1
|
Priya S, Rossbach S, Eng T, Lin HH, Andeer PF, Mortimer JC, Northen TR, Mukhopadhyay A. Assessing horizontal gene transfer in the rhizosphere of Brachypodium distachyon using fabricated ecosystems (EcoFABs). Appl Environ Microbiol 2024:e0150524. [PMID: 39494898 DOI: 10.1128/aem.01505-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/01/2024] [Indexed: 11/05/2024] Open
Abstract
Horizontal gene transfer (HGT) is a major process by which genes are transferred between microbes in the rhizosphere. However, examining HGT remains challenging due to the complexity of mimicking conditions within the rhizosphere. Fabricated ecosystems (EcoFABs) have been used to investigate several complex processes in plant-associated environments. Here we show that EcoFABs are efficient tools to examine and measure HGT frequency in the rhizosphere. We provide the first demonstration of gene transfer via a triparental conjugation system in the Brachypodium distachyon rhizosphere in an EcoFAB using Pseudomonas putida KT2440 as both donor and recipient bacterial strain with the donor containing a mobilizable and non-self-transmissible plasmid. We observed that the frequency of plasmid transfer in the rhizosphere is potentially dependent on the plant developmental stage and the composition and amount of root exudates. The frequency of plasmid transfer also increased with higher numbers of donor cells. We demonstrate the transfer of plasmid from P. putida to another B. distachyon root colonizer, Burkholderia sp. OAS925, showing HGT within a rhizosphere microbial community. Environmental stresses also influenced the rate and efficiency of HGT in the rhizosphere between different species and genera. This study provides a robust workflow to evaluate transfer of engineered plasmids in the rhizosphere when such plasmids are potentially introduced in a field or other plant-associated environments.IMPORTANCEWe report the use of EcoFABs to investigate the HGT process in a rhizosphere environment. It highlights the potential of EcoFABs in recapitulating the dynamic rhizosphere conditions as well as their versatility in studying plant-microbe interactions. This study also emphasizes the importance of studying the parameters impacting the HGT frequency. Several factors such as plant developmental stages, nutrient conditions, number of donor cells, and environmental stresses influence gene transfer within the rhizosphere microbial community. This study paves the way for future investigations into understanding the fate and movement of engineered plasmids in a field environment.
Collapse
Affiliation(s)
- Shweta Priya
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Silvia Rossbach
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan, USA
| | - Thomas Eng
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Hsiao-Han Lin
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Peter F Andeer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Jenny C Mortimer
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, South Australia, Australia
| | - Trent R Northen
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Aindrila Mukhopadhyay
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
2
|
Zhang H, Xu L, Hou X, Li Y, Niu L, Zhang J, Wang X. Ketoprofen promotes the conjugative transfer of antibiotic resistance among antibiotic resistant bacteria in natural aqueous environments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124676. [PMID: 39103039 DOI: 10.1016/j.envpol.2024.124676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 08/07/2024]
Abstract
The emergence and spread of antibiotic resistance in the environment pose a serious threat to global public health. It is acknowledged that non-antibiotic stresses, including disinfectants, pharmaceuticals and organic pollutants, play a crucial role in horizontal transmission of antibiotic resistance genes (ARGs). Despite the widespread presence of non-steroidal anti-inflammatory drugs (NSAIDs), notably in surface water, their contributions to the transfer of ARGs have not been systematically explored. Furthermore, previous studies have primarily concentrated on model strains to investigate whether contaminants promote the conjugative transfer of ARGs, leaving the mechanisms of ARG transmission among antibiotic resistant bacteria in natural aqueous environments under the selective pressures of non-antibiotic contaminants remains unclear. In this study, the Escherichia coli (E. coli) K12 carrying RP4 plasmid was used as the donor strain, indigenous strain Aeromonas veronii containing rifampicin resistance genes in Taihu Lake, and E. coli HB101 were used as receptor strains to establish inter-genus and intra-genus conjugative transfer systems, examining the conjugative transfer frequency under the stress of ketoprofen. The results indicated that ketoprofen accelerated the environmental spread of ARGs through several mechanisms. Ketoprofen promoted cell-to-cell contact by increasing cell surface hydrophobicity and reducing cell surface charge, thereby mitigating cell-to-cell repulsion. Furthermore, ketoprofen induced increased levels of reactive oxygen species (ROS) production, activated the DNA damage-induced response (SOS), and enhanced cell membrane permeability, facilitating ARG transmission in intra-genus and inter-genus systems. The upregulation of outer membrane proteins, oxidative stress, SOS response, mating pair formation (Mpf) system, and DNA transfer and replication (Dtr) system related genes, as well as the inhibition of global regulatory genes, all contributed to higher transfer efficiency under ketoprofen treatment. These findings served as an early warning for a comprehensive assessment of the roles of NSAIDs in the spread of antibiotic resistance in natural aqueous environments.
Collapse
Affiliation(s)
- Huanjun Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Linyun Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Xing Hou
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China; Institute of Water Science and Technology, Hohai University, Nanjing, 210098, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Jie Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Xixi Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
3
|
Alav I, Buckner MMC. Non-antibiotic compounds associated with humans and the environment can promote horizontal transfer of antimicrobial resistance genes. Crit Rev Microbiol 2024; 50:993-1010. [PMID: 37462915 PMCID: PMC11523920 DOI: 10.1080/1040841x.2023.2233603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/23/2023] [Accepted: 06/30/2023] [Indexed: 02/15/2024]
Abstract
Horizontal gene transfer plays a key role in the global dissemination of antimicrobial resistance (AMR). AMR genes are often carried on self-transmissible plasmids, which are shared amongst bacteria primarily by conjugation. Antibiotic use has been a well-established driver of the emergence and spread of AMR. However, the impact of commonly used non-antibiotic compounds and environmental pollutants on AMR spread has been largely overlooked. Recent studies found common prescription and over-the-counter drugs, artificial sweeteners, food preservatives, and environmental pollutants, can increase the conjugative transfer of AMR plasmids. The potential mechanisms by which these compounds promote plasmid transmission include increased membrane permeability, upregulation of plasmid transfer genes, formation of reactive oxygen species, and SOS response gene induction. Many questions remain around the impact of most non-antibiotic compounds on AMR plasmid conjugation in clinical isolates and the long-term impact on AMR dissemination. By elucidating the role of routinely used pharmaceuticals, food additives, and pollutants in the dissemination of AMR, action can be taken to mitigate their impact by closely monitoring use and disposal. This review will discuss recent progress on understanding the influence of non-antibiotic compounds on plasmid transmission, the mechanisms by which they promote transfer, and the level of risk they pose.
Collapse
Affiliation(s)
- Ilyas Alav
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Michelle M. C. Buckner
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
4
|
Wang X, Chen Q, Pang R, Zhang C, Huang G, Han Z, Su Y. Exposure modes determined the effects of nanomaterials on antibiotic resistance genes: The different roles of oxidative stress and quorum sensing. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124772. [PMID: 39168438 DOI: 10.1016/j.envpol.2024.124772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/09/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
The effects of co-occurrent pollutants on antibiotic resistance genes (ARGs) in wastewater treatment plants (WWTPs) have raised attentions. However, how the different realistic exposure scenarios determining the effects of nanomaterials (NMs) on ARGs, was still unknown. Herein, the effects of NMs on ARGs under two realistic scenarios was investigated by short-term and long-term exposure modes. The presence of NMs with two different exposure modes could both promote the dissemination of ARGs, and the results were dose-, type- and duration-dependent. Compared to short-term exposure, the long-term exposure increased the abundances of ARGs with a greater extent except nano-ZnO. The long-term exposure increased the overall abundances of target ARGs by 2.9%-20.4%, while shot-term exposure caused the 3.4%-10.5% increment. The mechanisms of ARGs fates driven by NMs exposure were further investigated from the levels of microbial community shift, intracellular oxidative stress, and gene abundance. The variations of several potential bacterial hosts did not contribute to the difference in the ARGs transmission with different exposure modes because NMs types played more vital roles in the shift of microbial community compared to the exposure modes. For the short-term exposure, NMs were capable of triggering the QS by upregulating relevant genes, and further activated the production of surfactin and increased membrane permeability, resulting in the facilitation of ARGs transfer. However, NMs under long-term exposure scenario preferentially stimulated oxidative stress by generating more ROS, which then enhanced ARGs dissemination. Therefore, the exposure mode of NMs was one of the pivotal factors determining the ARGs fates by different triggering mechanisms. This study highlighted the importance of exposure scenario of co-occurrent pollutants on ARGs spread, which will benefit the comprehensive understanding of the actual environmental fates of ARGs.
Collapse
Affiliation(s)
- Xueting Wang
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Qirui Chen
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Ruirui Pang
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Congyan Zhang
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Guangchen Huang
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Zhibang Han
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Yinglong Su
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China; Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai, 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
5
|
Wang S, Li W, Xi B, Cao L, Huang C. Mechanisms and influencing factors of horizontal gene transfer in composting system: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177017. [PMID: 39427888 DOI: 10.1016/j.scitotenv.2024.177017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Organic solid wastes such as livestock manure and sewage sludge are important sources and repositories of antibiotic resistance genes (ARGs). Composting, a solid waste treatment technology, has demonstrated efficacy in degrading various antibiotics and reducing ARGs. However, some recalcitrant ARGs (e.g., sul1, sul2) will enrich during the composting maturation period. These ARGs persist in compost products and spread through horizontal gene transfer (HGT). We analyzed the reasons behind the increase of ARGs during the maturation phase. It was found that the proliferation of ARG-host bacteria and HGT process play an important role. This article revealed that microbial physiological responses, environmental factors, pollutants, and quorum sensing (QS) can all influence the HGT process in composting systems. We examined the influence of these factors on HGT in the compost system and summarized potential mechanisms by analyzing the alterations in microbial communities. We comprehensively summarized the HGT hazards that these factors may present in composting systems. Finally, we summarized methods to inhibit HGT in compost, such as using additives, quorum sensing inhibitors (QSIs), microbial inoculation, and predicting HGT events. Overall, the HGT mechanism and driving force in complex composting systems are still insufficiently studied. In view of the current situation, using predictions to assess the risk of HGT in composting may be advisable.
Collapse
Affiliation(s)
- Simiao Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wei Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Lijia Cao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Caihong Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
6
|
Wu H, Yu Y, Su Q, Zhang TC, Du D, Du Y. Combined impact of antibiotics and Cr(VI) on antibiotic resistance, ARGs, and growth of Bacillussp. SH-1: A functionl analysis from gene to protease. BIORESOURCE TECHNOLOGY 2024; 414:131579. [PMID: 39384050 DOI: 10.1016/j.biortech.2024.131579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/19/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
The simultaneous selection of antibiotic resistance genes (ARGs) induced by heavy metals and antibiotics has emerged as a growing environmental problem. This study investigated the combined effects of chromium (Cr(VI)) and antibiotics on the ARGs of Bacillus cereus SH-1. As Cr(VI) concentration increased, it triggered reactive oxygen species oxidative stress in SH-1, increased antioxidant enzyme activity, enhanced plasmid conjugative transfer, and reduced the efficiency of Cr(VI) removal by SH-1. Antibiotic resistance varied with increasing tetracycline and amoxicillin minimum inhibitory concentrations (MICs), whereas azithromycin and chloramphenicol MICs decreased with Cr(VI) induction. The overexpression of eight genes of the HAE-1 family of efflux pumps was detected using metagenomics and proteomics. Co-contamination with Cr(VI) and antibiotics has led to the emergence and spread of antibiotic-resistant bacteria. Therefore, resistance gene contamination resulting from Cr(VI)-polluted environments cannot be overlooked.
Collapse
Affiliation(s)
- Hui Wu
- Hubei Province Engineering Research Center for Control and Treatment of Heavy Metal Pollution, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, PR China; Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, Wuhan 430074, PR China
| | - Yexing Yu
- Hubei Province Engineering Research Center for Control and Treatment of Heavy Metal Pollution, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, PR China; Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, Wuhan 430074, PR China
| | - Qingmuke Su
- Hubei Province Engineering Research Center for Control and Treatment of Heavy Metal Pollution, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, PR China; Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, Wuhan 430074, PR China
| | - Tian C Zhang
- Civil & Environmental Engineering Department, College of Engineering, University of Nebraska-Lincoln, Omaha, NE 68182, USA
| | - Dongyun Du
- Hubei Province Engineering Research Center for Control and Treatment of Heavy Metal Pollution, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, PR China; Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, Wuhan 430074, PR China
| | - Yaguang Du
- Hubei Province Engineering Research Center for Control and Treatment of Heavy Metal Pollution, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, PR China; Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, Wuhan 430074, PR China.
| |
Collapse
|
7
|
Lin L, Sun M, Pan X, Zhang W, Yang Y, Yang Y. Absence of synergistic effects between microplastics and copper ions on the spread of antibiotic resistance genes within aquatic bacteria at the community level. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176591. [PMID: 39343406 DOI: 10.1016/j.scitotenv.2024.176591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/15/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Microplastics and copper ions (Cu2+) are favorable in accelerating the propagation of antibiotic resistance genes (ARGs) in the plastisphere, however, their combined effects on the ARG spread within the bacterial community of the natural environment were less understood. The influence of microplastic types and Cu2+ concentrations on the horizontal gene transfer (HGT) of ARGs mediated by RP4 plasmid within natural bacterial communities in aquatic environments was investigated. Both biodegradable polybutylene succinate (PBS) and non-biodegradable polyvinyl chloride (PVC) microplastics significantly enhanced the transfer of ARGs, with PBS showing a significant higher effect compared to PVC. Cu2+ also increased transconjugation rates at environmentally relevant concentrations (5 μg L-1), but higher levels (50 μg L-1) lead to decreased rates due to severe bacterial cell membrane damage. The transconjugation rates in the presence of both microplastics and Cu2+ were lower than the sum of their individual effects, indicating no synergistic effects between them on transconjugation. Proteobacteria dominated the composition of transconjugates for all the treatment. Transmission electron microscope images and reactive oxygen species production in bacterial cells indicated that the increased contact frequency due to extracellular polymeric substances, combined with enhanced membrane permeability induced by microplastics and Cu2+, accounted for the increasing transconjugation rates. The study provides valuable insight into the potential effects of microplastics and heavy metals on the spread of ARGs from donors to bacterial communities in natural environments.
