1
|
Al-Saleh I, Elkhatib R, Alghamdi R, Alrushud N, Alnuwaysir H, Alnemer M, Aldhalaan H, Shoukri M. Assessment of maternal phthalate exposure in urine across three trimesters and at delivery (umbilical cord blood and placenta) and its influence on birth anthropometric measures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174910. [PMID: 39053554 DOI: 10.1016/j.scitotenv.2024.174910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Phthalates, commonly used in plastic manufacturing, have been linked to adverse reproductive effects. Our research from the Saudi Early Autism and Environment Study (2019-2022), involving 672 participants, focused on the impacts of maternal phthalate exposure on birth anthropometric measures. We measured urinary phthalate metabolites in 390 maternal samples collected during each of the three trimesters of pregnancy and in cord serum and placental samples obtained at delivery. We employed various statistical methods to analyze our data. Intraclass correlation coefficients were used to assess the consistency of phthalate measurements, generalized estimating equations were used to explore temporal variations across the trimesters, and linear regression models, adjusted for significant confounders and Bonferroni correction, were used for each birth outcome. Exposure to six phthalates was consistently high across trimesters, with 82 %-100 % of samples containing significant levels of all metabolites, except for mono-benzyl phthalate. We found a 3.15 %-3.73 % reduction in birth weight (BWT), 1.39 %-1.69 % reduction in head circumference (HC), and 3.63 %-5.45 % reduction in placental weight (PWT) associated with a one-unit increase in certain urinary di(2-ethylhexyl) phthalate (DEHP) metabolites during the first trimester. In the second trimester, exposure to MEP, ∑7PAE, and ∑LMW correlated with a 3.15 %-4.5 % increase in the APGAR 5-min score and increases in PWT by 8.98 % for ∑7PAE and 9.09 % for ∑LMW. Our study also highlighted the maternal-to-fetal transfer of DEHP metabolites, indicating diverse impacts on birth outcomes and potential effects on developmental processes. Our study further confirmed the transfer of DEHP metabolites from mothers to fetuses, evidenced by variable rates in the placenta and cord serum, with an inverse relationship suggesting a passive transfer mechanism. Additionally, we observed distinct phthalate profiles across these matrices, adversely impacting birth outcomes. In serum, we noticed increases associated with DEHP metabolites, with birth gestational age rising by 1.01 % to 1.11 %, HC by 2.84 % to 3.67 %, and APGAR 5-min scores by 3.77 % to 3.87 %. Conversely, placental analysis revealed a different impact: BWT decreased by 3.54 % to 4.69 %, HC reductions ranged from 2.57 % to 4.69 %, and chest circumference decreased by 7.13 %. However, the cephalization index increased by 3.67 %-5.87 %. These results highlight the complex effects of phthalates on fetal development, indicating their potential influence on crucial developmental processes like sexual maturation and brain development.
Collapse
Affiliation(s)
- Iman Al-Saleh
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
| | - Rola Elkhatib
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Reem Alghamdi
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Nujud Alrushud
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Hissah Alnuwaysir
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Maha Alnemer
- Obstetrics and Gynecology Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Hesham Aldhalaan
- Center for Autism Research, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Mohamed Shoukri
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
2
|
Ren J, Wang Y, Zhang Y, Jin H, Cheng J, Tao F, Zhu Y. Placental Transcriptomic Signatures of Prenatal Phthalate Exposure and Identification of Placenta-Brain Genes Associated with the Effects of Phthalate Exposure on Neurodevelopment in Children. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19141-19151. [PMID: 39392919 DOI: 10.1021/acs.est.4c04082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Prenatal exposure to phthalates may affect placental function and fetal development, but the underlying mechanisms are unclear. The aim of our study was to explore the alterations in the placental transcriptome associated with prenatal phthalate exposure and to further analyze whether the placental-brain axis (PBA) genes play a mediating role in the association between prenatal phthalate exposure and children's neurodevelopment. We included 172 participants from the Ma'anshan Birth Cohort and collected data on seven phthalate metabolites in urine during pregnancy, placental tissue RNA-seq, and neurodevelopment of offspring. Bioinformatics analysis revealed that aberrant regulation of the placental transcriptome was associated with prenatal phthalate exposure. Exposure to phthalates during pregnancy was found to be associated with neurodevelopmental delay in children aged 6, 18, and 48 months using the multiple linear regression model. Meanwhile, employing mediation analysis, nine PBA genes were identified that mediate the association between exposure to phthalates during pregnancy and the neurodevelopment of children. Our study will provide a basis for potential mechanisms by which prenatal exposure to phthalates affects placental function and children's neurodevelopment.
Collapse
Affiliation(s)
- Jiawen Ren
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei 230032, Anhui, China
| | - Yifan Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei 230032, Anhui, China
| | - Yimin Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei 230032, Anhui, China
| | - Heyue Jin
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei 230032, Anhui, China
| | - Jingjing Cheng
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei 230032, Anhui, China
| | - Fangbiao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei 230032, Anhui, China
| | - Yumin Zhu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei 230032, Anhui, China
- Medical School, Nanjing University, Nanjing 210093, Jiangsu, China
| |
Collapse
|
3
|
Wang L, Jiang D, Chen Y, Zhang S, Rozelle S. Paths of cognitive and social-emotional delays before age three in rural China: Predictive power on skills at preschool age. PLoS One 2024; 19:e0310016. [PMID: 39240865 PMCID: PMC11379282 DOI: 10.1371/journal.pone.0310016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 08/22/2024] [Indexed: 09/08/2024] Open
Abstract
Cognitive and social-emotional development in the first three years of life is associated with later skills. However, little is known about the paths of developmental delays in both cognitive and social-emotional skills before age 3 or to what extent these paths predict later developmental outcomes. The aim of this study is to examine the associations between the different paths of developmental delays in both cognitive and social-emotional skills of children before age 3 and the levels of development of the children when they are preschool age. Using a longitudinal data collected at three time points from 1245 children and their caregivers in rural China, we identified four different paths of developmental delays in cognitive and social-emotional before age 3 and examined how these paths are associated with different levels of developmental outcomes at preschool age. We used a non-parametric standardization approach and an ordinary least squares model to perform our analyses. Findings show that rates of developmental delays in either cognitive or social-emotional domain or both domains are high at all different time points, ranging from 20% to 55% for cognitive delays and 42% to 61% for social-emotional delays. Over half of children experienced deteriorating levels of either cognitive or social-emotional development before age 3. A large share of children was found to be persistently delayed in either domain. Only a small share of children raised their levels of development in either domain before age 3. In addition, we identified certain socioeconomic status of the family that are associated with never or deteriorating path of child developmental delays. More importantly, we revealed that different paths of developmental delays before age 3 have predictive power on different levels of developmental outcomes at preschool age. Our results suggest that actions are needed at the earliest times to improve child development when children are still infants or toddlers.
Collapse
Affiliation(s)
- Lei Wang
- International Business School, Shaanxi Normal University, Shaanxi, China
| | - Dingjing Jiang
- International Business School, Shaanxi Normal University, Shaanxi, China
| | - Yifei Chen
- International Business School, Shaanxi Normal University, Shaanxi, China
| | - Siqi Zhang
- Stanford Center on China's Economy and Institutions, Stanford University, Stanford, CA, United States of America
| | - Scott Rozelle
- Stanford Center on China's Economy and Institutions, Stanford University, Stanford, CA, United States of America
| |
Collapse
|
4
|
Liu H, Li Z, Xie L, Jing G, Liang W, He J, Dang Y. The Relationship Between Heavy Metals and Missed Abortion: Using Mediation of Serum Hormones. Biol Trace Elem Res 2024; 202:3401-3412. [PMID: 37982984 DOI: 10.1007/s12011-023-03931-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/23/2023] [Indexed: 11/21/2023]
Abstract
Accumulating evidence suggests that heavy metal exposure may have adverse effects on the fetal development. Furthermore, disruption of serum hormone homeostasis can result in the adverse pregnancy outcomes. Therefore, this study aimed to investigate the potential association between heavy metals and missed abortion, with a focus on whether serum hormones mediate this relationship. The concentrations of heavy metals and hormones in serum were measured in this case-control study. Statistical models including, logistic regression model, principal component analysis (PCA), and weighted quantile sum (WQS) regression model were employed to examine the relationship between heavy metals, serum hormones, and missed abortion. Furthermore, the mediation analysis was performed to assess the role of serum hormones as potential mediators in this relationship. This study revealed significant associations between heavy metal exposure and missed abortion. Notable, the WQS index weight, which was mainly influenced by copper (Cu) and zine (Zn), is associated with missed abortion. Moreover, heavy metals including manganese (Mn), nickel (Ni), Zn, arsenic (As), Cu, cadmium (Cd), and lead (Pb) were found to be associated with serum levels of β-human chorionic gonadotropin (β-hCG), progesterone (P), estradiol (E2), and lactogen (HPL). In addition, the mediation analysis indicated that β-hCG explained a portion of the association (ranging from 18.77 to 43.51%) of between Mn, Ni, Zn, and As exposure and missed abortion. Serum P levels explained 17.93 to 51.70% of the association between Ni, Cu, and As exposure and missed abortion. Serum E2 levels played a significant mediating role, explaining a portion of the association (ranging from 22.14 to 73.60%) between Mn, Ni, Cu, As, Cd, and Pb exposure and missed abortion. Our results suggested that β-hCG, P, and E2 are one of the potential mediators in the complex relationship between heavy metals exposure and missed abortion. These results highlight the importance of considering both heavy metal exposure and serum hormone levels in understanding the etiology of missed abortion.
