1
|
Impact of human activities on fish mercury concentrations. NATURE FOOD 2024:10.1038/s43016-024-01066-y. [PMID: 39358439 DOI: 10.1038/s43016-024-01066-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
|
2
|
Xiang Y, Liu G, Yin Y, Li Y, Wang D, Cai Y, Jiang G. Human activities shape important geographic differences in fish mercury concentration levels. NATURE FOOD 2024; 5:836-845. [PMID: 39327525 DOI: 10.1038/s43016-024-01049-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 08/29/2024] [Indexed: 09/28/2024]
Abstract
Fish consumption is a major route of human exposure to mercury (Hg), yet limited understanding of how anthropogenic activities drive geographic variations in fish Hg worldwide hinders effective Hg pollution management. Here we characterized global geographic variations in total Hg (THg) and methylmercury (MeHg), compared THg and MeHg levels between the United States and China, and used a structural equation model to link the geographic variability of MeHg in fish to human activities. Despite previously reported higher Hg emissions in China, Chinese fish have lower THg and MeHg levels than fish in the United States owing to a lower trophic magnification slope, shortened food chains and shorter fish lifespans. The structural equation model revealed strong impacts of human activities on MeHg levels in fish. In the future, China may face elevated MeHg levels in fish with the ongoing recovery of food web ecology, highlighting the importance of local policies.
Collapse
Affiliation(s)
- Yuping Xiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, China
| | - Guangliang Liu
- Institute of Environment and Health, Jianghan University, Wuhan, China
- Department of Chemistry and Biochemistry and Institute of Environment, Florida International University, Miami, FL, USA
| | - Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
- Institute of Environment and Health, Jianghan University, Wuhan, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Yanbin Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, China
| | - Dingyong Wang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, China
| | - Yong Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
- Department of Chemistry and Biochemistry and Institute of Environment, Florida International University, Miami, FL, USA.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Caba-Flores MD, Martínez-Valenzuela C, Cárdenas-Tueme M, Camacho-Morales A. Micro problems with macro consequences: accumulation of persistent organic pollutants and microplastics in human breast milk and in human milk substitutes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:95139-95154. [PMID: 37597149 DOI: 10.1007/s11356-023-29182-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/01/2023] [Indexed: 08/21/2023]
Abstract
Industrial activities provide a modern human lifestyle with advances and comforts in every field. However, such scenario has brought several negative issues. Persistent organic pollutants (POPs) and a growing plastic usage together with the degradation byproducts, namely microplastics (MPs), are current environmental problems present in every ecosystem, disturbing all forms of life. POPs and MPs are also found in human consumption products including animal and vegetal derivatives, human milk substitutes, and in human breast milk. To date, it is currently unknown what are the effects of MPs and POPs when ingested during the first and most important stage for health programming of the offspring, the first 1000 days of life. Here, we add epidemiological and clinical evidence supporting major sources of POPs and MPs in the ecosystem; and we will precisely describe the effect of POP and MP accumulation in animal- or plant-based infant formulas and human breast milk, modulating health outcomes in the newborn. This review provides a rational to incentive the POP and MP identification in human breast milk and human milk substitutes for avoiding susceptibility to negative health outcomes for the newborn.
Collapse
Affiliation(s)
- Mario Daniel Caba-Flores
- College of Medicine, Department of Biochemistry, Universidad Autónoma de Nuevo Leon, Monterrey, NL, Mexico
- Center for Research and Development in Health Sciences, Neurometabolism Unit, Universidad Autónoma de Nuevo Leon, San Nicolas de los Garza, NL, Mexico
| | | | - Marcela Cárdenas-Tueme
- School of Medicine and Health Sciences, The Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, NL, Mexico
- Centro de Investigación en Nutrición Y Salud Pública, Facultad de Salud Pública Y Nutrición, Universidad Autónoma de Nuevo León, Monterrey, NL, Mexico
| | - Alberto Camacho-Morales
- College of Medicine, Department of Biochemistry, Universidad Autónoma de Nuevo Leon, Monterrey, NL, Mexico.
- Center for Research and Development in Health Sciences, Neurometabolism Unit, Universidad Autónoma de Nuevo Leon, San Nicolas de los Garza, NL, Mexico.
| |
Collapse
|
4
|
Yang L, Mei G, Yang Y, Cui J, Peng S, Peng Z, Cheng Y. Hexachlorocyclohexane impairs human sperm motility by affecting lysine glutarylation and mitochondrial functions. Food Chem Toxicol 2023; 179:113991. [PMID: 37595880 DOI: 10.1016/j.fct.2023.113991] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/06/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
Decreased sperm motility is a leading cause of male infertility and persistent organic pollutants are known to contribute significantly to the development of this disease. The effects of organochlorine pesticides such as hexachlorocyclohexane (HCH) on human sperm function and their mechanisms of action have received much attention, but are still not fully understood. Herein, we discovered that HCH has a concentration- and time-dependent inhibitory effect on human sperm motility in vitro. Moreover, HCH could reduce the levels of lysine glutarylation (Kglu) and glucose-6-phosphate dehydrogenase activity in sperm. Meanwhile, HCH could increase reactive oxygen species and thereby lead to mitochondrial depolarization and the down-regulation of adenosine triphosphate levels. In particular, we observed that sodium glutarate (Na-glu), the precursor of glutaryl-CoA, could alleviate the inhibitory effect of HCH on sperm Kglu levels, whereas the ROS scavenger N-acetyl-L-cysteine (NAC) had no effect. Intriguingly, both Na-glu and NAC were able to partially inhibit the HCH-induced increase in sperm ROS levels and impaired sperm motility. In conclusion, we propose that HCH inhibits sperm Kglu, leading to the disruption of mitochondrial energy metabolism, which in turn adversely affects sperm motility.
Collapse
Affiliation(s)
- Liu Yang
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, Yichun University, Yichun, China
| | - Guangquan Mei
- Jiangxi Provincial Key Laboratory of Natural Active Pharmaceutical Constituents, Department of Chemistry and Bioengineering, Yichun University, Yichun, China; Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, Yichun University, Yichun, China
| | - Yebin Yang
- College of Chemistry and Biological Engineering, Yichun University, Yichun, China
| | - Jiajun Cui
- Center for Translational Medicine, Department of Medicine, Yichun University, Yichun, China
| | - Shenglin Peng
- Yichun People's Hospital, Jiangxi Province, Yichun, China
| | - Zhen Peng
- Yichun People's Hospital, Jiangxi Province, Yichun, China
| | - Yimin Cheng
- Jiangxi Provincial Key Laboratory of Natural Active Pharmaceutical Constituents, Department of Chemistry and Bioengineering, Yichun University, Yichun, China; Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China; Center for Translational Medicine, Department of Medicine, Yichun University, Yichun, China.