Collapse
Affiliation(s)
- Li Lin
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan 430014, China
| | - Mengge Sun
- China University of Geosciences (Beijing), Beijing 100083, China
| | - Xiong Pan
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan 430014, China
| | - Weihong Zhang
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, the Chinese Academy of Sciences & Hubei Province, Wuhan 430074, China; Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yang Yang
- Guizhou Normal University, Guiyang, China
| | - Yuyi Yang
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, the Chinese Academy of Sciences & Hubei Province, Wuhan 430074, China; Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
8
|
Wang B, Farhan MHR, Yuan L, Sui Y, Chu J, Yang X, Li Y, Huang L, Cheng G. Transfer dynamics of antimicrobial resistance among gram-negative bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176347. [PMID: 39306135 DOI: 10.1016/j.scitotenv.2024.176347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/09/2024] [Accepted: 09/15/2024] [Indexed: 09/26/2024]
Abstract
Antimicrobial resistance (AMR) in gram-negative bacteria (GNBs) is a significant global health concern, exacerbated by mobile genetic elements (MGEs). This review examines the transfer of antibiotic resistance genes (ARGs) within and between different species of GNB facilitated by MGEs, focusing on the roles of plasmids and phages. The impact of non-antibiotic chemicals, environmental factors affecting ARG transfer frequency, and underlying molecular mechanisms of bacterial resistance evolution are also discussed. Additionally, the study critically assesses the impact of fitness costs and compensatory evolution driven by MGEs in host organisms, shedding light on the transfer frequency of ARGs and host evolution within ecosystems. Overall, this comprehensive review highlights the factors and mechanisms influencing ARG movement among diverse GNB species and underscores the importance of implementing holistic One-Health strategies to effectively address the escalating public health challenges associated with AMR.
Collapse
Affiliation(s)
- Bangjuan Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Muhammad Haris Raza Farhan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Linlin Yuan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yuxin Sui
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jinhua Chu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiaohan Yang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yuxin Li
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lingli Huang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Guyue Cheng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
9
|
Xu R, Huang C, Yang B, Wang S, Zhong T, Ma L, Shang Q, Zhang M, Chu Z, Liu X. Influence of Two-Dimensional Black Phosphorus on the Horizontal Transfer of Plasmid-Mediated Antibiotic Resistance Genes: Promotion or Inhibition? Curr Microbiol 2024; 81:344. [PMID: 39235595 DOI: 10.1007/s00284-024-03825-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/26/2024] [Indexed: 09/06/2024]
Abstract
The problem of bacterial resistance caused by antibiotic abuse is seriously detrimental to global human health and ecosystem security. The two-dimensional nanomaterial (2D) such as black phosphorus (BP) is recently expected to become a new bacterial inhibitor and has been widely used in the antibacterial field due to its specific physicochemical properties. Nevertheless, the effects of 2D-BP on the propagation of antibiotic resistance genes (ARGs) in environments and the relevant mechanisms are not clear. Herein, we observed that the sub-inhibitory concentrations of 2D-BP dramatically increased the conjugative transfer of ARGs mediated by the RP4 plasmid up to 2.6-fold at the 125 mg/L exposure level compared with the untreated bacterial cells. Nevertheless, 2D-BP with the inhibitory concentration caused a dramatic decrease in the conjugative frequency. The phenotypic changes revealed that the increase of the conjugative transfer caused by 2D-BP exposure were attributed to the excessive reactive oxygen species and oxidative stress, and increased bacterial cell membrane permeability. The genotypic evidence demonstrated that 2D-BP affecting the horizontal gene transfer of ARGs was probably through the upregulation of mating pair formation genes (trbBp and traF) and DNA transfer and replication genes (trfAp and traJ), as well as the downregulation of global regulatory gene expression (korA, korB, and trbA). In summary, the changes in the functional and regulatory genes in the conjugative transfer contributed to the stimulation of conjugative transfer. This research aims to broaden our comprehension of how nanomaterials influence the dissemination of ARGs by elucidating their effects and mechanisms.
Collapse
Affiliation(s)
- Rongrong Xu
- School of Biology, Food, and Environment, Hefei University, No. 99 Jinxiu Road, Hefei, 230601, China
- International (Sino-German) Joint Research Center for Biomass of Anhui Province, Hefei, 230601, China
| | - Chuang Huang
- School of Biology, Food, and Environment, Hefei University, No. 99 Jinxiu Road, Hefei, 230601, China
- International (Sino-German) Joint Research Center for Biomass of Anhui Province, Hefei, 230601, China
| | - Bo Yang
- School of Biology, Food, and Environment, Hefei University, No. 99 Jinxiu Road, Hefei, 230601, China
- International (Sino-German) Joint Research Center for Biomass of Anhui Province, Hefei, 230601, China
| | - Shengli Wang
- School of Biology, Food, and Environment, Hefei University, No. 99 Jinxiu Road, Hefei, 230601, China
- International (Sino-German) Joint Research Center for Biomass of Anhui Province, Hefei, 230601, China
| | - Tianyang Zhong
- School of Biology, Food, and Environment, Hefei University, No. 99 Jinxiu Road, Hefei, 230601, China
- International (Sino-German) Joint Research Center for Biomass of Anhui Province, Hefei, 230601, China
| | - Lulu Ma
- School of Biology, Food, and Environment, Hefei University, No. 99 Jinxiu Road, Hefei, 230601, China
- International (Sino-German) Joint Research Center for Biomass of Anhui Province, Hefei, 230601, China
| | - Qiannan Shang
- School of Biology, Food, and Environment, Hefei University, No. 99 Jinxiu Road, Hefei, 230601, China
- International (Sino-German) Joint Research Center for Biomass of Anhui Province, Hefei, 230601, China
| | - Mengyao Zhang
- School of Biology, Food, and Environment, Hefei University, No. 99 Jinxiu Road, Hefei, 230601, China
- International (Sino-German) Joint Research Center for Biomass of Anhui Province, Hefei, 230601, China
| | - Zhuding Chu
- School of Biology, Food, and Environment, Hefei University, No. 99 Jinxiu Road, Hefei, 230601, China
- International (Sino-German) Joint Research Center for Biomass of Anhui Province, Hefei, 230601, China
| | - Xiaowei Liu
- School of Biology, Food, and Environment, Hefei University, No. 99 Jinxiu Road, Hefei, 230601, China.
- International (Sino-German) Joint Research Center for Biomass of Anhui Province, Hefei, 230601, China.
| |
Collapse
|
10
|
Gao Y, Guo Y, Wang L, Guo L, Shi B, Zhu L, Wang J, Kim YM, Wang J. Tebuconazole exacerbates co-occurrence and horizontal transfer of antibiotic resistance genes. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106026. [PMID: 39277355 DOI: 10.1016/j.pestbp.2024.106026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 09/17/2024]
Abstract
As one of the most widely used pesticides in the global fungicide market, tebuconazole has become heavily embedded in soil along with antibiotic resistance genes (ARGs). However, it remains unclear whether the selective pressure produced by tebuconazole affects ARGs and their horizontal transfer. In this experiment, we simulated a tebuconazole-contaminated soil ecosystem and observed changes in the abundance of ARGs and mobile genetic element (MGEs) due to tebuconazole exposure. We also established a plasmid RP4-mediated conjugative transfer system to investigate in depth the impact of tebuconazole on the horizontal transfer of ARGs and its mechanism of action. The results showed that under tebuconazole treatment at concentrations ranging from 0 to 10 mg/L, there was a gradual increase in the frequency of plasmid conjugative transfer, peaking at 10 mg/L which was 7.93 times higher than that of the control group, significantly promoting horizontal transfer of ARGs. Further analysis revealed that the conjugative transfer system under tebuconazole stress exhibited strong ability to form biofilm, and the conjugative transfer frequency ratio of biofilm to planktonic bacteria varied with the growth cycle of biofilm. Additionally, scanning electron microscopy and flow cytometry demonstrated increased cell membrane permeability in both donor and recipient bacteria under tebuconazole stress, accompanied by upregulation of ompA gene expression controlling cell membrane permeability. Furthermore, enzyme activity assays indicated significant increases in CAT, SOD activity, and GSH content in recipient bacteria under tebuconazole stress. Moreover, expression levels of transmembrane transporter gene trfAp as well as genes involved in oxidative stress and SOS response were found to be correlated with the frequency of plasmid conjugative transfer.
Collapse
Affiliation(s)
- Yuanfei Gao
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| | - Yuchen Guo
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| | - Lanjun Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| | - Luyu Guo
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| | - Baihui Shi
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| | - Lusheng Zhu
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| | - Jun Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| | - Young Mo Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Jinhua Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, People's Republic of China.
| |
Collapse
|
11
|
He Z, Smets BF, Dechesne A. Mating Assay: Plating Below a Cell Density Threshold is Required for Unbiased Estimation of Plasmid Conjugation Frequency of RP4 Transfer Between E. coli Strains. MICROBIAL ECOLOGY 2024; 87:109. [PMID: 39198281 PMCID: PMC11358341 DOI: 10.1007/s00248-024-02427-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024]
Abstract
Mating assays are common laboratory experiments for measuring the conjugation frequency, i.e. efficiency at which a plasmid transfers from a population of donor cells to a population of recipient cells. Selective plating remains a widely used quantification method to enumerate transconjugants at the end of such assays. However, conjugation frequencies may be inaccurately estimated because plasmid transfer can occur on transconjugant-selective plates rather than only during the intended mating duration. We investigated the influence of cell density on this phenomenon. We conducted mating experiments with IncPα plasmid RP4 harbored in Escherichia coli at a fixed cell density and mating conditions, inoculated a serial dilution of the mating mixture on transconjugant-selective plates or in transconjugant-selective broth, and compared the results to a model of cell-to-cell distance distribution. Our findings suggest that irrespective of the mating mode (liquid vs solid), the enumeration of transconjugants becomes significantly biased if the plated cell density exceeds 28 Colony Forming Unit (CFU)/mm2 (or 1.68•105 CFU/standard 9 cm Petri dish). This threshold is determined with a 95% confidence interval of ± 4 CFU/mm2 (± 2.46•104 CFU/standard 9 cm Petri dish). Liquid mating assays were more sensitive to this bias because the conjugation frequency of RP4 is several orders of magnitude lower in suspension compared to surface mating. Therefore, if selective plating is used, we recommend to plate at this density threshold and that negative controls are performed where donors and recipients are briefly mixed before plating at the same dilutions as for the actual mating assay. As an alternative, a liquid enumeration method can be utilized to increase the signal-to-noise ratio and allow for more accurate enumeration of transconjugants.
Collapse
Affiliation(s)
- Zhiming He
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Building 221, 2800, Kgs. Lyngby, Denmark.
- Sino-Danish College (SDC) for Education and Research, University of Chinese Academy of Sciences, 8000, Aarhus C, Denmark.
| | - Barth F Smets
- Department of Biological and Chemical Engineering - Environmental Engineering, Aarhus University, Ole Worms Allé 3, 8000, Aarhus C, Denmark
| | - Arnaud Dechesne
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Building 221, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
12
|
Jin C, Yang S, Ma H, Zhang X, Zhang K, Zou W. Ubiquitous nanocolloids suppress the conjugative transfer of plasmid-mediated antibiotic resistance in aqueous environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124231. [PMID: 38801878 DOI: 10.1016/j.envpol.2024.124231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/12/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Nanocolloids (Nc) are widespread in natural water environment, whereas the potential effects of Nc on dissemination of antibiotic resistance remain largely unknown. In this study, Nc collected from the Yellow River in Henan province was tested for its ability to influence the conjugative transfer of resistant plasmid in aqueous environment. The results revealed that the conjugative transfer of RP4 plasmid between Escherichia coli was down-regulated by 52%-91% upon exposure to 1-10 mg/L Nc and the reduction became constant when the dose became higher (20-200 mg/L). Despite the exposure of Nc activated the anti-oxidation and SOS response in bacteria through up-regulating genes involved in glutathione biosynthesis and DNA recombination, the inhibition on the synthesis and secretion of extracellular polysaccharide induced the prevention of cell-cell contact, leading to the reduction of plasmid transfer. This was evidenced by the decreased bacterial adhesion and lowered levels of genes and metabolites relevant to transmembrane transport and D-glucose phosphorylation, as clarified in phenotypic, transcriptomics and metabolomics analysis of E. coli. The significant down-regulation of glycolysis/gluconeogenesis and TCA cycle was associated with the shortage of ATP induced by Nc. The up-regulation of global regulatory genes (korA and trbA) and the reduction of plasmid genes (trfAp, trbBp, and traG) expression also contributed to the suppressed conjugation of RP4 plasmid. The obtained findings remind that the role of ubiquitous colloidal particles is nonnegligible when practically and comprehensively assessing the risk of antibiotic resistance in the environment.
Collapse
Affiliation(s)
- Caixia Jin
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China
| | - Shuo Yang
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China
| | - Haiwen Ma
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China
| | - Xingli Zhang
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China
| | - Kai Zhang
- School of Geographic Sciences, Henan Key Laboratory for Synergistic Prevention of Water and Soil Environmental Pollution, Xinyang Normal University, 464000, China
| | - Wei Zou
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China.
| |
Collapse
|
13
|
Laanoja J, Sihtmäe M, Vihodceva S, Iesalnieks M, Otsus M, Kurvet I, Kahru A, Kasemets K. Synthesis and synergistic antibacterial efficiency of chitosan-copper oxide nanocomposites. Heliyon 2024; 10:e35588. [PMID: 39170383 PMCID: PMC11337737 DOI: 10.1016/j.heliyon.2024.e35588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/12/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024] Open
Abstract
Copper and chitosan are used for biomedical applications due to their antimicrobial properties. In this study, a facile method for the synthesis of chitosan-copper oxide nanocomposites (nCuO-CSs) was modified, yielding stable colloidal nCuO-CSs suspensions. Using this method, nCuO-CSs with different copper-to-chitosan (50-190 kDa) weight ratios (1:0.3, 1:1, 1:3) were synthesized, their physicochemical properties characterized, and antibacterial efficacy assessed against Gram-negative Escherichia coli and Pseudomonas aeruginosa, and Gram-positive Staphylococcus aureus. The nCuO-CSs with a primary size of ∼10 nm and a ζ-potential of >+40 mV proved efficient antibacterials, acting at concentrations around 1 mg Cu/L. Notably, against Gram-negative bacteria, this inhibitory effect was already evident after a 1-h exposure and surpassed that of copper ions, implying to a synergistic effect of chitosan and nano-CuO. Indeed, using flow cytometry and confocal laser scanning microscopy, we showed that chitosan promoted interaction between the nCuO-CSs and bacterial cells, facilitating the shedding of copper ions in the close vicinity of the cell surface. The synergy between copper and chitosan makes these nanomaterials promising for biomedical applications (e.g., wound dressings).