Collapse
Affiliation(s)
- Haixia Liu
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Chengguan District, No. 199, Donggang West Road, LanzhouGansu Province, 730000, China
| | - Zhilan Li
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Chengguan District, No. 199, Donggang West Road, LanzhouGansu Province, 730000, China
| | - Li'ao Xie
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Chengguan District, No. 199, Donggang West Road, LanzhouGansu Province, 730000, China
| | - Guangzhuang Jing
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Chengguan District, No. 199, Donggang West Road, LanzhouGansu Province, 730000, China
| | - Weitao Liang
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Chengguan District, No. 199, Donggang West Road, LanzhouGansu Province, 730000, China
| | - Jie He
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Chengguan District, No. 199, Donggang West Road, LanzhouGansu Province, 730000, China
| | - Yuhui Dang
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Chengguan District, No. 199, Donggang West Road, LanzhouGansu Province, 730000, China.
| |
Collapse
|
5
|
Yang Z, Zhang J, Wang M, Wang X, Liu H, Zhang F, Fan H. Prenatal endocrine-disrupting chemicals exposure and impact on offspring neurodevelopment: A systematic review and meta-analysis. Neurotoxicology 2024; 103:335-357. [PMID: 39013523 DOI: 10.1016/j.neuro.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/11/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024]
Abstract
PURPOSE Considering that endocrine disruptors have certain effects on fetal growth, we conducted a systematic review of epidemiological literature to elucidate the correlation between exposure to endocrine-disrupting chemicals during pregnancy and the neurodevelopment of offspring. METHOD We systematically explored PubMed, Web of Science, and CINAHL databases from inception to April 4, 2023. References from pertinent studies were reviewed, and data regarding the link between maternal prenatal EDC exposure and offspring neurological development were compiled. A domain-based approach was used to evaluate studies of neurodevelopmental effects in children ≤3 years old by two reviewers, including cognition, motor, behavior, language, and non-verbal ability. RESULTS A comprehensive search yielded 45,373 articles, from which 48 articles, involving 26,005 mother-child pairs, met the criteria and were subsequently included in our analysis. The results revealed that EDC exposure during pregnancy had a significant impact on offspring neurobehavior development, especially in cognition, motor, and language. Our findings indicated adverse associations between prenatal exposure to metals and offspring cognition (before 12 months: β coefficient: -0.28; 95 % CI, -0.50 to -0.06; 1-3 years old: β coefficient: -0.55; 95 % CI: -1.08 to -0.02). Furthermore, metals (β coefficient: -0.71; 95 % CI: -1.23 to -0.19) and phthalates (β coefficient: -0.69; 95 % CI: -1.05 to -0.33) exposure exhibited detrimental effects on motor development from1-3 years old, while poly-fluoroalkyl substances were linked to the disruption of offspring language development (β coefficient: -1.01; 95 % CI: -1.90 to -0.11) within this timeframe. Additionally, exposure to EDCs during pregnancy had a negative impact on cognition development among girls from 12 to 36 months of age (β coefficient: -0.53; 95 % CI: -1.01 to -0.06). CONCLUSION Prenatal exposure to EDCs, especially metals, phthalates and, poly-fluoroalkyl substances, was associated with disrupting the development of offspring neurobehavior in the short and long term. Additionally, cognitive development showed gender differences due to prenatal endocrine-disrupting chemicals exposure.
Collapse
Affiliation(s)
- Ziyi Yang
- School of Nursing and Rehabilitation, Nantong University, Nantong, Jiangsu, China
| | - Jie Zhang
- Medical School of Nantong University, Nantong, Jiangsu 226007, China
| | - Mingbo Wang
- School of Nursing and Rehabilitation, Nantong University, Nantong, Jiangsu, China
| | - Xin Wang
- School of Nursing and Rehabilitation, Nantong University, Nantong, Jiangsu, China
| | - Huahua Liu
- Nantong Maternity and Child Health Care Hospital Affiliated to Nantong University, Nantong, Jiangsu 226018, China
| | - Feng Zhang
- School of Nursing and Rehabilitation, Nantong University, Nantong, Jiangsu, China.
| | - Hong Fan
- School of Nursing and Rehabilitation, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
6
|
Yesildemir O, Celik MN. Association between pre- and postnatal exposure to endocrine-disrupting chemicals and birth and neurodevelopmental outcomes: an extensive review. Clin Exp Pediatr 2024; 67:328-346. [PMID: 37986566 PMCID: PMC11222910 DOI: 10.3345/cep.2023.00941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/13/2023] [Accepted: 08/14/2023] [Indexed: 11/22/2023] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are natural or synthetic chemicals that mimic, block, or interfere with the hormones in the body. The most common and well- studied EDCs are bisphenol A, phthalates, and persistent organic pollutants including polychlorinated biphenyls, polybrominated diphenyl ethers, per- and polyfluoroalkyl substances, other brominated flame retardants, organochlorine pesticides, dioxins, and furans. Starting in embryonic life, humans are constantly exposed to EDCs through air, diet, skin, and water. Fetuses and newborns undergo crucial developmental processes that allow adaptation to the environment throughout life. As developing organisms, they are extremely sensitive to low doses of EDCs. Many EDCs can cross the placental barrier and reach the developing fetal organs. In addition, newborns can be exposed to EDCs through breastfeeding or formula feeding. Pre- and postnatal exposure to EDCs may increase the risk of childhood diseases by disrupting the hormone-mediated processes critical for growth and development during gestation and infancy. This review discusses evidence of the relationship between pre- and postnatal exposure to several EDCs, childbirth, and neurodevelopmental outcomes. Available evidence suggests that pre- and postnatal exposure to certain EDCs causes fetal growth restriction, preterm birth, low birth weight, and neurodevelopmental problems through various mechanisms of action. Given the adverse effects of EDCs on child development, further studies are required to clarify the overall associations.
Collapse
Affiliation(s)
- Ozge Yesildemir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Bursa Uludag University, Bursa, Turkey
| | - Mensure Nur Celik
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
7
|
Jiang Q, Wan Y, Zhu K, Wang H, Feng Y, Xiang Z, Liu R, Zhao S, Zhu Y, Song R. Association of exposure to phthalates and phthalate alternatives with dyslexia in Chinese primary school children. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:28392-28403. [PMID: 38538993 DOI: 10.1007/s11356-024-32871-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/05/2024] [Indexed: 04/30/2024]
Abstract
Previous studies have shown associations between children's exposure to phthalates and neurodevelopmental disorders. Whereas the impact of exposure to phthalate alternatives is understudied. This study aimed to evaluate the association of exposure to phthalates/their alternatives with the risk of dyslexia. We recruited 745 children (355 dyslexia and 390 non-dyslexia) via the Tongji Reading Environment and Dyslexia Research Project, and their urine samples were collected. A total of 26 metabolites of phthalates/their alternatives were measured. Multivariate logistic regression and quantile-based g-computation were used to estimate the associations of exposure to the phthalates/their alternatives with dyslexia. More than 80% of the children had 17 related metabolites detected in their urine samples. After adjustment, the association between mono-2-(propyl-6-hydroxy-heptyl) phthalate (OH-MPHP) with the risk of dyslexia was observed. Compared with the lowest quartile of OH-MPHP levels, the odds of dyslexia for the third quartile was 1.93 (95% CI 1.06, 3.57). Regarding mixture analyses, it was found that OH-MPHP contributed the most to the association. Further analyses stratified by sex revealed that this association was only observed in boys. Our results suggested a significantly adverse association of di-2-propylheptyl phthalate exposure with children's language abilities. It highlights the necessity to prioritize the protection of children's neurodevelopment by minimizing their exposure to endocrine-disrupting chemicals like di-2-propylheptyl phthalate.