| |
Collapse
|
5
|
Rodriguez-Levy IE, Van Damme PA, Carvajal-Vallejos FM, Bervoets L. Trace element accumulation in different edible fish species from the Bolivian Amazon and the risk for human consumption. Heliyon 2022; 8:e11649. [PMID: 36444265 PMCID: PMC9699965 DOI: 10.1016/j.heliyon.2022.e11649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/21/2022] [Accepted: 11/08/2022] [Indexed: 11/21/2022] Open
Abstract
Artisanal mining and erosion of metalbearing soils can contaminate aquatic ecosystems and affect the health of riparian human populations, through metal bio-accumulation processes and fish consumption. Concentrations of eight trace metals (Cd, Cr, Co, Cu, Pb, Hg, Ni, Zn) and a metalloid (As) were measured in the muscle tissue of different edible fish species collected from markets of two cities along the Beni River banks, in the Bolivian Amazon. Relationships between the size of fish belonging to different trophic levels (carnivores, omnivores, detritivores and herbivorous) from four different fishing zones were analyzed. The most relevant results corresponded to the detritivore group, whose members exhibited significant positive correlations between the fish size and the concentration of three metals (cadmium, cobalt and nickel). Furthermore, a 3 × 3 scenario-risk analysis was performed to assess local risk for human health. This was done by relating three different scenarios of local fish consumption collected from literature (maximum, average and minimum) and three different levels of trace element concentrations (95th, 50th and 5th percentile) derived from the present study and the Minimal Risk Levels suggested by the Agency for Toxic Substances and Disease Registry. Results of these calculations determined the amount of fish muscle per contaminant that could be consumed per day without risking human's health. Finally, Target Hazard Quotients were calculated for each trace element, aiming to indicate the potential exposure to each one and the concentration at which no adverse effects are expected. The obtained results made clear that mercury is the only trace element that represents an important health risk to humans within the studied region, considering most of the combinations in the 3 × 3 analysis. Chronic mercury intoxication could occur when consumption of fish in Riberalta or Rurrenabaque exceeded 83 g/day in females and 110 g/day in males.
Collapse
Affiliation(s)
- Inti E. Rodriguez-Levy
- Centro de Investigación en Ciencias Exactas e Ingenierías (CICEI), Universidad Católica Boliviana “San Pablo”, Calle M. Márquez S/n Esq. Parque J. Trigo, Tupuraya, Cochabamba, Bolivia
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Paul A. Van Damme
- FAUNAGUA, Calle Innominada Al Final Av. Max Fernández S/n, Zona Arocagua Norte, Cochabamba, Estado Plurinacional de Bolivia
| | - Fernando M. Carvajal-Vallejos
- FAUNAGUA, Calle Innominada Al Final Av. Max Fernández S/n, Zona Arocagua Norte, Cochabamba, Estado Plurinacional de Bolivia
- Unidad de Limnología y Recursos Acuátios (ULRA), Facultad de Ciencias y Tecnología (FCyT), Universidad Mayor de San Simón (UMSS), Calle Sucre Frente Al Parque La Torre S/N., Cochabamba, Bolivia
| | - Lieven Bervoets
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| |
Collapse
|
6
|
Ayele S, Mamo Y, Deribe E, Eklo OM. Organochlorine pesticides and polychlorinated biphenyls in carnivorous waterbird and fish species from Lake Hawassa, Ethiopia. SN APPLIED SCIENCES 2022. [DOI: 10.1007/s42452-022-05177-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
Abstract
Abstract
Agricultural, vector-control and industrial activities around Lake Hawassa pose a risk of organochlorine contamination of the lake biota. To assess organochlorine contamination, we measured levels of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in 3 species of carnivorous waterbird and 3 species of fish. A total of 50 samples of fish and bird species sampled from Lake Hawassa in 2019. We investigated factors influencing accumulation of OCPs and PCBs. Reproductive risk associated with tissue levels of 4,4’-dichloro-diphenyl-dichloro-ethylene (p,p’-DDE) is also estimated. Results show that dichloro-diphenyl-trichloroethane (DDT) is the dominant contaminant found in both bird and fish species. p,p’-DDE is the dominant DDT metabolite in both bird and fish species. Geometric mean of p,p’-DDE varied from 49.8–375.3 and 2.2–7.7 ng g−1 ww in birds and fish, respectively. Average p,p’-DDE level in birds is 33.3 times higher than in fish. p,p’-DDE constitutes 93.4–95.2% of total DDTs in bird species. Degree of exposure, chemical stability, and resistance to environmental and biological degradation could explain higher levels of p,p’-DDE both in bird and fish species. There is significant variation in p,p’-DDE levels among bird and fish species owing to differences in feeding habits, foraging habitat, and lipid content. An increase in DDT levels with increasing size is observed in both bird and fish species. A significant positive association between log-transformed p,p’-DDE, and stable nitrogen isotope ratio (δ15N) values is found. There is no reproductive health risk in bird species as a result of the current levels of p,p’-DDE.
Article Highlights
DDT is the dominant contaminant found in both bird and fish species
There is interspecies variation in accumulation of p,p’-DDE among fish and bird species
p,p’-DDE is biomagnified through food chain involving both bird and fish species
Collapse
|
7
|
Zhao Z, Yao X, Ding Q, Gong X, Wang J, Tahir S, Kimirei IA, Zhang L. A comprehensive evaluation of organic micropollutants (OMPs) pollution and prioritization in equatorial lakes from mainland Tanzania, East Africa. WATER RESEARCH 2022; 217:118400. [PMID: 35413562 DOI: 10.1016/j.watres.2022.118400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/26/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
A lack of understanding the fate of highly toxic organic micropollutants (OMPs) in the equatorial lakes of Tanzania hinders public awareness for protecting these unique aquatic ecosystems, which are precious water resources and stunning wildlife habitats. To address this knowledge gap, the occurrence of 70 anthropogenically-sourced OMPs, including phthalates (PAEs), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs), was investigated in the water and sediment of 18 lakes in Tanzania. Similar residue concentrations were found in both compartments, showing higher pollution of PAEs ranging from 835.0 to 13,153.1 ng/L in water and 244.6-8691.8 ng/g dw in sediment, followed by PAHs, while OCPs and PCBs were comparatively lower. According to the multi-criteria scoring method for prioritization, the final OMP priority list for the lake environment in Tanzania comprised 25 chemicals, specifically 5 PAEs (DEHP, DIBP, DBP, DCHP and DMPP), 6 PCBs (PCB153, PCB105, PCB28, PCB156, PCB157 and PCB167), 6 PAHs (BaP, BaA, BbF, Pyr, DahA and InP) and 8 OCPs (cis-chlordane, trans-chlordane, p,p'-DDD, p,p'-DDE, p,p'-DDT, endrin, methoxychlor and heptachlor epoxide), suggesting the key substances for conventional monitoring and pollution control in these equatorial lakes, with an emphasis on PAEs, especially DEHP, due to the top priority and endocrine disruptor properties.
Collapse
Affiliation(s)
- Zhonghua Zhao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China.
| | - Xiaolong Yao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Qiqi Ding
- Zhejiang Environment Technology Company, Hangzhou 311100, China
| | - Xionghu Gong
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Jianjun Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Saadu Tahir
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Ishmael Aaron Kimirei
- Tanzania Fisheries Research Institute-Headquarter, P.O. Box 9750, Dar Es Salaam, Tanzania
| | - Lu Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
8
|
Sharma P, Gujjala LKS, Varjani S, Kumar S. Emerging microalgae-based technologies in biorefinery and risk assessment issues: Bioeconomy for sustainable development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152417. [PMID: 34923013 DOI: 10.1016/j.scitotenv.2021.152417] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Industrial wastewater treatment is of paramount importance considering the safety of the aquatic ecosystem and its associated health risk to humankind inhabiting near the water bodies. Microalgae-based technologies for remediation of environmental pollutants present avenues for bioenergy applications and production of value-added biochemicals having pharmaceutical, nutraceutical, antioxidants, carbohydrate, phenolics, long-chain multi-faceted fatty acids, enzymes, and proteins which are considered healthy supplements for human health. Such a wide range of products put up a good case for the biorefinery concept. Microalgae play a pivotal role in degrading complex pollutants, such as organic and inorganic contaminants thereby efficiently removing them from the environment. In addition, microalgal species, such as Botryococcus braunii, Tetraselmis suecica, Phaeodactylum tricornutum, Neochloris oleoabundans, Chlorella vulgaris, Arthrospira, Chlorella, and Tetraselmis sp., etc., are also reported for generation of value-added products. This review presents a holistic view of microalgae based biorefinery starting from cultivation and harvesting of microalgae, the potential for remediation of environmental pollutants, bioenergy application, and production of value-added biomolecules. Further, it summarizes the current understanding of microalgae-based technologies and discusses the risks involved, potential for bioeconomy, and outlines future research directions.
