and dust samples of Tarragona Province (Catalonia, Spain). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150494. [PMID: 34844308 DOI: 10.1016/j.scitotenv.2021.150494] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Flame retardants (FRs) are widely used in consumer products including furniture foam and electronic equipment such as computers, monitors and TVs. Over time, FRs can easily migrate into the surrounding environments. Since brominated FRs (BFRs) has been determined of high concern due to their environmental persistence, bioaccumulation and potential toxicity, novel FRs have emerged. The present study was aimed at identifying and quantifying the indoor levels of 41 legacy and novel FRs, which include 20 OPFRs and 21 HFRs (8 PBDEs, 3 HBCDDs, 5 NBFRs and 5 DECs) in Tarragona Province (Catalonia, Spain). The results have confirmed the presence of both legacy and novel FRs in air and dust of homes, schools and offices. To the best of our knowledge, this is the first European study measuring OPFRs at office environments and also confirming the presence of the following OPFRs: TEP, TCIPP, T2IPPP, TPPO, DCP, TMCP and B4IPPPP in indoor air, even some of them at high levels. OPFRs in general and TCIPP in particular showed high concentrations in air (94,599 pg/m3 and 72,281 pg/m3, respectively) and dust (32,084 ng/g and 13,496 ng/g, respectively) samples collected in indoor environments. HBCDDs were found at high levels in dust (32,185 ng/g), whereas the presence of PBDEs and DECs were low in both matrices (<160 pg/m3 in air and <832 ng/g in dust). NBFRs showed higher levels than the two legacy FRs groups, which is supported by the current restrictions of these FRs (640 pg/m3 in air and 1291 ng/g in dust). Samples of schools had significantly lower levels of NBFRs, but significantly higher concentrations of HFRs in air than in home samples, while dust levels of HFRs were significantly lower than those in samples of offices. Regarding human health risks, the current assessment suggests that those derived from exposure to FRs were lower -although close- to assumable risks, evidencing the potential of FRs for non-carcinogenic and carcinogenic risks, mainly due to the exposure to TCIPP, which was the main contributor together with ΣHBCDDs and also EHDPP.
Collapse
Affiliation(s)
- Roser Esplugas
- Environmental Analysis and Management Group, Chemical Engineering Department, Universitat Rovira i Virgili, Tarragona, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Joaquim Rovira
- Environmental Analysis and Management Group, Chemical Engineering Department, Universitat Rovira i Virgili, Tarragona, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Reus, Spain.
| | - Montse Mari
- Environmental Analysis and Management Group, Chemical Engineering Department, Universitat Rovira i Virgili, Tarragona, Spain
| | - Julio Fernández-Arribas
- Water and Soil Quality Research Group, Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Spain
| | - Ethel Eljarrat
- Water and Soil Quality Research Group, Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Spain
| | - José L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Marta Schuhmacher
- Environmental Analysis and Management Group, Chemical Engineering Department, Universitat Rovira i Virgili, Tarragona, Spain
| |
Collapse
|
24
|
Xian H, Hao Y, Lv J, Wang C, Zuo P, Pei Z, Li Y, Yang R, Zhang Q, Jiang G. Novel brominated flame retardants (NBFRs) in soil and moss in Mt. Shergyla, southeast Tibetan Plateau: Occurrence, distribution and influencing factors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118252. [PMID: 34597735 DOI: 10.1016/j.envpol.2021.118252] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Research on the environmental fate and behavior of novel brominated flame retardants (NBFRs) remains limited, especially in the remote alpine regions. In this study, the concentrations and distributions of NBFRs were investigated in soils and mosses collected from two slopes of Shergyla in the southeast of the Tibetan Plateau (TP), to unravel the environmental behaviors of NBFRs in this background area. The total NBFR concentrations (∑7NBFRs) ranged from 34.2 to 879 pg/g dw in soil and from 72.8 to 2505 pg/g dw in moss. ∑7NBFRs in soil samples collected in 2019 were significantly higher than those in 2012 (p < 0.05). Decabromodiphenyl ethane (DBDPE) was the predominant NBFR, accounting for 90% of ∑7NBFRs on average. The ratio of the concentrations in moss and soil showed significantly positive correlations with LogKOA except for DBDPE (p < 0.05), indicating that the role of mosses as accumulators compared to soils are more pronounced for more volatile NBFRs. In addition, the concentrations of NBFRs generally decreased with increasing altitude on the south-facing slope, whereas on the north-facing slope some NBFRs exhibited different trends, suggesting concurrent local and long-range transport sources. Normalization based on total organic carbon/lipid concentrations strengthened the correlation with altitude, implying that the altitude gradient of the mountain slope and forest cover could jointly affect the distribution of NBFRs in the TP. Furthermore, principal components analysis (PCA) with multiple linear regression analysis (MLRA) showed that the average contribution of the mountain cold trapping effect (MCTE) accounted for the major (77%) contribution and forest filter effect (FFE) has only a modest contribution to the deposition of NBFRs in soil.
Collapse
Affiliation(s)
- Hao Xian
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanfen Hao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingya Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chu Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peijie Zuo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiguo Pei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruiqiang Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
25
|
Lexén J, Bernander M, Cotgreave I, Andersson PL. Assessing exposure of semi-volatile organic compounds (SVOCs) in car cabins: Current understanding and future challenges in developing a standardized methodology. ENVIRONMENT INTERNATIONAL 2021; 157:106847. [PMID: 34479137 DOI: 10.1016/j.envint.2021.106847] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 06/13/2023]
Abstract
Semi-volatile organic compounds (SVOCs) can be found in air, dust and on surfaces in car cabins, leading to exposure to humans via dust ingestion, inhalation, and dermal contact. This review aims at describing current understanding concerning sampling, levels, and human exposure of SVOCs from car cabin environments. To date, several different methods are used to sample SVOCs in car cabin air and dust and there are no standard operating procedures for sampling SVOCs in cars detailed in the literature. The meta-analysis of SVOCs in car cabin air and dust shows that brominated flame retardants (BFRs) and organophosphate flame retardants (OPFRs) have been most frequently studied, primarily focusing on concentrations in dust. In dust, detected concentrations span over three to seven orders of magnitude, with highest median concentrations for OPFRs, followed by BFRs and, thereafter, polychlorinated biphenyls (PCBs). In air, the variation is smaller, spanning over one to three orders of magnitude, with phthalates and siloxanes having the highest median concentrations, followed by OPFRs, fluorotelomer alcohols (FTOHs) and BFRs. Assessments of human exposures to SVOCs in cars have, so far, mainly focused on external exposure, most often only studying one exposure route, primarily via dust ingestion. In order to perform relevant and complete assessments of human exposure to SVOCs in cars, we suggest broadening the scope to which SVOCs should be studied, promoting more comprehensive external exposure assessments that consider exposure via all relevant exposure routes and making comparisons of external and internal exposure, in order to understand the importance of in-car exposure as a source of SVOC exposure. We also suggest a new sampling approach that includes sampling of SVOCs in both car cabin air and dust, aiming to reduce variability in data due to differences in sampling techniques and protocols.
Collapse
Affiliation(s)
- Jenny Lexén
- Department of Chemistry, Umeå University, Umeå, Sweden; Sustainability Centre, Volvo Cars, Gothenburg, Sweden.