Collapse
Affiliation(s)
- Qi Jiang
- Department of Maternal and Child Health and MOE (Ministry of Education) the Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yanjian Wan
- Center for Public Health Laboratory Service, Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, 430024, Hubei, China
| | - Kaiheng Zhu
- Department of Maternal and Child Health and MOE (Ministry of Education) the Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Haoxue Wang
- Department of Maternal and Child Health and MOE (Ministry of Education) the Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yanan Feng
- Department of Maternal and Child Health and MOE (Ministry of Education) the Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhen Xiang
- Department of Maternal and Child Health and MOE (Ministry of Education) the Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Rundong Liu
- Department of Maternal and Child Health and MOE (Ministry of Education) the Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shuai Zhao
- Department of Maternal and Child Health and MOE (Ministry of Education) the Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ying Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430072, China
| | - Ranran Song
- Department of Maternal and Child Health and MOE (Ministry of Education) the Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
8
|
Xiao H, Hu L, Tang T, Zhong J, Xu Q, Cai X, Xiang F, Yang P, Mei H, Zhou A. Prenatal phthalate exposure and neurodevelopmental differences in twins at 2 years of age. BMC Public Health 2024; 24:533. [PMID: 38378488 PMCID: PMC10880363 DOI: 10.1186/s12889-024-17946-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 02/01/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Previous studies of singletons evaluating prenatal phthalate exposure and early neurodevelopment reported mixed results and the associations could be biased by parental, obstetrical, and genetic factors. METHODS A co-twin control design was employed to test whether prenatal phthalate exposure was associated with children's neurocognitive development. We collected information from 97 mother-twin pairs enrolled in the Wuhan Twin Birth Cohort between March 2016 and October 2018. Fourteen phthalate metabolites were measured in maternal urine collected at each trimester. Neurodevelopmental differences in twins at the age of two were examined as the outcome of interest. Multiple informant model was used to examine the covariate-adjusted associations of prenatal phthalate exposure with mental development index (MDI) and psychomotor development index (PDI) scores assessed at 2 years of age based on Bayley Scales of Infant Development (Second Edition). This model also helps to identify the exposure window of susceptibility. RESULTS Maternal urinary levels of mono-2-ethyl-5-oxohexyl phthalate (MEOHP) (β = 1.91, 95% CI: 0.43, 3.39), mono (2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) (β = 1.56, 95% CI: 0.33, 2.79), and the sum of di-(2-ethylhexyl) phthalate metabolites (∑DEHP) (β = 1.85, 95% CI: 0.39, 3.31) during the first trimester showed the strongest and significant positive associations with intra-twin MDI difference. When stratified with twin chorionicity, the positive associations of monoethyl phthalate (MEP), monoisobutyl phthalate (MiBP), mono-n-butyl phthalate (MBP), monobenzyl phthalate (MBzP), individual DEHP metabolites, and ∑DEHP exposure during pregnancy with intra-twin neurodevelopmental differences were more significant in monochorionic diamniotic (MCDA) twins than those in dichorionic diamniotic (DCDA) twins. CONCLUSIONS Neurodevelopmental differences in MCDA twins were strongly associated with prenatal phthalate exposure. Our findings warrant further confirmation in longitudinal studies with larger sample sizes.
Collapse
Affiliation(s)
- Han Xiao
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Liqin Hu
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Tingting Tang
- Operating Room, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Jufang Zhong
- Department of Obstetrics, Wuhan Children's Hospital (Wuhan Maternal and Child Health Care Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiao Xu
- Delivery Room, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Xiaonan Cai
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Feiyan Xiang
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Pan Yang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, 510632, Guangzhou, Guangdong, PR China
- Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, 510632, Guangzhou, Guangdong, PR China
| | - Hong Mei
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Aifen Zhou
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
9
|
Long J, Liang J, Liu T, Huang H, Chen J, Liao Q, Pang L, Yang K, Chen M, Chen Q, Huang X, Zhu Q, Zeng X, Huang D, Qiu X. Association between prenatal exposure to alkylphenols and intelligence quotient among preschool children: sex-specific effects. Environ Health 2024; 23:21. [PMID: 38365736 PMCID: PMC10870542 DOI: 10.1186/s12940-024-01047-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/05/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND While prenatal exposure to alkylphenols (APs) has been demonstrated to be associated with neurodevelopmental impairments in animals, the evidence from epidemiological studies remains limited and inconclusive. This study aimed to explore the link between AP exposure during pregnancy and the intelligence quotient (IQ) of preschool children. METHODS A total of 221 mother-child pairs from the Guangxi Zhuang Birth Cohort were recruited. Nonylphenol (NP), 4-tert-octylphenol (4-T-OP), 4-n-nonylphenol (4-N-NP), and 4-n-octylphenol were measured in maternal serum in early pregnancy. Childhood IQ was evaluated by the Fourth Edition of Wechsler Preschool and Primary Scale of the Intelligence at 3 to 6 years of age. The impact of APs on childhood IQ were evaluated by generalized linear models (GLMs), restricted cubic spline (RCS), and Bayesian kernel machine regression (BKMR). RESULTS In GLMs, prenatal exposure to NP and the second tertile of 4-T-OP exhibited an inverse association with full-scale IQ (FSIQ) (β = -2.38; 95% CI: -4.59, -0.16) and working memory index (WMI) (β = -5.24; 95% CI: -9.58, -0.89), respectively. Prenatal exposure to the third tertile of 4-N-NP showed a positive association with the fluid reasoning index (β = 4.95; 95% CI: 1.14, 8.77) in total children, as well as in girls when stratified by sex. A U-shaped relationship between maternal 4-T-OP and WMI was noted in total children and girls by RCS (all P nonlinear < 0.05). The combined effect primarily driven by NP, of maternal AP mixtures at concentrations above the 50th percentile exhibited an inverse trend on FSIQ in total children and girls in BKMR. CONCLUSIONS Prenatal exposure to various APs affects IQ in preschool children, and there may be nonmonotonic and sex-specific effects. Further investigation across the population is required to elucidate the potential neurotoxic effects of APs.
Collapse
Affiliation(s)
- Jinghua Long
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
- The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jun Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Tao Liu
- Huaihua Center for Disease Control and Prevention, Huaihua, 418000, Hunan, China
| | - Huishen Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Jiehua Chen
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Qian Liao
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Lixiang Pang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Kaiqi Yang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Manlin Chen
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Qian Chen
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Xiaorong Huang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Qihua Zhu
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Xiaoyun Zeng
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Dongping Huang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China.
| | - Xiaoqiang Qiu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China.
| |
Collapse
|
10
|
Ren WQ, Liu N, Shen Y, Wang XY, Zhou Q, Rui C, Yang XH, Cao SL, Li LY, Wāng Y, Wang QN. Subchronic exposure to di-(2-ethylhexyl) phthalate (DEHP) elicits blood-brain barrier dysfunction and neuroinflammation in male C57BL/6J mice. Toxicology 2023; 499:153650. [PMID: 37858774 DOI: 10.1016/j.tox.2023.153650] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/30/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Exposure to di-(2-ethylhexyl) phthalate (DEHP) can cause neurotoxicity but the mechanism is not clear. Blood brain barrier (BBB) is one of the most important tissues to protect the brain. However, whether DEHP can disrupt the BBB or not remains unclear. The objective of this study is to investigate the potential effects of subchronic DEHP exposure on BBB integrity and discuss the role of BBB in DEHP inducible neurotoxicity with an emphasis on neuroinflammatory responses. Male adult C57BL/6J mice were orally administered with vehicle or 200 or 750 mg/kg/day DEHP for 90 days. Subchronic exposure to high-dose DEHP increased water intake but decreased body weight and brain weight. The concentrations of DEHP metabolites increased in serum from all DEHP-exposed groups while increased in brain only from the high-dose group. DEHP induced neurobehavioural alterations and damaged hippocampal neurons. DEHP increased BBB permeability by Evans blue (EB) extravasation and decreased tight junction proteins (ZO-1, occludin, and claudin-5) while presenting a neuroinflammatory feature characterized by the upregulated inflammatory mediators TNF-α and the NLRP3/caspase-1/IL-1β inflammasome pathway. Our data provide new insights into neurotoxicity caused by subchronic DEHP exposure, which is probably involved in BBB dysfunction and neuroinflammatory responses.
Collapse
Affiliation(s)
- Wen-Qiang Ren
- Department of Toxicology, School of Public Health & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Nuo Liu
- Department of Toxicology, School of Public Health & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Yan Shen
- Department of Toxicology, School of Public Health & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Xian-Yan Wang
- Department of Toxicology, School of Public Health & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Qiong Zhou
- Department of Toxicology, School of Public Health & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Chen Rui
- Department of Toxicology, School of Public Health & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Xiao-Han Yang
- Department of Toxicology, School of Public Health & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Sheng-Long Cao
- Department of Toxicology, School of Public Health & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Ling-Yu Li
- Department of Toxicology, School of Public Health & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Yán Wāng
- Department of Toxicology, School of Public Health & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China.