Collapse
Affiliation(s)
- Pooja Sharma
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur 440 020, India
| | | | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382 010, Gujarat, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur 440 020, India.
| |
Collapse
|
9
|
Hitabatuma A, Wang P, Su X, Ma M. Metal-Organic Frameworks-Based Sensors for Food Safety. Foods 2022; 11:382. [PMID: 35159532 PMCID: PMC8833942 DOI: 10.3390/foods11030382] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/11/2022] [Accepted: 01/21/2022] [Indexed: 01/07/2023] Open
Abstract
Food contains a variety of poisonous and harmful substances that have an impact on human health. Therefore, food safety is a worldwide public concern. Food detection approaches must ensure the safety of food at every step of the food supply chain by monitoring and evaluating all hazards from every single step of food production. Therefore, early detection and determination of trace-level contaminants in food are one of the most crucial measures for ensuring food safety and safeguarding consumers' health. In recent years, various methods have been introduced for food safety analysis, including classical methods and biomolecules-based sensing methods. However, most of these methods are laboratory-dependent, time-consuming, costly, and require well-trained technicians. To overcome such problems, developing rapid, simple, accurate, low-cost, and portable food sensing techniques is essential. Metal-organic frameworks (MOFs), a type of porous materials that present high porosity, abundant functional groups, and tunable physical and chemical properties, demonstrates promise in large-number applications. In this regard, MOF-based sensing techniques provide a novel approach in rapid and efficient sensing of pathogenic bacteria, heavy metals, food illegal additives, toxins, persistent organic pollutants (POPs), veterinary drugs, and pesticide residues. This review focused on the rapid screening of MOF-based sensors for food safety analysis. Challenges and future perspectives of MOF-based sensors were discussed. MOF-based sensing techniques would be useful tools for food safety evaluation owing to their portability, affordability, reliability, sensibility, and stability. The present review focused on research published up to 7 years ago. We believe that this work will help readers understand the effects of food hazard exposure, the effects on humans, and the use of MOFs in the detection and sensing of food hazards.
Collapse
Affiliation(s)
| | | | - Xiaoou Su
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.H.); (P.W.); (M.M.)
| | | |
Collapse
|
10
|
Wolmarans NJ, Bervoets L, Meire P, Wepener V. Sub-lethal exposure to malaria vector control pesticides causes alterations in liver metabolomics and behaviour of the African clawed frog (Xenopus laevis). Comp Biochem Physiol C Toxicol Pharmacol 2022; 251:109173. [PMID: 34492387 DOI: 10.1016/j.cbpc.2021.109173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/17/2021] [Accepted: 08/22/2021] [Indexed: 11/19/2022]
Abstract
In this study we explore the sub-lethal effects of two malaria vector control pesticides, deltamethrin and dichlorodiphenyltrichloroethane (DDT), on Xenopus laevis by incorporating different levels of biological organisation. Pesticide accumulation in frog tissue was measured alongside liver metabolomics and individual swimming behaviour to assess whether changes presented at these different levels, and if such changes could be linked between levels. Results showed evidence of concentration dependent accumulation of DDT and its metabolites, but no measurable accumulation of deltamethrin in adult X. laevis after 96 h of exposure. Both DDT and deltamethrin were shown to cause alterations in the liver metabolome of X. laevis. We also showed that some of these changes can be enhanced in exposure to a mixture of these two pesticides. Initial behavioural responses recorded directly after exposure were seen in the form of decreased activity, less alterations between mobility states, and less time spent at the water surface. This response persisted after 96 h of exposure to a mixture of the two pesticides. This study shows that sub-lethal exposure to pesticides can alter the biochemical homeostasis of frogs with the potential to cascade onto behavioural and ecological levels in mixture exposure scenarios.
Collapse
Affiliation(s)
- Nico J Wolmarans
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa; Laboratory of Systemic, Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Antwerp, Belgium.
| | - Lieven Bervoets
- Laboratory of Systemic, Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Patrick Meire
- Ecosystem Management Research Group (Ecobe), Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Victor Wepener
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
11
|
Qi SY, Xu XL, Ma WZ, Deng SL, Lian ZX, Yu K. Effects of Organochlorine Pesticide Residues in Maternal Body on Infants. Front Endocrinol (Lausanne) 2022; 13:890307. [PMID: 35757428 PMCID: PMC9218079 DOI: 10.3389/fendo.2022.890307] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/22/2022] [Indexed: 01/25/2023] Open
Abstract
There are many organochlorine pollutants in the environment, which can be directly or indirectly exposed to by mothers, and as estrogen endocrine disruptors can cause damage to the lactation capacity of the mammary gland. In addition, because breast milk contains a lot of nutrients, it is the most important food source for new-born babies. If mothers are exposed to organochlorine pesticides (OCPs), the lipophilic organochlorine contaminants can accumulate in breast milk fat and be passed to the infant through breast milk. Therefore, it is necessary to investigate organochlorine contaminants in human milk to estimate the health risks of these contaminants to breastfed infants. In addition, toxic substances in the mother can also be passed to the fetus through the placenta, which is also something we need to pay attention to. This article introduces several types of OCPs, such as dichlorodiphenyltrichloroethane (DDT), methoxychlor (MXC), hexachlorocyclohexane (HCH), endosulfan, chlordane, heptachlorand and hexachlorobenzene (HCB), mainly expounds their effects on women's lactation ability and infant health, and provides reference for maternal and infant health. In addition, some measures and methods for the control of organochlorine pollutants are also described here.
Collapse
Affiliation(s)
- Shi-Yu Qi
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xue-Ling Xu
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wen-Zhi Ma
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, and Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, School of Basic Medical Science, Ningxia Medical University, Yinchuan, China
- *Correspondence: Wen-Zhi Ma, ; Kun Yu, ; Zheng-Xing Lian,
| | - Shou-Long Deng
- National Health Commission of China (NHC) Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Zheng-Xing Lian
- College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Wen-Zhi Ma, ; Kun Yu, ; Zheng-Xing Lian,
| | - Kun Yu
- College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Wen-Zhi Ma, ; Kun Yu, ; Zheng-Xing Lian,
| |
Collapse
|
12
|
Analysis of brominated flame retardants in the aquatic environment: a review. Arh Hig Rada Toksikol 2021; 72:254-267. [PMID: 34985845 PMCID: PMC8785114 DOI: 10.2478/aiht-2021-72-3576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/01/2021] [Indexed: 11/20/2022] Open
Abstract
The most common and consequently analysed brominated flame retardants (BFRs) are polybrominated biphenyls (PBBs), polybrominated diphenyl ethers (PBDEs), tetrabromobisphenol A (TBBPA), tetrabromobisphenol S (TBBPS), and hexabromocyclododecane (HBCD). As these persistent organic pollutants are widespread in the environment and have a number of harmful effects on human health, the production and use of most has been banned for several years. The aquatic environment is polluted by these compounds through their deposition from the atmosphere, sewage sludge, wastewater treatment plants, and landfills, and higher levels are found in areas with developed industry and agriculture and near landfills. Each compound also seems to show preference for specific compartments of the aquatic environment, i.e. water, sediment, or aquatic organisms, according to their physicochemical properties. The aim of this review was to take a closer look at the analysis of BFRs, as without reliable analysis we would not be able to determine their levels and distribution across the aquatic compartments and assess human exposure and health risks. Particularly worrying are the health risks associated with PBDEs in fish, whose levels generally exceed the permitted values.