| | | | - Ian Cotgreave
- Bioeconomy and Health, Department Chemical Process and Pharmaceutical Development, Unit Chemical and Pharmaceutical Safety, RISE Research Institutes of Sweden, Sweden
| | | |
Collapse
|
26
|
Akinrinade OE, Stubbings WA, Abou-Elwafa Abdallah M, Ayejuyo O, Alani R, Harrad S. Concentrations of halogenated flame retardants and polychlorinated biphenyls in house dust from Lagos, Nigeria. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:1696-1705. [PMID: 34604871 DOI: 10.1039/d1em00316j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and hexabromocyclododecane (HBCDD) are regulated under the Stockholm Convention of the United Nations' Environment Programme; with similar concerns emerging about alternative halogenated flame retardants (alt-HFRs), the use of which is increasing as replacements for PBDEs and HBCDD. While the presence in indoor dust of PCBs, PBDEs, and HBCDDs has been reported previously in a few African locations including Lagos, Nigeria, we are unaware of similar data for alt-HFRs. The present study thus aimed to provide the first information on alt-HFRs in indoor dust in sub-Saharan Africa, and to evaluate the impact of restrictions on the use of PBDEs, HBCDD, and PCBs on their concentrations in house dust in Lagos, Nigeria. Concentrations of ∑8PBDEs, ∑HBCDDs, ∑7alt-HFRs, and ∑8PCBs in 15 samples of dust from homes in Lagos, Nigeria were found to be: 43-810 (median = 300) ng g-1, <dl - 66 (median = <dl) ng g-1, 32-2600 (median = 320) ng g-1 and 3.8-61 (median = 18) ng g-1 respectively. The dominant PBDE was BDE-209, its replacement decabromodiphenyl ethane (DBDPE) was the predominant alt-HFR, while PCB-138 displayed the highest concentration of the 8 PCBs targeted. Likely due to their higher vapour pressures, concentrations of the non-arochlor PCB 11, as well as those of PCB 28, and PBDE 28 were below detection limits. Concentrations of PBDEs and PCBs reported are generally below those reported previously for Lagos, Nigeria; suggesting restrictions on their manufacture and use have been effective. In contrast, while concentrations of BDE-209 in this study were lower than in one previous study in Lagos, they exceeded those in another; implying that the more recent restrictions on the deca-BDE product have yet to be fully effective. The evidence presented here of concentrations of alt-HFRs in Nigerian house dust provide a valuable benchmark against which future trends in their concentrations may be evaluated.
Collapse
Affiliation(s)
- Olumide Emmanuel Akinrinade
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
- Department of Chemistry, University of Lagos, Lagos, Nigeria
| | - William A Stubbings
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | | | | | - Rose Alani
- Department of Chemistry, University of Lagos, Lagos, Nigeria
| | - Stuart Harrad
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
27
|
Al-Omran LS, Harrad S, Abou-Elwafa Abdallah M. A meta-analysis of factors influencing concentrations of brominated flame retardants and organophosphate esters in indoor dust. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117262. [PMID: 33964554 DOI: 10.1016/j.envpol.2021.117262] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 05/09/2023]
Abstract
Current assessments of human exposure to flame retardants (FRs) via dust ingestion rely on measurements of FR concentrations in dust samples collected at specific points in time and space. Such exposure assessments are rendered further uncertain by the possibility of within-room and within-building spatial and temporal variability, differences in dust particle size fraction analysed, as well as differences in dust sampling approach. A meta-analysis of peer-reviewed data was undertaken to evaluate the impact of these factors on reported concentrations of brominated flame retardants (BFRs) and organophosphate esters (OPEs) in dust and subsequent human exposure estimates. Except for a few cases, concentrations of FRs in elevated surface dust (ESD) exceeded significantly those in floor dust (FD). The implications of this for exposure assessment are not entirely clear. However, they imply that analysing FD only will underestimate exposure for adults who likely rarely ingest floor dust, while analysing ESD only would overestimate exposure for toddlers who likely rarely ingest elevated surface dust. Considerable within-building spatial variability was observed with no specific trend between concentrations of either BFRs or OPEs in living rooms and bedrooms in the same homes, implying that exposure assessments based solely on sampling one room are uncertain. Substantial differences in FR concentrations were observed in different particle size fractions of dust. This is likely partly attributable to the presence of abraded polymer particles/fibres with high FR concentrations in larger particle size fractions. This has implications for exposure assessment as adherence to skin and subsequent FR uptake via ingestion and dermal sorption varies with particle size. Analysing dust samples obtained from a householder vacuum cleaner (HHVC) compared with researcher collected dust (RCD) will underestimate human exposure to the most of studied contaminants. This is likely due to the losses of volatile FRs from HHVC dust over the extended period such dust spends in the dust bag. Temporal variability in FR concentrations is apparent during month-to-month or seasonal monitoring, with such variability likely due more to changes in room contents rather than seasonal temperature variation.
Collapse
Affiliation(s)
- Layla Salih Al-Omran
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom; Department of Chemistry, College of Science, University of Basrah, Basrah, Iraq.
| | - Stuart Harrad
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Mohamed Abou-Elwafa Abdallah
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| |
Collapse
|
28
|
Hoang MTT, Anh HQ, Kadokami K, Duong HT, Hoang HM, Van Nguyen T, Takahashi S, Le GT, Trinh HT. Contamination status, emission sources, and human health risk of brominated flame retardants in urban indoor dust from Hanoi, Vietnam: the replacement of legacy polybrominated diphenyl ether mixtures by alternative formulations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:43885-43896. [PMID: 33837942 DOI: 10.1007/s11356-021-13822-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
This study investigated the occurrence, distribution of several additive brominated flame retardants (BFRs) such as polybrominated diphenyl ethers (PBDEs) and some novel brominated flame retardants (NBFRs) in urban indoor dust collected from ten inner districts of Hanoi, Vietnam to assess the contamination status, emission sources, as well as their associated human exposure through indoor dust ingestion and health risks. Total concentrations of PBDEs and NBFRs in indoor dust samples ranged from 43 to 480 ng g-1 (median 170 ng g-1) and from 56 to 2200 ng g-1 (median 180 ng g-1), respectively. The most abundant PBDE congener in these dust samples was BDE-209 with concentrations ranging from 29 to 360 ng g-1, accounting for 62.6-86.5% of total PBDE levels. Among the NBFRs analyzed, decabromodiphenyl ethane (DBDPE) was the predominant compound with a mean contribution of 98.6% total NBFR amounts. Significant concentrations of DBDPE were detected in all dust samples (median 180 ng g-1, range 54-2200 ng g-1), due to DBDPE as a substitute for deca-BDE. Other NBFRs such as 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE), pentabromoethylbenzene (PBEB) and 2,2',4,4',5,5'-hexabromobiphenyl (BB-153) were found at very low levels. Based on the measured BFR concentrations, daily intake doses (IDs) of PBDEs and NBFRs via dust ingestion at exposure scenarios using the median and 95th percentile levels for both adults and children were calculated for risk assessment. The results showed that the daily exposure doses via dust ingestion of all compounds, even in the high-exposure scenarios were also lower than their reference dose (RfD) values. The lifetime cancer risks (LTCR) were much lower than the threshold level (10-6), which indicated the acceptable health risks resulting from indoor BFRs exposure for urban residents in Hanoi.
Collapse
Affiliation(s)
- Minh Tue Thi Hoang
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Vietnam
| | - Hoang Quoc Anh
- Faculty of Chemistry, VNU University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, 10000, Vietnam
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan
| | - Kiwao Kadokami
- The University of Kitakyushu, 1-1 Hibikino, Kitakyushu, 808-0135, Japan
| | - Hanh Thi Duong
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Vietnam
| | - Ha Mai Hoang
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Vietnam
| | - Tuyen Van Nguyen
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Vietnam
| | - Shin Takahashi
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan
| | - Giang Truong Le
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Vietnam
| | - Ha Thu Trinh
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Vietnam.
| |
Collapse
|
29
|
Krentzel AA, Kimble LC, Dorris DM, Horman BM, Meitzen J, Patisaul HB. FireMaster® 550 (FM 550) exposure during the perinatal period impacts partner preference behavior and nucleus accumbens core medium spiny neuron electrophysiology in adult male and female prairie voles, Microtus ochrogaster. Horm Behav 2021; 134:105019. [PMID: 34182292 PMCID: PMC8403633 DOI: 10.1016/j.yhbeh.2021.105019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/27/2021] [Accepted: 06/11/2021] [Indexed: 11/23/2022]
Abstract
One of the most widely used flame retardant (FR) mixtures in household products is Firemaster 550 (FM 550). FM 550 leaches from items such as foam-based furniture and infant products, resulting in contamination of the household environment and biota. Previous studies indicate sex-specific behavioral deficits in rodents and zebrafish in response to developmental FM 550 exposure. These deficits include impacts on social and attachment behaviors in a prosocial rodent: the prairie vole (Microtus ochrogaster). The prairie vole is a laboratory-acclimated rodent that exhibits spontaneous attachment behaviors including pair bonding. Here we extend previous work by addressing how developmental exposure to FM 550 impacts pair bonding strength via an extended-time partner preference test, as well as neuron electrophysiological properties in a region implicated in pair bond behavior, the nucleus accumbens (NAcc) core. Dams were exposed to vehicle or 1000 μg of FM 550 via subcutaneous injections throughout gestation, and female and male pups were directly exposed beginning the day after birth until weaning. Pair bond behavior of adult female and male offspring was assessed using a three hour-long partner preference test. Afterwards, acute brain slices of the NAcc core were produced and medium spiny neuron electrophysiological attributes recorded via whole cell patch-clamp. Behavioral impacts were sex-specific. Partner preference behavior was increased in exposed females but decreased in exposed males. Electrophysiological impacts were similar between sexes and specific to attributes related to input resistance. Input resistance was decreased in neurons recorded from both sexes exposed to FM 550 compared to vehicle. This study supports the hypothesis that developmental exposure to FM 550 impacts attachment behaviors and demonstrates a novel FM 550 effect on neural electrophysiology.