| | - Qu-Nan Wang
- Department of Toxicology, School of Public Health & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
11
|
Dewey D, Martin JW, MacDonald AM, Kinniburgh DW, Letourneau N, Giesbrecht GF, Field CJ, Bell RC, England-Mason G. Sex-specific associations between maternal phthalate exposure and neurodevelopmental outcomes in children at 2 years of age in the APrON cohort. Neurotoxicology 2023; 98:48-60. [PMID: 37517784 DOI: 10.1016/j.neuro.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/05/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND There is inconsistent evidence regarding the sex-specific associations between prenatal phthalate exposure and children's neurodevelopment. This could be due to differences in the phthalate exposures investigated and the neurodevelopmental domains assessed. OBJECTIVE To evaluate the associations between prenatal phthalate exposure and sex-specific outcomes on measures of cognition, language, motor, executive function, and behaviour in children 2 years of age in the Alberta Pregnancy Outcomes and Nutrition (APrON) cohort. METHODS We evaluated the associations between prenatal phthalate exposure and sex-specific neurodevelopmental outcomes in children at 2 years of age using data from 448 mothers and their children (222 girls, 226 boys). Nine phthalate metabolites were measured in maternal urine collected in the second trimester of pregnancy. Children's cognitive, language, and motor outcomes were assessed using the Bayley Scales of Infant Development - Third Edition (Bayley-III). Parents completed questionnaires on children's executive function and behavior, the Behavior Rating Inventory of Executive Function- Preschool Version (BRIEF-P) and Child Behavior Checklist (CBCL), respectively. Sex-stratified robust multivariate regressions were performed. RESULTS Higher maternal concentrations of ΣDEHP and its metabolites were associated with lower scores on the Bayley-III Cognitive (β's from -11.8 to -0.07 95% CI's from -21.3 to -0.01), Language (β's from -11.7 to -0. 09, 95% CI's from -22.3 to -0.02) and Motor (β's from -10.9 to -0.07, 95% CI from -20.4 to -0.01) composites in boys. The patterns of association in girls were in the opposite direction on the Cognitive and Language composites; on the Motor composite they were in the same direction as boys, but of reduced strength. Higher concentrations of ΣDEHP and its metabolites were associated with higher scores (i.e., more difficulties) on all measures of executive function in girls: inhibitory self-control (B's from 0.05 to 0.11, 95% CI s from -0.01 to 0.15), flexibility (B's from 0.04 to 0.11, 95% CI s from 0.01 to 0.21) and emergent metacognition (B's from -0.01 to 0.06, 95% CIs from -0.01 to 0.20). Similar patterns of attenuated associations were seen in boys. Higher concentrations of ΣDEHP and its metabolites were associated with more Externalizing Problems in girls and boys (B's from 0.03 to 6.82, 95% CIs from -0.08 to 12.0). Two phthalates, MMP and MBP, had sex-specific adverse associations on measures of executive function and behaviour, respectively, while MEP was positively associated with boys' cognitive, language, and motor performance. Limited associations were observed between mixtures of maternal phthalates and sex-specific neurodevelopmental outcomes. CONCLUSIONS Maternal prenatal concentrations of DEHP phthalates were associated with sex specific difference on measures of cognition and language at 2 years of age, specifically, poorer outcomes in boys. Higher exposure to DEHP was associated with poorer motor, executive function, and behavioural outcomes in girls and boys but the strength of these associations differed by sex. Limited associations were noted between phthalate mixtures and child neurodevelopment.
Collapse
Affiliation(s)
- Deborah Dewey
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
| | - Jonathan W Martin
- Department of Environmental Science, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Amy M MacDonald
- Alberta Centre for Toxicology, University of Calgary, Calgary, Alberta, Canada
| | - David W Kinniburgh
- Alberta Centre for Toxicology, University of Calgary, Calgary, Alberta, Canada; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Nicole Letourneau
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Faculty of Nursing, Univerity of Calgary, Calgary, Alberta, Canada; Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Gerald F Giesbrecht
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Psychology, Faculty of Arts, University of Calgary, Calgary, Alberta, Canada
| | - Catherine J Field
- Department of Agricultural, Food and Nutrition Science, University of Alberta, Edmonton, Alberta, Canada
| | - Rhonda C Bell
- Department of Agricultural, Food and Nutrition Science, University of Alberta, Edmonton, Alberta, Canada
| | - Gillian England-Mason
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
12
|
Kim JH, Moon N, Ji E, Moon HB. Effects of postnatal exposure to phthalate, bisphenol a, triclosan, parabens, and per- and poly-fluoroalkyl substances on maternal postpartum depression and infant neurodevelopment: a korean mother-infant pair cohort study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:96384-96399. [PMID: 37572253 DOI: 10.1007/s11356-023-29292-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/08/2023] [Indexed: 08/14/2023]
Abstract
Exposure to endocrine-disrupting chemicals (EDCs) can promote infant neurodevelopmental impairment and maternal postpartum depression (PPD). However, the associations between lactation exposure to EDCs, maternal PPD, and infant neurodevelopment are unclear. Hence, we investigated these relationships in infants aged 36-42 months. We recruited 221 Korean mothers and analyzed 29 EDCs. The Edinburgh Postnatal Depression Scale (EPDS) was used to assess maternal PPD. Bayley scales of infant development; the Swanson, Nolan, and Pelham rating scale (SNAP); and the Child Behavior Checklist (CBCL) were used to assess neurodevelopment in infants exposed to the top 30% of EDC over three years. Multiple regression analyses were adjusted for maternal age, pre-pregnancy body mass index, education, income, employment, residence, and infant age and sex. The rates of infants with clinically abnormal diagnoses on neurologic developmental tests (Balyey, SNAP, and CBCL scales) ranged from 7.7 to 38.5% in this study, with the motor and hyperactivity/impulsivity areas scoring the highest among 65 boys and girls. Mono-2-ethylhexyl phthalate (MEHP) and mono-isononyl phthalate (MiNP) levels in breast milk significantly correlated with infant inattention and hyperactivity. Perfluorononanoic acid (PFNA) and perfluorooctyl sulfonate (PFOS) levels correlated significantly with motor development of BSID-III and total CBCL score which mean infant might have lower developmental status. EDC concentrations in breast milk were not associated with maternal PPD. Overall, lactational exposure to EDCs during the postpartum period can exert a negative effect on maternal PPD and infant neurodevelopment.
Collapse
Affiliation(s)
- Ju Hee Kim
- College of Nursing Science, Kyung Hee University, Seoul, 02447, Korea.
| | - Nalae Moon
- College of Nursing Science, Kyung Hee University, Seoul, 02447, Korea
| | - Eunsun Ji
- Department of Nursing, Konkuk University Global Campus, Chungju, 27478, Korea
| | - Hyo-Bang Moon
- Department of Marine Science and Convergence Technology, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Korea
| |
Collapse
|
13
|
Qiu F, He S, Zhang Z, Dai S, Wang J, Liu N, Li Z, Hu X, Xiang S, Wei C. MiR-93 alleviates DEHP plasticizer-induced neurotoxicity by negatively regulating TNFAIP1 and inhibiting ubiquitin-mediated degradation of CK2β. Food Chem Toxicol 2023:113888. [PMID: 37302538 DOI: 10.1016/j.fct.2023.113888] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/28/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is a plasticizer that is widely used in various products, such as plastic packaging in food industries. As an environmental endocrine disruptor, it induces adverse effects on brain development and function. However, the molecular mechanisms by which DEHP induces learning and memory impairment remain poorly understood. Herein, we found that DEHP impaired learning and memory in pubertal C57BL/6 mice, decreased the number of neurons, downregulated miR-93 and the β subunit of casein kinase 2 (CK2β), upregulated tumor necrosis factor-induced protein 1 (TNFAIP1), and inhibited Akt/CREB pathway in mouse hippocampi. Coimmunoprecipitation and western blotting assays revealed that TNFAIP1 interacted with CK2β and promoted its degradation by ubiquitination. Bioinformatics analysis showed a miR-93 binding site in the 3'-untranslated region of Tnfaip1. A dual-luciferase reporter assay revealed that miR-93 targeted TNFAIP1 and negatively regulated its expression. MiR-93 overexpression prevented DEHP-induced neurotoxicity by downregulating TNFAIP1 and then activating CK2/Akt/CREB pathway. These data indicate that DEHP upregulates TNFAIP1 expression by downregulating miR-93, thus promoting ubiquitin-mediated degradation of CK2β, subsequently inhibiting Akt/CREB pathway, and finally inducing learning and memory impairment. Therefore, miR-93 can relieve DEHP-induced neurotoxicity and may be used as a potential molecular target for prevention and treatment of related neurological disorders.
Collapse
Affiliation(s)
- Feng Qiu
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Simei He
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Zilong Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Siyu Dai
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Jin Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Ning Liu
- School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Zhiwei Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Xiang Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Shuanglin Xiang
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Chenxi Wei
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.
| |
Collapse
|
14
|
Lin J, Cheng S, Zhang J, Zhao L, Yuan S, Zhang L, Yin Y. Racial differences in the associations of urinary phthalate metabolites with depression risk. ENVIRONMENTAL RESEARCH 2023; 226:115670. [PMID: 36907347 DOI: 10.1016/j.envres.2023.115670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 02/15/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
OBJECTIVE This study aimed to investigate the composite effects of different kinds of phthalates on depression risk in the U.S population. METHODS 11731 participants were included from the National Health and Nutrition Examination Survey (NHANES), a national cross-sectional survey. Twelve urinary phthalate metabolites were used to evaluate the level of phthalates exposure. Phthalates levels were devided into four quartiles. High phthalate was defined as having values in the highest quartile. RESULTS Urinary mono-isobutyl phthalate (MiBP) and mono-benzyl phthalate (MBzP) were estimated as the independent risk factors for depression by mutivariate logistic regression analyses. Compared with the lowest quartile group of MiBP or MBzP, an incrementally higher risk of depression and moderate/severe depression was observed in the highest quartile (all Ptrend <0.05). It was observed that incrementally higher risk of depression and moderate/severe depression were associated with more numbers of high phthalates parameter (Ptrend <0.001 and Ptrend = 0.003, respectively). A significant interaction between race (Non-Hispanic Black vs. Mexican American) and 2 parameters (having value in the highest quartile of both MiBP and MBzP) was detected for depression (Pinteraction = 0.023) and moderate/severe depression (Pinteraction = 0.029). CONCLUSION Individuals with more numbers of high phthalates parameter were at higher risk of depression and moderate/severe depression. Non-Hispanic Black participants were more likely to be affected by high levels of MiBP and MBzP exposure than Mexican American participants.
