1
|
Gao Y, Lu H, Zhou H, Tan J. Exploring the impact of polychlorinated biphenyls on comorbidity and potential mitigation strategies. Front Public Health 2024; 12:1474994. [PMID: 39540082 PMCID: PMC11557481 DOI: 10.3389/fpubh.2024.1474994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Polychlorinated Biphenyls (PCBs) persist in the environment and accumulate in humans. Currently, there is a lack of understanding about the overall impact of PCBs on human health, and effective interventions for exposed populations are insufficient. Methods Our study aimed to assess the impact of PCBs on various diseases and mortality risks using data from the National Health and Nutrition Examination Survey, while proposing lifestyle adjustments, particularly dietary modifications, to mitigate mortality risk. Statistical analyses employed principal component analysis, multifactorial logistic regression, multifactorial Cox regression, comorbidity network analysis, and machine learning prediction models. Results Results indicated significant associations between 7 types of PCBs and 12 diseases (p < 0.05), with 6 diseases showing significant positive correlations (OR > 1, p < 0.05), along with listing the 25 most relevant diseases, such as asthma and chronic bronchitis (OR [95% CI] = 5.85 [4.37, 7.83], p < 0.0001), arthritis and osteoporosis (OR [95% CI] = 6.27 [5.23, 7.55], p < 0.0001). This suggested that PCBs may be intimately involved in the development and progression of multiple diseases. By constructing multidimensional machine learning models and conducting multiple iterations for precision and error measurement, PCBs may have the potential to become specific biomarkers for certain diseases in the future. Building upon this, we further suggested that controlling dietary intake to reduce dietary inflammatory index (DII) could lower mortality and disease risks. Discussion While PCBs were independent risk factors for mortality, substantial evidence suggested that adjusting DII might mitigate the adverse effects of PCBs to some extent. Further physiological mechanisms require deeper exploration through additional research.
Collapse
Affiliation(s)
- Ying Gao
- Division of Nephrology, Department of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Han Lu
- Computational Mathematics and Machine Learning, School of Mathematics, Sichuan University, Chengdu, Sichuan, China
| | - Huan Zhou
- Division of Nephrology, Department of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiaxing Tan
- Division of Nephrology, Department of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
2
|
Esteves AM, Alves R, Rocha E, Rocha MJ. PCBs contamination in water and Mytilus edulis along the north Portuguese Atlantic Ocean coastline and analysis of potential carcinogenic risk to human health. MARINE POLLUTION BULLETIN 2024; 207:116823. [PMID: 39226820 DOI: 10.1016/j.marpolbul.2024.116823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/11/2024] [Accepted: 08/03/2024] [Indexed: 09/05/2024]
Abstract
Seven seawater polychlorinated biphenyls (PCBs) were measured in water (DAP), suspended particulate matter (SPM), and blue mussels (Mytilus edulis) collected from four beaches in northwest Portugal. PCBs were extracted using solid-phase-extraction, ultrasound-extraction and QuEChERS before GC-MS analysis. The two-year annual average concentrations of PCBs in DAP, SPM and the four-year analysis in mussels were ∼ 4.4 ng/L, ∼15.9 μg/kg, and ∼ 56.0 μg/kg. The results suggest higher concentrations of PCBs in summer for SPM and in spring for mussels, mainly those collected close to the Ave River estuary. The origins of PCBs remain uncertain. Risk assessment shows that PCBs in water are unlikely to harm local biota due to their low thyroid hormone toxicity equivalents (TEQ-TH; ∼1.4E-04 ng/L and ∼ 4.1E-04 μg/kg) and on WHO toxicity equivalents (TEQ-WHO; ∼2.1E-05 ng/L and ∼ 4.9E-05 μg/kg). However, the lifetime carcinogenic risk (LCR) for humans consuming local bivalves is concerning, as it exceeds 1.0E-06.
Collapse
Affiliation(s)
- Ana Margarida Esteves
- Laboratory of Histology and Embryology, Department of Microscopy, ICBAS - School of Medicine and Biomedical Sciences, U.Porto - University of Porto, Portugal; Animal Morphology and Toxicology Team, CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, U.Porto - University of Porto, Portugal
| | - Rodrigo Alves
- Laboratory of Histology and Embryology, Department of Microscopy, ICBAS - School of Medicine and Biomedical Sciences, U.Porto - University of Porto, Portugal; Animal Morphology and Toxicology Team, CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, U.Porto - University of Porto, Portugal
| | - Eduardo Rocha
- Laboratory of Histology and Embryology, Department of Microscopy, ICBAS - School of Medicine and Biomedical Sciences, U.Porto - University of Porto, Portugal; Animal Morphology and Toxicology Team, CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, U.Porto - University of Porto, Portugal.
| | - Maria João Rocha
- Laboratory of Histology and Embryology, Department of Microscopy, ICBAS - School of Medicine and Biomedical Sciences, U.Porto - University of Porto, Portugal; Animal Morphology and Toxicology Team, CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, U.Porto - University of Porto, Portugal.