Collapse
Affiliation(s)
- Amanda A Krentzel
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Laney C Kimble
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - David M Dorris
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Brian M Horman
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - John Meitzen
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695, USA.
| | - Heather B Patisaul
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
30
|
Shi F, Feng X. Decabromodiphenyl ethane exposure damaged the asymmetric division of mouse oocytes by inhibiting the inactivation of cyclin-dependent kinase 1. FASEB J 2021; 35:e21449. [PMID: 33724544 DOI: 10.1096/fj.202002585r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 11/11/2022]
Abstract
Decabromodiphenyl ethane (DBDPE) is a new brominated flame retardant and is widely added to flammable materials to prevent fire. Because it has been continuously detected in a variety of organisms and humans, it is important to reveal the biological toxicity of DBDPE. However, the influence of DBDPE for female reproduction is unclear. In this study, we investigated whether and how DBDPE exposure affects oocyte development. Female mice as a model were orally exposed to DBDPE by 0, 0.05, 0.5, 5, 50 μg/kg bw/day for 30 days (0.05 μg/kg bw/day is close to the environmental exposure concentration). We found that exposure of mice to DBDPE did not affect the first polar body extrusion (PBE) of oocytes. Strikingly, however, asymmetric division of oocytes was markedly impaired in 5 and 50 μg/kg bw/day DBDPE exposed group, which resulted in oocytes with larger polar bodies (PBs). Then, we further explored and found that DBDPE exposure inhibited the spindle migration and membrane protrusion in oocytes during anaphase of meiosis I (anaphase I), thereby impairing asymmetric division. Additionally, we found that DBDPE exposure suppressed the inactivation of cyclin-dependent kinase 1 (Cdk1), resulting in the decrease of cytoplasmic formin2 (FMN2)-mediated F-actin polymerization in oocytes at the onset of anaphase I. Simultaneously, DBDPE exposure damaged the structural integrity of the spindle and the perpendicular relationship between spindle and cortex. These together led to the failure of spindle migration and membrane protrusion required for oocytes asymmetric division. Finally, DBDPE exposure injured the development of blastocysts, leading to blastocyst apoptosis.
Collapse
Affiliation(s)
- Feifei Shi
- College of Life Science, The Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Xizeng Feng
- College of Life Science, The Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| |
Collapse
|
31
|
Hou R, Lin L, Li H, Liu S, Xu X, Xu Y, Jin X, Yuan Y, Wang Z. Occurrence, bioaccumulation, fate, and risk assessment of novel brominated flame retardants (NBFRs) in aquatic environments - A critical review. WATER RESEARCH 2021; 198:117168. [PMID: 33962238 DOI: 10.1016/j.watres.2021.117168] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 06/12/2023]
Abstract
Novel brominated flame retardants (NBFRs), which have been developed as replacements for legacy flame retardants such as polybrominated diphenyl ethers (PBDEs), are a class of alternative flame retardants with emerging and widespread applications. The ubiquitous occurrence of NBFRs in the aquatic environments and the potential adverse effects on aquatic organisms have initiated intense global concerns. The present article, therefore, identifies and analyzes the current state of knowledge on the occurrence, bioaccumulation, fates, and environmental and health risks of NBFRs in aquatic environments. The key findings from this review are that (1) the distribution of NBFRs are source-dependent in the global aquatic environments, and several NBFRs have been reported at higher concentrations than that of the legacy flame retardants; (2) high bioaccumulative properties have been found for all of the discussed NBFRs due to their strong hydrophobic characteristics and weak metabolic rates; (3) the limited information available suggests that NBFRs are resistant to biotic and abiotic degradation processes and that sorption to sludge and sediments are the main fate of NBFRs in the aquatic environments; (4) the results of ecological risk assessments have indicated the potential risks of NBFRs and have suggested that source areas are the most vulnerable environmental compartments. Knowledge gaps and perspectives for future research regarding the monitoring, toxicokinetics, transformation processes, and development of ecological risk assessments of NBFRs in aquatic environments are proposed.
Collapse
Affiliation(s)
- Rui Hou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Lang Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Hengxiang Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Shan Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xiangrong Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Yiping Xu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xiaowei Jin
- China National Environmental Monitoring Center, Beijing 100012, China
| | - Yong Yuan
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zijian Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
32
|
Gao Y, Tang X, Yin M, Cao H, Jian H, Wang J, Jia W, Wang C, Sun H. Effects of iron plaque and fatty acids on the transfer of BDE-209 from soil to rice under iron mineral Fenton-like oxidation condition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145554. [PMID: 33770853 DOI: 10.1016/j.scitotenv.2021.145554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
To understand the effect mechanisms of iron plaque and fatty acids on the migration of PBDEs from soil to rice (Oryza sativa), pot experiments were conducted in the soil spiked with decabromodiphenyl ether (BDE-209) under the conditions of tourmaline and nano-goethite Fenton-like treatments. The results showed that iron mineral Fenton-like oxidation could effectively remove BDE-209 from rhizosphere soil, the highest removal rate obtained 89.29% with the addition of 0.4 mmol/L H2O2 and 8 g nano-goethite (G + 3H group). Iron mineral Fenton-like oxidation could produce iron plaque (IP) on rice roots and accumulate a part of contaminants on the surface of IP, further weakening BDE-209 uptake in the plants. Additionally, the occurrence of fatty acid variation induced by BDE-209 stress, iron mineral Fenton-like oxidation at high concentrations of H2O2 with 0.4 mmol/L affected the distribution of fatty acids in plant tissues, especially for C18:0 fatty acid. While the IP on rice roots prevented the BDE-209 into plant, it was also closely related to the distribution of fatty acids in rice, altering BDE-209 accumulation in the rice. To safely use the iron mineral Fenton-like oxidation in the agricultural soil remediation, the safety of plant cells treated by mineral Fenton-like oxidation was evaluated using the transmission electron microscopy (TEM) and enzyme activity determination, which indicated that iron mineral Fenton-like oxidation would destroy the inner structures of plant cells, especially for G + 3H group.
Collapse
Affiliation(s)
- Yue Gao
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xuejiao Tang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Mengfei Yin
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Huimin Cao
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hongxian Jian
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Juyuan Wang
- Agricultural College, Liaocheng University, Liaocheng 252000, China
| | - Weili Jia
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Cuiping Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Hongwen Sun
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
33
|
Corsolini S, Metzdorff A, Baroni D, Roscales JL, Jiménez B, Cerro-Gálvez E, Dachs J, Galbán-Malagón C, Audy O, Kohoutek J, Přibylova P, Poblete-Morales M, Avendaño-Herrera R, Bergami E, Pozo K. Legacy and novel flame retardants from indoor dust in Antarctica: Sources and human exposure. ENVIRONMENTAL RESEARCH 2021; 196:110344. [PMID: 33068585 DOI: 10.1016/j.envres.2020.110344] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/08/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
The air humidity in Antarctica is very low and this peculiar weather parameter make the use of flame retardants in research facilities highly needed for safety reasons, as fires are a major risk. Legacy and novel flame retardants (nFRs) including polybrominated diphenyl ethers (PBDEs), hexabromocyclododecanes (HBCDs), 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE), Dechlorane Plus (DP), and other nFRs were measured in indoor dust samples collected at research Stations in Antarctica: Gabriel de Castilla, Spain (GCS), Julio Escudero, Chile (JES), and onboard the RRS James Clark Ross, United Kingdom (RRS JCR). The GC-HRMS and LC-MS-MS analyses of dust samples revealed ∑7PBDEs of 41.5 ± 43.8 ng/g in rooms at GCS, 18.7 ± 11.6 ng/g at JES, and 27.2 ± 37.9 ng/g onboard the RRS JCR. PBDE pattern was different between the sites and most abundant congeners were BDE-183 (40%) at GCS, BDE-99 (50%) at JES, and BDE-153 (37%) onboard the RRS JCR. The ∑(4)HBCDs were 257 ± 407 ng/g, 14.9 ± 14.5 ng/g, and 761 ± 1043 ng/g in indoor dust collected in rooms at GCS, JES, and RRS JCR, respectively. The ∑9nFRs were 224 ± 178 ng/g at GCS, 14.1 ± 13.8 ng/g at JES, and 194 ± 392 ng/g on the RRS JCR. Syn- and anti-DP were detected in most of the samples and both isomers showed the highest concentrations at GCS: 163 ± 93.6 and 48.5 ± 61.1 ng/g, respectively. The laboratory and living room showed the highest concentration of HBCDs, DPs, BTBPE. The wide variations in FR levels in dust from the three research facilities and between differently used rooms reflect the different origin of furnishing, building materials and equipment. The potential health risk associated to a daily exposure via dust ingestion was assessed for selected FRs: BDEs 47, 99, and 153, α-, β-, and γ-HBCD, BTBPE, syn- and anti-DP. Although the estimated exposures are below the available reference doses, caution is needed given the expected increasing use of novel chemicals without a comprehensive toxicological profile.