Collapse
Affiliation(s)
- Jilei Lin
- Department of Respiratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Siying Cheng
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Zhang
- Department of Respiratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liebin Zhao
- Shanghai Engineering Research Center of Intelligence Pediatrics (SERCIP), Shanghai, China
| | - Shuhua Yuan
- Department of Respiratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Zhang
- Department of Respiratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yong Yin
- Department of Respiratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Engineering Research Center of Intelligence Pediatrics (SERCIP), Shanghai, China; Pediatric AI Clinical Application and Research Center, Shanghai Children's Medical Center, Shanghai, China.
| |
Collapse
|
15
|
Hardy F, Takser L, Gillet V, Baccarelli AA, Bellenger JP. Characterization of childhood exposure to environmental contaminants using stool in a semi-urban middle-class cohort from eastern Canada. ENVIRONMENTAL RESEARCH 2023; 222:115367. [PMID: 36709028 DOI: 10.1016/j.envres.2023.115367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Children are exposed to various environmental organic and inorganic contaminants with effects on health outcomes still largely unknown. Many matrices (e.g., blood, urine, nail, hair) have been used to characterize exposure to organic and inorganic contaminants. The sampling of feces presents several advantages; it is non-invasive and provides a direct evaluation of the gut microbiome exposure to contaminants. The gut microbiome is a key factor in neurological development through the brain-gut axis. Its composition and disturbances can affect the neurodevelopment of children. Characterization of children exposure to contaminants is often performed on vulnerable populations (e.g., from developing countries, low-income neighborhoods, and large urban centers). Data on the exposure of children from middle-class, semi-urban, and mid-size populations to contaminants is scarce despite representing a significant fraction of the population in North America. In this study, 73 organics compounds from different chemical classes and 22 elements were analyzed in 6 years old (n = 84) and 10 years old (n = 119) children's feces from a middle-class, semi-urban, mid-size population cohort from Eastern Canada. Results show that 67 out of 73 targeted organics compounds and all elements were at least detected in one child's feces. Only caffeine (97% & 80%) and acetaminophen (28% & 48%) were detected in more than 25% of the children's feces, whereas all elements besides titanium were detected in more than 50% of the children.
Collapse
Affiliation(s)
- Félix Hardy
- Department of Chemistry, Faculty of Sciences, Sherbrooke University, Quebec, Canada.
| | - Larissa Takser
- Department of Pediatrics, Faculty of Medicine, Sherbrooke University, Quebec, Canada
| | - Viginie Gillet
- Department of Pediatrics, Faculty of Medicine, Sherbrooke University, Quebec, Canada
| | | | | |
Collapse
|
16
|
Krausová M, Braun D, Buerki-Thurnherr T, Gundacker C, Schernhammer E, Wisgrill L, Warth B. Understanding the Chemical Exposome During Fetal Development and Early Childhood: A Review. Annu Rev Pharmacol Toxicol 2023; 63:517-540. [PMID: 36202091 DOI: 10.1146/annurev-pharmtox-051922-113350] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Early human life is considered a critical window of susceptibility to external exposures. Infants are exposed to a multitude of environmental factors, collectively referred to as the exposome. The chemical exposome can be summarized as the sum of all xenobiotics that humans are exposed to throughout a lifetime. We review different exposure classes and routes that impact fetal and infant metabolism and the potential toxicological role of mixture effects. We also discuss the progress in human biomonitoring and present possiblemodels for studying maternal-fetal transfer. Data gaps on prenatal and infant exposure to xenobiotic mixtures are identified and include natural biotoxins, in addition to commonly reported synthetic toxicants, to obtain a more holistic assessment of the chemical exposome. We highlight the lack of large-scale studies covering a broad range of xenobiotics. Several recommendations to advance our understanding of the early-life chemical exposome and the subsequent impact on health outcomes are proposed.
Collapse
Affiliation(s)
- Magdaléna Krausová
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria; , ,
| | - Dominik Braun
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria; , ,
| | - Tina Buerki-Thurnherr
- Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Particles Biology Interactions, St. Gallen, Switzerland;
| | - Claudia Gundacker
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria; .,Exposome Austria, Research Infrastructure and National EIRENE Hub, Austria
| | - Eva Schernhammer
- Exposome Austria, Research Infrastructure and National EIRENE Hub, Austria.,Center for Public Health, Department of Epidemiology, Medical University of Vienna, Vienna, Austria; .,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Lukas Wisgrill
- Exposome Austria, Research Infrastructure and National EIRENE Hub, Austria.,Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria;
| | - Benedikt Warth
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria; , , .,Exposome Austria, Research Infrastructure and National EIRENE Hub, Austria
| |
Collapse
|
17
|
Mohanto NC, Ito Y, Kato S, Ebara T, Kaneko K, Tsuchiyama T, Sugiura-Ogasawara M, Saitoh S, Kamijima M. Quantitative Measurement of Phthalate Exposure Biomarker Levels in Diaper-Extracted Urine of Japanese Toddlers and Cumulative Risk Assessment: An Adjunct Study of JECS Birth Cohort. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:395-404. [PMID: 36508278 DOI: 10.1021/acs.est.2c04816] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Phthalate exposure monitoring and risk assessment in non-toilet-trained children are rarely reported. This adjunct study of the Japan Environment and Children's Study assessed cumulative health risks in 1.5-year-old toddlers in the Aichi regional subcohort by biomonitoring 16 urinary metabolites of eight phthalate plasticizers. Overnight urine was extracted from toddlers' diapers (n = 1077), and metabolites were quantified using ultraperformance liquid chromatography coupled with tandem mass spectrometry. The analyses' quality was assured by running quality control samples. The highest geometric mean concentration was found for mono-(2-ethyl-5-carboxypentyl) phthalate, followed by mono-isobutyl phthalate (23 and 21 μg/L, respectively). Di-2-ethylhexyl phthalate (DEHP) and di-butyl phthalate exhibited higher risks [hazard quotient (HQ) > 1] than the cutoff level in a small proportion of toddlers; 8 and 14% of toddlers were at cumulative risk of multiple phthalates beyond the cutoff level [hazard index, (HI) > 1], based on the tolerable daily intake of the European Food Safety Authority and the United States Environmental Protection Agency Reference Dose. HI > 1 for antiandrogenicity in creatinine-unadjusted and -adjusted estimations were exhibited by 36 and 23% of the children, respectively. Thus, identifying exposure sources and mitigating exposure are necessary for risk management. Additionally, continuous exposure assessment and evaluation of health outcomes, especially antiandrogenic effects, are warranted.
Collapse
Affiliation(s)
- Nayan C Mohanto
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya467-8601, Japan
| | - Yuki Ito
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya467-8601, Japan
| | - Sayaka Kato
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya467-8601, Japan
| | - Takeshi Ebara
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya467-8601, Japan
| | - Kayo Kaneko
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya467-8601, Japan
| | - Tomoyuki Tsuchiyama
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya467-8601, Japan
| | - Mayumi Sugiura-Ogasawara
- Department of Obstetrics and Gynecology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya467-8601, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya467-8601, Japan
| | - Michihiro Kamijima
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya467-8601, Japan
| |
Collapse
|
18
|
Liu Y, Guo Z, Zhu R, Gou D, Jia PP, Pei DS. An insight into sex-specific neurotoxicity and molecular mechanisms of DEHP: A critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120673. [PMID: 36400143 DOI: 10.1016/j.envpol.2022.120673] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/03/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
Di-2-Ethylhexyl Phthalate (DEHP) is often used as an additive in polyvinyl chloride (PVC) to give plastics flexibility, which makes DEHP widely used in food packaging, daily necessities, medical equipment, and other products. However, due to the unstable combination of DEHP and polymer, it will migrate to the environment in the materials and eventually contact the human body. It has been recorded that low-dose DEHP will increase neurotoxicity in the nervous system, and the human health effects of DEHP have been paid attention to because of the extensive exposure to DEHP and its high absorption during brain development. In this study, we review the evidence that DEHP exposure is associated with neurodevelopmental abnormalities and neurological diseases based on human epidemiological and animal behavioral studies. Besides, we also summarized the oxidative damage, apoptosis, and signal transduction disorder related to neurobehavioral abnormalities and nerve injury, and described the potential mechanisms of neurotoxicity caused by DEHP. Overall, we found exposure to DEHP during the critical developmental period will increase the risk of neurobehavioral abnormalities, depression, and autism spectrum disorders. This effect is sex-specific and will continue to adulthood and even have an intergenerational effect. However, the research results on the sex-dependence of DEHP neurotoxicity are inconsistent, and there is a lack of systematic mechanisms research as theoretical support. Future investigations need to be carried out in a large-scale population and model organisms to produce more consistent and convincing results. And we emphasize the importance of mechanism research, which can enhance the understanding of the environmental and human health risks of DEHP exposure.