| |
Collapse
|
3
|
Kouiti M, Castillo-Hermoso MÁ, Youlyouz-Marfak I, Khan KS, Thangaratinam S, Olmedo-Requena R, Zamora J, Jiménez-Moléon JJ. Persistent organic pollutant exposure as a risk factor of gestational diabetes mellitus: A systematic review and meta-analysis. BJOG 2024; 131:579-588. [PMID: 38044810 DOI: 10.1111/1471-0528.17725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 12/05/2023]
Abstract
BACKGROUND Findings related to the association between persistent organic pollutants (POPs) and gestational diabetes mellitus (GDM) are inconclusive. OBJECTIVES To estimate the strength of the association between POP exposure and GDM in a systematic review with meta-analysis. SEARCH STRATEGY MEDLINE, Scopus and Web of Science were searched until July 2023. SELECTION CRITERIA Cohort and case-control studies analysing the association between POPs and GDM. DATA COLLECTION AND ANALYSIS We assessed the risk of bias using the Quality in Prognosis Studies scale (QUIPS). Standardised mean differences were pooled using random-effect models. MAIN RESULTS Sixteen articles including 12 216 participants were selected. The risk of bias was high in four articles (25%), moderate in 11 (68.75%) and low in one (6.25%). Small mean difference between GDM cases and controls was observed for PFHpA (0.26, 95% confidence interval [CI] 0.1-0.35, I2 = 0.0%), PCB180 (0.37, 95% CI 0.19-0.56; I2 = 25.3%), BDE47 (0.23, 95% CI 0.0-0.45, I2 = 0%), BDE99 (0.36, 95% CI 0.14-0.59; I2 = 0%), BDE100 (0.42, 95% CI 0.19-0.64; I2 = 0%) and HCB (0.22, 95% CI 0.01-0.42, I2 = 39.6%). No considerable difference was observed for the rest of POPs. CONCLUSION Small mean differences between GDM cases and controls were observed for some POPs. However, evidence shows mostly moderate quality and results were heterogeneous. Improved research methodology is needed to assess POPs and GDM risk.
Collapse
Affiliation(s)
- Malak Kouiti
- Departamento de Medicina Preventiva y Salud Pública, Universidad de Granada, Granada, Spain
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan First University of Settat, Settat, Morocco
| | | | - Ibtissam Youlyouz-Marfak
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan First University of Settat, Settat, Morocco
| | - Khalid Saeed Khan
- Departamento de Medicina Preventiva y Salud Pública, Universidad de Granada, Granada, Spain
- Consorcio Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Shakila Thangaratinam
- Institute for Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Birmingham Women's and Children's National Health Service Foundation Trust, Birmingham, UK
| | - Rocío Olmedo-Requena
- Departamento de Medicina Preventiva y Salud Pública, Universidad de Granada, Granada, Spain
- Consorcio Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Javier Zamora
- Consorcio Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Institute for Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Birmingham Women's and Children's National Health Service Foundation Trust, Birmingham, UK
- Clinical Biostatistics Unit, Hospital Ramon y Cajal (IRYCIS), Madrid, Spain
| | - José Juan Jiménez-Moléon
- Departamento de Medicina Preventiva y Salud Pública, Universidad de Granada, Granada, Spain
- Consorcio Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| |
Collapse
|
4
|
Yang L, Yao Y, Zeng Y, Yu S, Liu Y, An Q, Aamir M, Xu C, Hayat K, Liu W. Exposure to Short- and Medium-Chain Chlorinated Paraffins and the Risk of Gestational Diabetes Mellitus: A Nested Case-Control Study in Eastern China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:3665-3676. [PMID: 38358856 DOI: 10.1021/acs.est.3c08064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Toxicological studies have indicated that exposure to chlorinated paraffins (CPs) may disrupt intracellular glucose and energy metabolism. However, limited information exists regarding the impact of human CP exposure on glucose homeostasis and its potential association with an increased risk of developing gestational diabetes mellitus (GDM). Here, we conducted a prospective study with a nested case-control design to evaluate the link between short- and medium-chain CP (SCCPs and MCCPs) exposures during pregnancy and the risk of GDM. Serum samples from 102 GDM-diagnosed pregnant women and 204 healthy controls were collected in Hangzhou, Eastern China. The median (interquartile range, IQR) concentration of SCCPs was 161 (127, 236) ng/mL in the GDM group compared to 127 (96.9, 176) ng/mL in the non-GDM group (p < 0.01). For MCCPs, the GDM group had a median concentration of 144 (117, 174) ng/mL, while the control group was 114 (78.1, 162) ng/mL (p < 0.01). Compared to the lowest quartile as the reference, the adjusted odds ratios (ORs) of GDM were 7.07 (95% CI: 2.87, 17.40) and 3.34 (95% CI: 1.48, 7.53) in the highest quartile of ∑SCCP and ∑MCCP levels, respectively, with MCCPs demonstrating an inverted U-shaped association with GDM. Weighted quantile sum regression evaluated the joint effects of all CPs on GDM and glucose homeostasis. Among all CP congeners, C13H23Cl5 and C10H16Cl6 were the crucial variables driving the positive association with the GDM risk. Our results demonstrated a significant positive association between CP concentration in maternal serum and GDM risk, and exposure to SCCPs and MCCPs may disturb maternal glucose homeostasis. These findings contribute to a better understanding of the health risks of CP exposure and the role of environmental contaminants in the pathogenesis of GDM.
Collapse
Affiliation(s)
- Lina Yang
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu Yao
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yujia Zeng
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shijie Yu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yingxue Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qi An
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Muhammad Aamir
- Key Laboratory of Pollution Exposure and Health Intervention, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Chenye Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Kashif Hayat
- Key Laboratory of Pollution Exposure and Health Intervention, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Weiping Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Pollution Exposure and Health Intervention, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| |
Collapse
|
5
|
Lan T, Liu B, Bao W, Thorne PS. Identification of PCB congeners and their thresholds associated with diabetes using decision tree analysis. Sci Rep 2023; 13:18322. [PMID: 37884570 PMCID: PMC10603165 DOI: 10.1038/s41598-023-45301-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
Few studies have investigated the potential combined effects of multiple PCB congeners on diabetes. To address this gap, we used data from 1244 adults in the National Health and Nutrition Examination Survey (NHANES) 2003-2004. We used (1) classification trees to identify serum PCB congeners and their thresholds associated with diabetes; and (2) logistic regression to estimate the odds ratios (ORs) and 95% confidence intervals (CIs) of diabetes with combined PCB congeners. Of the 40 PCB congeners examined, PCB 126 has the strongest association with diabetes. The adjusted OR of diabetes comparing PCB 126 > 0.025 to ≤ 0.025 ng/g was 2.14 (95% CI 1.30-3.53). In the subpopulation with PCB 126 > 0.025 ng/g, a lower PCB 101 concentration was associated with an increased risk of diabetes (comparing PCB 101 < 0.72 to ≥ 0.72 ng/g, OR 3.3, 95% CI 1.27-8.55). In the subpopulation with PCB 126 > 0.025 & PCB 101 < 0.72 ng/g, a higher PCB 49 concentration was associated with an increased risk of diabetes (comparing PCB 49 > 0.65 to ≤ 0.65 ng/g, OR 2.79, 95% CI 1.06-7.35). This nationally representative study provided new insights into the combined associations of PCBs with diabetes.