Collapse
|
13
|
Olisah C, Adams JB, Rubidge G. The state of persistent organic pollutants in South African estuaries: A review of environmental exposure and sources. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 219:112316. [PMID: 33993093 DOI: 10.1016/j.ecoenv.2021.112316] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 05/01/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
The long-term health of many South African estuaries is impacted by pollutants entering these systems through industrial and agricultural runoff, sewage outfalls, contaminated storm water drainage, flows from informal settlements, and plastic materials in marine debris. Uncontrolled inputs combined with poor environmental management often result in elevated levels of persistent organic pollutants (POPs) in affected estuaries. Data on POPs research from 1960 to 2020 were analysed in terms of their sources, environmental investigations, and health implications. The outcome showed polychlorinated biphenyls (PCBs) and per- and poly-fluoroalkyl sulphonates (PFASs) to exceed the US EPA health advisory levels for drinking water. Concentration of organochlorine pesticides (OCPs) in water were below the WHO limits, while those in fish tissues from most estuaries were found to be below the US FDA limits. Although environmental compartments in some estuaries (e.g. Rooiels and uMngeni estuaries) seem to be less contaminated relative to other marine systems around the world, many others were polluted and critically modified (e.g. Durban Bay, Swartkops, Sundays, and Buffalo systems). Due to inconsistent monitoring methods coupled with limited data availability, temporal trends were unclear. Of the 290 estuaries in South Africa, 65 were prioritised and recommended for POPs evaluation based on their pollution sources, and a monitoring strategy was defined in terms of sampling. Government policies to curb marine pollution need to be enforced to prevent chronic contamination that leads to water quality deterioration and loss of ecosystem services.
Collapse
Affiliation(s)
- Chijioke Olisah
- Department of Botany and the Institute for Coastal and Marine Research, Nelson Mandela University, Port Elizabeth 6031, South Africa; DSI/NRF Research Chair in Shallow Water Ecosystem, Nelson Mandela University, Port Elizabeth 6031, South Africa; Department of Chemistry, Nelson Mandela University, Port Elizabeth 6031, South Africa.
| | - Janine B Adams
- Department of Botany and the Institute for Coastal and Marine Research, Nelson Mandela University, Port Elizabeth 6031, South Africa; DSI/NRF Research Chair in Shallow Water Ecosystem, Nelson Mandela University, Port Elizabeth 6031, South Africa
| | - Gletwyn Rubidge
- Department of Chemistry, Nelson Mandela University, Port Elizabeth 6031, South Africa
| |
Collapse
|
14
|
Runkel AA, Križanec B, Lipičar E, Baskar M, Hrženjak V, Kodba ZC, Kononenko L, Kanduč T, Mazej D, Tratnik JS, Horvat M. Organohalogens: A persisting burden in Slovenia? ENVIRONMENTAL RESEARCH 2021; 198:111224. [PMID: 33933496 DOI: 10.1016/j.envres.2021.111224] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Persistent organic pollutants (POPs) represent a concern for the environment and human health due to their persistence and toxicity. Exposure in Slovenia is geographically differentiated because the country, as part of former Yugoslavia, has a history of industry and regional contamination and is - at the same time - known for its clean nature. The PCB pollution of the Krupa River drew the public's attention to the chemical burden of Slovenians, and the demand for studies has been rising since. We assessed the exposure of men (n = 548) and primiparous women (n = 536) to POPs in 12 regions of Slovenia as well as exposure pathways via questionnaires. Most PCDD/Fs, PCBs, and PBDEs could be determined in pooled samples of maternal milk at low concentrations (1.57 pg/gTEQ, 1.47 pg/gTEQ, and 1076 pg/g fat, respectively), but a much lower number of compounds could be measured above the LOQ in pooled men's plasma samples (PCDD/Fs 0.08 pg/gTEQ, PCBs 0.007 pg/gTEQ, ΣPBDE 920 pg/g), and only HCB, p,p'-DDE, ΣDDT, and the non-dioxin-like PCB congeners 138, 153, and 180 could be determined in individual samples of milk (concentration range 5-60 ng/g fat). In individual samples of men's serum, only p,p'-DDE and ΣPCB were detected at concentrations of 0.25 ng/g and 0.3 ng/g, respectively. Nonetheless, we were able to differentiate between polluted and unpolluted areas on a national level, with higher exposure levels in the PCB polluted region of Bela Krajina, the industrial region Zasavje, and the capital, Ljubljana. Despite low concentrations, determinants of exposure, such as age, proximity to roads, old building materials, private water supplies, and consumption of alcohol, fish, meat, and eggs that have previously been observed only at higher levels could still be identified. Furthermore, levels of PCBs and PBDEs were highly correlated suggesting common exposure sources and pathways, whereas PCDD/Fs were correlated to a lesser extent. The calculated ratio between DDT and DDE in maternal milk samples was decreasing with the year of sampling, suggesting no ongoing exposure to DDT. The study findings suggest low exposure of men and lactating women to legacy pollutants in Slovenia, which gave rise to the hypothesis that Slovenia's geographical location might provide shelter from the long-range transport of POPs via Westerly winds. This hypothesis remains to be confirmed within future studies.
Collapse
Affiliation(s)
- Agneta A Runkel
- Jožef Stefan Institute, Jamova Cesta 39, 1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova Cesta 39, 1000, Ljubljana, Slovenia
| | - Boštjan Križanec
- National Laboratory of Health, Environment, and Food, Prvomajska Ulica 1, 2000, Maribor, Slovenia
| | - Eva Lipičar
- National Laboratory of Health, Environment, and Food, Prvomajska Ulica 1, 2000, Maribor, Slovenia
| | - Mojca Baskar
- National Laboratory of Health, Environment, and Food, Prvomajska Ulica 1, 2000, Maribor, Slovenia
| | - Vesna Hrženjak
- National Laboratory of Health, Environment, and Food, Prvomajska Ulica 1, 2000, Maribor, Slovenia
| | - Zdenka Cencič Kodba
- National Laboratory of Health, Environment, and Food, Prvomajska Ulica 1, 2000, Maribor, Slovenia
| | - Lijana Kononenko
- Ministry of Health, Chemical Office of the Republic of Slovenia, Ajdovščina 4, 1000, Ljubljana, Slovenia
| | - Tjaša Kanduč
- Jožef Stefan Institute, Jamova Cesta 39, 1000, Ljubljana, Slovenia
| | - Darja Mazej
- Jožef Stefan Institute, Jamova Cesta 39, 1000, Ljubljana, Slovenia
| | | | - Milena Horvat
- Jožef Stefan Institute, Jamova Cesta 39, 1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova Cesta 39, 1000, Ljubljana, Slovenia.