Collapse
Affiliation(s)
- Jüri Laanoja
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
| | - Mariliis Sihtmäe
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Svetlana Vihodceva
- Institute of Materials and Surface Engineering, Faculty of Natural Sciences and Technology, Riga Technical University, Paula Valdena 3/7, LV-1048 Riga, Latvia
| | - Mairis Iesalnieks
- Institute of Materials and Surface Engineering, Faculty of Natural Sciences and Technology, Riga Technical University, Paula Valdena 3/7, LV-1048 Riga, Latvia
| | - Maarja Otsus
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Imbi Kurvet
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Anne Kahru
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
- Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia
| | - Kaja Kasemets
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| |
Collapse
|
14
|
Yan W, Bai R, Zhang Q, Jiang Y, Chen G, Zhang Y, Wu Y, Guo X, Xiao Y, Zhao F. Metagenomic insights into ecological risk of antibiotic resistome and mobilome in riverine plastisphere under impact of urbanization. ENVIRONMENT INTERNATIONAL 2024; 190:108946. [PMID: 39151267 DOI: 10.1016/j.envint.2024.108946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
Microplastics (MPs) are of increasing concern due to their role as reservoirs for antibiotic resistance genes (ARGs) and pathogens. To date, few studies have explored the influence of anthropogenic activities on ARGs and mobile genetic elements (MGEs) within various riverine MPs, in comparison to their natural counterparts. Here an in-situ incubation was conducted along heavily anthropogenically-impacted Houxi River to characterize the geographical pattern of antibiotic resistome, mobilome and pathogens inhabiting MPs- and leaf-biofilms. The metagenomics result showed a clear urbanization-driven profile in the distribution of ARGs, MGEs and pathogens, with their abundances sharply increasing 4.77 to 19.90 times from sparsely to densely populated regions. The significant correlation between human fecal marker crAssphage and ARG (R2 = 0.67, P=0.003) indicated the influence of anthropogenic activity on ARG proliferation in plastisphere and natural leaf surfaces. And mantel tests and random forest analysis revealed the impact of 17 socio-environmental factors, e.g., population density, antibiotic concentrations, and pore volume of materials, on the dissemination of ARGs. Partial least squares-path modeling further unveiled that intensifying human activities not only directly boosted ARGs abundance but also exerted a comparable indirect impact on ARGs propagation. Furthermore, the polyvinylchloride plastisphere created a pathogen-friendly habitat, harboring higher abundances of ARGs and MGEs, while polylactic acid are not likely to serve as vectors for pathogens in river, with a lower resistome risk score than that in leaf-biofilms. This study highlights the diverse ecological risks associated with the dissemination of ARGs and pathogens in varied MPs, offering insights for the policymaking of usage and control of plastics within urbanization.
Collapse
Affiliation(s)
- Weifu Yan
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
| | - Rui Bai
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Qinghua Zhang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Yuhao Jiang
- Academy of Forest Inventory and Planning, National Forestry and Grassland Administration, Beijing 100714, China
| | - Geng Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
| | - Yanru Zhang
- Fujian Key Laboratory of Pollution Control & Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Yicheng Wu
- Fujian Engineering and Research Center of Rural Sewage Treatment and Water Safety, Xiamen University of Technology, Xiamen 361024, China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yong Xiao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China.
| | - Feng Zhao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China.
| |
Collapse
|
15
|
Zhang S, Yao Z, Wang S, Zhang Y, Liu T, Zuo X. Dissolved oxygen facilitates efficiency of chlorine disinfection for antibiotic resistance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173210. [PMID: 38750753 DOI: 10.1016/j.scitotenv.2024.173210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
Controlling the dissemination of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) is a global concern. While commonly used chlorine disinfectants can damage or even kill ARB, dissolved oxygen (DO) may affect the formation of reactive chlorine species. This leads to the hypothesis that DO may play roles in mediating the effectiveness of chlorine disinfection for antibiotic resistance. To this end, this study investigated the impacts of DO on the efficiency of chlorine disinfection for antibiotic resistance. The results revealed that DO could increase the inactivation efficiency of ARB under chloramine and free chlorine exposure at practically relevant concentrations. Reactive species induced by DO, including H2O2, O2-, and OH, inactivated ARB strains by triggering oxidative stress response and cell membrane damage. In addition, the removal efficiency of extracellular ARGs (i.e. tetA and blaTEM) was enhanced with increasing dosage of free chlorine or chloramine under aerobic conditions. DO facilitated the fragmentation of plasmids, contributing to the degradation of extracellular ARGs under exposure to chlorine disinfectants. The findings suggested that DO facilitates disinfection efficiency for antibiotic resistance in water treatment systems.
Collapse
Affiliation(s)
- Shuai Zhang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Zheng Yao
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Shu Wang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yu Zhang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Tao Liu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Xiaojun Zuo
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China; School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing 210023, China.
| |
Collapse
|
16
|
Yuan W, Liu Y, Liu R, Li L, Deng P, Fu S, Riaz L, Lu J, Li G, Yang Z. Unveiling the overlooked threat: antibiotic resistance in groundwater near an abandoned sulfuric acid plant in Xingyang, China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:309. [PMID: 39002061 DOI: 10.1007/s10653-024-02100-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/24/2024] [Indexed: 07/15/2024]
Abstract
Groundwater near a sulfuric acid plant in Xingyang, Henan, China was sampled from seven distinct sites to explore the prevalence of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs). Results showed that genes aadA, blaCTX-M, tetA, qnrA, and sul1 were detected with 100% frequency followed by aac(6')-Ib (85.71%), ermB (85.71%), and tetX (71.42%). Most abundant ARGs were sul1 in LSA2 (1.15 × 1011 copies/mL), tetA in LSA6 (4.95 × 1010 copies/mL), aadA in LSA2 (4.56 × 109 copies/mL), blaCTX-M in LSA4 (1.19 × 109 copies/mL), and ermB in LSA5 (1.07 × 109 copies/mL). Moreover, in LSA2, intl1 as a marker of class 1 integron emerged as the most abundant gene as part of MGE (2.25 × 1011 copies/mL), trailed by ISCR1 (1.57 × 109 copies/mL). Environmental factors explained 81.34% of ARG variations, with a strong positive correlation between the intl2 and blaCTX-M genes, as well as the ISCR1 gene and qnrA, tetA, intl2, and blaCTX-M. Furthermore, the intI1 gene had a strong positive connection with the aadA, tetA, and sul1 genes. Moreover, the aac(6')-Ib gene was associated with As, Pb, Mg, Ca, and HCO3-. The intl2 gene was also shown to be strongly associated with Cd. Notably, network analysis highlighted blaCTX-M as the most frequently appearing gene across networks of at least five genera. Particularly, Lactobacillus, Plesiomonas, and Ligilactobacillus demonstrated correlations with aadA, qnrA, blaCTX-M, intI2, and ISCR1. Based on 16S rRNA sequencing, the dominant phyla were Proteobacteria, Firmicutes, Bacteroidota, Acidobacteriota, and Actinobacteriota, with dominant genera including Pseudomonas, Ligilactobacillus, Azoarcus, Vogesella, Streptococcus, Plesiomonas, and Ferritrophicum. These findings enhance our understanding of ARG distribution in groundwater, signaling substantial contamination by ARGs and potential risks to public health.
Collapse
Affiliation(s)
- Wei Yuan
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, Henan, China
| | - Yafei Liu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, Henan, China
| | - Ruihao Liu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, Henan, China
| | - Leicheng Li
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, Henan, China
| | - Peiyuan Deng
- Henan Engineering Research Center of Bird-Related Outage, Zhengzhou Normal University, Zhengzhou, 450044, Henan, China
| | - Shuai Fu
- College of Civil Engineering, Luoyang Institute of Science and Technology, Luoyang, 471023, Henan, China
| | - Luqman Riaz
- Department of Environmental Sciences, Kohsar University Murree, Murree, 47150, Punjab, Pakistan
| | - Jianhong Lu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, Henan, China
| | - Guoting Li
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, Henan, China
| | - Ziyan Yang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, Henan, China.
| |
Collapse
|
17
|
Wang Q, Li X, Zhou K, Li Y, Wang Y, Zhang G, Guo H, Zhou J, Wang T. Mechanisms of conjugative transfer of antibiotic resistance genes induced by extracellular polymeric substances: Insights into molecular diversities and electron transfer properties. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135181. [PMID: 39003806 DOI: 10.1016/j.jhazmat.2024.135181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/29/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
Dissemination of antibiotic resistance genes (ARGs) has become a critical threat to public health. Activated sludge, rich in extracellular polymeric substances (EPS), is an important pool of ARGs. In this study, mechanisms of conjugation transfer of ARGs induced by EPS, including tightly bound EPS (TBEPS), soluble EPS (SEPS), and loosely bound EPS (LBEPS), were explored in terms of molecular diversities and electron transfer properties of EPS. Conjugation transfer frequency was increased by 9.98-folds (SEPS), 4.21-folds (LBEPS), and 15.75-folds (TBEPS) versus the control, respectively. Conjugation-related core genes involving SOS responses (9 genes), membrane permeability (18 genes), intercellular contact (17 genes), and energy metabolism pathways (13 genes) were all upregulated, especially in the presence of TBEPS. Carbohydrates and aliphatic substances in SEPS and LBEPS were contributors to ARG transfer, via influencing reactive oxygen species (ROS) formation (SEPS) and ROS and adenosine triphosphate (ATP) production (LBEPS). TBEPS had the highest redox potential and greatest lability and facilitated electron transfer and alternated respiration between cells, thus promoting ARG transfer by producing ATP. Generally, the chemical molecular characteristics and redox properties of EPS facilitated ARG transfer mainly by influencing lipid peroxidation and ATP, respectively.
Collapse
Affiliation(s)
- Qi Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Xiao Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Keying Zhou
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Yutong Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Yanjie Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Guodong Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - He Guo
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
18
|
Shi J, Sun C, An T, Jiang C, Mei S, Lv B. Unraveling the effect of micro/nanoplastics on the occurrence and horizontal transfer of environmental antibiotic resistance genes: Advances, mechanisms and future prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174466. [PMID: 38964386 DOI: 10.1016/j.scitotenv.2024.174466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Microplastics can not only serve as vectors of antibiotic resistance genes (ARGs), but also they and even nanoplastics potentially affect the occurrence of ARGs in indigenous environmental microorganisms, which have aroused great concern for the development of antibiotic resistance. This article specifically reviews the effects of micro/nanoplastics (concentration, size, exposure time, chemical additives) and their interactions with other pollutants on environmental ARGs dissemination. The changes of horizontal genes transfer (HGT, i.e., conjugation, transformation and transduction) of ARGs caused by micro/nanoplastics were also summarized. Further, this review systematically sums up the mechanisms of micro/nanoplastics regulating HGT process of ARGs, including reactive oxygen species production, cell membrane permeability, transfer-related genes expression, extracellular polymeric substances production, and ARG donor-recipient adsorption/contaminants adsorption/biofilm formation. The underlying mechanisms in changes of bacterial communities induced by micro/nanoplastics were also discussed as it was an important factor for structuring the profile of ARGs in the actual environment, including causing environmental stress, providing carbon sources, forming biofilms, affecting pollutants distribution and environmental factors. This review contributes to a systematical understanding of the potential risks of antibiotic resistance dissemination caused by micro/nanoplastics and provokes thinking about perspectives for future research and the management of micro/nanoplastics and plastics.
Collapse
Affiliation(s)
- Jianhong Shi
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Chaoli Sun
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Tingxuan An
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Changhai Jiang
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Shenglong Mei
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Baoyi Lv
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China; International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Shanghai Maritime University, Shanghai 201306, China.
| |
Collapse
|
19
|
Xu Z, Lin X. Metal-regulated antibiotic resistance and its implications for antibiotic therapy. Microb Biotechnol 2024; 17:e14537. [PMID: 39045888 PMCID: PMC11267348 DOI: 10.1111/1751-7915.14537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/09/2024] [Indexed: 07/25/2024] Open
Abstract
Antibiotic resistance, one of the major medical threats worldwide, can be selected and induced by metals through multiple mechanisms such as co-resistance, cross-resistance, and co-regulation. Compared with co-resistance and cross-resistance which are attributed to the physically or functionally linked metal and antibiotic resistance genes, co-regulation of antibiotic resistance genes by metal-responsive regulators and pathways is much more complex and elusive. Here, we discussed the main mechanisms by which antibiotic resistance is regulated in response to metals and showed recent attempts to combat antibiotic resistance by interfering with metal-based signalling pathways. Further efforts to depict the intricate metal-based regulatory network of antibiotic resistance will provide tremendous opportunities for the discovery of novel anti-resistance targets, and blocking or rewiring the metal-based signalling pathways is emerging as a promising stratagem to reverse bacterial resistance to antibiotics and rejuvenate the efficacy of conventional antibiotics.
Collapse
Affiliation(s)
- Zeling Xu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
| | - Xiaoshan Lin
- The Fifth Affiliated HospitalSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
20
|
Gong W, Guo L, Huang C, Xie B, Jiang M, Zhao Y, Zhang H, Wu Y, Liang H. A systematic review of antibiotics and antibiotic resistance genes (ARGs) in mariculture wastewater: Antibiotics removal by microalgal-bacterial symbiotic system (MBSS), ARGs characterization on the metagenomic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172601. [PMID: 38657817 DOI: 10.1016/j.scitotenv.2024.172601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
Antibiotic residues in mariculture wastewater seriously affect the aquatic environment. Antibiotic Resistance Genes (ARGs) produced under antibiotic stress flow through the environment and eventually enter the human body, seriously affecting human health. Microalgal-bacterial symbiotic system (MBSS) can remove antibiotics from mariculture and reduce the flow of ARGs into the environment. This review encapsulates the present scenario of mariculture wastewater, the removal mechanism of MBSS for antibiotics, and the biomolecular information under metagenomic assay. When confronted with antibiotics, there was a notable augmentation in the extracellular polymeric substances (EPS) content within MBSS, along with a concurrent elevation in the proportion of protein (PN) constituents within the EPS, which limits the entry of antibiotics into the cellular interior. Quorum sensing stimulates the microorganisms to produce biological responses (DNA synthesis - for adhesion) through signaling. Oxidative stress promotes gene expression (coupling, conjugation) to enhance horizontal gene transfer (HGT) in MBSS. The microbial community under metagenomic detection is dominated by aerobic bacteria in the bacterial-microalgal system. Compared to aerobic bacteria, anaerobic bacteria had the significant advantage of decreasing the distribution of ARGs. Overall, MBSS exhibits remarkable efficacy in mitigating the challenges posed by antibiotics and resistant genes from mariculture wastewater.