Collapse
Affiliation(s)
- Yiyun Liu
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Zhiling Guo
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ruihong Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Dongzhi Gou
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Pan-Pan Jia
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
19
|
Savoca D, Lo Coco R, Melfi R, Pace A. Uptake and photoinduced degradation of phthalic acid esters (PAEs) in Ulva lactuca highlight its potential application in environmental bioremediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:90887-90897. [PMID: 35871716 PMCID: PMC9722868 DOI: 10.1007/s11356-022-22142-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
The bioaccumulation of phthalates was studied in fragments of Ulva lactuca exposed for a maximum of 31 days at different concentrations of a solution of six phthalic acid esters (PAEs). The algal matrix showed rapid uptake since the first sampling, which increased over the time of the experimental period, at the end of which seaweed's bioaccumulation potential was also evaluated. After the uptake, the algal matrix was subjected to UV irradiation in order to verify the removal of the phthalates. PAEs with higher octanol-water partition coefficients (logKow) and molecular weights were preferentially uptaken by U. lactuca in all the exposure experiments. It was observed that both accumulation (biota-sediment accumulation factor (log10BSAF) ranging from 3.75 to 4.02) and photodegradation (higher than 70% removal for all phthalates in 8 h) are more efficient at lower concentration levels. These results suggest the potential use of the algal matrices for environmental bioremediation, in order to mitigate the impact of pollution from ubiquitous pollutants such as PAEs.
Collapse
Affiliation(s)
- Dario Savoca
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Bd. 17, 90128, Palermo, Italy.
| | - Riccardo Lo Coco
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Raffaella Melfi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Bd. 17, 90128, Palermo, Italy
| | - Andrea Pace
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Bd. 17, 90128, Palermo, Italy
| |
Collapse
|
20
|
Kim H, Kil M, Han C. Urinary phthalate metabolites and anemia: Findings from the Korean National Environmental Health Survey (2015-2017). ENVIRONMENTAL RESEARCH 2022; 215:114255. [PMID: 36113574 DOI: 10.1016/j.envres.2022.114255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/16/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Several animal studies have suggested an association between phthalate exposure and decreased hemoglobin levels. To address the lack of epidemiological evidence, we evaluated the association between urinary phthalate metabolite concentrations and hematologic indices by using nationally representative data from Korea. METHODS Data from 3722 adults included in the third stage (2015-2017) of the Korean National Environmental Health Survey (KONEHS) were used. The association between various urinary phthalate metabolites and hematologic indices (hemoglobin, hematocrit, mean corpuscular volume [MCV], and red blood cell [RBC], white blood cell [WBC], and platelet counts) was evaluated using linear regression analysis adjusted for potential confounders. Sex-stratified analysis was performed. RESULTS All urinary phthalate metabolites were negatively associated with hemoglobin levels. A two-fold increase in urinary mono-(2-ethyl-5-carboxy-pentyl) phthalate (MECPP), mono-carboxyoctyl phthalate (MCOP), mono-carboxyonyl phthalate (MCNP), and mono-(3-carboxypropyl) phthalate (MCPP) levels was associated with a -0.099 g/dL (95% confidence interval (CI), -0.137 to -0.060), -0.116 g/dL (95% CI, -0.156 to -0.076), -0.111 g/dL (95% CI, -0.154 to -0.068), and -0.144 g/dL (95% CI, -0.198 to -0.089) change in hemoglobin levels, respectively. The RBC count and MCV showed negative and positive associations, respectively, with urinary phthalate metabolite concentrations. WBC counts were positively associated with MECPP, MCOP, MCNP, and MCPP levels, whereas the platelet count showed no association with urinary phthalate metabolites. CONCLUSIONS Urinary phthalate metabolite concentration showed a negative association with hemoglobin level. Since this was a cross-sectional study, further longitudinal and experimental studies are needed to identify a clear causal linkage and the pathological mechanism underlying phthalate exposure and anemia.
Collapse
Affiliation(s)
- Hahyeon Kim
- Chungnam National University College of Medicine, Daejeon, South Korea
| | - Minuk Kil
- Chungnam National University College of Medicine, Daejeon, South Korea
| | - Changwoo Han
- Department of Preventive Medicine, Chungnam National University College of Medicine, Daejeon, South Korea; KDI School of Public Policy and Management, Sejong, South Korea.
| |
Collapse
|
21
|
Jia LL, Luan YL, Shen HM, Guo Y. Long-term stability of several endocrine disruptors in the first morning urine samples and their associations with lifestyle characteristics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157873. [PMID: 35940260 DOI: 10.1016/j.scitotenv.2022.157873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Parabens, triclosan (TCS), bisphenols, benzophenones, and phthalates are typical endocrine disruptors (EDs) with short half-lives in the human body. The concentration levels of those EDs in a spot urine sample are frequently used in exposure assessment studies, and the reproducibility of urinary levels of these nonpersistent EDs should be considered. In the present study, we consecutively collected 45-day first morning void (FMV) urine samples, as well as daily questionnaires, in six recruited participants and measured the urinary concentrations of six parabens, TCS, nine bisphenols, five benzophenones, and ten phthalate metabolites by using high-performance liquid chromatography-tandem mass spectrometry. MeP, EtP, PrP, TCS, BPA, BPS, BPF, and most phthalate metabolites were frequently detected (over 62 % of samples). The intraclass correlation coefficients (ICCs) for ED concentrations in FMV urine samples ranged from fair to excellent for MeP (0.683), EtP (0.702), BPA (0.505), BPS (0.908), BPF (0.887), BP-3 (0.712), mMP (0.661), mEP (0.523), mBP (0.500), miBP (0.724), mBzP (0.961) and all metabolites of DEHP (0.867-0.957), whereas they were low for PrP (0.321) and TCS (0.306). After creatinine adjustment, the values of ICCs for most target EDs were increased with mild to significant improvement. The stability of ED concentrations was affected by daily diet (MeP, TCS, BPA, mMP, miBP, mBP and mBzP), food containers (PrP and mECPP), use of personal care products (HMWP metabolites), pharmaceuticals (EtP) and recorded activities (BPS, mEHP, mBzP, mEHHP and mEOHP), as confirmed by a general linear mixed model. Furthermore, extending the FMV sampling period improved the probability of acceptable reproducibility (ICCs > 0.40) of MeP, EtP, BP-3 and mEP concentrations. For BPS, BPF and HMWP metabolite concentrations showed high probabilities (>80 %) of acceptable reproducibility in the last three days, and the increasing sample size slowly improved the ability to discriminate the subjects. The results were exactly the opposite for BPA concentrations.
Collapse
Affiliation(s)
- Lu-Lu Jia
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Yu-Ling Luan
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Hui-Min Shen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Ying Guo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
22
|
Zheng Y, Li L, Cheng H, Huang S, Feng X, Huang L, Wei L, Cao D, Wang S, Tian L, Tang W, He C, Shen C, Luo B, Zhu M, Liang T, Pang B, Li M, Liu C, Chen X, Wang F, Mo Z, Yang X. Gender-specific effects of prenatal mixed exposure to serum phthalates on neurodevelopment of children aged 2-3 years:the Guangxi Birth Cohort Study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:85547-85558. [PMID: 35794332 DOI: 10.1007/s11356-022-21769-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Phthalates have been shown to have adverse effects on neurodevelopment, which may be gender-specific. However, the association between prenatal mixed exposure to phthalates and children's neurodevelopment remains inconsistent. We measured 15 prenatal serum phthalate levels and evaluated children's neurodevelopmental indicators using Gesell Developmental Schedule (GDS) (n = 750). Generalized linear regression was fitted to examine the association. Among boys, mono-2-ethyl-5-hydroxyhexyl phthalate (MEHHP) had adverse effects on gross motor [odds ratio (OR): 7.38, 95% confidence interval (CI):1.42, 38.46]. For gross motor in boys, joint effect was discovered between mono-2-ethylhexyl phthalate (MEHP) and MEHHP. Moreover, synergistic effects were found for MEHP with vanadium and cadmium, and antagonistic effects for MEHP with magnesium, calcium, titanium, iron, copper, selenium, rubidium, and strontium. We did not find statistically significant relationships in girls. In the 1st trimester, adverse effects were identified between mono-2-ethyl-5-oxoyhexyl phthalate (MEOHP) and adaptation (P = 0.024), and monomethyl phthalate (MMP) with social area (P = 0.017). In the 2nd trimester, MEHHP had adverse effects on social area (P = 0.035). In summary, we found boys may be more vulnerable to the neurotoxicity than girls in gross motor, and we also discovered the detrimental effects of phthalates on children's neurodevelopment in the 1st and 2nd trimesters. Therefore, the supplementation of appropriate elements in the 1st and 2nd trimesters may help reduce the adverse effects of phthalates on children's neurodevelopment, especially among boys.