Collapse
Affiliation(s)
- Tuo Lan
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Buyun Liu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wei Bao
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Peter S Thorne
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, USA.
- Human Toxicology Program, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
6
|
Ma J, Li Y, Qian L, Geng S, Yao X, Gao X, Yan Y, Wen J. Serum levels of polychlorinated biphenyls and polybrominated diphenyl ethers in early pregnancy and their associations with gestational diabetes mellitus. CHEMOSPHERE 2023; 339:139640. [PMID: 37499805 DOI: 10.1016/j.chemosphere.2023.139640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 07/29/2023]
Abstract
Polychlorinated Biphenyls (PCBs) and Polybrominated Diphenyl Ethers (PBDEs) are extensively present in humans and may disturb glucose metabolism during pregnancy. However, previous reports on the associations between PCBs/PBDEs levels and gestational diabetes mellitus (GDM) have been inconsistent. We performed a nested case-control study to measure the serum levels of 6 PCB and 7 PBDE congeners in early pregnancy, and to assess their associations with GDM risk and blood glucose levels. Totally, 208 serum samples (104 GDM cases and 104 controls) were included based on a prospective cohort which was carried out in Jiangsu province, China, from 2020 to 2022. The results showed that PCB-153 was the major PCB congener, whereas PBDE-47 was the predominant PBDE congener. The continuous concentrations of PCB-153, PBDE-28, and total PCB were significantly related to an increased risk of GDM, with adjusted ORs (95%CI) of 1.25 (1.04-1.50), 1.19 (1.02-1.39), and 1.37 (1.05-1.79), respectively. Potential dose-response relationships were also observed between serum levels of PCB-153 (P = 0.011), PBDE-28 (P = 0.028), total PCB (P = 0.048), and total PCB/PBDE (P = 0.010) and GDM risk. Moreover, PCB-153, PBDE-28 and total PCB levels were positively related to 1-h OGTT blood glucose (adjusted βPCB-153: 0.14, 95%CI: 0.00-0.28; adjusted βPBDE-28: 0.20, 95%CI: 0.08-0.32; adjusted βtotal PCB: 0.30, 95%CI: 0.09-0.50), whereas none of the PCBs/PBDEs were statistically related to fasting blood glucose and 2-h OGTT blood glucose (all P > 0.05). Further meta-analysis also supported the association of PCBs exposure with GDM risk. Our study provides further evidence that PCBs/PBDEs exposure may increase GDM risk during pregnancy.
Collapse
Affiliation(s)
- Jinqi Ma
- Department of Obstetrics and Gynecology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, Jiangsu, China
| | - Ying Li
- Department of Obstetrics and Gynecology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, Jiangsu, China
| | - Li Qian
- Department of Obstetrics and Gynecology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, Jiangsu, China
| | - Shijie Geng
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, Jiangsu, China
| | - Xiaodie Yao
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, Jiangsu, China
| | - Xian Gao
- Department of Obstetrics and Gynecology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, Jiangsu, China
| | - Yan Yan
- Department of Obstetrics and Gynecology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, Jiangsu, China
| | - Juan Wen
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, Jiangsu, China.
| |
Collapse
|
7
|
Gourronc FA, Chimenti MS, Lehmler HJ, Ankrum JA, Klingelhutz AJ. Hydroxylation markedly alters how the polychlorinated biphenyl (PCB) congener, PCB52, affects gene expression in human preadipocytes. Toxicol In Vitro 2023; 89:105568. [PMID: 36804509 PMCID: PMC10081964 DOI: 10.1016/j.tiv.2023.105568] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 12/23/2022] [Accepted: 02/07/2023] [Indexed: 02/17/2023]
Abstract
Polychlorinated biphenyls (PCBs) accumulate in adipose tissue and are linked to obesity and diabetes. The congener, PCB52 (2,2',5,5'-tetrachorobiphenyl), is found at high levels in school air. Hydroxylation of PCB52 to 4-OH-PCB52 (4-hydroxy-2,2',5,5'-tetrachorobiphenyl) may increase its toxicity. To understand PCB52's role in causing adipose dysfunction, we exposed human preadipocytes to PCB52 or 4-OH-PCB52 across a time course and assessed transcript changes using RNAseq. 4-OH-PCB52 caused considerably more changes in the number of differentially expressed genes as compared to PCB52. Both PCB52 and 4-OH-PCB52 upregulated transcript levels of the sulfotransferase SULT1E1 at early time points, but cytochrome P450 genes were generally not affected. A set of genes known to be transcriptionally regulated by PPARα were consistently downregulated by PCB52 at all time points. In contrast, 4-OH-PCB52 affected a variety of pathways, including those involving cytokine responses, hormone responses, focal adhesion, Hippo, and Wnt signaling. Sets of genes known to be transcriptionally regulated by IL17A or parathyroid hormone (PTH) were found to be consistently downregulated by 4-OH-PCB52. Most of the genes affected by PCB52 and 4-OH-PCB52 were different and, of those that were the same, many were changed in an opposite direction. These studies provide insight into how PCB52 or its metabolites may cause adipose dysfunction to cause disease.