Collapse
Affiliation(s)
- Weijia Gong
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China; State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China.
| | - Lin Guo
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China
| | - Chenxin Huang
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China
| | - Binghan Xie
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, PR China.
| | - Mengmeng Jiang
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China
| | - Yuzhou Zhao
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China
| | - Haotian Zhang
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China
| | - YuXuan Wu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, PR China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| |
Collapse
|
21
|
Gillieatt BF, Coleman NV. Unravelling the mechanisms of antibiotic and heavy metal resistance co-selection in environmental bacteria. FEMS Microbiol Rev 2024; 48:fuae017. [PMID: 38897736 PMCID: PMC11253441 DOI: 10.1093/femsre/fuae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 06/09/2024] [Accepted: 06/18/2024] [Indexed: 06/21/2024] Open
Abstract
The co-selective pressure of heavy metals is a contributor to the dissemination and persistence of antibiotic resistance genes in environmental reservoirs. The overlapping range of antibiotic and metal contamination and similarities in their resistance mechanisms point to an intertwined evolutionary history. Metal resistance genes are known to be genetically linked to antibiotic resistance genes, with plasmids, transposons, and integrons involved in the assembly and horizontal transfer of the resistance elements. Models of co-selection between metals and antibiotics have been proposed, however, the molecular aspects of these phenomena are in many cases not defined or quantified and the importance of specific metals, environments, bacterial taxa, mobile genetic elements, and other abiotic or biotic conditions are not clear. Co-resistance is often suggested as a dominant mechanism, but interpretations are beset with correlational bias. Proof of principle examples of cross-resistance and co-regulation has been described but more in-depth characterizations are needed, using methodologies that confirm the functional expression of resistance genes and that connect genes with specific bacterial hosts. Here, we comprehensively evaluate the recent evidence for different models of co-selection from pure culture and metagenomic studies in environmental contexts and we highlight outstanding questions.
Collapse
Affiliation(s)
- Brodie F Gillieatt
- School of Life and Environmental Sciences, The University of Sydney, F22 - LEES Building, NSW 2006, Australia
| | - Nicholas V Coleman
- School of Natural Sciences, and ARC Centre of Excellence in Synthetic Biology, Macquarie University, 6 Wally’s Walk, Macquarie Park, NSW 2109, Australia
| |
Collapse
|
22
|
Li H, Wang Q, Wang Y, Liu Y, Zhou J, Wang T, Zhu L, Guo J. EDTA enables to alleviate impacts of metal ions on conjugative transfer of antibiotic resistance genes. WATER RESEARCH 2024; 257:121659. [PMID: 38692255 DOI: 10.1016/j.watres.2024.121659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/28/2024] [Accepted: 04/21/2024] [Indexed: 05/03/2024]
Abstract
Various heavy metals are reported to be able to accelerate horizontal transfer of antibiotic resistance genes (ARGs). In real water environmental settings, ubiquitous complexing agents would affect the environmental behaviors of heavy metal ions due to the formation of metal-organic complexes. However, little is known whether the presence of complexing agents would change horizontal gene transfer due to heavy metal exposure. This study aimed to fill this gap by investigating the impacts of a typical complexing agent ethylenediaminetetraacetic acid (EDTA) on the conjugative transfer of plasmid-mediated ARGs induced by a range of heavy metal ions. At the environmentally relevant concentration (0.64 mg L-1) of metal ions, all the tested metal ions (Mg2+, Ca2+, Co2+, Pb2+, Ni2+, Cu2+, and Fe3+) promoted conjugative transfer of ARGs, while an inhibitory effect was observed at a relatively higher concentration (3.20 mg L-1). In contrast, EDTA (0.64 mg L-1) alleviated the effects of metal ions on ARGs conjugation transfer, evidenced by 11 %-66 % reduction in the conjugate transfer frequency. Molecular docking and dynamics simulations disclosed that this is attributed to the stronger binding of metal ions with the lipids in cell membranes. Under metal-EDTA exposure, gene expressions related to oxidative stress response, cell membrane permeability, intercellular contact, energy driving force, mobilization, and channels of plasmid transfer were suppressed compared with the metal ions exposure. This study offers insights into the alleviation mechanisms of complexing agents on ARGs transfer induced by free metal ions.
Collapse
Affiliation(s)
- Hu Li
- School of Ecology and Environment, Ningxia University, Yinchuan 750021, PR China; Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Qi Wang
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Yanjie Wang
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Yue Liu
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Jian Zhou
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Tiecheng Wang
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| | - Lingyan Zhu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia.
| |
Collapse
|
23
|
Wang Y, Zheng C, Qiu M, Zhang L, Fang H, Yu Y. Tebuconazole promotes spread of a multidrug-resistant plasmid into soil bacteria to form new resistant bacterial strains. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172444. [PMID: 38615769 DOI: 10.1016/j.scitotenv.2024.172444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
The development of antibiotic resistance threatens human and environmental health. Non-antibiotic stressors, including fungicides, may contribute to the spread of antibiotic resistance genes (ARGs). We determined the promoting effects of tebuconazole on ARG dissemination using a donor, Escherichia coli MG1655, containing a multidrug-resistant fluorescent plasmid (RP4) and a recipient (E. coli HB101). The donor was then incorporated into the soil to test whether tebuconazole could accelerate the spread of RP4 into indigenous bacteria. Tebuconazole promoted the transfer of the RP4 plasmid from the donor into the recipient via overproduction of reactive oxygen species (ROS), enhancement of cell membrane permeability and regulation of related genes. The dissemination of the RP4 plasmid from the donor to soil bacteria was significantly enhanced by tebuconazole. RP4 plasmid could be propagated into more genera of bacteria in tebuconazole-contaminated soil as the exposure time increased. These findings demonstrate that the fungicide tebuconazole promotes the spread of the RP4 plasmid into indigenous soil bacteria, revealing the potential risk of tebuconazole residues enhancing the dissemination of ARGs in soil environments.
Collapse
Affiliation(s)
- Yingnan Wang
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Conglai Zheng
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Mengting Qiu
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Luqing Zhang
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Hua Fang
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yunlong Yu
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
24
|
Ciaramellano F, Scipioni L, Belà B, Pignataro G, Giacovazzo G, Angelucci CB, Giacominelli-Stuffler R, Gramenzi A, Oddi S. Combination of Hydrolysable Tannins and Zinc Oxide on Enterocyte Functionality: In Vitro Insights. Biomolecules 2024; 14:666. [PMID: 38927069 PMCID: PMC11201419 DOI: 10.3390/biom14060666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
The management of gastrointestinal disease in animals represents a significant challenge in veterinary and zootechnic practice. Traditionally, acute symptoms have been treated with antibiotics and high doses of zinc oxide (ZnO). However, concerns have been raised regarding the potential for microbial resistance and ecological detriment due to the excessive application of this compound. These concerns highlight the urgency of minimizing the use of ZnO and exploring sustainable nutritional solutions. Hydrolysable tannins (HTs), which are known for their role in traditional medicine for acute gastrointestinal issues, have emerged as a promising alternative. This study examined the combined effect of food-grade HTs and subtherapeutic ZnO concentration on relevant biological functions of Caco-2 cells, a widely used model of the intestinal epithelial barrier. We found that, when used together, ZnO and HTs (ZnO/HTs) enhanced tissue repair and improved epithelial barrier function, normalizing the expression and functional organization of tight junction proteins. Finally, the ZnO/HTs combination strengthened enterocytes' defense against oxidative stress induced by inflammation stimuli. In conclusion, combining ZnO and HTs may offer a suitable and practical approach for decreasing ZnO levels in veterinary nutritional applications.
Collapse
Affiliation(s)
- Francesca Ciaramellano
- Department of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy (G.P.)
- European Center for Brain Research (CERC), Santa Lucia Foundation IRCCS, 00143 Rome, Italy;
| | - Lucia Scipioni
- European Center for Brain Research (CERC), Santa Lucia Foundation IRCCS, 00143 Rome, Italy;
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio Snc, 67100 L’Aquila, Italy
| | - Benedetta Belà
- Department of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy (G.P.)
| | - Giulia Pignataro
- Department of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy (G.P.)
| | - Giacomo Giacovazzo
- Department of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy (G.P.)
| | | | | | - Alessandro Gramenzi
- Department of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy (G.P.)
| | - Sergio Oddi
- Department of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy (G.P.)
- European Center for Brain Research (CERC), Santa Lucia Foundation IRCCS, 00143 Rome, Italy;
| |
Collapse
|
25
|
Dadeh Amirfard K, Moriyama M, Suzuki S, Sano D. Effect of environmental factors on conjugative transfer of antibiotic resistance genes in aquatic settings. J Appl Microbiol 2024; 135:lxae129. [PMID: 38830804 DOI: 10.1093/jambio/lxae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 04/25/2024] [Accepted: 06/02/2024] [Indexed: 06/05/2024]
Abstract
Antimicrobial-resistance genes (ARGs) are spread among bacteria by horizontal gene transfer, however, the effect of environmental factors on the dynamics of the ARG in water environments has not been very well understood. In this systematic review, we employed the regression tree algorithm to identify the environmental factors that facilitate/inhibit the transfer of ARGs via conjugation in planktonic/biofilm-formed bacterial cells based on the results of past relevant research. Escherichia coli strains were the most studied genus for conjugation experiments as donor/recipient in the intra-genera category. Conversely, Pseudomonas spp., Acinetobacter spp., and Salmonella spp. were studied primarily as recipients across inter-genera bacteria. The conjugation efficiency (ce) was found to be highly dependent on the incubation period. Some antibiotics, such as nitrofurantoin (at ≥0.2 µg ml-1) and kanamycin (at ≥9.5 mg l-1) as well as metallic compounds like mercury (II) chloride (HgCl2, ≥3 µmol l-1), and vanadium (III) chloride (VCl3, ≥50 µmol l-1) had enhancing effect on conjugation. The highest ce value (-0.90 log10) was achieved at 15°C-19°C, with linoleic acid concentrations <8 mg l-1, a recognized conjugation inhibitor. Identifying critical environmental factors affecting ARG dissemination in aquatic environments will accelerate strategies to control their proliferation and combat antibiotic resistance.
Collapse
Affiliation(s)
- Katayoun Dadeh Amirfard
- Department of Frontier Science for Advanced Environment, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Miyagi 980-8579, Japan
| | - Momoko Moriyama
- Department of Frontier Science for Advanced Environment, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Miyagi 980-8579, Japan
| | - Satoru Suzuki
- Center for Marine Environmental Studies, Ehime University, Bunkyōchō 2-5, Matsuyama, Ehime 790-8577, Japan
| | - Daisuke Sano
- Department of Frontier Science for Advanced Environment, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Miyagi 980-8579, Japan
- Department of Civil and Environmental Engineering, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Miyagi 980-8579, Japan
| |
Collapse
|
26
|
He Z, Dechesne A, Schreiber F, Zhu YG, Larsson DGJ, Smets BF. Understanding Stimulation of Conjugal Gene Transfer by Nonantibiotic Compounds: How Far Are We? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9017-9030. [PMID: 38753980 DOI: 10.1021/acs.est.3c06060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
A myriad of nonantibiotic compounds is released into the environment, some of which may contribute to the dissemination of antimicrobial resistance by stimulating conjugation. Here, we analyzed a collection of studies to (i) identify patterns of transfer stimulation across groups and concentrations of chemicals, (ii) evaluate the strength of evidence for the proposed mechanisms behind conjugal stimulation, and (iii) examine the plausibility of alternative mechanisms. We show that stimulatory nonantibiotic compounds act at concentrations from 1/1000 to 1/10 of the minimal inhibitory concentration for the donor strain but that stimulation is always modest (less than 8-fold). The main proposed mechanisms for stimulation via the reactive oxygen species/SOS cascade and/or an increase in cell membrane permeability are not unequivocally supported by the literature. However, we identify the reactive oxygen species/SOS cascade as the most likely mechanism. This remains to be confirmed by firm molecular evidence. Such evidence and more standardized and high-throughput conjugation assays are needed to create technologies and solutions to limit the stimulation of conjugal gene transfer and contribute to mitigating global antibiotic resistance.
Collapse
Affiliation(s)
- Zhiming He
- Department of Biotechnology and Biomedicine, Technical University of Denmark, So̷ltofts Plads Building 221, 2800 Kongens Lyngby, Denmark
- Sino-Danish College (SDC) for Education and Research, University of Chinese Academy of Sciences, 8000 Aarhus C, Denmark
| | - Arnaud Dechesne
- Department of Biotechnology and Biomedicine, Technical University of Denmark, So̷ltofts Plads Building 221, 2800 Kongens Lyngby, Denmark
| | - Frank Schreiber
- Division of Biodeterioration and Reference Organisms (4.1), Department of Materials and the Environment, Federal Institute for Materials Research and Testing (BAM), Unter den Eichen 87, 12205 Berlin, Germany
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, 361021 Xiamen, China
| | - D G Joakim Larsson
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy at the University of Gothenburg, Guldhedsgatan 10, SE-413 46 Göteborg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Västra Götaland, SE-405 30 Göteborg, Sweden
| | - Barth F Smets
- Department of Biological and Chemical Engineering-Environmental Engineering, Aarhus University, Ole Worms Allé 3, 8000 Aarhus C, Denmark
| |
Collapse
|
27
|
Zhang C, Peng J, Zhang S, Chen B, Qiu P. Modified activated carbon material-assisted electrochemical disinfection effectively inactivate antibiotic-resistant bacteria. ENVIRONMENTAL TECHNOLOGY 2024:1-9. [PMID: 38780483 DOI: 10.1080/09593330.2024.2356225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
ABSTRACTThe production and widespread transmission of antibiotic-resistant bacteria (ARB) pose an emerging threat to global public health. Electrochemical disinfection (ED) is an environmentally friendly disinfection technology widely utilized to inactivate ARB. This study explored the effect of modified activated carbon material (MACM) assisted ED on multi-ARB inactivation and the regeneration ability. The established ED technique was proven to be effective in inactivating multi-resistant ARB. Specifically, a 5-log ARB removal was achieved within 30 min treatment of MACM-assisted ED at 2.5 V. Additionally, no ARB regrowth was observed, indicating a permanent inactivation of ARB. The high level of reactive chlorine induced by MACM electrolysis was stressful to the ARB. Reactive chlorine led to overproduction of reactive oxygen species and damage of cell membranes in cells, accelerating the inactivation of ARB. Conclusively, the MACM-assisted ED method demonstrated efficient performance for ARB inactivation, implying this method is a promising alternative to traditional disinfection methods in countering ARB transmission.