Collapse
Affiliation(s)
- Yuan Zheng
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Longman Li
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Hong Cheng
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Shengzhu Huang
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiuming Feng
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Lulu Huang
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Luyun Wei
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Dehao Cao
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Sida Wang
- Department of Medical Ultrasonics, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Long Tian
- Maternal & Child Health Hospital of Qinzhou, Qinzhou, 535099, Guangxi, China
| | - Weijun Tang
- Maternal & Child Health Hospital of Qinzhou, Qinzhou, 535099, Guangxi, China
| | - Caitong He
- Maternal & Child Health Hospital of Yulin, Yulin, 537000, Guangxi, China
| | - Chunhua Shen
- Liuzhou Maternity and Child Healthcare Hospital; Liuzhou Institute of Reproduction and Genetics, Affiliated Maternity Hospital and Affiliated Children's Hospital of Guangxi University of Science and Technology, Liuzhou, 545006, Guangxi, China
| | - Bangzhu Luo
- Department of Medical Services Section, Maternal & Child Health Hospital of Guigang, Guigang, 537000, Guangxi, China
| | - Maoling Zhu
- Department of Obstetrics, Maternal & Child Health Hospital of Nanning, Nanning, 530021, Guangxi, China
| | - Tao Liang
- Department of Pediatrics, Maternal & Child Health Hospital of Wuzhou, Wuzhou, 543000, Guangxi, China
| | - Baohong Pang
- Maternal & Child Health Hospital of Yuzhou, Yulin, 537000, Guangxi, China
| | - Mujun Li
- Department of Reproductive Center, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Chaoqun Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xing Chen
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Fei Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zengnan Mo
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiaobo Yang
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
23
|
Yuan L, Liu J, Huang Y, Shen G, Pang S, Wang C, Li Y, Mu X. Integrated toxicity assessment of DEHP and DBP toward aquatic ecosystem based on multiple trophic model assays. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:87402-87412. [PMID: 35804233 DOI: 10.1007/s11356-022-21863-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
To comprehensively understand the toxic risks of phthalates to aquatic ecosystems, we examined the acute toxicity of di-(2-ethylhexyl) phthalate (DEHP) and di-butyl phthalate (DBP) on multiple trophic models, including algae (Chlorella vulgaris), Daphnia magna and fish (Danio rerio, Pseudorasbora parva). Thus, a 15-day zebrafish exposure was conducted to trace the dynamic changes of phthalate-induced toxic effects. Among the four species, D. magna exhibited the strongest sensitivity to both DEHP and DBP, followed by D. rerio and P. parva. C. vulgaris exhibited the lowest sensitivity to phthalates. The sub-chronic zebrafish assay demonstrated that 1000 μg/L DBP induced significant mortality at 15 days post-exposure (dpe), and DEHP exhibited no lethality at the tested concentrations (10-5000 μg/L). Zebrafish hepatic SOD activity and sod transcription levels were inhibited by DBP from 3 dpe, which was accompanied by increased malondialdehyde level, while zebrafish exposed to DEHP exhibited less oxidative damage. Both DEHP and DBP induced time-dependent alterations on Ache activity in zebrafish brains, thus indicating the potential neurotoxicity toward aquatic organisms. Additionally, 1000 μg/L and higher concentration of DBP caused hepatic DNA damage in zebrafish from 7 dpe. These results provide a better understanding of the health risks of phthalate to water environment.
Collapse
Affiliation(s)
- Lilai Yuan
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Jia Liu
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
- College of Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Ying Huang
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Gongming Shen
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Sen Pang
- College of Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Chengju Wang
- College of Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yingren Li
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Xiyan Mu
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China.
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China.
| |
Collapse
|
24
|
Bosch de Basea M, Carsin AE, Abellan A, Cobo I, Lertxundi A, Marin N, Soler-Blasco R, Ibarluzea J, Vrijheid M, Sunyer J, Casas M, Garcia-Aymerich J. Gestational phthalate exposure and lung function during childhood: A prospective population-based study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:119833. [PMID: 35931390 DOI: 10.1016/j.envpol.2022.119833] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
The potential effect of gestational exposure to phthalates on the lung function levels during childhood is unclear. Therefore, we examined this association at different ages (from 4 to 11 years) and over the whole childhood. Specifically, we measured 9 phthalate metabolites (MEP, MiBP, MnBP, MCMHP, MBzP, MEHHP, MEOHP, MECPP, MEHP) in the urine of 641 gestating women from the INMA study (Spain) and the forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1) and FEV1/FVC in their offspring at ages 4, 7, 9 and 11. We used linear regression and mixed linear regression with a random intercept for subject to assess the association between phthalates and lung function at each study visit and for the overall childhood, respectively. We also assessed the phthalate metabolites mixture effect on lung function using a Weighted Quantile Sum (WQS) regression. We observed that the phthalate metabolites gestational levels were consistently associated with lower FVC and FEV1 at all ages, both when assessed individually and jointly as a mixture, although most associations were not statistically significant. Of note, a 10% increase in MiBP was related to lower FVC (-0.02 (-0.04, 0)) and FEV1 z-scores (-0.02 (-0.04, -0.01) at age 4. Similar significant reductions in FVC were observed at ages 4 and 7 associated with an increase in MEP and MnBP, respectively, and for FEV1 at age 4 associated with an increase in MBzP. WQS regression consistently identified MBzP as an important contributor to the phthalate mixture effect. We can conclude that the gestational exposure to phthalates was associated with children's lower FVC and FEV1, especially in early childhood, and in a statistically significant manner for MEP, MiBP, MBzP and MnBP. Given the ubiquity of phthalate exposure and its established endocrine disrupting effects in children, our findings support current regulations that limit phthalate exposure.
Collapse
Affiliation(s)
- Magda Bosch de Basea
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Catalonia, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| | - Anne-Elie Carsin
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Catalonia, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; IMIM, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Alicia Abellan
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Catalonia, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona. Spain
| | - Inés Cobo
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Catalonia, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Aitana Lertxundi
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; BIODONOSTIA Health Research Institute, Environmental Epidemiology and Child Development Group, San Sebastian, Spain; Faculty of Medicine and Nursery of the University of the Basque Country (UPV-EHU), Leioa, Spain
| | - Natalia Marin
- Epidemiology and Environmental Health Joint Research Unit, FISABIO -Universitat Jaume I - Universitat de València, Valencia, Spain
| | - Raquel Soler-Blasco
- Epidemiology and Environmental Health Joint Research Unit, FISABIO -Universitat Jaume I - Universitat de València, Valencia, Spain
| | - Jesús Ibarluzea
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; BIODONOSTIA Health Research Institute, Environmental Epidemiology and Child Development Group, San Sebastian, Spain; Ministry of Health of the Basque Government, Sub-Directorate for Public Health and Addictions of Gipuzkoa, San Sebastian, Spain; Faculty of Psychology of the University of the Basque Country (UPV-EHU), San Sebastian, Spain
| | - Martine Vrijheid
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Catalonia, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Jordi Sunyer
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Catalonia, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; IMIM, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Maribel Casas
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Catalonia, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Judith Garcia-Aymerich
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Catalonia, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
25
|
Han Y, Jin S, Liu L, Qu Z, Gao L, Li P, Xiong W, Zhang X. Exploring associations between urine levels of phthalates and autism spectrum disorder symptoms: a case-control study in Tianjin, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:80805-80816. [PMID: 35729382 DOI: 10.1007/s11356-022-21526-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Autism spectrum disorder (ASD) comprises a group of neurodevelopmental disorders. The etiology of autism remains unclear, but a growing body of evidence indicates that phthalates play a role in its pathogenesis. The aim of this study was to compare the urine levels of phthalates in children with ASD and healthy children. We also explored whether phthalates have an effect on ASD symptoms. The participants in this study included 101 children with ASD (79 boys and 22 girls) and 101 sex- and age-matched controls. The levels of phthalates were analyzed by gas chromatography-mass spectrometry (GC-MS). We detected significant differences in monoethyl phthalate (MEP) levels between the severe ASD and control groups (p < 0.05). Mono-n-butyl phthalate (MBP) concentration was positively correlated with language skill impairment in ASD (β: 0.387, p = 0.041). MEP levels were associated with the CARS "Imitation" score in all children (OR: 1.470). MBP levels were associated with the "Nonverbal Communication" score among boys (OR: 1.233), and MEP levels were associated with the "Nonverbal Communication" score among girls (OR: 2.648). MEP levels were related to the CARS total score after adjustment for sex (β: 1.524, p = 0.047). Compared with the reference mono(2-ethylhexyl) phthalate (MEHP) group, children with ASD in the medium-exposure group had an OR of 3.370 for aggravating ASD severity. These results suggested that increased exposure to phthalates contributes to more ASD symptoms and that there are potentially sex-specific associations. These findings warrant further confirmation.