Collapse
Affiliation(s)
| | - Michael S Chimenti
- Iowa Institute of Human Genetics, Bioinformatics Division, University of Iowa, United States
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, University of Iowa, United States
| | - James A Ankrum
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, United States; Fraternal Order of Eagles Diabetes Research Center, University of Iowa, United States
| | - Aloysius J Klingelhutz
- Department of Microbiology and Immunology, University of Iowa, United States; Fraternal Order of Eagles Diabetes Research Center, University of Iowa, United States.
| |
Collapse
|
8
|
Yao X, Geng S, Zhu L, Jiang H, Wen J. Environmental pollutants exposure and gestational diabetes mellitus: Evidence from epidemiological and experimental studies. CHEMOSPHERE 2023; 332:138866. [PMID: 37164202 DOI: 10.1016/j.chemosphere.2023.138866] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/05/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023]
Abstract
Except for known sociodemographic factors, long-term exposure to environmental pollutants has been shown to contribute to the development of gestational diabetes mellitus (GDM), but the conclusions remain controversial. To provide a comprehensive overview of the association between environmental pollutants and GDM, we performed a systematic review and meta-analysis. Several electronic databases (PubMed, Embase, Web of Science, Medline and Cochrane) were searched for related epidemiological and experimental studies up to September 2022. For epidemiological studies, a meta-analysis was carried out to appraise the effect of environmental pollutants, including polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), per- and polyfluoroalkyl substances (PFASs), phenols, phthalates (PAEs), polybrominated diphenyl ethers (PBDEs) and parabens exposure on GDM. Moreover, we also summarized possible biological mechanisms linking pollution exposure and GDM based on the included experimental studies. A total of 80 articles were enrolled, including 38 epidemiological studies and 42 experimental studies. Meta-analysis results showed that exposure to PAEs [OR (95%CI) = 1.07 (1.00, 1.14)], PFASs [OR (95%CI) = 1.10 (1.01, 1.19)], as well as PCBs [OR (95%CI) = 1.18 (1.02, 1.36)] and PBDEs [OR (95%CI) = 1.33 (1.17, 1.50)] significantly increased the risk of GDM, but no significant effects were found for phenols, OCPs, and parabens. In addition, experimental studies suggested that the potential biological mechanisms of environmental pollutants contributing to GDM may involve insulin resistance, β-cell dysfunction, neurohormonal dysfunction, inflammation, oxidative stress, epigenetic modification, and alterations in gut microbiome. In conclusion, long-term environmental pollutants exposure may induce the development of GDM, and there may be a synergistic effect between the homologs. However, studies conducted on the direct biological link between environmental pollutants and GDM were few. More prospective studies and high-quality in vivo and in vitro experiments were needed to investigate the specific effects and mechanisms.
Collapse
Affiliation(s)
- Xiaodie Yao
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, 210004, PR China
| | - Shijie Geng
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, 210004, PR China
| | - Lijun Zhu
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, 210004, PR China
| | - Hua Jiang
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, 210004, PR China.
| | - Juan Wen
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, 210004, PR China.
| |
Collapse
|
9
|
Lan T, Liu B, Bao W, Thorne PS. Identification of PCB Congeners and their Thresholds associated with Diabetes using Decision Tree Analysis. RESEARCH SQUARE 2023:rs.3.rs-2845995. [PMID: 37205460 PMCID: PMC10187404 DOI: 10.21203/rs.3.rs-2845995/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Few studies have investigated the potential combined effects of multiple PCB congeners on diabetes. To address this gap, we used data from 1244 adults in the National Health and Nutrition Examination Survey (NHANES) 2003-2004. We used 1) classification trees to identify serum PCB congeners and their thresholds associated with diabetes; and 2) logistic regression to estimate the odds ratios (ORs) and 95% confidence intervals (CIs) of diabetes with combined PCB congeners. Of the 40 PCB congeners examined, PCB 126 has the strongest association with diabetes. The adjusted OR of diabetes comparing PCB 126 > 0.025 to ≤ 0.025 ng/g was 2.14 (95% CI 1.30-3.53). In the subpopulation with PCB 126 > 0.025 ng/g, a lower PCB 101 concentration was associated with an increased risk of diabetes (comparing PCB 101 < 0.72 to ≥ 0.72 ng/g, OR = 3.3, 95% CI: 1.27-8.55). In the subpopulation with PCB 126 > 0.025&PCB 101 < 0.72 ng/g, a higher PCB 49 concentration was associated with an increased risk of diabetes (comparing PCB 49 > 0.65 to ≤ 0.65 ng/g, OR = 2.79, 95% CI: 1.06-7.35). This nationally representative study provided new insights into the combined associations of PCBs with diabetes.