Collapse
Affiliation(s)
- Simonetta Corsolini
- Department of Physical, Earth and Environmental Sciences, Via P. A. Mattioli 4, University of Siena, 53100, Italy.
| | - América Metzdorff
- Department of Physical, Earth and Environmental Sciences, Via P. A. Mattioli 4, University of Siena, 53100, Italy
| | - Davide Baroni
- Department of Physical, Earth and Environmental Sciences, Via P. A. Mattioli 4, University of Siena, 53100, Italy
| | - Jose L Roscales
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry, (IQOG-CSIC), Juan de La Cierva 3, 28006, Madrid, Spain
| | - Begoña Jiménez
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry, (IQOG-CSIC), Juan de La Cierva 3, 28006, Madrid, Spain
| | - Elena Cerro-Gálvez
- Department of Environmental Chemistry, IDAEA-CSIC-Jordi Girona 18-26, Barcelona, 08034, Catalunya, Spain
| | - Jordi Dachs
- Department of Environmental Chemistry, IDAEA-CSIC-Jordi Girona 18-26, Barcelona, 08034, Catalunya, Spain
| | - Cristóbal Galbán-Malagón
- Centre for Genomics, Ecology & Environment, Universidad Mayor, Camino La Pirámide, 5750, Huechuraba, Santiago, Chile; Departamento de Ciencias de La Vida, Facultad de Ciencias de La Vida, Universidad Andrés Bello, Avda. República 252, Santiago, Chile
| | - Ondřej Audy
- Masaryk University, Faculty of Science, Research Centre for Toxic Compounds in the Environment (RECETOX), Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Jiří Kohoutek
- Masaryk University, Faculty of Science, Research Centre for Toxic Compounds in the Environment (RECETOX), Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Petra Přibylova
- Masaryk University, Faculty of Science, Research Centre for Toxic Compounds in the Environment (RECETOX), Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Matias Poblete-Morales
- Universidad Andrés Bello, Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias de La Vida, Quillota # 980, 2520000, Viña Del Mar, Chile
| | - Ruben Avendaño-Herrera
- Universidad Andrés Bello, Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias de La Vida, Quillota # 980, 2520000, Viña Del Mar, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), 2520000, Viña Del Mar, Chile
| | - Elisa Bergami
- Department of Physical, Earth and Environmental Sciences, Via P. A. Mattioli 4, University of Siena, 53100, Italy
| | - Karla Pozo
- Masaryk University, Faculty of Science, Research Centre for Toxic Compounds in the Environment (RECETOX), Kamenice 753/5, 625 00, Brno, Czech Republic; Facultad de Ingeniería y Tecnología, Universidad San Sebastián, Lientur #1457, Concepción, Chile
| |
Collapse
|
34
|
Vauclin S, Mourier B, Dendievel AM, Marchand P, Vénisseau A, Morereau A, Lepage H, Eyrolle F, Winiarski T. Temporal trends of legacy and novel brominated flame retardants in sediments along the Rhône River corridor in France. CHEMOSPHERE 2021; 271:129889. [PMID: 33736204 DOI: 10.1016/j.chemosphere.2021.129889] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Brominated flame retardants (BFRs) are anthropogenic compounds that are ubiquitous in most manufactured goods. Few legacy BFRs have been recognised as persistent organic pollutants (POPs) and have been prohibited since the 2000s. However, most BFRs continue to be used despite growing concerns regarding their toxicity; they are often referred to as novel BFRs (nBFRs). While environmental contamination due to chlorinated POPs has been extensively investigated, the levels and spatiotemporal trends of BFRs are comparatively understudied. This study aims to reconstruct the temporal trends of both legacy and novel BFRs at the scale of a river corridor. To this end, sediment cores were sampled from backwater areas in four reaches along the Rhône River. Age-depth models were established for each of them. Polychlorinated biphenyls (PCBs), legacy BFRs (polybrominated diphenyl ethers - PBDEs, polybrominated biphenyls - PBBs and hexabromocyclododecane - HBCDDs) and seven nBFRs were quantified. Starting from the 1970s, a decreasing contamination trend was observed for PCBs. Temporal trends for legacy BFRs revealed that they reached peak concentrations from the mid-1970s to the mid-2000s, and stable concentrations by the mid-2010s. Additionally, individual concentrations of nBFRs were two to four orders of magnitude lower than those of legacy BFRs. Their temporal trends revealed that they appeared in the environment in the 1970s and 1980s. The concentrations of most of these nBFRs have not decreased in recent years. Thus, there is a need to comprehend the sources, contamination load, repartition in the environment, and toxicity of nBFRs before their concentrations reach hazardous levels.
Collapse
Affiliation(s)
- Sophia Vauclin
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023, LEHNA, F-69518, Vaulx-en-Velin, France.
| | - Brice Mourier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023, LEHNA, F-69518, Vaulx-en-Velin, France
| | - André-Marie Dendievel
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023, LEHNA, F-69518, Vaulx-en-Velin, France
| | - Philippe Marchand
- ONIRIS, INRAE, LABERCA Route de Gachet-Site de la Chantrerie-CS 50707, Nantes, F-44307, France
| | - Anaïs Vénisseau
- ONIRIS, INRAE, LABERCA Route de Gachet-Site de la Chantrerie-CS 50707, Nantes, F-44307, France
| | - Amandine Morereau
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LRTA, BP 3, 13115, Saint-Paul-lez-Durance, France
| | - Hugo Lepage
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LRTA, BP 3, 13115, Saint-Paul-lez-Durance, France
| | - Frédérique Eyrolle
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LRTA, BP 3, 13115, Saint-Paul-lez-Durance, France
| | - Thierry Winiarski
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023, LEHNA, F-69518, Vaulx-en-Velin, France
| |
Collapse
|
35
|
Burkhard LP, Lahren TJ, Highland TL, Hockett JR, Mount DR, Norberg-King TJ. Bioaccumulation of Bis-(2-ethylhexyl)-3,4,5,6-tetrabromophthalate and Mono-(2-ethylhexyl)-3,4,5,6-tetrabromophthalate by Lumbriculus variegatus. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 80:579-586. [PMID: 33730174 PMCID: PMC8168711 DOI: 10.1007/s00244-021-00824-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/19/2021] [Indexed: 05/15/2023]
Abstract
The brominated flame retardant bis(2-ethylhexyl)-3,4,5,6-tetrabromophthalate (TBPH) is used widely in consumer items including polyurethane foam used in furniture. Information on its bioaccumulation in aquatic species is limited. In the current study, sediment bioaccumulation tests with the oligochaete Lumbriculus variegatus were performed on a spiked natural sediment equilibrated for 14.5 months. Analysis showed the TBPH used to spike the sediment contained a small amount (0.046% by mass) of mono-(2-ethylhexyl)-3,4,5,6-tetrabromophthalate (TBMEHP), a potential biotransformation product of the parent chemical. Steady-state biota-sediment accumulation factors (BSAFs) of 0.254 and 1.50 (kg organic carbon/kg lipid) were derived for TBPH and TBMEHP, respectively. TBPH had biphasic elimination behavior where 94% of the body burden was depleted within the first 12 h of elimination (i.e., half-life of 1.2 h or less) and the remaining 6% eliminated very slowly thereafter (half-life of 15 days). There was little evidence for biotransformation of either chemical by L. variegatus. This investigation confirms the extremely hydrophobic behavior of TBPH and its impact on its bioavailability.