Collapse
Affiliation(s)
- Chenxi Zhang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, People's Republic of China
| | - Jingze Peng
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, People's Republic of China
| | - Shuai Zhang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, People's Republic of China
| | - Bin Chen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, People's Republic of China
| | - Pengxiang Qiu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, People's Republic of China
| |
Collapse
|
28
|
Peng X, Zhou J, Lan Z, Tan R, Chen T, Shi D, Li H, Yang Z, Zhou S, Jin M, Li JW, Yang D. Carbonaceous particulate matter promotes the horizontal transfer of antibiotic resistance genes. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:915-927. [PMID: 38618896 DOI: 10.1039/d3em00547j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
There is growing concern about the transfer of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in airborne particulate matter. In this study, we investigated the effects of various types of carbonaceous particulate matter (CPM) on the transfer of ARGs in vitro. The results showed that CPM promoted the transfer of ARGs, which was related to the concentration and particle size. Compared with the control group, the transfer frequency was 95.5, 74.7, 65.4, 14.7, and 3.8 times higher in G (graphene), CB (carbon black), NGP (nanographite powder), GP1.6 (graphite powder 1.6 micron), and GP45 (graphite powder 45 micron) groups, respectively. Moreover, the transfer frequency gradually increased with the increase in CPM concentration, while there was a negative relationship between the CPM particle size and conjugative transfer frequency. In addition, the results showed that CPM could promote the transfer of ARGs by increasing ROS, as well as activating the SOS response and expression of conjugative transfer-related genes (trbBp, trfAp, korA, kroB, and trbA). These findings are indicative of the potential risk of CPM for the transfer of ARGs in the environment, enriching our understanding of environmental pollution and further raising awareness of environmental protection.
Collapse
Affiliation(s)
- Xuexia Peng
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No. 1 Dali Road, Tianjin 300050, P. R. China.
| | - Jiake Zhou
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No. 1 Dali Road, Tianjin 300050, P. R. China.
| | - Zishu Lan
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No. 1 Dali Road, Tianjin 300050, P. R. China.
| | - Rong Tan
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No. 1 Dali Road, Tianjin 300050, P. R. China.
| | - Tianjiao Chen
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No. 1 Dali Road, Tianjin 300050, P. R. China.
| | - Danyang Shi
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No. 1 Dali Road, Tianjin 300050, P. R. China.
| | - Haibei Li
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No. 1 Dali Road, Tianjin 300050, P. R. China.
| | - Zhongwei Yang
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No. 1 Dali Road, Tianjin 300050, P. R. China.
| | - Shuqing Zhou
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No. 1 Dali Road, Tianjin 300050, P. R. China.
| | - Min Jin
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No. 1 Dali Road, Tianjin 300050, P. R. China.
| | - Jun-Wen Li
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No. 1 Dali Road, Tianjin 300050, P. R. China.
| | - Dong Yang
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No. 1 Dali Road, Tianjin 300050, P. R. China.
| |
Collapse
|
29
|
Correa Velez KE, Alam M, Baalousha MA, Norman RS. Wildfire Ashes from the Wildland-Urban Interface Alter Vibrio vulnificus Growth and Gene Expression. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8169-8181. [PMID: 38690750 DOI: 10.1021/acs.est.3c08658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Climate change-induced stressors are contributing to the emergence of infectious diseases, including those caused by marine bacterial pathogens such as Vibrio spp. These stressors alter Vibrio temporal and geographical distribution, resulting in increased spread, exposure, and infection rates, thus facilitating greater Vibrio-human interactions. Concurrently, wildfires are increasing in size, severity, frequency, and spread in the built environment due to climate change, resulting in the emission of contaminants of emerging concern. This study aimed to understand the potential effects of urban interface wildfire ashes on Vibrio vulnificus (V. vulnificus) growth and gene expression using transcriptomic approaches. V. vulnificus was exposed to structural and vegetation ashes and analyzed to identify differentially expressed genes using the HTSeq-DESeq2 strategy. Exposure to wildfire ash altered V. vulnificus growth and gene expression, depending on the trace metal composition of the ash. The high Fe content of the vegetation ash enhanced bacterial growth, while the high Cu, As, and Cr content of the structural ash suppressed growth. Additionally, the overall pattern of upregulated genes and pathways suggests increased virulence potential due to the selection of metal- and antibiotic-resistant strains. Therefore, mixed fire ashes transported and deposited into coastal zones may lead to the selection of environmental reservoirs of Vibrio strains with enhanced antibiotic resistance profiles, increasing public health risk.
Collapse
Affiliation(s)
- Karlen Enid Correa Velez
- Department of Environmental Health Sciences, University of South Carolina, 921 Assembly St., Suite 401, Columbia, South Carolina 29208, United States
- NIEHS Center for Oceans and Human Health and Climate Change Interactions, University of South Carolina, 921 Assembly St., Suite 401, Columbia, South Carolina 29208, United States
| | - Mahbub Alam
- Department of Environmental Health Sciences, University of South Carolina, 921 Assembly St., Suite 401, Columbia, South Carolina 29208, United States
- Center for Environmental Nanoscience and Risk, University of South Carolina, 921 Assembly St., Suite 401, Columbia, South Carolina 29208, United States
| | - Mohammed A Baalousha
- Department of Environmental Health Sciences, University of South Carolina, 921 Assembly St., Suite 401, Columbia, South Carolina 29208, United States
- Center for Environmental Nanoscience and Risk, University of South Carolina, 921 Assembly St., Suite 401, Columbia, South Carolina 29208, United States
| | - R Sean Norman
- Department of Environmental Health Sciences, University of South Carolina, 921 Assembly St., Suite 401, Columbia, South Carolina 29208, United States
- NIEHS Center for Oceans and Human Health and Climate Change Interactions, University of South Carolina, 921 Assembly St., Suite 401, Columbia, South Carolina 29208, United States
| |
Collapse
|
30
|
Xu Z, Hu S, Zhao D, Xiong J, Li C, Ma Y, Li S, Huang B, Pan X. Molybdenum disulfide nanosheets promote the plasmid-mediated conjugative transfer of antibiotic resistance genes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120827. [PMID: 38608575 DOI: 10.1016/j.jenvman.2024.120827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/17/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024]
Abstract
The environmental safety of nanoscale molybdenum disulfide (MoS2) has attracted considerable attention, but its influence on the horizontal migration of antibiotic resistance genes and the ecological risks entailed have not been reported. This study addressed the influence of exposure to MoS2 at different concentrations up to 100 mg/L on the conjugative transfer of antibiotic resistance genes carried by RP4 plasmids with two strains of Escherichia coli. As a result, MoS2 facilitated RP4 plasmid-mediated conjugative transfer in a dose-dependent manner. The conjugation of RP4 plasmids was enhanced as much as 7-fold. The promoting effect is mainly attributable to increased membrane permeability, oxidative stress induced by reactive oxygen species, changes in extracellular polymer secretion and differential expression of the genes involved in horizontal gene transfer. The data highlight the distinct dose dependence of the conjugative transfer of antibiotic resistance genes and the need to improve awareness of the ecological and health risks of nanoscale transition metal dichalcogenides.
Collapse
Affiliation(s)
- Zhixiang Xu
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Siyuan Hu
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Dimeng Zhao
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Jinrui Xiong
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Caiqing Li
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yitao Ma
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Siyuan Li
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Bin Huang
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xuejun Pan
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
31
|
Miao S, Zhang Y, Men C, Mao Y, Zuo J. A combined evaluation of the characteristics and antibiotic resistance induction potential of antibiotic wastewater during the treatment process. J Environ Sci (China) 2024; 138:626-636. [PMID: 38135426 DOI: 10.1016/j.jes.2023.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/04/2023] [Accepted: 04/04/2023] [Indexed: 12/24/2023]
Abstract
Antibiotic wastewater contains a variety of pollutant stressors that can induce and promote antibiotic resistance (AR) when released into the environment. Although these substances are mostly in concentrations lower than those known to induce AR individually, it is possible that antibiotic wastewater discharge might still promote the AR transmission risk via additive or synergistic effects. However, the comprehensive effect of antibiotic wastewater on AR development has rarely been evaluated, and its treatment efficiency remains unknown. Here, samples were collected from different stages of a cephalosporin production wastewater treatment plant, and the potential AR induction effect of their chemical mixtures was explored through the exposure of the antibiotic-sensitive Escherichia coli K12 strain. Incubation with raw cephalosporin production wastewater significantly promoted mutation rates (3.6 × 103-9.3 × 103-fold) and minimum inhibition concentrations (6.0-6.7-fold) of E. coli against ampicillin and chloramphenicol. This may be attributed to the inhibition effect and oxidative stress of cephalosporin wastewater on E. coli. The AR induction effect of cephalosporin wastewater decreased after the coagulation sedimentation treatment and was completely removed after the full treatment process. A Pearson correlation analysis revealed that the reduction in the AR induction effect had a strong positive correlation with the removal of organics and biological toxicity. This indicates that the antibiotic wastewater treatment had a collaborative processing effect of conventional pollutants, toxicity, and the AR induction effect. This study illustrates the potential AR transmission risk of antibiotic wastewater and highlights the need for its adequate treatment.
Collapse
Affiliation(s)
- Sun Miao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yanyan Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Cong Men
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Yiou Mao
- High School Affiliated to Renmin University of China, Beijing 100080, China
| | - Jiane Zuo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China.
| |
Collapse
|
32
|
Rzymski P, Gwenzi W, Poniedziałek B, Mangul S, Fal A. Climate warming, environmental degradation and pollution as drivers of antibiotic resistance. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123649. [PMID: 38402936 DOI: 10.1016/j.envpol.2024.123649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/17/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Antibiotic resistance is a major challenge to public health, but human-caused environmental changes have not been widely recognized as its drivers. Here, we provide a comprehensive overview of the relationships between environmental degradation and antibiotic resistance, demonstrating that the former can potentially fuel the latter with significant public health outcomes. We describe that (i) global warming favors horizontal gene transfer, bacterial infections, the spread of drug-resistant pathogens due to water scarcity, and the release of resistance genes with wastewater; (ii) pesticide and metal pollution act as co-selectors of antibiotic resistance mechanisms; (iii) microplastics create conditions promoting and spreading antibiotic resistance and resistant bacteria; (iv) changes in land use, deforestation, and environmental pollution reduce microbial diversity, a natural barrier to antibiotic resistance spread. We argue that management of antibiotic resistance must integrate environmental goals, including mitigation of further increases in the Earth's surface temperature, better qualitative and quantitative protection of water resources, strengthening of sewage infrastructure and improving wastewater treatment, counteracting the microbial diversity loss, reduction of pesticide and metal emissions, and plastic use, and improving waste recycling. These actions should be accompanied by restricting antibiotic use only to clinically justified situations, developing novel treatments, and promoting prophylaxis. It is pivotal for health authorities and the medical community to adopt the protection of environmental quality as a part of public health measures, also in the context of antibiotic resistance management.
Collapse
Affiliation(s)
- Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland.
| | - Willis Gwenzi
- Biosystems and Environmental Engineering Research Group, 380 New Adylin, Marlborough, Harare, Zimbabwe; Alexander von Humboldt Fellow and Guest Professor, Grassland Science and Renewable Plant Resources, Faculty of Organic Agricultural Sciences, Universität Kassel, Witzenhausen, Germany; Alexander von Humboldt Fellow and Guest Professor, Leibniz Institute for Agricultural Engineering and Bioeconomy, Potsdam, Germany
| | - Barbara Poniedziałek
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland
| | - Serghei Mangul
- Titus Family Department of Clinical Pharmacy, USC Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USA
| | - Andrzej Fal
- Department of Allergy, Lung Diseases and Internal Medicine Central Clinical Hospital, Ministry of Interior, Warsaw, Poland; Collegium Medicum, Warsaw Faculty of Medicine, Cardinal Stefan Wyszyński University, Warsaw, Poland
| |
Collapse
|
33
|
Zhou S, Yang F, Wang W, Yang Z, Song J, Jiang T, Huang Z, Gao Y, Wang Y. Impact of uranium on antibiotic resistance in activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170369. [PMID: 38278272 DOI: 10.1016/j.scitotenv.2024.170369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/11/2024] [Accepted: 01/20/2024] [Indexed: 01/28/2024]
Abstract
The emergence of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) in the environment is well established as a human health crisis. The impact of radioactive heavy metals on ecosystems and ultimately on human health has become a global issue, especially for the regions suffering various nuclear activities or accidents. However, whether the radionuclides can affect the fate of antibiotic resistance in bacteria remains poorly understood. Here, the dynamics of ARB, three forms of ARGs-intracellular ARGs (iARGs), adsorbed extracellular ARGs (aeARGs), and free extracellular ARGs (feARGs)-and microbial communities were investigated following exposure to uranium (U), a representative radioactive heavy metal. The results showed that 90-d of U exposure at environmentally relevant concentrations of 0.05 mg/L or 5 mg/L significantly increased the ARB concentration in activated sludge (p < 0.05). Furthermore, 90-d of U exposure slightly elevated the absolute abundance of aeARGs (except tetO) and sulfonamide iARGs, but decreased tetracycline iARGs. Regarding feARGs, the abundance of tetC, tetO, and sul1 decreased after 90-d of U stress, whereas sul2 showed the opposite trend. Partial least-squares path model analysis revealed that the abundance of aeARGs and iARGs under U stress was predominantly driven by increased cell membrane permeability/intI1 abundance and cell membrane permeability/reactive oxygen species concentration, respectively. Conversely, the changes in feARGs abundance depended on the composition of the microbial community and the expression of efflux pumps. Our findings shed light on the variations of ARGs and ARB in activated sludge under U exposure, providing a more comprehensive understanding of antibiotic resistance risks aggravated by radioactive heavy metal-containing wastewater.
Collapse
Affiliation(s)
- Shuai Zhou
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, School of Civil Engineering, University of South China, Hengyang 421001, China; Hunan Province Key Laboratory of Rare Metal Minerals Exploitation and Geological Disposal of Wastes, School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Fengjuan Yang
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, School of Civil Engineering, University of South China, Hengyang 421001, China
| | - Weigang Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, China
| | - Zhengqing Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Jian Song
- Hunan Province Key Laboratory of Rare Metal Minerals Exploitation and Geological Disposal of Wastes, School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Tianyun Jiang
- Hunan Province Key Laboratory of Rare Metal Minerals Exploitation and Geological Disposal of Wastes, School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Zefeng Huang
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, School of Civil Engineering, University of South China, Hengyang 421001, China
| | - Yuanyuan Gao
- Hunan Province Key Laboratory of Rare Metal Minerals Exploitation and Geological Disposal of Wastes, School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China.
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, China.
| |
Collapse
|
34
|
Fang Q, Pan X. A systematic review of antibiotic resistance driven by metal-based nanoparticles: Mechanisms and a call for risk mitigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170080. [PMID: 38220012 DOI: 10.1016/j.scitotenv.2024.170080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
Elevations in antibiotic resistance genes (ARGs) are due not only to the antibiotic burden, but also to numerous environmental pressures (e.g., pesticides, metal ions, or psychotropic pharmaceuticals), which have led to an international public health emergency. Metal-based nanoparticles (MNPs) poison bacteria while propelling nanoresistance at ambient or sub-lethal concentrations, acting as a wide spectrum germicidal agent. Awareness of MNPs driven antibiotic resistance has created a surge of investigation into the molecule mechanisms of evolving and spreading environmental antibiotic resistome. Co-occurrence of MNPs resistance and antibiotic resistance emerge in environmental pathogens and benign microbes may entail a crucial outcome for human health. In this review we expound on the systematic mechanism of ARGs proliferation under the stress of MNPs, including reactive oxygen species (ROS) induced mutation, horizontal gene transfer (HGT) relevant genes regulation, nano-property, quorum sensing, and biofilm formation and highlighting on the momentous contribution of nanoparticle released ion. As antibiotic resistance pattern alteration is closely knit with the mediate activation of nanoparticle in water, soil, manure, or sludge habitats, we have proposed a virulence and evolution based antibiotic resistance risk assessment strategy for MNP contaminated areas and discussed practicable approaches that call for risk management in critical environmental compartments.