| |
Collapse
|
15
|
Yao B, Luo Z, Zhi D, Hou D, Luo L, Du S, Zhou Y. Current progress in degradation and removal methods of polybrominated diphenyl ethers from water and soil: A review. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123674. [PMID: 33264876 DOI: 10.1016/j.jhazmat.2020.123674] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 06/12/2023]
Abstract
The widespread of polybrominated diphenyl ethers (PBDEs) in the environment has caused rising concerns, and it is an urgent endeavor to find a proper way for PBDEs remediation. Various techniques such as adsorption, hydrothermal and thermal treatment, photolysis, photocatalytic degradation, reductive debromination, advanced oxidation processes (AOPs) and biological degradation have been developed for PBDEs decontamination. A comprehensive review of different PBDEs remediation techniques is urgently needed. This work focused on the environmental source and occurrence of PBDEs, their removal and degradation methods from water and soil, and prospects for PBDEs remediation techniques. According to the up-to-date literature obtained from Web of Science, it could be concluded that (i) photocatalysis and photocatalytic degradation is the most widely reported method for PBDEs remediation, (ii) BDE-47 and BDE-209 are the most investigated PBDE congeners, (iii) considering the recalcitrance nature of PBDEs and more toxic intermediates could be generated because of incomplete degradation, the combination of different techniques is the most potential solution for PBDEs removal, (iv) further researches about the development of novel and effective PBDEs remediation techniques are still needed. This review provides the latest knowledge on PBDEs remediation techniques, as well as future research needs according to the up-to-date literature.
Collapse
Affiliation(s)
- Bin Yao
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Zirui Luo
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Dan Zhi
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Dongmei Hou
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Lin Luo
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Shizhi Du
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Yaoyu Zhou
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
16
|
Hu L, Luo D, Wang L, Yu M, Zhao S, Wang Y, Mei S, Zhang G. Levels and profiles of persistent organic pollutants in breast milk in China and their potential health risks to breastfed infants: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:142028. [PMID: 32906049 DOI: 10.1016/j.scitotenv.2020.142028] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
Although some persistent organic pollutants (POPs) were prohibited or limited in use several decades ago, they are still frequently detected in the human body. The purpose of this study was to understand the levels and profiles of POPs in breast milk in China and assess their potential health risks among breastfed infants under six months of age. A literature review focused on China was performed for studies published from 2001 to 2020. The POP levels in breast milk along with other important variables were extracted, and then the average individual POP levels in breast milk were estimated. This review summarises the distribution of traditional and new POPs, including polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), legacy brominated flame retardants (BFRs), perfluorinated compounds (PFCs), and chlorinated paraffins (CPs) and reported notably high levels of short-chain chlorinated paraffins and 1,1-dichloro-2,2-bis (p-chlorophenyl) ethylene (p,p'-DDE) in breast milk. Although the levels of traditional POPs generally declined over time, especially p,p'-DDE and beta-hexachlorocyclohexane (β-HCH), women living in coastal areas, urban areas, and southern China still have a high body burden of certain POPs. In the present study, the estimated daily intake (EDI) of POPs through breastfeeding was used to evaluate the health risk for infants by comparing with acceptable levels. The findings suggested that infants born in coastal areas most likely suffered potential health risk from exposure to DDT, and the health risk of hexachlorobenzene (HCB) in infants in most nationwide regions remains a concern. More importantly, the EDI of PCBs for infants exceeds the safe limit on a national scale. Continuous surveillance of PCBs in breast milk is critical to evaluate the potential health effects on humans.
Collapse
Affiliation(s)
- Liqin Hu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Dan Luo
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Limei Wang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Meng Yu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Shizhen Zhao
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Youjie Wang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China; Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Surong Mei
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China.
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| |
Collapse
|
17
|
Groffen T, Rijnders J, van Doorn L, Jorissen C, De Borger SM, Luttikhuis DO, de Deyn L, Covaci A, Bervoets L. Preliminary study on the distribution of metals and persistent organic pollutants (POPs), including perfluoroalkylated acids (PFAS), in the aquatic environment near Morogoro, Tanzania, and the potential health risks for humans. ENVIRONMENTAL RESEARCH 2021; 192:110299. [PMID: 33058811 DOI: 10.1016/j.envres.2020.110299] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/25/2020] [Accepted: 10/03/2020] [Indexed: 06/11/2023]
Abstract
Metals and persistent organic pollutants (POPs), including perfluoroalkylated acids (PFAS), are chemicals with a bioaccumulative potential that are detected in wildlife around the world. Although multiple studies reported the pollution of the aquatic environment with these chemicals, only limited data is present on the environmental pollution of Tanzania's aquatic environment and the possible risks for human health through consumption of contaminated fish or invertebrates. In the present study, we examined the distribution of metals and POPs in fish, invertebrates, sediment and water, collected at two different years at multiple important water reservoirs for domestic and industrial purposes, in the aquatic environment near Morogoro, Tanzania. Furthermore, we assessed the possible risks for human health through consumption of contaminated fish and shrimp. Metal concentrations in the water, sediment, invertebrates and fish appeared to increase in sites downstream from Morogoro city, likely caused by the presence of the city as pollution source. Significant differences in accumulated concentrations of metals and POPs were observed between species, which was hypothesized to be caused by dietary differences. Concentrations of multiple metals exceeded water and sediment quality guidelines values. Only Cu (2.8-17 μg/L) and Zn (<LOQ - 151 μg/L) in water exceeded chronic and acute effect values. Furthermore, PFOS, PBDE and HCB concentrations exceeded biota quality standard values, suggesting an ecological risk caused by these metals and POPs in the aquatic environment around Morogoro. Our results suggest that potential health effects through consumption of contaminated shrimp, and to minor extent fish, are expected. The daily consumption of these proteins (0.016-0.027 kg/capita/day) in Tanzania is similar or higher than the tolerable maximum consumption of shrimp for Cu (<0.02 kg/capita/day), Co (<0.02 kg/capita/day) and PFOS (<0.01 kg/capita/day). The outcome of this study could be used in future studies on metals and POPs in African aquatic ecosystems.
Collapse
Affiliation(s)
- Thimo Groffen
- Systemic Physiological and Ecotoxicology Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| | - Jet Rijnders
- Systemic Physiological and Ecotoxicology Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| | - Loïc van Doorn
- Systemic Physiological and Ecotoxicology Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| | - Cas Jorissen
- Systemic Physiological and Ecotoxicology Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| | - Seppe Mortier De Borger
- Systemic Physiological and Ecotoxicology Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| | - Dorien Oude Luttikhuis
- Systemic Physiological and Ecotoxicology Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| | - Lara de Deyn
- Systemic Physiological and Ecotoxicology Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| | - Adrian Covaci
- Toxicolological Center (TC), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium.
| | - Lieven Bervoets
- Systemic Physiological and Ecotoxicology Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| |
Collapse
|
18
|
Parolini M, Panseri S, Håland Gaeta F, Ceriani F, De Felice B, Nobile M, Mosconi G, Rafoss T, Arioli F, Chiesa LM. Legacy and Emerging Contaminants in Demersal Fish Species from Southern Norway and Implications for Food Safety. Foods 2020; 9:foods9081108. [PMID: 32806739 PMCID: PMC7466181 DOI: 10.3390/foods9081108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/03/2020] [Accepted: 08/10/2020] [Indexed: 11/30/2022] Open
Abstract
The present study aimed at measuring the levels of legacy and emerging contaminants in fillet samples from four demersal fish caught in two fishing sites from Southern Norway, in order to assess possible implications for food safety. Levels of organochlorine compounds (OCs), organophosphate pesticides (OPs), polychlorinated biphenyls (PCBs), polybromodiphenyl ethers (PBDE), per- and polyfluoroalkyl substances (PFASs), and polycyclic aromatic hydrocarbons (PAHs) were measured in fillet from Atlantic cod (Gadus morhua), European plaice (Pleuronectes platessa), lemon sole (Microstomus kitt), and European flounder (Platichthys flesus) specimens. A negligible contamination by all the investigated chemicals was noted in both the fishing sites, as very low levels of OCs, PCBs, and PFASs were noted in a limited number of individuals for each species. Considering the levels of contaminants measured in fillets of the four demersal fish species, negligible risk for human health for Norwegian consumers can be supposed.