Collapse
Affiliation(s)
- Lawrence P Burkhard
- Great Lakes Toxicology and Ecology Division, Center for Computational Toxicology and Exposure (CCTE), Office of Research and Development, U.S. Environmental Protection Agency, 6201 Congdon Blvd, Duluth, MN, 55804, USA.
| | - Tylor J Lahren
- Great Lakes Toxicology and Ecology Division, Center for Computational Toxicology and Exposure (CCTE), Office of Research and Development, U.S. Environmental Protection Agency, 6201 Congdon Blvd, Duluth, MN, 55804, USA
| | - Terry L Highland
- Great Lakes Toxicology and Ecology Division, Center for Computational Toxicology and Exposure (CCTE), Office of Research and Development, U.S. Environmental Protection Agency, 6201 Congdon Blvd, Duluth, MN, 55804, USA
| | - James R Hockett
- Great Lakes Toxicology and Ecology Division, Center for Computational Toxicology and Exposure (CCTE), Office of Research and Development, U.S. Environmental Protection Agency, 6201 Congdon Blvd, Duluth, MN, 55804, USA
| | - David R Mount
- Great Lakes Toxicology and Ecology Division, Center for Computational Toxicology and Exposure (CCTE), Office of Research and Development, U.S. Environmental Protection Agency, 6201 Congdon Blvd, Duluth, MN, 55804, USA
| | - Teresa J Norberg-King
- Great Lakes Toxicology and Ecology Division, Center for Computational Toxicology and Exposure (CCTE), Office of Research and Development, U.S. Environmental Protection Agency, 6201 Congdon Blvd, Duluth, MN, 55804, USA
| |
Collapse
|
36
|
Hoang AQ, Tran TM, Tu MB, Takahashi S. Polybrominated diphenyl ethers in indoor and outdoor dust from Southeast Asia: An updated review on contamination status, human exposure, and future perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:116012. [PMID: 33187845 DOI: 10.1016/j.envpol.2020.116012] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 05/20/2023]
Abstract
Contamination status, potential emission sources, environmental fate, and human exposure risk of polybrominated diphenyl ethers (PBDEs) are reviewed for indoor and outdoor dust from Southeast Asian countries, under an international comparison point of view. PBDEs have been widely detected in house, workplace, car, and road dust samples collected from Indonesia, Philippines, Singapore, Thailand, and Vietnam. The highest PBDE levels up to hundreds of μg/g were found in settled dust from some e-waste processing areas in Thailand and Vietnam. Concentrations of PBDEs in house, car, and road dust from this region were generally lower than those reported in China and Western developed countries. BDE-209 was the most predominant congener in almost all analyzed samples, reflecting the widespread application of materials and products treated with commercial deca-BDE mixtures in this region. The market demand and application rate of commercial PBDE mixtures in Southeast Asia were lower than those documented for other regions in the world. As a result, PBDE contamination levels in the environments (e.g., indoor and outdoor dust) and associated risks in these countries were not significantly high. However, more attention should be paid to informal processing activities and management strategies for modern wastes such as e-waste, plastics, and end-of-life vehicles. There exist several knowledge gaps about spatiotemporal trends, potential sources, risk assessment, inventory, management, and legislation regarding PBDEs in dust from this region, which should be filled by additional comprehensive, detailed studies with relevant inter-country/regional monitoring schemes.
Collapse
Affiliation(s)
- Anh Quoc Hoang
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, 10000, Viet Nam; Center of Advanced Technology for the Environment, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan.
| | - Tri Manh Tran
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, 10000, Viet Nam
| | - Minh Binh Tu
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, 10000, Viet Nam
| | - Shin Takahashi
- Center of Advanced Technology for the Environment, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan
| |
Collapse
|
37
|
Xiong S, Hao Y, Li Y, Yang R, Pei Z, Zhang Q, Jiang G. Accumulation and influencing factors of novel brominated flame retardants in soil and vegetation from Fildes Peninsula, Antarctica. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:144088. [PMID: 33280871 DOI: 10.1016/j.scitotenv.2020.144088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 06/12/2023]
Abstract
The concentrations and distributions of nine novel brominated flame retardants (NBFRs) were analyzed in soil, lichen (Usnea aurantiaco-atra), and moss (Sanionia uncinata) samples collected from the Chinese Antarctic Great Wall Station and surrounding Fildes Peninsula area in west Antarctica. Total NBFR concentrations ranged from 61.2-225 pg/g dry weight (dw) in soil, 283-1065 pg/g dw in moss, and 135-401 pg/g dw in lichen, respectively. Decabromodiphenyl ethane (DBDPE) was the dominant NBFR in all samples, accounting for 65.2%, 50.1%, and 72.4% of cumulative NBFR concentration in soil, moss, and lichen, respectively. The concentrations of NBFRs in plant samples were higher than those in soil, which may be related to plant bioaccumulation. Significant log/log-linear correlations (p < 0.05) were found between the concentrations of BEHTEBP and total organic carbon (TOC) in soil, and between DBDPE and lipid content in mosses, indicating that TOC and lipid content potentially affect certain NBFRs in Antarctic soil and moss. This study presents the first report on NBFR contamination in soil and various vegetation in Antarctica.
Collapse
Affiliation(s)
- Siyuan Xiong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanfen Hao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ruiqiang Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| | - Zhiguo Pei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| |
Collapse
|
38
|
Su H, Shi S, Zhu M, Li J, Su G. Liquid Crystal Monomers (LCMs) in Sediments: Method Validation and Detection in Sediment Samples from Three Typical Areas. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:2336-2345. [PMID: 33528249 DOI: 10.1021/acs.est.0c06427] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Liquid crystal monomers (LCMs) have been proposed to be persistent, bioaccumulative, and toxic (PBT) substances; however, there is a dearth of information regarding their occurrence in sediment samples. Here, an analytical method was developed for the quantitative determination of LCMs in sediment samples, and n = 76 sediment samples were collected and analyzed to determine accurate concentrations of LCMs. Our results indicated that the developed pretreatment procedure was applicable for the determination of LCM concentrations in sediments. We observed that LCMs were detected in 75 out of the 76 sediment samples, and 23, 18, and 14 out of the 39 target LCMs were quantified in at least one of the analyzed sediments from rivers around LCM or liquid crystal device (LCD) manufacturers, Taihu Lake, and rivers around e-waste recycling sites, respectively. The LCMs in the samples from rivers around LCM/LCD manufacturers exhibited the greatest mean concentrations of 26.1 ng/g dry weight (dw), followed by those from e-waste recycling site areas (1.15 ng/g dw) and Taihu Lake (0.076 ng/g dw). Collectively, this study provided the first analytical method that was able to quantify the concentrations of LCMs in sediment samples and provided the first evidence for the occurrence of LCMs in sediment samples.
Collapse
Affiliation(s)
- Huijun Su
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Shaobo Shi
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Ming Zhu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Jianhua Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Guanyong Su
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| |
Collapse
|
39
|
Feng H, Cheng Y, Ruan Y, Tsui MMP, Wang Q, Jin J, Wu R, Zhang H, Lam PKS. Occurrence and spatial distribution of legacy and novel brominated flame retardants in seawater and sediment of the South China sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116324. [PMID: 33360350 DOI: 10.1016/j.envpol.2020.116324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
The occurrence and spatial distribution of polybrominated diphenyl ethers (PBDEs) and novel brominated flame retardants (NBFRs) in seawater and surficial sediment samples (N = 19 and 45, respectively) from the South China Sea (SCS) in 2018 were investigated, and the correlation between BFRs and site parameters (total organic carbon, depth, etc.) were assessed by principal component analysis. The concentration ranges of ΣPBDEs in seawater and sediments were 0.90-4.40 ng/L and 0.52-22.67 ng/g dry weight (dw), respectively, while those of ΣNBFRs were 0.49-37.42 ng/L and 0.78-82.29 ng/g dw, respectively. BDE-209 and decabromodiphenyl ethane were the predominant BFRs, accounting for 38.65% and 36.94% in seawater and 26.71% and 68.42% in sediments, respectively. Notably, tris(2,3-dibromopropyl)isocyanurate and 2,4,6-tris(2,4,6-tribromophenoxy)-1,3,5-triazine, seldomly detected in aquatic matrices worldwide, were detected for the first time in the study area, and their relatively high levels and detection frequencies indicate the ubiquitous application of these NBFRs in the Pearl River Delta. Zhuhai and Jiangmen are the main sources of NBFRs in the SCS. Preliminary risk assessment on NBFRs using hazard quotient indicates low to medium risks to marine organisms at some sites. The occurrence of NBFRs in the SCS highlights the prioritization of more toxicological information on these compounds.