Collapse
Affiliation(s)
- Qunkai Fang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiangliang Pan
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
35
|
Stanton IC, Tipper HJ, Chau K, Klümper U, Subirats J, Murray AK. Does Environmental Exposure to Pharmaceutical and Personal Care Product Residues Result in the Selection of Antimicrobial-Resistant Microorganisms, and is this Important in Terms of Human Health Outcomes? ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:623-636. [PMID: 36416260 DOI: 10.1002/etc.5498] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/14/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
The environment plays a critical role in the development, dissemination, and transmission of antimicrobial resistance (AMR). Pharmaceuticals and personal care products (PPCPs) enter the environment through direct application to the environment and through anthropogenic pollution. Although there is a growing body of evidence defining minimal selective concentrations (MSCs) of antibiotics and the role antibiotics play in horizontal gene transfer (HGT), there is limited evidence on the role of non-antibiotic PPCPs. Existing data show associations with the development of resistance or effects on bacterial growth rather than calculating selective endpoints. Research has focused on laboratory-based systems rather than in situ experiments, although PPCP concentrations found throughout wastewater, natural water, and soil environments are often within the range of laboratory-derived MSCs and at concentrations shown to promote HGT. Increased selection and HGT of AMR by PPCPs will result in an increase in total AMR abundance in the environment, increasing the risk of exposure and potential transmission of environmental AMR to humans. There is some evidence to suggest that humans can acquire resistance from environmental settings, with water environments being the most frequently studied. However, because this is currently limited, we recommend that more evidence be gathered to understand the risk the environment plays in regard to human health. In addition, we recommend that future research efforts focus on MSC-based experiments for non-antibiotic PPCPS, particularly in situ, and investigate the effect of PPCP mixtures on AMR. Environ Toxicol Chem 2024;43:623-636. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
| | | | - Kevin Chau
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Uli Klümper
- Institute of Hydrobiology, Technische Universitӓt Dresden, Dresden, Germany
| | - Jessica Subirats
- Institute of Environmental Assessment and Water Research, Spanish Council for Scientific Research (IDAEA-CSIC), Barcelona, Spain
| | - Aimee K Murray
- College of Medicine and Health, University of Exeter, Cornwall, UK
| |
Collapse
|
36
|
Li YJ, Yuan Y, Tan WB, Xi BD, Wang H, Hui KL, Chen JB, Zhang YF, Wang LF, Li RF. Antibiotic resistance genes and heavy metals in landfill: A review. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132395. [PMID: 37976849 DOI: 10.1016/j.jhazmat.2023.132395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/07/2023] [Accepted: 08/23/2023] [Indexed: 11/19/2023]
Abstract
Landfill is reservoir containing antibiotic resistance genes (ARGs) that pose a threat to human life and health. Heavy metals impose lasting effects on ARGs. This review investigated and analyzed the distribution, composition, and abundance of heavy metals and ARGs in landfill. The abundance ranges of ARGs detected in refuse and leachate were similar. The composition of ARG varied with sampling depth in refuse. ARG in leachate varies with the distribution of ARG in the refuse. The ARG of sulI was associated with 11 metals (Co, Pb, Mn, Zn, Cu, Cr, Ni, Sb, As, Cd, and Al). The effects of the total metal concentration on ARG abundance were masked by many factors. Low heavy metal concentrations showed positive effects on ARG diffusion; conversely, high heavy metal concentrations showed negative effects. Organic matter had a selective pressure effect on microorganisms and could provide energy for the diffusion of ARGs. Complexes of heavy metals and organic matter were common in landfill. Therefore, the hypothesis was proposed that organic matter and heavy metals have combined effects on the horizontal gene transfer (HGT) of ARGs during landfill stabilization. This work provides a new basis to better understand the HGT of ARGs in landfill.
Collapse
Affiliation(s)
- Yan-Jiao Li
- School of Materials Science and engineering, Dalian Jiaotong University, Dalian 116021, China; State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Ying Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wen-Bing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Bei-Dou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Hui Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Kun-Long Hui
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jia-Bao Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yi-Fan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Lian-Feng Wang
- School of Materials Science and engineering, Dalian Jiaotong University, Dalian 116021, China
| | - Ren-Fei Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
37
|
Song J, Zheng C, Qiu M, Zhan XP, Zhang Z, Zhang H, Shi N, Zhang L, Yu Y, Nicolaisen M, Xu L, Fang H. Mechanisms Underlying the Overlooked Chiral Fungicide-Driven Enantioselective Proliferation of Antibiotic Resistance in Earthworm Intestinal Microbiome. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2931-2943. [PMID: 38306257 DOI: 10.1021/acs.est.3c07761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
From a "One Health" perspective, the global threat of antibiotic resistance genes (ARGs) is associated with modern agriculture practices including agrochemicals application. Chiral fungicides account for a considerable proportion of wildly used agrochemicals; however, whether and how their enantiomers lead to differential proliferation of antibiotic resistance in agricultural environments remain overlooked. Focused on the soil-earthworm ecosystem, we for the first time deciphered the mechanisms underlying the enantioselective proliferation of antibiotic resistance driven by the enantiomers of a typical chiral fungicide mandipropamid (i.e., R-MDP and S-MDP) utilizing a multiomic approach. Time-series metagenomic analysis revealed that R-MDP led to a significant enhancement of ARGs with potential mobility (particularly the plasmid-borne ARGs) in the earthworm intestinal microbiome. We further demonstrated that R-MDP induced a concentration-dependent facilitation of plasmid-mediated ARG transfer among microbes. In addition, transcriptomic analysis with verification identified the key aspects involved, where R-MDP enhanced cell membrane permeability, transfer ability, biofilm formation and quorum sensing, rebalanced energy production, and decreased cell mobility versus S-MDP. Overall, the findings provide novel insights into the enantioselective disruption of microbiome and resistome in earthworm gut by chiral fungicides and offer significant contributions to the comprehensive risk assessment of chiral agrochemicals in agroecosystems.
Collapse
Affiliation(s)
- Jiajin Song
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Conglai Zheng
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Mengting Qiu
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xiu-Ping Zhan
- Shanghai Agricultural Technology Extension and Service Center, Shanghai 201103, China
| | - Zihan Zhang
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Houpu Zhang
- College of Resources and Environment, Anhui Agricultural University, Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, Hefei 230036, China
| | - Nan Shi
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California 92697, United States
| | - Luqing Zhang
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yunlong Yu
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Mogens Nicolaisen
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Slagelse 4200, Denmark
| | - Lihui Xu
- Institute of Eco-Environmental Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Hua Fang
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
38
|
Bagra K, Bellanger X, Merlin C, Singh G, Berendonk TU, Klümper U. Environmental stress increases the invasion success of antimicrobial resistant bacteria in river microbial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166661. [PMID: 37652387 DOI: 10.1016/j.scitotenv.2023.166661] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/02/2023]
Abstract
Environmental microbiomes are constantly exposed to invasion events through foreign, antibiotic resistant bacteria that were enriched in the anthropic sphere. However, the biotic and abiotic factors, as well as the natural barriers that determine the invasion success of these invader bacteria into the environmental microbiomes are poorly understood. A great example of such invasion events are river microbial communities constantly exposed to resistant bacteria originating from wastewater effluents. Here, we aim at gaining comprehensive insights into the key factors that determine their invasion success with a particular focus on the effects of environmental stressors, regularly co-released in wastewater effluents. Understanding invasion dynamics of resistant bacteria is crucial for limiting the environmental spread of antibiotic resistance. To achieve this, we grew natural microbial biofilms on glass slides in rivers for one month. The biofilms were then transferred to laboratory, recirculating flume systems and exposed to a single pulse of a model resistant invader bacterium (Escherichia coli) either in presence or absence of stress induced by Cu2+. The invasion dynamics of E. coli into the biofilms were then monitored for 14 days. Despite an initially successful introduction of E. coli into the biofilms, independent of the imposed stress, over time the invader perished in absence of stress. However, under stress the invading strain successfully established and proliferated in the biofilms. Noteworthy, the increased establishment success of the invader coincided with a loss in microbial community diversity under stress conditions, likely due to additional niche space becoming available for the invader.
Collapse
Affiliation(s)
- Kenyum Bagra
- Technische Universität Dresden, Institute of Hydrobiology, Dresden, Germany; Department of Civil Engineering, Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - Xavier Bellanger
- Université de Lorraine, CNRS, LCPME, UMR 7564, Villers-lès-Nancy, France
| | - Christophe Merlin
- Université de Lorraine, CNRS, LCPME, UMR 7564, Villers-lès-Nancy, France
| | - Gargi Singh
- Department of Civil Engineering, Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - Thomas U Berendonk
- Technische Universität Dresden, Institute of Hydrobiology, Dresden, Germany
| | - Uli Klümper
- Technische Universität Dresden, Institute of Hydrobiology, Dresden, Germany.
| |
Collapse
|
39
|
Balcha ES, Gómez F, Gemeda MT, Bekele FB, Abera S, Cavalazzi B, Woldesemayat AA. Shotgun Metagenomics-Guided Prediction Reveals the Metal Tolerance and Antibiotic Resistance of Microbes in Poly-Extreme Environments in the Danakil Depression, Afar Region. Antibiotics (Basel) 2023; 12:1697. [PMID: 38136731 PMCID: PMC10740858 DOI: 10.3390/antibiotics12121697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
The occurrence and spread of antibiotic resistance genes (ARGs) in environmental microorganisms, particularly in poly-extremophilic bacteria, remain underexplored and have received limited attention. This study aims to investigate the prevalence of ARGs and metal resistance genes (MRGs) in shotgun metagenome sequences obtained from water and salt crust samples collected from Lake Afdera and the Assale salt plain in the Danakil Depression, northern Ethiopia. Potential ARGs were characterized by the comprehensive antibiotic research database (CARD), while MRGs were identified by using BacMetScan V.1.0. A total of 81 ARGs and 39 MRGs were identified at the sampling sites. We found a copA resistance gene for copper and the β-lactam encoding resistance genes were the most abundant the MRG and ARG in the study area. The abundance of MRGs is positively correlated with mercury (Hg) concentration, highlighting the importance of Hg in the selection of MRGs. Significant correlations also exist between heavy metals, Zn and Cd, and ARGs, which suggests that MRGs and ARGs can be co-selected in the environment contaminated by heavy metals. A network analysis revealed that MRGs formed a complex network with ARGs, primarily associated with β-lactams, aminoglycosides, and tetracyclines. This suggests potential co-selection mechanisms, posing concerns for both public health and ecological balance.
Collapse
Affiliation(s)
- Ermias Sissay Balcha
- School of Medical Laboratory Science, College of Medicine and Health Sciences, Hawassa University, Hawassa P.O. Box 1560, Ethiopia;
- Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa P.O. Box 16417, Ethiopia;
| | - Felipe Gómez
- Centro de Astrobiología (INTA-CSIC) Crtera, Ajalvir km 4 Torrejón de Ardoz, P.O. Box 28850 Madrid, Spain;
| | - Mesfin Tafesse Gemeda
- Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa P.O. Box 16417, Ethiopia;
| | - Fanuel Belayneh Bekele
- School of Public Health, College of Medicine and Health Sciences, Hawassa University, Hawassa P.O. Box 1560, Ethiopia;
| | - Sewunet Abera
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB Wageningen, The Netherlands;
- Institute of Biology, Leiden University, P.O. Box 9500, 2300 RA Leiden, The Netherlands
- Ethiopian Institute of Agricultural Research (EIAR), Addis Ababa P.O. Box 2003, Ethiopia
| | - Barbara Cavalazzi
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, 40100 Bologna, Italy;
- Department of Geology, University of Johannesburg, Johannesburg P.O. Box 524, South Africa
| | - Adugna Abdi Woldesemayat
- Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa P.O. Box 16417, Ethiopia;
| |
Collapse
|
40
|
Raro OHF, Poirel L, Nordmann P. Effect of Zinc Oxide and Copper Sulfate on Antibiotic Resistance Plasmid Transfer in Escherichia coli. Microorganisms 2023; 11:2880. [PMID: 38138025 PMCID: PMC10745819 DOI: 10.3390/microorganisms11122880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/21/2023] [Accepted: 11/25/2023] [Indexed: 12/24/2023] Open
Abstract
Heavy metals such as zinc (Zn) and copper (Cu) may be associated with antibiotic resistance dissemination. Our aim was to investigate whether sub-lethal dosage of Zn and Cu may enhance plasmid transfer and subsequently resistance genes dissemination. Plasmid conjugation frequencies (PCF) were performed with Escherichia coli strains bearing IncL-blaOXA-48, IncA/C-blaCMY-2, IncI1-blaCTX-M-1, IncF-blaCTX-M-1, and IncX3-blaNDM-5 as donors. Mating-out assays were performed with sub-dosages of zinc oxide (ZnO) and Cu sulfate (CuSO4). Quantification of the SOS response-associated gene expression levels and of the production of reactive oxygen species were determined. Increased PCF was observed for IncL, IncA/C, and IncX3 when treated with ZnO. PCF was only increased for IncL when treated with CuSO4. The ROS production presented an overall positive correlation with PCF after treatment with ZnO for IncL, IncA/C, and IncX3. For CuSO4 treatment, the same was observed only for IncL. No increase was observed for expression of SOS response-associated genes under CuSO4 treatment, and under ZnO treatment, we observed an increase in SOS response-associated genes only for IncX3. Our data showed that sub-dosages of ZnO and CuSO4 could significantly enhance PCF in E. coli, with a more marked effect observed with IncL, IncA/C, and IncX3 scaffolds. Our study suggested that use of certain heavy metals is not the panacea for avoiding use of antibiotics in order to prevent the dissemination of antibiotic resistance.
Collapse
Affiliation(s)
- Otávio Hallal Ferreira Raro
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, 1700 Fribourg, Switzerland; (O.H.F.R.); (P.N.)
| | - Laurent Poirel
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, 1700 Fribourg, Switzerland; (O.H.F.R.); (P.N.)
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, 1700 Fribourg, Switzerland
| | - Patrice Nordmann
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, 1700 Fribourg, Switzerland; (O.H.F.R.); (P.N.)