Collapse
Affiliation(s)
- Marco Parolini
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, I-20133 Milan, Italy;
- Correspondence: (M.P.); (F.A.)
| | - Sara Panseri
- Department of Health, Animal Science and Food Safety, University of Milan, Via Celoria 10, I-20133 Milan, Italy; (S.P.); (F.C.); (M.N.); (G.M.); (L.M.C.)
| | | | - Federica Ceriani
- Department of Health, Animal Science and Food Safety, University of Milan, Via Celoria 10, I-20133 Milan, Italy; (S.P.); (F.C.); (M.N.); (G.M.); (L.M.C.)
| | - Beatrice De Felice
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, I-20133 Milan, Italy;
| | - Maria Nobile
- Department of Health, Animal Science and Food Safety, University of Milan, Via Celoria 10, I-20133 Milan, Italy; (S.P.); (F.C.); (M.N.); (G.M.); (L.M.C.)
| | - Giacomo Mosconi
- Department of Health, Animal Science and Food Safety, University of Milan, Via Celoria 10, I-20133 Milan, Italy; (S.P.); (F.C.); (M.N.); (G.M.); (L.M.C.)
| | - Trond Rafoss
- Department of Natural Sciences, University of Agder (Uia), 4630 Kristiansand, Norway;
| | - Francesco Arioli
- Department of Health, Animal Science and Food Safety, University of Milan, Via Celoria 10, I-20133 Milan, Italy; (S.P.); (F.C.); (M.N.); (G.M.); (L.M.C.)
- Correspondence: (M.P.); (F.A.)
| | - Luca Maria Chiesa
- Department of Health, Animal Science and Food Safety, University of Milan, Via Celoria 10, I-20133 Milan, Italy; (S.P.); (F.C.); (M.N.); (G.M.); (L.M.C.)
| |
Collapse
|
19
|
Erasmus A, Ikenaka Y, Nakayama SMM, Ishizuka M, Smit NJ, Wepener V. Trophic transfer of pollutants within two intertidal rocky shore ecosystems in different biogeographic regions of South Africa. MARINE POLLUTION BULLETIN 2020; 157:111309. [PMID: 32658675 DOI: 10.1016/j.marpolbul.2020.111309] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 05/14/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
Tsitsikamma and Sheffield Beach are two relatively pristine sites along the South African east coast representing warm temperate and subtropical biogeographic rocky shore intertidal ecosystems, respectively. Stable isotopes (δ15N and δ13C), metals and organochlorine pesticides (OCPs) were measured in 38 intertidal components to study biomagnification or biodilution of metals and OCPs in these marine food webs. Comparison of the four species common to both sites revealed that the highest Al, Fe and OCP concentrations were measured in intertidal organisms from Sheffield Beach and was attributed to diffuse input into the nearshore marine environment sources via estuaries and groundwater. All other metals were higher in intertidal organisms from Tsitsikamma and were attributed to the metal-rich phytoplankton blooms during upwelling events. There was no correlation between metal and OCP accumulation and dietary source (δ13C) or trophic level (δ15N). The application of trophic magnification factors (TMFs) using a relatively short benthic food chain indicated biomagnification for As, Cd, Cu, Se and Zn and biodilution of OCPs at both sites. Since these food chains represent only a small portion of the intertidal ecosystems we found limited evidence of biomagnification or biodilution of metals and OCPs across species. This was attributed to different dietary sources in the same food web and similar trophic levels being occupied by the same species in different food chains. We found that food web composition rather than temperature-based biogeographical distribution influenced trophic transfer of metals and OCPs.
Collapse
Affiliation(s)
- Anja Erasmus
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.
| | - Yoshinori Ikenaka
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Shouta M M Nakayama
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Mayumi Ishizuka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Nico J Smit
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Victor Wepener
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
20
|
Ameur WB, Annabi A, El Megdiche Y, Mhadhbi T, Hassine SB, Barhoumi B, Touil S, Driss MR, Barceló D, Eljarrat E. Legacy and Emerging Brominated Flame Retardants in Bizerte Lagoon Murex (Hexaplex Trunculus): Levels and Human Health Risk Assessment. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 78:337-349. [PMID: 31938850 DOI: 10.1007/s00244-019-00694-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
Occurrence of traditional (PBDEs) and novel (HBB, PBEB, DBDPE) brominated flame retardants, as well as the natural compounds of MeO-PBDEs, were studied in a shellfish species (Hexaplex trunculus) sampled from Bizerte Lagoon. PBDE and MeO-PBDE mean concentrations in murex soft tissues were 187 and 264 ng g-1 lw respectively. The alternative flame retardants were not identified. The sum of PBDE and MeO-PBDE levels recorded in murex from the investigated aquatic ecosystem were comparable or a relatively lower than those reported for other organisms from other regions across the world. The amount of PBDE and MeO-PBDE concentrations from the Bizerte Lagoon recorded in murex were comparable or a relatively lower than those recorded from other areas across the world for other species. There is not a danger to the population health with regard to PBDE intakes associated with the consumption of murex in Bizerte city. We believe that this is the first study of the analysis of these pollutants in marine gastropod mollusks from Tunisian aquatic areas.
Collapse
Affiliation(s)
- Walid Ben Ameur
- Laboratory of Heteroatom Organic Chemistry, Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021, Zarzouna, Tunisia.
| | - Ali Annabi
- Department of Life Sciences, Faculty of Sciences of Gabes, University of Gabes, Gabès, Tunisia
| | - Yassine El Megdiche
- Laboratory of Heteroatom Organic Chemistry, Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021, Zarzouna, Tunisia
| | - Takoua Mhadhbi
- Department of Life Sciences, Faculty of Sciences of Bizerte, University of Carthage, 7021, Zarzouna, Tunisia
| | - Sihem Ben Hassine
- Laboratory of Heteroatom Organic Chemistry, Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021, Zarzouna, Tunisia
| | - Badreddine Barhoumi
- Laboratory of Heteroatom Organic Chemistry, Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021, Zarzouna, Tunisia
| | - Soufiane Touil
- Laboratory of Heteroatom Organic Chemistry, Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021, Zarzouna, Tunisia
| | - Mohamed Ridha Driss
- Laboratory of Heteroatom Organic Chemistry, Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021, Zarzouna, Tunisia
| | - Damia Barceló
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Ethel Eljarrat
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
| |
Collapse
|
21
|
Li W, Zhang ZM, Zhang RR, Jiao HF, Sun AL, Shi XZ, Chen J. Effective removal matrix interferences by a modified QuEChERS based on the molecularly imprinted polymers for determination of 84 polychlorinated biphenyls and organochlorine pesticides in shellfish samples. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121241. [PMID: 31581008 DOI: 10.1016/j.jhazmat.2019.121241] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/14/2019] [Accepted: 09/14/2019] [Indexed: 06/10/2023]
Abstract
A modified quick, easy, cheap, effective, rugged, and safe (QuEChERS) procedure combined with GC-MS/MS detection approach using a dynamic multiple reaction monitoring (DMRM) mode was successfully applied for the simultaneous analysis of 84 polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) in shellfish samples. The novel molecular imprinted polymers (MIPs) were synthesized by precipitation polymerization and characterized by Scanning electron microscopy, Brunauer-Emmett-Teller, Fourier transform infrared spectra and adsorption experiment. The MIPs exhibited good adsorption capability to pigment coextractives in shellfish samples without the loss of analytes compared with other sorbents. Under optimal conditions, spiked experiments in sinonovacula, mussel, and clam at 10.0-100.0 μg/kg concentrations showed excellent recoveries ranging from 70% to 120% for all analytes with the relative standard deviations of <10%. The developed method showed good linearity with the correlation coefficient above 0.9980, and the limits of quantification were in the range of 0.01-9.02 μg/kg. The developed QuEChERS procedure combined with GC-MS/MS was successfully applied to 84 PCBs and OCPs residues detection in shellfish samples.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Ze-Ming Zhang
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Rong-Rong Zhang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Hai-Feng Jiao
- College of Biological and Environment Science, Zhejiang Wanli University, Ningbo, 315100, PR China
| | - Ai-Li Sun
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China
| | - Xi-Zhi Shi
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China.