Collapse
Affiliation(s)
- Tuo Lan
- University of Iowa College of Public Health
| | - Buyun Liu
- University of Science and Technology of China
| | - Wei Bao
- University of Science and Technology of China
| | | |
Collapse
|
10
|
Eberle C, Stichling S. Environmental health influences in pregnancy and risk of gestational diabetes mellitus: a systematic review. BMC Public Health 2022; 22:1572. [PMID: 35982427 PMCID: PMC9389831 DOI: 10.1186/s12889-022-13965-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 06/27/2022] [Indexed: 11/10/2022] Open
Abstract
Background Gestational diabetes mellitus (GDM) is one of the most common pregnancy complications globally. Environmental risk factors may lead to increased glucose levels and GDM, which in turn may affect not only the health of the mother but assuming hypotheses of "fetal programming", also the health of the offspring. In addition to traditional GDM risk factors, the evidence is growing that environmental influences might affect the development of GDM. We conducted a systematic review analyzing the association between several environmental health risk factors in pregnancy, including climate factors, chemicals and metals, and GDM. Methods We performed a systematic literature search in Medline (PubMed), EMBASE, CINAHL, Cochrane Library and Web of Science Core Collection databases for research articles published until March 2021. Epidemiological human and animal model studies that examined GDM as an outcome and / or glycemic outcomes and at least one environmental risk factor for GDM were included. Results Of n = 91 studies, we classified n = 28 air pollution, n = 18 persistent organic pollutants (POP), n = 11 arsenic, n = 9 phthalate n = 8 bisphenol A (BPA), n = 8 seasonality, n = 6 cadmium and n = 5 ambient temperature studies. In total, we identified two animal model studies. Whilst we found clear evidence for an association between GDM and air pollution, ambient temperature, season, cadmium, arsenic, POPs and phthalates, the findings regarding phenols were rather inconsistent. There were clear associations between adverse glycemic outcomes and air pollution, ambient temperature, season, POPs, phenols, and phthalates. Findings regarding cadmium and arsenic were heterogeneous (n = 2 publications in each case). Conclusions Environmental risk factors are important to consider in the management and prevention of GDM. In view of mechanisms of fetal programming, the environmental risk factors investigated may impair the health of mother and offspring in the short and long term. Further research is needed. Supplementary Information The online version contains supplementary material available at 10.1186/s12889-022-13965-5.
Collapse
Affiliation(s)
- Claudia Eberle
- Medicine With Specialization in Internal Medicine and General Medicine, Hochschule Fulda, University of Applied Sciences, Leipziger Strasse 123, 36037, Fulda, Germany.
| | - Stefanie Stichling
- Medicine With Specialization in Internal Medicine and General Medicine, Hochschule Fulda, University of Applied Sciences, Leipziger Strasse 123, 36037, Fulda, Germany
| |
Collapse
|
11
|
Yan D, Jiao Y, Yan H, Liu T, Yan H, Yuan J. Endocrine-disrupting chemicals and the risk of gestational diabetes mellitus: a systematic review and meta-analysis. Environ Health 2022; 21:53. [PMID: 35578291 PMCID: PMC9109392 DOI: 10.1186/s12940-022-00858-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 04/26/2022] [Indexed: 05/25/2023]
Abstract
OBJECTIVE To conduct a comprehensive systematic review and meta-analysis to estimate the relationship between endocrine-disrupting chemicals (EDCs), including polychlorinated biphenyls (PCBs), poly-brominated diphenyl ethers (PBDEs), phthalates (PAEs), and per- and polyfluoroalkyl substances (PFAS) exposure and risk of gestational diabetes mellitus (GDM). METHODS Relevant studies from their inception to November 2021 were identified by searching EMBASE, PubMed, and Web of Science. The cohort and case-control studies that reported effect size with 95% confidence intervals (CIs) of EDC exposure and GDM were selected. The heterogeneity among the included studies was quantified by I2 statistic. Publication bias was evaluated through the Begg and Egger tests. RESULTS Twenty-five articles with a total of 23,796 participants were found. Results indicated that exposure to PCBs has a significant influence on the incidence of GDM (OR = 1.14; 95% CI = 1.00--1.31; n = 8). The risk of GDM was found to be associated with PBDE exposure (OR = 1.32; 95% CI = 1.15-1.53; n = 4). PAEs and PFASs exposure were also positively associated with the risk of GDM, with summary ORs of 1.10 (95% CI = 1.03-1.16; n = 7 for PAEs) and 1.09 (95% CI = 1.02-1.16; n = 11 for PFASs), respectively. When only cohort studies were considered, the summary OR between PCBs exposure and the risk of GDM was 0.99 (95% CI = 0.91-1.09; n = 5). Meanwhile, the summary ORs from cohort studies for PBDEs, PAEs, and PFASs exposure were 1.12 (95% CI = 1.00-1.26; n = 2), 1.08 (95% CI = 1.02-1.15; n = 5), and 1.06 (95% CI = 1.00-1.12; n = 8), respectively. The Beggs and Egger tests did not show publication bias, and the sensitivity analyses did not change the results in this meta-analysis. CONCLUSION These results support that exposure to certain EDCs, including PCBs, PBDEs, PAEs, and PFAS, increase the risk of GDM. Further large-sample epidemiologic researches and mechanistic studies are needed to verify the potential relationship and biological mechanisms. These results are of public health significance because the daily EDC exposure is expected to increase the risk of GDM development.
Collapse
Affiliation(s)
- Dandan Yan
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, People's Republic of China
| | - Yang Jiao
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan, 430030, People's Republic of China
| | - Honglin Yan
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, People's Republic of China
| | - Tian Liu
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, People's Republic of China
| | - Hong Yan
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan, 430030, People's Republic of China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, People's Republic of China.
| |
Collapse
|
12
|
Liu X, Zhang L, Chen L, Li J, Wang J, Zhao Y, Liu L, Wu Y. Identification and prioritization of the potent components for combined exposure of multiple persistent organic pollutants associated with gestational diabetes mellitus. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124905. [PMID: 33412473 DOI: 10.1016/j.jhazmat.2020.124905] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Persistent organic pollutants (POPs) remain a major point of concern worldwide, and surveillance monitoring of these contaminants presents a significant challenge. Here, we conducted an assessment of combined exposure to multiple POPs components [10 perfluoroalkyl acids (PFAAs), seven polybrominated diphenyl ethers (PBDEs), six polychlorinated biphenyls (PCBs) and 29 dioxin-like compounds (DLCs)] in relation to gestational diabetes mellitus (GDM) risk, and determined the identification and prioritization of potent components in these POPs mixtures. The results indicated a significant mixture effect and the combined exposure index estimated from multiple POPs components was associated with GDM and glucose homeostasis (P < 0.001). Based on the mixture effects on GDM, the procedure of prioritization identified DLCs as the components of the greatest concern, although at the lowest body burden in the population compared with PBDEs, PFAAs, and PCBs. For glucose homeostasis, BDE-153 was the chemical of top-ranked priority of concern. The final effect-based prioritized list of POPs was DLCs > PBDEs >PFAAs > PCBs. This prioritization is important for developing a more cost-effective regulation framework focusing on the POPs components of the greatest concern to human health.