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, 1700 Fribourg, Switzerland
- Institute for Microbiology, Lausanne University Hospital and University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
41
|
Rebelo A, Duarte B, Freitas AR, Almeida A, Azevedo R, Pinto E, Peixe L, Antunes P, Novais C. Uncovering the effects of copper feed supplementation on the selection of copper-tolerant and antibiotic-resistant Enterococcus in poultry production for sustainable environmental practices. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165769. [PMID: 37506909 DOI: 10.1016/j.scitotenv.2023.165769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/20/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023]
Abstract
The use of antibiotics in animal production is linked to the emergence and spread of antibiotic-resistant bacteria, a threat to animal, environmental and human health. Copper (Cu) is an essential element in poultry diets and an alternative to antibiotics, supplementing inorganic or organic trace mineral feeds (ITMF/OTMF). However, its contribution to select multidrug-resistant (MDR) and Cu tolerant Enterococcus, a bacteria with a human-animal-environment-food interface, remains uncertain. We evaluated whether feeding chickens with Cu-ITMF or Cu-OTMF contributes to the selection of Cu tolerant and MDR Enterococcus from rearing to slaughter. Animal faeces [2-3-days-old (n = 18); pre-slaughter (n = 16)] and their meat (n = 18), drinking-water (n = 14) and feed (n = 18) from seven intensive farms with ITMF and OTMF flocks (10.000-64.000 animals each; 2019-2020; Portugal) were sampled. Enterococcus were studied by cultural, molecular and whole-genome sequencing methods and Cu concentrations by ICP-MS. Enterococcus (n = 477; 60 % MDR) were identified in 80 % of the samples, with >50 % carrying isolates resistant to tetracycline, quinupristin-dalfopristin, erythromycin, streptomycin, ampicillin or ciprofloxacin. Enterococcus with Cu tolerance genes, especially tcrB ± cueO, were mainly found in faeces (85 %; E. faecium/E. lactis) of ITMF/OTMF flocks. Similar occurrence and load of tcrB ± cueO Enterococcus in the faeces was detected throughout the chickens' lifespan in the ITMF/OTMF flocks, decreasing in meat. Most of the polyclonal MDR Enterococcus population carrying tcrB ± cueO or only cueO (67 %) showed a wild-type phenotype (MICCuSO4 ≤ 12 mM) linked to absence of tcrYAZB or truncated variants, also detected in 85 % of Enterococcus public genomes from poultry. Finally, < 65 μg/g Cu was found in all faecal and meat samples. In conclusion, Cu present in ITMF/OTMF is not selecting Cu tolerant and MDR Enterococcus during chickens' lifespan. However, more studies are needed to assess the minimum concentration of Cu required for MDR bacterial selection and horizontal transfer of antibiotic resistance genes, which would support sustainable practices mitigating antibiotic resistance spread in animal production and the environment beyond.
Collapse
Affiliation(s)
- Andreia Rebelo
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal; School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal; ESS, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072, Porto, Portugal
| | - Bárbara Duarte
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Ana R Freitas
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal; 1H-TOXRUN, One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Avenida Central de Gandra 1317, 4585-116, Gandra, Portugal
| | - Agostinho Almeida
- LAQV/REQUIMTE, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Rui Azevedo
- LAQV/REQUIMTE, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Edgar Pinto
- ESS, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072, Porto, Portugal; LAQV/REQUIMTE, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Luísa Peixe
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Patrícia Antunes
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal; Faculty of Nutrition and Food Sciences, University of Porto, Rua do Campo Alegre 823, 4150-180, Porto, Portugal
| | - Carla Novais
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| |
Collapse
|
42
|
Sadiq S, Khan I, Shen Z, Wang M, Xu T, Khan S, Zhou X, Bahadur A, Rafiq M, Sohail S, Wu P. Recent Updates on Multifunctional Nanomaterials as Antipathogens in Humans and Livestock: Classification, Application, Mode of Action, and Challenges. Molecules 2023; 28:7674. [PMID: 38005395 PMCID: PMC10675011 DOI: 10.3390/molecules28227674] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Pathogens cause infections and millions of deaths globally, while antipathogens are drugs or treatments designed to combat them. To date, multifunctional nanomaterials (NMs), such as organic, inorganic, and nanocomposites, have attracted significant attention by transforming antipathogen livelihoods. They are very small in size so can quickly pass through the walls of bacterial, fungal, or parasitic cells and viral particles to perform their antipathogenic activity. They are more reactive and have a high band gap, making them more effective than traditional medications. Moreover, due to some pathogen's resistance to currently available medications, the antipathogen performance of NMs is becoming crucial. Additionally, due to their prospective properties and administration methods, NMs are eventually chosen for cutting-edge applications and therapies, including drug administration and diagnostic tools for antipathogens. Herein, NMs have significant characteristics that can facilitate identifying and eliminating pathogens in real-time. This mini-review analyzes multifunctional NMs as antimicrobial tools and investigates their mode of action. We also discussed the challenges that need to be solved for the utilization of NMs as antipathogens.
Collapse
Affiliation(s)
- Samreen Sadiq
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (S.S.); (Z.S.); (M.W.); (T.X.)
| | - Iltaf Khan
- School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China;
| | - Zhenyu Shen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (S.S.); (Z.S.); (M.W.); (T.X.)
| | - Mengdong Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (S.S.); (Z.S.); (M.W.); (T.X.)
| | - Tao Xu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (S.S.); (Z.S.); (M.W.); (T.X.)
| | - Sohail Khan
- Department of Pharmacy, University of Swabi, Khyber Pakhtunkhwa 94640, Pakistan;
| | - Xuemin Zhou
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (S.S.); (Z.S.); (M.W.); (T.X.)
| | - Ali Bahadur
- College of Science, Mathematics, and Technology, Wenzhou-Kean University, Wenzhou 325060, China;
| | - Madiha Rafiq
- Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Department of Chemistry, Shantou University, Shantou 515063, China
| | - Sumreen Sohail
- Department of Information Technology, Careerera, Beltsville, MD 20705, USA;
| | - Ping Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (S.S.); (Z.S.); (M.W.); (T.X.)
| |
Collapse
|
43
|
Baig MIR, Kadu P, Bawane P, Nakhate KT, Yele S, Ojha S, Goyal SN. Mechanisms of emerging resistance associated with non-antibiotic antimicrobial agents: a state-of-the-art review. J Antibiot (Tokyo) 2023; 76:629-641. [PMID: 37605076 DOI: 10.1038/s41429-023-00649-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/27/2023] [Accepted: 07/20/2023] [Indexed: 08/23/2023]
Abstract
Although the development of resistance by microorganisms to antimicrobial drugs has been recognized as a global public health concern, the contribution of various non-antibiotic antimicrobial agents to the development of antimicrobial resistance (AMR) remains largely neglected. The present review discusses various chemical substances and factors other than typical antibiotics, such as preservatives, disinfectants, biocides, heavy metals and improper chemical sterilization that contribute to the development of AMR. Furthermore, it encompasses the mechanisms like co-resistance and co-selection, horizontal gene transfer, changes in the composition and permeability of cell membrane, efflux pumps, transposons, biofilm formation and enzymatic degradation of antimicrobial chemicals which underlie the development of resistance to various non-antibiotic antimicrobial agents. In addition, the review addresses the resistance-associated changes that develops in microorganisms due to these agents, which ultimately contribute to the development of resistance to antibiotics. In order to prevent the indiscriminate use of chemical substances and create novel therapeutic agents to halt resistance development, a more holistic scientific approach might provide diversified views on crucial factors contributing to the persistence and spread of AMR. The review illustrates the common and less explored mechanisms contributing directly or indirectly to the development of AMR by non-antimicrobial agents that are commonly used.
Collapse
Affiliation(s)
- Mirza Ilyas Rahim Baig
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, 400056, India
| | - Pramod Kadu
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, 400056, India.
| | - Pradip Bawane
- Department of Pharmacognosy, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra, 424001, India
| | - Kartik T Nakhate
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra, 424001, India
| | - Santosh Yele
- Department of Pharmacognosy, SVKM's NMIMS, School of Pharmacy & Technology Management, Hyderabad, 509301, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Sameer N Goyal
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra, 424001, India
| |
Collapse
|
44
|
Toader G, Diacon A, Rusen E, Mangalagiu II, Alexandru M, Zorilă FL, Mocanu A, Boldeiu A, Gavrilă AM, Trică B, Pulpea D, Necolau MI, Istrate M. Peelable Alginate Films Reinforced by Carbon Nanofibers Decorated with Antimicrobial Nanoparticles for Immediate Biological Decontamination of Surfaces. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2775. [PMID: 37887926 PMCID: PMC10609245 DOI: 10.3390/nano13202775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023]
Abstract
This study presents the synthesis and characterization of alginate-based nanocomposite peelable films, reinforced by carbon nanofibers (CNFs) decorated with nanoparticles that possess remarkable antimicrobial properties. These materials are suitable for immediate decontamination applications, being designed as fluid formulations that can be applied on contaminated surfaces, and subsequently, they can rapidly form a peelable film via divalent ion crosslinking and can be easily peeled and disposed of. Silver, copper, and zinc oxide nanoparticles (NPs) were synthesized using superficial oxidized carbon nanofibers (CNF-ox) as support. To obtain the decontaminating formulations, sodium alginate (ALG) was further incorporated into the colloidal solutions containing the antimicrobial nanoparticles. The properties of the initial CNF-ox-NP-ALG solutions and the resulting peelable nanocomposite hydrogels (obtained by crosslinking with zinc acetate) were assessed by rheological measurements, and mechanical investigations, respectively. The evaluation of Minimal Inhibitory Concentration (MIC) and Minimal Bactericidal Concentration (MBC) for the synthesized nanoparticles (silver, copper, and zinc oxide) was performed. The best values for MIC and MBC were obtained for CNF-ox decorated with AgNPs for both types of bacterial strains: Gram-negative (MIC and MBC values (mg/L): E. coli-3 and 108; P. aeruginosa-3 and 54) and Gram-positive (MIC and MBC values (mg/L): S. aureus-13 and 27). The film-forming decontaminating formulations were also subjected to a microbiology assay consisting of the time-kill test, MIC and MBC estimations, and evaluation of the efficacity of peelable coatings in removing the biological agents from the contaminated surfaces. The best decontamination efficiencies against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa varied between 97.40% and 99.95% when employing silver-decorated CNF-ox in the decontaminating formulations. These results reveal an enhanced antimicrobial activity brought about by the synergistic effect of silver and CNF-ox, coupled with an efficient incorporation of the contaminants inside the peelable films.
Collapse
Affiliation(s)
- Gabriela Toader
- Military Technical Academy “Ferdinand I”, 39-49 G. Cosbuc Blvd., 050141 Bucharest, Romania; (G.T.); (A.D.); (D.P.)
| | - Aurel Diacon
- Military Technical Academy “Ferdinand I”, 39-49 G. Cosbuc Blvd., 050141 Bucharest, Romania; (G.T.); (A.D.); (D.P.)
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (A.M.); (M.I.N.)
| | - Edina Rusen
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (A.M.); (M.I.N.)
| | - Ionel I. Mangalagiu
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol 1st Blvd., 700506 Iasi, Romania
| | - Mioara Alexandru
- Microbiology Laboratory, Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, 30 Reactorului St., 077125 Bucharest, Romania; (M.A.); (F.L.Z.)
| | - Florina Lucica Zorilă
- Microbiology Laboratory, Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, 30 Reactorului St., 077125 Bucharest, Romania; (M.A.); (F.L.Z.)
- Department of Genetics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Indepententei, 050095 Bucharest, Romania
| | - Alexandra Mocanu
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (A.M.); (M.I.N.)
- National Institute for Research and Development in Microtechnologies—IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Bucharest, Romania;
| | - Adina Boldeiu
- National Institute for Research and Development in Microtechnologies—IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Bucharest, Romania;
| | - Ana Mihaela Gavrilă
- National Institute of Research and Development for Chemistry and Petrochemistry, 202 Splaiul Independentei, 060041 Bucharest, Romania; (A.M.G.); (B.T.)
| | - Bogdan Trică
- National Institute of Research and Development for Chemistry and Petrochemistry, 202 Splaiul Independentei, 060041 Bucharest, Romania; (A.M.G.); (B.T.)
| | - Daniela Pulpea
- Military Technical Academy “Ferdinand I”, 39-49 G. Cosbuc Blvd., 050141 Bucharest, Romania; (G.T.); (A.D.); (D.P.)
| | - Mădălina Ioana Necolau
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (A.M.); (M.I.N.)
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
| | - Marcel Istrate
- S.C. Stimpex S.A., 46-48 Nicolae Teclu Street, 032368 Bucharest, Romania;
| |
Collapse
|
45
|
Yin L, Wang X, Xu H, Yin B, Wang X, Zhang Y, Li X, Luo Y, Chen Z. Unrecognized risk of perfluorooctane sulfonate in promoting conjugative transfers of bacterial antibiotic resistance genes. Appl Environ Microbiol 2023; 89:e0053323. [PMID: 37565764 PMCID: PMC10537727 DOI: 10.1128/aem.00533-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/28/2023] [Indexed: 08/12/2023] Open
Abstract
Antibiotic resistance is a major global health crisis facing humanity, with horizontal gene transfer (HGT) as a principal dissemination mechanism in the natural and clinical environments. Perfluoroalkyl substances (PFASs) are emerging contaminants of global concern due to their high persistence in the environment and adverse effects on humans. However, it is unknown whether PFASs affect the HGT of bacterial antibiotic resistance. Using a genetically engineered Escherichia coli MG1655 as the donor of plasmid-encoded antibiotic resistance genes (ARGs), E. coli J53 and soil bacterial community as two different recipients, this study demonstrated that the conjugation frequency of ARGs between two E. coli strains was (1.45 ± 0.17) × 10-5 and perfluorooctane sulfonate (PFOS) at environmentally relevant concentrations (2-50 μg L-1) increased conjugation transfer between E. coli strains by up to 3.25-fold. Increases in reactive oxygen species production, cell membrane permeability, biofilm formation capacity, and cell contact in two E. coli strains were proposed as major promotion mechanisms from PFOS exposure. Weighted gene co-expression network analysis of transcriptome data identified a series of candidate genes whose expression changes could contribute to the increase in conjugation transfer induced by PFOS. Furthermore, PFOS also generally increased the ARG transfer into the studied soil bacterial community, although the uptake ability of different community members of the plasmid either increased or decreased upon PFOS exposure depending on specific bacterial taxa. Overall, this study reveals an unrecognized risk of PFOS in accelerating the dissemination of antibiotic resistance. IMPORTANCE Perfluoroalkyl substances (PFASs) are emerging contaminants of global concern due to their high persistence in the environment and adverse health effects. Although the influence of environmental pollutants on the spread of antibiotic resistance, one of the biggest threats to global health, has attracted increasing attention in recent years, it is unknown whether environmental residues of PFASs affect the dissemination of bacterial antibiotic resistance. Considering PFASs, often called "forever" compounds, have significantly higher environmental persistence than most emerging organic contaminants, exploring the effect of PFASs on the spread of antibiotic resistance is more environmentally relevant and has essential ecological and health significance. By systematically examining the influence of perfluorooctane sulfonate on the antibiotic resistance gene conjugative transfer, not only at the single-strain level but also at the community level, this study has uncovered an unrecognized risk of PFASs in promoting conjugative transfers of bacterial antibiotic resistance genes, which could be incorporated into the risk assessment framework of PFASs.