| | - Jiong Chen
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| |
Collapse
|
22
|
Vaccher V, Ingenbleek L, Adegboye A, Hossou SE, Koné AZ, Oyedele AD, Kisito CSKJ, Dembélé YK, Hu R, Adbel Malak I, Cariou R, Vénisseau A, Veyrand B, Marchand P, Eyangoh S, Verger P, Dervilly-Pinel G, Leblanc JC, Le Bizec B. Levels of persistent organic pollutants (POPs) in foods from the first regional Sub-Saharan Africa Total Diet Study. ENVIRONMENT INTERNATIONAL 2020; 135:105413. [PMID: 31881431 DOI: 10.1016/j.envint.2019.105413] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/20/2019] [Accepted: 12/10/2019] [Indexed: 05/22/2023]
Abstract
For the first time, a multi-centre Total Diet Study was carried out in Benin, Cameroon, Mali and Nigeria. We collected and prepared as consumed 528 typical fatty foods from those areas and pooled these subsamples into 44 composites samples. These core foods were tested for a wide spectrum of POPs, including polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), polychlorinated biphenyls (PCBs), brominated flame-retardants (BFRs), organochlorine compounds (OCs), perfluoro alkyl substances (PFAS) and chlorinated flame retardants (CFRs). The POPs contamination levels were similar or lower than those reported in total diet studies previously conducted worldwide. In most cases, core foods belonging to fish food group presented higher POPs concentrations than the other food groups. Interestingly, we observed a difference in both contamination profile and concentration for smoked fish compared to non-smoked fish. Such finding suggests that the smoking process itself might account for a large proportion of the contamination. Further investigation would require the assessment of combustion materials used to smoke fish as a potential vehicle, which may contribute to the dietary exposure of the studied populations to POPs.
Collapse
Affiliation(s)
| | - Luc Ingenbleek
- LABERCA, Oniris, INRA, F-44307 Nantes, France; Centre Pasteur du Cameroun (CPC), Yaoundé BP1274, Cameroon
| | - Abimobola Adegboye
- National Agency for Food and Drug Administration and Control (NAFDAC), Abuja 900288, Nigeria.
| | | | - Abdoulaye Zié Koné
- Agence Nationale de la Sécurité Sanitaire des Aliments (ANSSA), Bamako BP 2362, Mali
| | - Awoyinka Dada Oyedele
- National Agency for Food and Drug Administration and Control (NAFDAC), Abuja 900288, Nigeria.
| | - Chabi Sika K J Kisito
- Laboratoire Central de Sécurité Sanitaire des Aliments (LCSSA), Cotonou BP 6874, Benin
| | | | - Reinwei Hu
- Inovalys, Official Laboratory of Analysis, Le Mans, France.
| | | | | | | | | | | | - Sara Eyangoh
- Centre Pasteur du Cameroun (CPC), Yaoundé BP1274, Cameroon.
| | | | | | - Jean-Charles Leblanc
- Food and Agriculture Organization of the United Nations (FAO), 00153 Rome, Italy.
| | | |
Collapse
|
23
|
Klinčić D, Dvoršćak M, Jagić K, Mendaš G, Herceg Romanić S. Levels and distribution of polybrominated diphenyl ethers in humans and environmental compartments: a comprehensive review of the last five years of research. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:5744-5758. [PMID: 31933075 DOI: 10.1007/s11356-020-07598-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 01/01/2020] [Indexed: 06/10/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are a class of brominated flame retardants (BFRs), present in the environment, animals, and humans. Their levels, distribution, and human exposure have been studied extensively, and over the last decade, various legal measures have been taken to prohibit or minimize their production and use due to the increasing amount of evidence of their harmful effects on human and animal health.Our aim here was to make a comprehensive and up-to-date review of the levels and distribution of PBDEs in the aquatic environment, air, and soil, in indoor dust, and in humans. To fulfill this, we searched through Web of Science for literature data reported in the last five years (2015-2019) on levels of at least six key PBDE congeners in abovementioned matrices. According to our summarized data, significant PBDE mass concentrations/fractions are still being detected in various sample types across the world, which implies that PBDE contamination is an ongoing problem. Secondary sources of PBDEs like contaminated soils and landfills, especially those with electronic and electrical waste (e-waste), represent a particular risk to the future and therefore require a special attention of scientists.
Collapse
Affiliation(s)
- Darija Klinčić
- Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10001, Zagreb, Croatia
| | - Marija Dvoršćak
- Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10001, Zagreb, Croatia.
| | - Karla Jagić
- Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10001, Zagreb, Croatia
| | - Gordana Mendaš
- Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10001, Zagreb, Croatia
| | - Snježana Herceg Romanić
- Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10001, Zagreb, Croatia
| |
Collapse
|
24
|
Rimayi C, Chimuka L. Organ-specific bioaccumulation of PCBs and PAHs in African sharptooth catfish (Clarias gariepinus) and common carp (Cyprinus carpio) from the Hartbeespoort Dam, South Africa. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:700. [PMID: 31667668 DOI: 10.1007/s10661-019-7912-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
The distribution of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in the muscle, liver, spleen and kidney tissue of two fish species was studied using an optimised diatomaceous earth assisted modified QuEChERS extraction method. Five-year-old free-ranging male African sharptooth catfish (Clarias gariepinus) and 5-year-old male common carp (Cyprinus carpio) sampled from the Hartbeespoort Dam in South Africa were used for method development. Acetonitrile extraction produced more precise recoveries than hexane extraction. Fluorene and naphthalene were the most abundant PAHs detected in the majority of fish tissues analysed. PAH bioaccumulation in 5-year-old carp and 5-year-old catfish was in the order muscle > kidney > liver > spleen and liver > muscle > kidney > spleen, respectively. PCBs were mostly detected in carp spleen and kidney. Two-year-old carp were analysed to determine PCB and PAH bioaccumulation trends. The differences in ∑16PAH concentrations between the four organs tested were all statistically insignificant for the 3 fish tested (p > 0.05). All other organs with the exception of 5-year-old carp spleen and 5-year-old carp kidney recorded total 31 PCB concentrations (∑31PCB) < 25 ng g-1. Only 5-year-old carp spleen (∑31PCB of 592 ng g-1) and 5-year-old carp kidney (∑31PCB of 561 ng g-1) had significant differences (p < 0.05) from the spleen and kidney in 5-year-old catfish and 2-year-old carp. Whilst the carp and catfish sampled can be considered low PCB risk foods, 5-year-old carp muscle can be considered to be a high PAH risk food, with a benzo(a)pyrene concentration of 7 μg g-1, based on the EU Commission Regulation 2005/208/EC pertaining to the maximum permissible benzo(a)pyrene level in fresh fish muscle.