Collapse
Affiliation(s)
- Hongru Feng
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong, China; Department of Chemistry, Zhejiang University, Hangzhou, 310027, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Yixue Cheng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuefei Ruan
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China.
| | - Mirabelle M P Tsui
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong, China
| | - Qi Wang
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China; Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Jing Jin
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong, China
| | - Rongben Wu
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China; Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Haiyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China; Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
40
|
Yao B, Luo Z, Zhi D, Hou D, Luo L, Du S, Zhou Y. Current progress in degradation and removal methods of polybrominated diphenyl ethers from water and soil: A review. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123674. [PMID: 33264876 DOI: 10.1016/j.jhazmat.2020.123674] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 06/12/2023]
Abstract
The widespread of polybrominated diphenyl ethers (PBDEs) in the environment has caused rising concerns, and it is an urgent endeavor to find a proper way for PBDEs remediation. Various techniques such as adsorption, hydrothermal and thermal treatment, photolysis, photocatalytic degradation, reductive debromination, advanced oxidation processes (AOPs) and biological degradation have been developed for PBDEs decontamination. A comprehensive review of different PBDEs remediation techniques is urgently needed. This work focused on the environmental source and occurrence of PBDEs, their removal and degradation methods from water and soil, and prospects for PBDEs remediation techniques. According to the up-to-date literature obtained from Web of Science, it could be concluded that (i) photocatalysis and photocatalytic degradation is the most widely reported method for PBDEs remediation, (ii) BDE-47 and BDE-209 are the most investigated PBDE congeners, (iii) considering the recalcitrance nature of PBDEs and more toxic intermediates could be generated because of incomplete degradation, the combination of different techniques is the most potential solution for PBDEs removal, (iv) further researches about the development of novel and effective PBDEs remediation techniques are still needed. This review provides the latest knowledge on PBDEs remediation techniques, as well as future research needs according to the up-to-date literature.
Collapse
Affiliation(s)
- Bin Yao
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Zirui Luo
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Dan Zhi
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Dongmei Hou
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Lin Luo
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Shizhi Du
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Yaoyu Zhou
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
41
|
McGrath TJ, Kolobaric A, Lee E, Clarke BO. Brominated flame retardants (BFRs) in Western Australian biosolids and implications for land application. CHEMOSPHERE 2020; 260:127601. [PMID: 32688318 DOI: 10.1016/j.chemosphere.2020.127601] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
This study evaluates the prevalence of eight priority polybrominated diphenyl ethers (PBDEs; -28, -47, -99, -100, -153, -154, -183 and -209) and six novel brominated flame retardants (NBFRs; pentabromotoluene (PBT), pentabromoethylbenzene (PBEB), hexabromobenzene (HBB), 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB), 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE) and decabromodiphenyl ethane (DBDPE)) in biosolids samples from 15 wastewater treatment plants (WWTPs) in Western Australia. Analytes were extracted using selective pressurized liquid extraction (S-PLE) and quantified by gas chromatography coupled to tandem mass spectrometry (GC-MS/MS) operated in electron impact (EI) ionization mode. ∑8PBDE levels in biosolids ranged from 11 to 18,000 μg/kg dw with a median concentration of 1800 μg/kg dw. BDE-209 was the most prevalent congener constituting a median of 98% of ∑8PBDE concentrations in samples with BDE-99, -47 and -100 each typically contributing less than 3% to total levels. NBFRs were detected in 71% of samples with ∑6NBFR levels ranging between ND-1100 μg/kg dw (median; 600 μg/kg dw). Levels of DBDPE greatly exceeded those of all other NBFRs, while the next most prevalent compounds were EH-TBB and HBB. Australia produced approximately 327,000 dry tonnes of biosolids in 2017, of which approximately 75% was beneficially utilized on farmland as a fertilizer. Based on these results, an estimated 440 kg of BDE-209 and 150 kg of DBDPE are applied to agricultural land via biosolids applications annually in Australia. This study provides the first account of NBFR concentrations in Australian biosolids.
Collapse
Affiliation(s)
- Thomas J McGrath
- Centre for Environmental Sustainability and Remediation (EnSuRe), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria, 3001, Australia
| | - Adam Kolobaric
- Centre for Environmental Sustainability and Remediation (EnSuRe), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria, 3001, Australia
| | - Elliot Lee
- Water Corporation, 629 Newcastle Street, Leederville, WA, 6007, Australia
| | - Bradley O Clarke
- Australian Laboratory for Emerging Contaminants, School of Chemistry, University of Melbourne, Victoria, 3010, Australia.
| |
Collapse
|
42
|
Hao Y, Meng W, Li Y, Han X, Lu H, Wang P, Yang R, Zhang Q, Jiang G. Concentrations and distribution of novel brominated flame retardants in the atmosphere and soil of Ny-Ålesund and London Island, Svalbard, Arctic. J Environ Sci (China) 2020; 97:180-185. [PMID: 32933733 DOI: 10.1016/j.jes.2020.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
Novel brominated flame retardants (NBFRs) were investigated in Arctic air and soil samples collected from Ny-Ålesund and London Island, Svalbard, during Chinese scientific research expeditions to the Arctic during 2014-2015. The concentrations of Σ9NBFRs in the Arctic air and soil were 4.9-8.7 pg/m3 (average 6.8 pg/m3) and 101-201 pg/g dw (average 150 pg/g dw), respectively. The atmospheric concentration of hexabromobenzene (HBB) was significantly correlated with that of pentabromotoluene (PBT) and pentabromobenzene (PBBz), suggesting similar source and environmental fate in the Arctic air. No significant spatial difference was observed among the different sampling sites, both for air and soil samples, indicating that the effects of the scientific research stations on the occurrence of NBFRs in the Arctic were minor. The fugacities from soil to air of pentabromoethylbenzene (PBEB), 2,3-dibromopropyl 2,4,6-tribromophenyl ether (DPTE), and decabromodiphenylethane 1,2-bis (pentabromophenyl) ethane (DBDPE) were lower than the equilibrium value, indicating a nonequilibrium state of these compounds between air and soil, the dominant impact of deposition and the net transport from air to soil. The correlation analysis between the measured and predicted soil-atmosphere coefficients based on the absorption model showed that the impact of the soil organic matter on the distribution of NBFRs in the Arctic region was minor. To the best of our knowledge, this work is one of the limited reports on atmospheric NBFRs in the Arctic and the first study to investigate the occurrence and fate of NBFRs in the Arctic soil.
Collapse
Affiliation(s)
- Yanfen Hao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenying Meng
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Xu Han
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huili Lu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Pu Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruiqiang Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
43
|
Blanchard P, Babichuk N, Sarkar A. Evaluating the use of synchrotron X-ray spectroscopy in investigating brominated flame retardants in indoor dust. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:42168-42174. [PMID: 32860190 DOI: 10.1007/s11356-020-10623-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
Brominated flame retardants (BFRs) are commonly used in consumer products and they shed off these products and eventually build up in household dust. Polybrominated diphenyl ethers (PBDEs), in particular, are known endocrine-disrupting chemicals affecting various hormone syntheses. Portable X-ray fluorescence spectroscopy (XRF) is the most common non-destructive method in identifying BFRs in environmental samples. However, the method is insensitive to bromine speciation. Synchrotron-based XRF has been shown to have very low detection limits (< 1 μg/g) that is suitable for detecting BFRs and can be combined with X-ray absorption near-edge spectroscopy (XANES) to identify the bromine species present in the household dust. Twenty indoor dust samples were collected from rural homes in Newfoundland (Canada) to assess the use of synchrotron-based techniques to identify BFRs. Synchrotron-based XRF analysis identified bromine in all the samples, with concentrations ranging from 2-19 μg/g. XANES analysis identified organic-based bromine species in several samples that are likely BFRs based on the spectral line shape. The accuracy of using XANES to identify BFRs is highly dependent on the source and size of the dust samples. Therefore, for future research, it is important to take into account the sources of dust sample and to focus on fine dust particles.