Collapse
Affiliation(s)
- Xin Liu
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China; Institute of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Lei Zhang
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Liangkai Chen
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430023, China
| | - Jingguang Li
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China.
| | - Jun Wang
- Shenzhen Center for Chronic Disease Control, Shenzhen 518020, China
| | - Yunfeng Zhao
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Liegang Liu
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430023, China
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China; Institute of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
13
|
Mehta SS, James-Todd T, Applebaum KM, Bellavia A, Coleman-Phox K, Adler N, Laraia B, Epel E, Parry E, Wang M, Park JS, Zota AR. Persistent organic pollutants and maternal glycemic outcomes in a diverse pregnancy cohort of overweight women. ENVIRONMENTAL RESEARCH 2021; 193:110551. [PMID: 33278474 PMCID: PMC7855882 DOI: 10.1016/j.envres.2020.110551] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/11/2020] [Accepted: 11/24/2020] [Indexed: 05/15/2023]
Abstract
BACKGROUND Animal and human studies suggest certain persistent organic pollutants (POPs) may impact glucose metabolism; however, few epidemiologic studies have examined environmental determinants of glycemic outcomes during pregnancy. Our objective is to evaluate associations between exposures to individual and mixture of POPs and measures of prenatal fasting glucose, insulin, and insulin resistance during pregnancy in overweight women. METHODS A cohort of overweight and obese pregnant women (N = 95) was recruited from California. Blood samples were collected during late first or second trimester (median = 16 weeks' gestation; range = 10-24 weeks). Exposures included serum concentrations of polybrominated diphenyl ethers (PBDEs) and hydroxylated metabolites (OH-PBDEs), polychlorinated biphenyls (PCBs), and poly- and perfluoroalkyl substances (PFASs). Outcomes included serum concentrations of fasting plasma glucose, fasting plasma insulin, and calculated homeostatic model assessment of insulin resistance (HOMA-IR). Generalized linear models were used to evaluate cross-sectional associations between individual and aggregate POPs and mean percent difference in fasting glucose, fasting insulin, and HOMA-IR. Bayesian kernel machine regression (BKMR) was used to assess the relative importance of each exposure to the association with our outcomes, using conditional and group posterior inclusion probabilities (PIPs). RESULTS Study participants were racially/ethnically diverse and nearly half were below the federal poverty level. Across PBDEs and OH-PBDEs, the direction of associations with fasting glucose, fasting insulin and HOMA-IR were varied. A doubling of PCB-138, PCB-153, PCB-180, and ∑PCBs concentrations was associated with a 2.10% mmol/L (95%CI: 0.49%, 3.74%), 2.10% mmol/L (95%CI: -0.14%, 4.39%), 2.10% mmol/L (95%CI: 0.12%, 4.12%), and 2.81% mmol/L (95%CI: 0.38%, 5.31%) increase in fasting glucose, respectively. Exposure to individual PCBs was positively associated with both fasting insulin and HOMA-IR. All PFAS were inversely associated with fasting glucose, fasting insulin, and HOMA-IR. In BKMR models of fasting glucose, all four chemical classes were important contributors to the overall mixture, with PFASs identified as the most important contributor. DISCUSSION Prenatal PCB exposure was positively associated while certain PBDE and PFAS analytes were inversely associated with fasting glucose concentrations in overweight women. Further examination of the relationship between POPs exposure and glycemic functioning in a larger study population of women during pregnancy is warranted.
Collapse
Affiliation(s)
- Suril S Mehta
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA.
| | - Tamarra James-Todd
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA; Department of Epidemiology, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Katie M Applebaum
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - Andrea Bellavia
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Kimberly Coleman-Phox
- Center for Health and Community, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Nancy Adler
- Department of Psychiatry, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Barbara Laraia
- Division of Community Health and Human Development, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Elissa Epel
- Department of Psychiatry, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Emily Parry
- Environmental Chemistry Laboratory, California Department of Toxic Substances Control, Berkeley, CA, USA
| | - Miaomiao Wang
- Environmental Chemistry Laboratory, California Department of Toxic Substances Control, Berkeley, CA, USA
| | - June-Soo Park
- Environmental Chemistry Laboratory, California Department of Toxic Substances Control, Berkeley, CA, USA
| | - Ami R Zota
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| |
Collapse
|
14
|
Lee CC, Chang WH, Hung CF, Chen HL. Fish consumption is an indicator of exposure to non-dioxin like polychlorinated biphenyls in cumulative risk assessments based on a probabilistic and sensitive approach. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115732. [PMID: 33045582 DOI: 10.1016/j.envpol.2020.115732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
The health effects of non-dioxin like polychlorinated biphenyls (NDL-PCBs) include liver, immune, neurodevelopmental, and neurobehavioral effects in addition to hormone alteration. Among 209 PCB congeners, six indicator PCBs (ICES-6) account for about half of NDL-PCBs present in feed and food. The objectives of the current study were first to examine the levels of total PCBs, NDL-PCBs, and ICES-6 PCBs in 200 foods commonly consumed in Taiwan and, second, to estimate the cumulative health risks of NDL-PCB consumption. We suggest a risk management strategy that identifies foodstuffs with particularly high NDL-PCB content. In 200 food samples, which were grouped into 12 categories and 64 food types, 51 PCB congeners were detected. The concentrations of ICES-6 PCBs in all samples were lower than the maximum levels for NDL-PCBs in foodstuffs set by the European Union. PCB-153, PCB-138, and PCB-180 were the major congeners in all food, indicating that the food was contaminated in the past. ICES-6 PCBs contributed 42.2%-52.9% of total NDL-PCBs in all tested foodstuffs. The average estimated daily intake (EDI) of PCBs ranged from 1.22 ng/kg bw/day to 2.89 ng/kg bw/day in different age groups (95th quantile [P95]: 4.12-10.28 ng/kg bw/day). The P95 EDI in 3-6-year-olds was higher than 10 ng/kg/day. A qualitative sensitivity analysis in ICES-6 PCBs exposure showed that for the 3- to 6-year-old group, the highest sensitivity was how much fish they ate (37.6%) and its concentration (32.5%). The consumption of pork, eggs, fish, and other seafood accounts for over 90% of ICES-6 PCBs intake, and these foods should be highlighted in guidelines regarding NDL-PCB intake.