Collapse
Affiliation(s)
- Cornelius Rimayi
- Department of Water and Sanitation, Resource Quality Information Services, Roodeplaat, P. Bag X313, Pretoria, 0001, South Africa.
| | - Luke Chimuka
- University of the Witwatersrand, School of Chemistry, P. Bag 3, Wits, Johannesburg, 2050, South Africa
| |
Collapse
|
25
|
Volschenk CM, Gerber R, Mkhonto MT, Ikenaka Y, Yohannes YB, Nakayama S, Ishizuka M, van Vuren JHJ, Wepener V, Smit NJ. Bioaccumulation of persistent organic pollutants and their trophic transfer through the food web: Human health risks to the rural communities reliant on fish from South Africa's largest floodplain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 685:1116-1126. [PMID: 31390702 DOI: 10.1016/j.scitotenv.2019.06.144] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/04/2019] [Accepted: 06/09/2019] [Indexed: 06/10/2023]
Affiliation(s)
- C M Volschenk
- Department of Zoology, Kingsway Campus, University of Johannesburg, PO Box 524, Auckland Park 2006, South Africa
| | - R Gerber
- Unit for Environmental Sciences and Management, Potchefstroom Campus, North-West University, X6001, Potchefstroom 2520, South Africa.
| | - M T Mkhonto
- Department of Zoology, Kingsway Campus, University of Johannesburg, PO Box 524, Auckland Park 2006, South Africa
| | - Y Ikenaka
- Unit for Environmental Sciences and Management, Potchefstroom Campus, North-West University, X6001, Potchefstroom 2520, South Africa; Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo 060-0818, Japan
| | - Y B Yohannes
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo 060-0818, Japan; Department of Chemistry, College of Natural and Computational Sciences, University of Gondar, P.O. Box 196, Gondar, Ethiopia
| | - S Nakayama
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo 060-0818, Japan
| | - M Ishizuka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo 060-0818, Japan
| | - J H J van Vuren
- Department of Zoology, Kingsway Campus, University of Johannesburg, PO Box 524, Auckland Park 2006, South Africa; Unit for Environmental Sciences and Management, Potchefstroom Campus, North-West University, X6001, Potchefstroom 2520, South Africa
| | - V Wepener
- Unit for Environmental Sciences and Management, Potchefstroom Campus, North-West University, X6001, Potchefstroom 2520, South Africa; Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo 060-0818, Japan
| | - N J Smit
- Unit for Environmental Sciences and Management, Potchefstroom Campus, North-West University, X6001, Potchefstroom 2520, South Africa
| |
Collapse
|
26
|
Aerts R, Van Overmeire I, Colles A, Andjelković M, Malarvannan G, Poma G, Den Hond E, Van de Mieroop E, Dewolf MC, Charlet F, Van Nieuwenhuyse A, Van Loco J, Covaci A. Determinants of persistent organic pollutant (POP) concentrations in human breast milk of a cross-sectional sample of primiparous mothers in Belgium. ENVIRONMENT INTERNATIONAL 2019; 131:104979. [PMID: 31387080 DOI: 10.1016/j.envint.2019.104979] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/20/2019] [Accepted: 06/28/2019] [Indexed: 05/06/2023]
Abstract
BACKGROUND Bio-accumulation of persistent organic pollutants (POPs) in the environment and in the food chain can lead to high pollutant concentrations in human fat-containing tissues and breast milk. OBJECTIVES We aimed to identify the maternal characteristics that determined POP concentrations in breast milk of primiparous mothers in Belgium. METHODS Breast milk samples were obtained from a cross-sectional sample of 206 primiparous mothers in 2014. POP concentrations in breast milk samples were determined by GC-ECNI-MS and GC-EI-MS/MS depending on the analytes' sensitivity. Associations between POP concentrations in breast milk and potential determinants were investigated using two-way contingency tables and multivariable generalized linear models. RESULTS Fifteen of the 23 screened POPs were detected in the breast milk samples. Four organochlorine compounds (p,p'-DDT, p,p'-DDE, HCB and β-HCH) and two brominated flame retardant congeners (BDE-47, BDE-153) were detected at concentrations above the limit of quantification in >50% of the breast milk samples. Maternal age and BMI were usually associated with higher POP concentrations. Rural residency and consumption of home-produced eggs, fatty fish and fish oil supplements were associated with higher concentrations of DDT and DDE. Consumption of fatty fish and being breastfed during childhood were associated with higher concentrations of HCB and β-HCH. Fish oil supplements and home-produced eggs were associated with higher concentrations of BDEs, but for BDE congeners exposure routes other than diet require further investigation. CONCLUSIONS Dietary and non-dietary determinants predict individual POP concentrations in breast milk.
Collapse
Affiliation(s)
- Raf Aerts
- Sciensano (Belgian Institute of Health), Department of Chemical and Physical Health Risks, Julliette Wytsmanstraat 14, BE-1050 Brussels, Belgium; University of Leuven (KU Leuven), Department of Earth and Environmental Sciences, Celestijnenlaan 200E-2411, BE-3001 Leuven, Belgium.
| | - Ilse Van Overmeire
- Sciensano (Belgian Institute of Health), Department of Chemical and Physical Health Risks, Julliette Wytsmanstraat 14, BE-1050 Brussels, Belgium.
| | - Ann Colles
- VITO-HEALTH, Boeretang 200, BE-2400 Mol, Belgium.
| | - Mirjana Andjelković
- Sciensano (Belgian Institute of Health), Department of Chemical and Physical Health Risks, Julliette Wytsmanstraat 14, BE-1050 Brussels, Belgium.
| | - Govindan Malarvannan
- University of Antwerp, Toxicological Center, Department of Pharmaceutical Sciences, Universiteitsplein 1, BE-2610 Wilrijk, Belgium.
| | - Giulia Poma
- University of Antwerp, Toxicological Center, Department of Pharmaceutical Sciences, Universiteitsplein 1, BE-2610 Wilrijk, Belgium.
| | - Elly Den Hond
- Provincial Institute for Hygiene, Kronenburgstraat 45, BE-2000 Antwerp, Belgium.
| | - Els Van de Mieroop
- Provincial Institute for Hygiene, Kronenburgstraat 45, BE-2000 Antwerp, Belgium
| | | | - François Charlet
- Hainaut Vigilance Sanitaire, Boulevard Sainctelette 55, BE-7000 Mons, Belgium.
| | - An Van Nieuwenhuyse
- Sciensano (Belgian Institute of Health), Department of Chemical and Physical Health Risks, Julliette Wytsmanstraat 14, BE-1050 Brussels, Belgium.
| | - Joris Van Loco
- Sciensano (Belgian Institute of Health), Department of Chemical and Physical Health Risks, Julliette Wytsmanstraat 14, BE-1050 Brussels, Belgium.
| | - Adrian Covaci
- University of Antwerp, Toxicological Center, Department of Pharmaceutical Sciences, Universiteitsplein 1, BE-2610 Wilrijk, Belgium.
| |
Collapse
|