Collapse
Affiliation(s)
| | - Nicole Babichuk
- Division of Community Health Humanities, Faculty of Medicine, Memorial University, St. John's, NL, A1B 3V6, Canada
| | - Atanu Sarkar
- 4M110, Health Sciences Centre, Division of Community Health Humanities, Faculty of Medicine, Memorial University, St. John's, NL, A1B 3V6, Canada.
| |
Collapse
|
44
|
Guo JQ, Li YF, Liu LY, Huo CY, Sun Y, Ma WL, Zhang ZF, Li YF. Occurrence and partitioning of brominated flame retardants (BFRs) in indoor air and dust: a 15-month case study in a test home. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:35126-35136. [PMID: 32588303 DOI: 10.1007/s11356-020-09788-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
Ten polybrominated diphenyl ethers (PBDEs) and 16 novel brominated flame retardants (NBFRs) were measured in air and dust samples collected in a test home in Harbin, China, from January 2017 to June 2018. The PBDE and NBFR concentrations in indoor air were in the ranges of 0.598-14.5 pg m-3 and 9.28-686 pg m-3, respectively. The ranges of the PBDE and NBFR concentrations in indoor dust were 221-1060 ng g-1 and 71.9-1160 ng g-1, respectively. Brominated flame retardant (BFR) concentrations in indoor air were affected by the temperature, relative humidity (RH), and ventilation. The BFR concentrations in indoor dust did not show temperature dependence. All dust samples were sieved into 6 size fractions (F1-F6: 1000-2000 μm, 500-1000 μm, 250-500 μm, 125-250 μm, 63-125 μm, and < 63 μm). The mass percentage of BFRs in F6 was the highest. The BFR concentrations did not increase constantly with a particle size decrease, and the concentrations in F2 were higher than those in F3. The partitioning behavior of BFRs illustrates that the dust-air partitioning coefficient approximately approached equilibrium within F5, F6, and the total dust fraction (FA) in the test home when logKOA was between 9.1 and 11.32. Air-dust fugacity fractions were calculated, and the results suggested that most of the BFRs were mainly transferred from air to dust in the indoor environment for F1-F6.
Collapse
Affiliation(s)
- Jia-Qi Guo
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, and School of Environment, Harbin Institute of Technology, Harbin, 150090, China
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin, 150090, China
- University Corporation for Polar Research, Beijing, 100875, China
| | - Yong-Feng Li
- School of Forestry, Northeast Forestry University, Harbin, 150060, China
| | - Li-Yan Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, and School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin, 150090, China.
- University Corporation for Polar Research, Beijing, 100875, China.
| | - Chun-Yan Huo
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, and School of Environment, Harbin Institute of Technology, Harbin, 150090, China
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin, 150090, China
- University Corporation for Polar Research, Beijing, 100875, China
| | - Yu Sun
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, and School of Environment, Harbin Institute of Technology, Harbin, 150090, China
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin, 150090, China
- University Corporation for Polar Research, Beijing, 100875, China
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, and School of Environment, Harbin Institute of Technology, Harbin, 150090, China
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin, 150090, China
- University Corporation for Polar Research, Beijing, 100875, China
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, and School of Environment, Harbin Institute of Technology, Harbin, 150090, China
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin, 150090, China
- University Corporation for Polar Research, Beijing, 100875, China
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, and School of Environment, Harbin Institute of Technology, Harbin, 150090, China
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin, 150090, China
- University Corporation for Polar Research, Beijing, 100875, China
- IJRC-PTS-NA, Toronto, M2N 6X9, Canada
| |
Collapse
|
45
|
Lewis PJ, McGrath TJ, Chiaradia A, McMahon CR, Emmerson L, Allinson G, Shimeta J. A baseline for POPs contamination in Australian seabirds: little penguins vs. short-tailed shearwaters. MARINE POLLUTION BULLETIN 2020; 159:111488. [PMID: 32738640 DOI: 10.1016/j.marpolbul.2020.111488] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
While globally distributed throughout the world's ecosystems, there is little baseline information on persistent organic pollutants (POPs) in marine environments in Australia and, more broadly, the Southern Hemisphere. To fill this knowledge gap, we collected baseline information on POPs in migratory short-tailed shearwaters (Ardenna tenuirostris) from Fisher Island, Tasmania, and resident little penguins (Eudyptula minor) from Phillip Island, Victoria. Levels of polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) and brominated flame retardants (BFRs) were determined from blood samples, with total contamination ranging 7.6-47.7 ng/g ww for short-tailed shearwaters and 0.12-46.9 ng/g ww for little penguins. In both species contamination followed the same pattern where PCBs>OCPs>BFRs. BFR levels included the presence of the novel flame retardant hexabromobenzene (HBB). These novel results of POPs in seabirds in southeast Australia provide important information on the local (penguins) and global (shearwaters) distribution of POPs in the marine environment.
Collapse
Affiliation(s)
- Phoebe J Lewis
- Centre for Environmental Sustainability and Remediation (EnSuRe), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia; Australian Antarctic Division, 203 Channel Highway, Kingston, Tasmania 7050, Australia.
| | - Thomas J McGrath
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Andre Chiaradia
- Conservation Department, Phillip Island Nature Parks, Victoria 3925, Australia
| | - Clive R McMahon
- IMOS Animal Tagging, Sydney Institute of Marine Science, 19 Chowder Bay, Mosman 2088, New South Wales, Australia
| | - Louise Emmerson
- Australian Antarctic Division, 203 Channel Highway, Kingston, Tasmania 7050, Australia
| | - Graeme Allinson
- Centre for Environmental Sustainability and Remediation (EnSuRe), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Jeff Shimeta
- Centre for Environmental Sustainability and Remediation (EnSuRe), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| |
Collapse
|
46
|
Zuiderveen EAR, Slootweg JC, de Boer J. Novel brominated flame retardants - A review of their occurrence in indoor air, dust, consumer goods and food. CHEMOSPHERE 2020; 255:126816. [PMID: 32417508 DOI: 10.1016/j.chemosphere.2020.126816] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/30/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
This critical review summarizes the occurrence of 63 novel brominated flame retardants (NBFRs) in indoor air, dust, consumer goods and food. It includes their EU registration and (potential) risks. The increasing application of NBFRs calls for more research on their occurrence, environmental fate and toxicity. This review reports which NBFRs are actually being studied, which are detected and which are of most concern. It also connects data from the European Chemical Association on NBFRs with other scientific information. Large knowledge gaps emerged for 28 (out of 63) NBFRs, which were not included in any monitoring programs or other studies. This also indicates the need for optimized analytical methods including all NBFRs. Further research on indoor environments, emission sources and potential leaching is also necessary. High concentrations of 2-ethylhexyl 2,3,4,5-tetrabromobenzoate (EH-TBB), bis(2-ethylhexyl)tetrabromophthalate (BEH-TEBP), decabromodiphenyl ethane (DBDPE) and 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE) were often reported. The detection of hexabromobenzene (HBB), pentabromotoluene (PBT), 1,4-dimethyltetrabromobenzene (TBX), 4-(1,2-dibromoethyl)-1,2-dibromocyclohexane (DBE-DBCH) and tetrabromobisphenol A bis(2,3-dibromopropyl) ether (TBBPA-BDBPE) also raises concern.