Collapse
Affiliation(s)
- Lichun Yin
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Xiaolong Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Han Xu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Bo Yin
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Xingshuo Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Yulin Zhang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Xinyao Li
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Yi Luo
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Zeyou Chen
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| |
Collapse
|
46
|
Rebelo A, Almeida A, Peixe L, Antunes P, Novais C. Unraveling the Role of Metals and Organic Acids in Bacterial Antimicrobial Resistance in the Food Chain. Antibiotics (Basel) 2023; 12:1474. [PMID: 37760770 PMCID: PMC10525130 DOI: 10.3390/antibiotics12091474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 09/29/2023] Open
Abstract
Antimicrobial resistance (AMR) has a significant impact on human, animal, and environmental health, being spread in diverse settings. Antibiotic misuse and overuse in the food chain are widely recognized as primary drivers of antibiotic-resistant bacteria. However, other antimicrobials, such as metals and organic acids, commonly present in agri-food environments (e.g., in feed, biocides, or as long-term pollutants), may also contribute to this global public health problem, although this remains a debatable topic owing to limited data. This review aims to provide insights into the current role of metals (i.e., copper, arsenic, and mercury) and organic acids in the emergence and spread of AMR in the food chain. Based on a thorough literature review, this study adopts a unique integrative approach, analyzing in detail the known antimicrobial mechanisms of metals and organic acids, as well as the molecular adaptive tolerance strategies developed by diverse bacteria to overcome their action. Additionally, the interplay between the tolerance to metals or organic acids and AMR is explored, with particular focus on co-selection events. Through a comprehensive analysis, this review highlights potential silent drivers of AMR within the food chain and the need for further research at molecular and epidemiological levels across different food contexts worldwide.
Collapse
Affiliation(s)
- Andreia Rebelo
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.R.); (L.P.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal
- ESS, Polytechnic of Porto, 4200-072 Porto, Portugal
| | - Agostinho Almeida
- LAQV/REQUIMTE, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| | - Luísa Peixe
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.R.); (L.P.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Patrícia Antunes
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.R.); (L.P.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Faculty of Nutrition and Food Sciences (FCNAUP), University of Porto, 4150-180 Porto, Portugal
| | - Carla Novais
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.R.); (L.P.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
47
|
Nascimento APA, de Farias BO, Gonçalves-Brito AS, Magaldi M, Flores C, Quidorne CS, Montenegro KS, Bianco K, Clementino MM. Phylogenomics analysis of multidrug-resistant Elizabethkingia anophelis in industrial wastewater treatment plant. J Appl Microbiol 2023; 134:lxad215. [PMID: 37715335 DOI: 10.1093/jambio/lxad215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/31/2023] [Accepted: 09/13/2023] [Indexed: 09/17/2023]
Abstract
AIMS This study investigated the phylogenetic relatedness of multidrug-resistant Elizabethkingia anophelis recovered from an industrial wastewater treatment plant (WWTPi). METHODS AND RESULTS The wastewater samples were plated in brain heart infusion agar (4 mg/L ceftazidime, 8 mg/L meropenem, and 2 mg/L polimixin). Four isolates recovered from four stages of WWTPi (influent, aeration, decantation, and treated effluent) were identified and evaluated of susceptibility profiles in the VITEK 2 system. These strains identified as E. meningoseptica were confirmed to be E. anophelis by whole genomic sequencing (Miseq-Illumina) and showed antimicrobial resistance genes of β-lactams, aminoglycosides, and tetracycline's classes. The ribosomal multilocus sequence typing showed that they belong to the rST 65620 together with clinical strains. The phylogenomic tree revealed the similarity of our strains to those belonging to sublineage 11 and the single nucleotide polymorphism analysis confirmed that they belong to a single clade. CONCLUSIONS To the best of our knowledge, this is the first study reporting the persistence of multidrug-resistant E. anophelis sublineage 11 along the wastewater treatment.
Collapse
Affiliation(s)
- Ana Paula Alves Nascimento
- National Institute of Quality Control in Health-INCQS, Oswaldo Cruz Foundation - FIOCRUZ, Rio de Janeiro, RJ 4365, Brazil
| | - Beatriz Oliveira de Farias
- National Institute of Quality Control in Health-INCQS, Oswaldo Cruz Foundation - FIOCRUZ, Rio de Janeiro, RJ 4365, Brazil
- Fiocruz Genomic Network, Oswaldo Cruz Foundation-FIOCRUZ, Rio de Janeiro, RJ 4365, Brazil
| | - Andressa Silva Gonçalves-Brito
- National Institute of Quality Control in Health-INCQS, Oswaldo Cruz Foundation - FIOCRUZ, Rio de Janeiro, RJ 4365, Brazil
- Fiocruz Genomic Network, Oswaldo Cruz Foundation-FIOCRUZ, Rio de Janeiro, RJ 4365, Brazil
| | - Mariana Magaldi
- National Institute of Quality Control in Health-INCQS, Oswaldo Cruz Foundation - FIOCRUZ, Rio de Janeiro, RJ 4365, Brazil
- Fiocruz Genomic Network, Oswaldo Cruz Foundation-FIOCRUZ, Rio de Janeiro, RJ 4365, Brazil
| | - Claudia Flores
- National Institute of Quality Control in Health-INCQS, Oswaldo Cruz Foundation - FIOCRUZ, Rio de Janeiro, RJ 4365, Brazil
| | - Camila Silva Quidorne
- National Institute of Quality Control in Health-INCQS, Oswaldo Cruz Foundation - FIOCRUZ, Rio de Janeiro, RJ 4365, Brazil
| | - Kaylanne S Montenegro
- National Institute of Quality Control in Health-INCQS, Oswaldo Cruz Foundation - FIOCRUZ, Rio de Janeiro, RJ 4365, Brazil
| | - Kayo Bianco
- National Institute of Quality Control in Health-INCQS, Oswaldo Cruz Foundation - FIOCRUZ, Rio de Janeiro, RJ 4365, Brazil
- Fiocruz Genomic Network, Oswaldo Cruz Foundation-FIOCRUZ, Rio de Janeiro, RJ 4365, Brazil
- COVID-19 Monitoring Network in Wastewater, Santo André, São Paulo, 09210-580, Brazil
| | - Maysa Mandetta Clementino
- National Institute of Quality Control in Health-INCQS, Oswaldo Cruz Foundation - FIOCRUZ, Rio de Janeiro, RJ 4365, Brazil
- Fiocruz Genomic Network, Oswaldo Cruz Foundation-FIOCRUZ, Rio de Janeiro, RJ 4365, Brazil
- COVID-19 Monitoring Network in Wastewater, Santo André, São Paulo, 09210-580, Brazil
| |
Collapse
|
48
|
Sans-Serramitjana E, Obreque M, Muñoz F, Zaror C, Mora MDLL, Viñas M, Betancourt P. Antimicrobial Activity of Selenium Nanoparticles (SeNPs) against Potentially Pathogenic Oral Microorganisms: A Scoping Review. Pharmaceutics 2023; 15:2253. [PMID: 37765222 PMCID: PMC10537110 DOI: 10.3390/pharmaceutics15092253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Biofilms are responsible for the most prevalent oral infections such as caries, periodontal disease, and pulp and periapical lesions, which affect the quality of life of people. Antibiotics have been widely used to treat these conditions as therapeutic and prophylactic compounds. However, due to the emergence of microbial resistance to antibiotics, there is an urgent need to develop and evaluate new antimicrobial agents. This scoping review offers an extensive and detailed synthesis of the potential role of selenium nanoparticles (SeNPs) in combating oral pathogens responsible for causing infectious diseases. A systematic search was conducted up until May 2022, encompassing the MEDLINE, Embase, Scopus, and Lilacs databases. We included studies focused on evaluating the antimicrobial efficacy of SeNPs on planktonic and biofilm forms and their side effects in in vitro studies. The selection process and data extraction were carried out by two researchers independently. A qualitative synthesis of the results was performed. A total of twenty-two articles were considered eligible for this scoping review. Most of the studies reported relevant antimicrobial efficacy against C. albicans, S. mutans, E. faecalis, and P. gingivalis, as well as effective antioxidant activity and limited toxicity. Further research is mandatory to critically assess the effectiveness of this alternative treatment in ex vivo and in vivo settings, with detailed information about SeNPs concentrations employed, their physicochemical properties, and the experimental conditions to provide enough evidence to address the construction and development of well-designed and safe protocols.
Collapse
Affiliation(s)
- Eulàlia Sans-Serramitjana
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Biotechnological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco 4811230, Chile;
| | - Macarena Obreque
- Center for Research in Dental Sciences (CICO), Endodontic Laboratory, Faculty of Dentistry, Universidad de La Frontera, Temuco 4811230, Chile; (M.O.); (F.M.)
| | - Fernanda Muñoz
- Center for Research in Dental Sciences (CICO), Endodontic Laboratory, Faculty of Dentistry, Universidad de La Frontera, Temuco 4811230, Chile; (M.O.); (F.M.)
| | - Carlos Zaror
- Department of Pediatric Dentistry and Orthodontics, Faculty of Dentistry, Universidad de La Frontera, Manuel Montt #112, Temuco 4811230, Chile;
- Center for Research in Epidemiology, Economics and Oral Public Health (CIEESPO), Faculty of Dentistry, Universidad de La Frontera, Temuco 4811230, Chile
| | - María de La Luz Mora
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Biotechnological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco 4811230, Chile;
| | - Miguel Viñas
- Laboratory of Molecular Microbiology & Antimicrobials, Department of Pathology & Experimental Therapeutics, Faculty of Medicine & Health Sciences, University of Barcelona, 08907 Barcelona, Spain;
| | - Pablo Betancourt
- Center for Research in Dental Sciences (CICO), Endodontic Laboratory, Faculty of Dentistry, Universidad de La Frontera, Temuco 4811230, Chile; (M.O.); (F.M.)
- Department of Integral Adultos, Faculty of Dentistry, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
49
|
Zhu S, Yang B, Jia Y, Yu F, Wang Z, Liu Y. Comprehensive analysis of disinfectants on the horizontal transfer of antibiotic resistance genes. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131428. [PMID: 37094448 DOI: 10.1016/j.jhazmat.2023.131428] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
The propagation of antimicrobial resistance (AMR) is constantly paralyzing our healthcare systems. In addition to the pressure of antibiotic selection, the roles of non-antibiotic compounds in disseminating antibiotic resistance genes (ARGs) are a matter of great concerns. This study aimed to explore the impact of different disinfectants on the horizontal transfer of ARGs and their underlying mechanisms. First, the effects of different kinds of disinfectants on the conjugative transfer of RP4-7 plasmid were evaluated. Results showed that quaternary ammonium salt, organic halogen, alcohol and guanidine disinfectants significantly facilitated the conjugative transfer. Conversely, heavy-metals, peroxides and phenols otherwise displayed an inhibitory effect. Furthermore, we deciphered the mechanism by which guanidine disinfectants promoted conjugation, which includes increased cell membrane permeability, over-production of ROS, enhanced SOS response, and altered expression of conjugative transfer-related genes. More critically, we also revealed that guanidine disinfectants promoted bacterial energy metabolism by enhancing the activity of electron transport chain (ETC) and proton force motive (PMF), thus promoting ATP synthesis and flagellum motility. Overall, our findings reveal the promotive effects of disinfectants on the transmission of ARGs and highlight the potential risks caused by the massive use of guanidine disinfectants, especially during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Shuyao Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Bingqing Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yuqian Jia
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Feiyu Yu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Yuan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
50
|
Wang H, Min C, Xia F, Xia Y, Tang M, Li J, Hu Y, Zou M. Metagenomic analysis reveals the short-term influences on conjugation of bla NDM-1 and microbiome in hospital wastewater by silver nanoparticles at environmental-related concentration. ENVIRONMENTAL RESEARCH 2023; 228:115866. [PMID: 37037312 DOI: 10.1016/j.envres.2023.115866] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 05/16/2023]
Abstract
Hospital wastewater contains large amounts of antibiotic-resistant bacteria and serves as an important reservoir for horizontal gene transfer (HGT). However, the response of the microbiome in hospital wastewater to silver remains unclear. In this study, the short-term impacts of silver on the microbiome in hospital wastewater were investigated by metagenome next-generation sequencing. The influence of silver on the conjugation of plasmid carrying blaNDM-1 was further examined. Our results showed that in hospital wastewater, high abundances of antibiotic resistance genes (ARGs) were detected. The distribution tendencies of certain ARG types on chromosomes or plasmids were different. Clinically important ARGs were identified in phage-like contigs, indicating potential transmission via transduction. Pseudomonadales, Enterobacterales, and Bacteroidales were the major ARG hosts. Mobile genetic elements were mainly detected in plasmids and associated with various types of ARGs. The binning approach identified 29 bins that were assigned to three phyla. Various ARGs and virulence factors were identified in 14 and 11 bins, respectively. MetaCHIP identified 49 HGT events. The transferred genes were annotated as ARGs, mobile genetic elements, and functional genes, and they mainly originated from donors belonging to Bacteroides and Pseudomonadales. In addition, 20 nm AgNPs reduced microbial diversity and enhanced the relative abundance of Acinetobacter. The changes induced by 20 nm AgNPs included increases in the abundances of ARGs and genes involved lipid metabolism pathway. Conjugation experiments showed that Ag+ and 20 nm AgNPs caused 2.38-, 3.31-, 4.72-, and 4.57-fold and 1.46-, 1.61-, 3.86-, and 2.16-fold increases in conjugation frequencies of plasmid with blaNDM-1 at 0.1, 1, 10, and 100 μg/L, respectively. Our findings provide insight into the response of the microbiome in hospital wastewater to silver, emphasize the adaptation capability of Acinetobacter inhabiting hospitals against adverse environments, and highlight the promotion of silver for antibiotic resistance.
Collapse
Affiliation(s)
- Haichen Wang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Changhang Min
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Fengjun Xia
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yubing Xia
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Mengli Tang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Jun Li
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yongmei Hu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Mingxiang Zou
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.
| |
Collapse
|