Collapse
Affiliation(s)
- Ching-Chang Lee
- Department of Environmental and Occupational Health, National Cheng Kung University, Tainan, Taiwan; Department of Environmental Trace Toxic Substances Research Center, Medical College, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Hsiung Chang
- Department of Food Safety/Hygiene and Risk Management, National Cheng Kung University, Taiwan; Department of Environmental Trace Toxic Substances Research Center, Medical College, National Cheng Kung University, Tainan, Taiwan
| | - Chung-Feng Hung
- Department of Environmental and Occupational Health, National Cheng Kung University, Tainan, Taiwan; Department of Environmental Trace Toxic Substances Research Center, Medical College, National Cheng Kung University, Tainan, Taiwan
| | - Hsiu-Ling Chen
- Department of Food Safety/Hygiene and Risk Management, National Cheng Kung University, Taiwan; Department of Environmental Trace Toxic Substances Research Center, Medical College, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
15
|
Fernández-Cruz T, Álvarez-Silvares E, Domínguez-Vigo P, Simal-Gándara J, Martínez-Carballo E. Prenatal exposure to organic pollutants in northwestern Spain using non-invasive matrices (placenta and meconium). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 731:138341. [PMID: 32408211 DOI: 10.1016/j.scitotenv.2020.138341] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/28/2020] [Accepted: 03/29/2020] [Indexed: 06/11/2023]
Abstract
Human exposure to environmental organic pollutants (OPs) begins in the uterine life period by trans-placental transfer. Epidemiological studies have consistently demonstrated the vulnerability of human fetuses and infants to the effects of OPs because of their rapid growth and organ development, cell differentiation, and immaturity of metabolism. The aim of the present study was to evaluate the prenatal exposure to OPs characterized by different physicochemical properties using non-invasive biological samples (meconium and placenta). A total of 88 placenta and 53 meconium samples were collected in Ourense, a city located in northwestern Spain, at the delivery and after birth from mothers and their infants from the University Hospital of Ourense, respectively. Selective pressurized liquid extraction (SPLE) methodologies were used to determine the targeted OPs in the selected biological samples. Cleanup of extracts was performed by solid-phase extraction (SPE) using EZ-POP cartridges and detection by gas chromatography (GC) coupled to tandem mass spectrometry (QqQ-MS/MS). The targeted OPs were detected with the following mean level total concentration order polycyclic aromatic hydrocarbons (PAHs) > organophosphorus pesticides (OPPs) > non-dioxin like polychlorinated biphenyls (NDLPCBs) > pyrethroids (PYRs) > polybrominated diphenyl ethers (PBDEs) > dioxin like polychlorinated biphenyls (DLPCBs) > organochlorine pesticides (OCPs) for placenta and ΣNDLPCBs > ΣPAHs > ΣOCPs > ΣPYRs > ΣOPPs > ΣDLPCBs > ΣPBDEs for meconium, respectively. Significant correlations (p < .050) between the socio-demographic characteristics of the selected population (mother's parity, age, weight increase during pregnancy, place of living and smoking habits) and log transformed concentration of some of the targeted OPs (OCPs, PBDEs, PYRs, OPPs and PAHs) were detected. The results obtained shown the complementary information given by both biological samples selected. Nevertheless, additional research will be needed to gain an understanding of the trans-placental transfer of OPs, to choose the best biological matrix to evaluate the prenatal exposure to OPs in a correct way and to know their health implications.
Collapse
Affiliation(s)
- Tania Fernández-Cruz
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Agri-Food Research and Transfer Cluster (CITACA), Campus da Auga, Faculty of Sciences, University of Vigo, 32004 Ourense, Spain
| | - Esther Álvarez-Silvares
- Obstetrics and Gynecology Department, Complexo Hospitalario Universitario de Ourense, 32005, Spain.
| | - Paula Domínguez-Vigo
- Obstetrics and Gynecology Department, Complexo Hospitalario Universitario de Ourense, 32005, Spain
| | - Jesús Simal-Gándara
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Agri-Food Research and Transfer Cluster (CITACA), Campus da Auga, Faculty of Sciences, University of Vigo, 32004 Ourense, Spain
| | - Elena Martínez-Carballo
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Agri-Food Research and Transfer Cluster (CITACA), Campus da Auga, Faculty of Sciences, University of Vigo, 32004 Ourense, Spain.