Collapse
Affiliation(s)
- Emma A R Zuiderveen
- Department Environment and Health, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081, HV, Amsterdam, the Netherlands.
| | - J Chris Slootweg
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, PO Box 94157, 1090, GD, Amsterdam, the Netherlands
| | - Jacob de Boer
- Department Environment and Health, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081, HV, Amsterdam, the Netherlands
| |
Collapse
|
47
|
Artabe AE, Cunha-Silva H, Barranco A. Enzymatic assays for the assessment of toxic effects of halogenated organic contaminants in water and food. A review. Food Chem Toxicol 2020; 145:111677. [PMID: 32810589 DOI: 10.1016/j.fct.2020.111677] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/05/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022]
Abstract
Halogenated organic compounds are a particular group of contaminants consisting of a large number of substances, and of great concern due to their persistence in the environment, potential for bioaccumulation and toxicity. Some of these compounds have been classified as persistent organic pollutants (POPs) under The Stockholm Convention and many toxicity assessments have been conducted on them previously. In this work we provide an overview of enzymatic assays used in these studies to establish toxic effects and dose-response relationships. Studies in vivo and in vitro have been considered with a particular emphasis on the impact of halogenated compounds on the activity of relevant enzymes to the humans and the environment. Most information available in the literature focuses on chlorinated compounds, but brominated and fluorinated molecules are also the target of increasing numbers of studies. The enzymes identified can be classified as enzymes: i) the activities of which are affected by the presence of halogenated organic compounds, and ii) those involved in their metabolisation/detoxification resulting in increased activities. In both cases the halogen substituent seems to have an important role in the effects observed. Finally, the use of these enzymes in biosensing tools for monitoring of halogenated compounds is described.
Collapse
Affiliation(s)
- Amaia Ereño Artabe
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Bizkaia, Spain
| | - Hugo Cunha-Silva
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Bizkaia, Spain
| | - Alejandro Barranco
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Bizkaia, Spain.
| |
Collapse
|
48
|
Lewis PJ, McGrath TJ, Emmerson L, Allinson G, Shimeta J. Adélie penguin colonies as indicators of brominated flame retardants (BFRs) in East Antarctica. CHEMOSPHERE 2020; 250:126320. [PMID: 32126331 DOI: 10.1016/j.chemosphere.2020.126320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/17/2020] [Accepted: 02/22/2020] [Indexed: 06/10/2023]
Abstract
While persistent organic pollutant (POP) contamination within Antarctica is largely caused by long-range atmospheric transport (LRAT), Antarctic research bases have been shown to be local sources of POPs such as brominated flame retardants (BFRs). This study compared concentrations of seven polybrominated diphenyl ethers (PBDE) congeners and five novel flame retardants (NBFRs) found in Adélie penguin (Pygoscelis adeliae) colony soils near the Australian research stations, Mawson and Davis, to assess the stations as local sources of these contaminants and provide a much needed baseline for contamination of BFRs in East Antarctica. Soil samples (n = 46) were collected from Adélie colonies at close proximity to the research stations as well as further afield during the 2016-17 austral summer. Samples were analysed using selective pressurised liquid extraction (S-PLE) and gas chromatography coupled to tandem mass spectrometry (GC-MS/MS). PBDEs (BDE-28, -47, -99, -100, -153, -154 and -183) were detected in 45/46 samples with ∑7PBDE concentrations ranging from <0.01 to 1.63 ng/g dry weight (dw) and NBFRs (2,3,4,5,6-pentabromotoluene (PBT), 2,3,4,5,6-pentabromoethylbenzene (PBEB), hexabromobenzene (HBB), 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB) and bis(2,4,6-tribromophenoxy) ethane (BTBPE)) detected in 20/46 samples, with a range of ∑5NBFR from not detected (ND) to 0.16 ng/g dw. Soils taken from around the Davis and Mawson research stations were more highly contaminated (n = 10) than penguin colonies (n = 27) and control areas not affiliated with breeding seabirds (n = 8). The most common congener detected was BDE-99, reflecting inputs from LRAT. However, the congener profiles of station soils supported the hypothesis that research stations are a local source of PBDEs to the Antarctic environment. In addition, the NBFR pentabromoethylbenzene (PBEB) was quantified for the first time in Antarctic soils, providing essential information for baseline contamination within the region and highlighting the need for ongoing monitoring as global regulations for the use of BFRs continuously change.
Collapse
Affiliation(s)
- Phoebe J Lewis
- Centre for Environmental Sustainability and Remediation (EnSuRe), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria, 3001, Australia; Australian Antarctic Division, 203 Channel Highway, Kingston, Tasmania, 7050, Australia.
| | - Thomas J McGrath
- Centre for Environmental Sustainability and Remediation (EnSuRe), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria, 3001, Australia
| | - Louise Emmerson
- Australian Antarctic Division, 203 Channel Highway, Kingston, Tasmania, 7050, Australia
| | - Graeme Allinson
- Centre for Environmental Sustainability and Remediation (EnSuRe), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria, 3001, Australia
| | - Jeff Shimeta
- Centre for Environmental Sustainability and Remediation (EnSuRe), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria, 3001, Australia
| |
Collapse
|
49
|
Veenaas C, Ripszam M, Glas B, Liljelind I, Claeson AS, Haglund P. Differences in chemical composition of indoor air in rooms associated/not associated with building related symptoms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137444. [PMID: 32325564 DOI: 10.1016/j.scitotenv.2020.137444] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 06/11/2023]
Abstract
Building related health effects or symptoms (BRS), known also as sick-building syndrome (SBS), are a phenomenon that is not well understood. In this study, air samples from 51 rooms associated with BRS and 34 control rooms were collected on multi-sorbent tubes and analyzed by a non-target approach using comprehensive two-dimensional gas chromatography and high-resolution mass spectrometry techniques. The large amount of data gathered was analyzed using multivariate statistics (principle component analysis (PCA) and partial least squares (PLS)). This new analysis approach revealed that in rooms where people experienced BRS, petrochemicals and chemicals emitted from plastics were abundant, whereas in rooms where people did not experience BRS, flavor and fragrance compounds were abundant. Among the petrochemicals benzene and 2-butoxyethanol were found in higher levels in rooms where people experienced BRS. The levels of limonene were sometimes in the range of reported odor thresholds, and similarly 3-carene and beta-myrcene were found in higher concentrations in indoor air of rooms where people did not experience BRS. It cannot be ruled out that these compounds may have influenced the perceived air quality. However, the overall variability in air concentrations was large and it was not possible to accurately predict if the air in a particular room could cause BRS or not.
Collapse
Affiliation(s)
- Cathrin Veenaas
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden.
| | - Matyas Ripszam
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden
| | - Bo Glas
- Department of Public Health and Clinical Medicine, Umeå University, 90187 Umeå, Sweden
| | - Ingrid Liljelind
- Department of Public Health and Clinical Medicine, Umeå University, 90187 Umeå, Sweden
| | | | - Peter Haglund
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden
| |
Collapse
|
50
|
Lee HK, Kang H, Lee S, Kim S, Choi K, Moon HB. Human exposure to legacy and emerging flame retardants in indoor dust: A multiple-exposure assessment of PBDEs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:137386. [PMID: 32112953 DOI: 10.1016/j.scitotenv.2020.137386] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/10/2020] [Accepted: 02/16/2020] [Indexed: 06/10/2023]
Abstract
Human exposure to flame retardants (FRs) in indoor environments is a growing concern. In this study, the concentrations of polybrominated diphenyl ethers (PBDEs) and their alternatives, such as novel brominated flame retardants (NBFRs), dechlorane plus (DP), and organophosphate flame retardants (OPFRs), were measured in dust from indoor environments in Korea to investigate their occurrence, contamination profiles, and health risks. Legacy and emerging FRs were detected in dust samples, indicating widespread contamination of indoor environments. The concentrations of alternative FRs were higher in dust from offices compared with house dust, suggesting that office environments are major consumers of alternative FRs. Similar compositional profiles for indoor dust were found for PBDEs in different microenvironments and regions, while OPFR composition varied widely due to disparate applications. The estimated daily intakes of PBDEs, NBFRs, and OPFRs via dust ingestion were lower than the reference doses proposed by previous studies. A multiple-exposure assessment showed that dust ingestion was a major contributor to total PBDEs for toddlers and adults. However, major exposure pathways of BDEs 47 and 209 differed between toddlers and adults. Our study suggests that multiple exposure pathways should be considered in a comprehensive exposure assessment of PBDEs.
Collapse
Affiliation(s)
- Hyun-Kyung Lee
- Department of Marine Science and Convergence Engineering, College of Science and Convergence Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Habyeong Kang
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - Sunggyu Lee
- Department of Marine Science and Convergence Engineering, College of Science and Convergence Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Sunmi Kim
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyungho Choi
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyo-Bang Moon
- Department of Marine Science and Convergence Engineering, College of Science and Convergence Technology, Hanyang University, Ansan 15588, Republic of Korea.
| |
Collapse
|