| |
Collapse
|
16
|
Varshavsky J, Smith A, Wang A, Hom E, Izano M, Huang H, Padula A, Woodruff TJ. Heightened susceptibility: A review of how pregnancy and chemical exposures influence maternal health. Reprod Toxicol 2020; 92:14-56. [PMID: 31055053 PMCID: PMC6824944 DOI: 10.1016/j.reprotox.2019.04.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 03/12/2019] [Accepted: 04/22/2019] [Indexed: 12/19/2022]
Abstract
Pregnancy is a unique period when biological changes can increase sensitivity to chemical exposures. Pregnant women are exposed to multiple environmental chemicals via air, food, water, and consumer products, including flame retardants, plasticizers, and pesticides. Lead exposure increases risk of pregnancy-induced hypertensive disorders, although women's health risks are poorly characterized for most chemicals. Research on prenatal exposures has focused on fetal outcomes and less on maternal outcomes. We reviewed epidemiologic literature on chemical exposures during pregnancy and three maternal outcomes: preeclampsia, gestational diabetes, and breast cancer. We found that pregnancy can heighten susceptibility to environmental chemicals and women's health risks, although variations in study design and exposure assessment limited study comparability. Future research should include pregnancy as a critical period for women's health. Incorporating biomarkers of exposure and effect, deliberate timing and method of measurement, and consistent adjustment of potential confounders would strengthen research on the exposome and women's health.
Collapse
Affiliation(s)
- Julia Varshavsky
- University of California, San Francisco, Program on Reproductive Health and the Environment, San Francisco, CA, USA.
| | - Anna Smith
- University of California, Berkeley, School of Public Health, Berkeley, CA, USA
| | - Aolin Wang
- University of California, San Francisco, Program on Reproductive Health and the Environment, San Francisco, CA, USA; University of California, San Francisco, Bakar Computational Health Sciences Institute, San Francisco, CA, USA
| | - Elizabeth Hom
- University of California, San Francisco, Program on Reproductive Health and the Environment, San Francisco, CA, USA
| | - Monika Izano
- University of California, San Francisco, Program on Reproductive Health and the Environment, San Francisco, CA, USA
| | - Hongtai Huang
- University of California, San Francisco, Program on Reproductive Health and the Environment, San Francisco, CA, USA; University of California, San Francisco, Bakar Computational Health Sciences Institute, San Francisco, CA, USA
| | - Amy Padula
- University of California, San Francisco, Program on Reproductive Health and the Environment, San Francisco, CA, USA
| | - Tracey J Woodruff
- University of California, San Francisco, Program on Reproductive Health and the Environment, San Francisco, CA, USA
| |
Collapse
|
17
|
Liu X, Zhang L, Chen L, Li J, Wang Y, Wang J, Meng G, Chi M, Zhao Y, Chen H, Wu Y. Structure-based investigation on the association between perfluoroalkyl acids exposure and both gestational diabetes mellitus and glucose homeostasis in pregnant women. ENVIRONMENT INTERNATIONAL 2019; 127:85-93. [PMID: 30909097 DOI: 10.1016/j.envint.2019.03.035] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 05/26/2023]
Abstract
BACKGROUND Biomonitoring studies have shown the presence of structurally diverse perfluoroalkyl acids (PFAAs) in humans but only a few studies are available regarding the differential structural effects of PFAAs on human health. OBJECTIVE The specific association between different structural PFAAs and both gestational diabetes mellitus (GDM) and glucose homeostasis in pregnant women was investigated. METHODS A prospective nested case-control study including 439 women was conducted during 2013-2015 in Beijing, China. First trimester maternal serum was collected and analyzed for 25 diverse PFAAs with varying carbon chain lengths, linear/branched isomers and carboxylate or sulfonate functional groups. The analyzed PFAAs were grouped into different exposure variables depending on structure characteristics. GDM cases were diagnosed at 24-28 weeks of gestation and individually matched in a 1:2 ratio to controls. Conditional logistic and linear regression was used to evaluate the association between structurally grouped PFAAs and both GDM risk and glucose homeostasis parameters. RESULTS Among the 25 PFAAs, 12 perfluoroalkyl carboxylates (PFCAs) and 8 perfluoroalkyl sulfonates (PFSAs) were detected in >55.0% of samples and were respectively grouped into different structural groups. The structural-based effect was observed for PFCAs, where short-chain (C4-C7) PFCAs continuous level was significantly associated with GDM with an estimated odds ratio (OR) of 1.99 (95% CI: 1.29, 3.09), and the multivariable-adjusted ORs (95% CI) of GDM for increasing tertiles of short-chain PFCAs were 1.00 (ref.), 1.82 (0.80, 4.16) and 3.01 (1.31, 6.94), P trend = 0.011. Additionally, increased concentration of short-chain PFCAs was significantly associated with higher postprandial glucose levels (P < 0.05). Non-significant association was observed between structure grouped PFSAs and GDM as well as glucose homeostasis. CONCLUSION This investigation suggests a structure-specific association between short-chain PFCAs exposure and both GDM risk and impaired glucose homeostasis in pregnant women. These findings warrant further investigation with larger samples and a wide range of short-chain PFCAs exposure.
Collapse
Affiliation(s)
- Xin Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China; NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Lei Zhang
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Liangkai Chen
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingguang Li
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China.
| | - Yuxin Wang
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Jun Wang
- Shenzhen Center for Chronic Disease Control, Shenzhen, China
| | - Guimin Meng
- Beijing Fengtai Hospital Obstetrics and Gynecology, Beijing, China
| | - Min Chi
- Taiyuan Center for Disease Control and Prevention, Taiyuan, China
| | - Yunfeng Zhao
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Yongning Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China; NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| |
Collapse
|