Collapse
Affiliation(s)
- Yu Han
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin, 300070, People's Republic of China
| | - Shihao Jin
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin, 300070, People's Republic of China
| | - Liyuan Liu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin, 300070, People's Republic of China
| | - Zhiyi Qu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin, 300070, People's Republic of China
| | - Lei Gao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin, 300070, People's Republic of China
| | - Peiying Li
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin, 300070, People's Republic of China
| | - Wenjuan Xiong
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin, 300070, People's Republic of China
| | - Xin Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin, 300070, People's Republic of China.
| |
Collapse
|
26
|
Wang Y, Wan Y, Cao M, Wang A, Mahai G, He Z, Xu S, Xia W. Urinary 2,4-dichlorophenoxyacetic acid in Chinese pregnant women at three trimesters: Variability, exposure characteristics, and association with oxidative stress biomarkers. CHEMOSPHERE 2022; 304:135266. [PMID: 35688197 DOI: 10.1016/j.chemosphere.2022.135266] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/15/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
Widespread exposure to herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) could have potential adverse health effects on pregnant women. However, related data are scarce. This study aimed to characterize 2,4-D exposure among three trimesters of pregnancy and to explore the relationship of 2,4-D with oxidative stress biomarkers [i.e., 8-hydroxy-2'-deoxyguanosine (8-OHdG), 8-hydroxy guanosine (8-OHG), and 4-hydroxy nonenal mercapturic acid (HNEMA)] in urine. The present study analyzed 3675 urine samples of 1225 women (across the three trimesters of pregnancy) in Wuhan, central China. 2,4-D was detectable in 97.4% of the urine samples. The median unadjusted concentration of 2,4-D was 0.12 ng/mL, and the corresponding concentration adjusted by urinary specific gravity (SG-adjusted) was 0.13 ng/mL. The intraclass correlation coefficient of 2,4-D (SG-adjusted concentrations) was 0.07 across the three trimesters. Significantly higher urinary levels of 2,4-D were found in samples from younger pregnant women/samples collected during winter. In addition, significantly positive association between urinary concentrations of oxidative stress biomarkers and 2,4-D were found in repeated analysis; an interquartile range increase in 2,4-D was significantly (p < 0.001) associated with a 20.8% increase in 8-OHG, a 26.7% increase in 8-OHdG, and a 30.7% increase in HNEMA, respectively. Such associations were also found in trimester-specific analyses. This is the first time to quantify the urinary 2,4-D of pregnant women in China, and this study found significantly positive associations of 2,4-D with oxidative stress biomarkers. Further studies are needed to verify such associations and explore other potential adverse effects of 2,4-D exposure.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Yanjian Wan
- Institute of Environmental Health, Wuhan Centers for Disease Control and Prevention, Wuhan, Hubei 430024, PR China.
| | - Meiling Cao
- Institute of Environmental Health, Wuhan Centers for Disease Control and Prevention, Wuhan, Hubei 430024, PR China.
| | - Aizhen Wang
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Gaga Mahai
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Zhenyu He
- Institute of Environmental Health, Wuhan Centers for Disease Control and Prevention, Wuhan, Hubei 430024, PR China.
| | - Shunqing Xu
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Wei Xia
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| |
Collapse
|
27
|
Geng M, Gao H, Wang B, Huang K, Wu X, Liang C, Yan S, Han Y, Ding P, Wang W, Wang S, Zhu P, Liu K, Cao Y, Tao F. Urinary tetracycline antibiotics exposure during pregnancy and maternal thyroid hormone parameters: A repeated measures study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156146. [PMID: 35605876 DOI: 10.1016/j.scitotenv.2022.156146] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/13/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Studies on potential maternal thyrotoxicity related to tetracycline antibiotics exposure during pregnancy are lacking. Based on a large prospective cohort study, this study aimed to examine the associations between tetracycline antibiotics exposure in maternal urine and maternal thyroid hormone parameters. METHODS Based on the Ma'anshan Birth Cohort study, urine and serum samples of 2969 pregnant women were collected in the first, second and third trimesters. Tetracycline antibiotics, including oxytetracycline, chlorotetracycline, tetracycline and doxycycline in urine samples, as well as free thyroxine (FT4), thyroid stimulating hormone (TSH), total triiodothyronine (TT3) and total thyroxine (TT4) levels in serum samples, were measured. Linear mixed models and multivariate linear regression models were employed to examine associations between tetracycline antibiotics exposure during pregnancy and maternal thyroid hormone parameters. RESULTS The detection rates of four individual tetracycline antibiotics and all antibiotics (sum of four individual tetracycline antibiotics) in the three trimesters were 5.0%-52.3%, and the 95th percentile concentration ranged from 0.11 to 4.84 ng/mL. After adjusting for potential confounding factors, the repeated measures analyses indicated that pregnant women exposed to doxycycline and all antibiotics during the entire pregnancy were negatively associated with serum FT4 and TT4 levels but positively associated with serum TSH and TT3 levels. Trimester-stratified analyses found that doxycycline and all antibiotics exposure during the first trimester were negatively associated with serum FT4 and TT4 levels, while doxycycline was positively associated with TSH levels. In the third trimester, a significant association was only found between all antibiotics and TSH levels. CONCLUSIONS Our results suggest that exposure of pregnant women to tetracycline antibiotics is associated with maternal thyroid hormone parameters, and the first trimester might be the most critical window. More studies are needed to substantiate our findings and determine the underlying biological mechanisms.
Collapse
Affiliation(s)
- Menglong Geng
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Hui Gao
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei 230032, Anhui, China; Department of Pediatric, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, Anhui, China
| | - Baolin Wang
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Kun Huang
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Xiaoyan Wu
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Chunmei Liang
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Shuangqin Yan
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; Ma'anshan Maternal and Child Healthcare (MCH) Center, Ma'anshan 243011, China
| | - Yan Han
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Peng Ding
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Wei Wang
- Suzhou Vocational Health College, No. 28, Kehua Road, North District, Suzhou International Education Park, Suzhou 215000, Jiangsu, China
| | - Sheng Wang
- The Center for Scientific Research of Anhui Medical University, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Peng Zhu
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Kaiyong Liu
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Yunxia Cao
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Fangbiao Tao
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
28
|
Yang Z, Zhang T, Shan D, Li L, Wang S, Li Y, Du R, Wu S, Jin L, Lu X, Shang X, Wang Q. Associations between phthalate exposure and thyroid function in pregnant women during the first trimester. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113884. [PMID: 35853363 DOI: 10.1016/j.ecoenv.2022.113884] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Phthalates are a class of environmental endocrine disruptors. Previous studies have demonstrated that phthalate exposure can affect thyroid function; however, limited studies have assessed the associations between phthalate exposure and thyroid function, especially thyroid autoimmunity in pregnant women during the first trimester. We recruited participants from a cohort of pregnant women in Beijing, China, and collected urine samples to measure ten phthalate metabolites, serum samples to measure free thyroxine (FT4), thyroid-stimulating hormone (TSH), thyroid peroxidase antibody (TPOAb) during the first trimester. We included 325 pregnant women without thyroid diseases or dysfunction in this study. Associations between phthalate metabolites and thyroid function parameters were assessed with the Bayesian kernel machine regression (BKMR) model, multiple linear regression model, and restricted cubic spline. In the BKMR model analysis, compared to the 50th percentile, total urinary phthalate metabolites levels were negatively associated with serum TPOAb levels when phthalate metabolites were at or below the 40th percentile. Stratifying by body mass index, total urinary phthalate metabolites levels were negatively associated with serum TPOAb levels in normal weight women when phthalate metabolites were at or below the 45th percentile. However, total urinary phthalate metabolites levels were positively associated with serum TPOAb levels in underweight women when phthalate metabolites were at or below the 30th percentile. In restricted cubic spline analysis, L-shaped nonlinear associations of mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP), mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP), di-(2-ethylhexyl) phthalate (ΣDEHP), and inverted S-shaped nonlinear association of mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) with TPOAb were observed. In conclusion, our findings suggest that phthalate exposure may affect thyroid autoimmunity in underweight pregnant women during early pregnancy, and the potential effects of phthalate exposure on thyroid autoimmunity may be nonlinear.
Collapse
Affiliation(s)
- Zheng Yang
- Department of Toxicology, School of Public Health, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Tao Zhang
- Department of Toxicology, School of Public Health, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Danping Shan
- Department of Toxicology, School of Public Health, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Ludi Li
- Department of Toxicology, School of Public Health, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Shuo Wang
- Department of Toxicology, School of Public Health, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Yingzi Li
- Department of Toxicology, School of Public Health, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Ruihu Du
- Department of Toxicology, School of Public Health, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Lei Jin
- Institute of Reproductive and Child Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Xin Lu
- Maternal and Child Health Care Hospital of Haidian District, Beijing 100080, China
| | - Xuejun Shang
- Department of Andrology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China
| | - Qi Wang
- Department of Toxicology, School of Public Health, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China.
| |
Collapse
|
29
|
Liao J, Fang D, Liu Y, Xiong S, Wang X, Tian Y, Zhang H, An S, He C, Chen W, Liu X, Wu N, Tian K, Wang L, Zhang Y, Yuan H, Zhang L, Li Q, Shen X, Zhou Y. Exposure characteristics of phthalate metabolites among the Zunyi cohort of pregnant women in Southwest China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:58869-58880. [PMID: 35377124 DOI: 10.1007/s11356-022-19990-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
Reported evidence has increasingly indicated that exposure to phthalates can cause adverse pregnancy outcomes. However, phthalate exposure levels among pregnant women remains unclear. We aimed to evaluate the concentrations and predictors of phthalate metabolites in urine samples of the ongoing Zunyi cohort of pregnant women from Southwest China. The urine samples were collected from 1003 pregnant women during their third trimester of pregnancy. The concentrations of nine phthalate metabolites in urine samples were then determined. Data on socio-demographic profiles of the participants, lifestyle during pregnancy, parity, and sampling season were collected using questionnaires. The detectable rate of phthalate metabolites ranged from 76 to 100%. On average, mono-butyl phthalate exhibited the highest median concentration (62.45 μg/L), while mono-benzyl phthalate exhibited the lowest median concentration (0.04 μg/L). Urine concentrations of phthalate metabolites were significantly higher in older, multiparous, higher body mass index, higher income, and passive smoking during pregnancy participants. The levels of low-molecular-weight phthalate metabolites were highest during the summer. The findings indicate the health of pregnant women and fetuses in Zunyi may be generally harmed by the high exposure of phthalate metabolites, especially by mono-n-butyl phthalate. In addition, phthalate metabolites present a demographic and seasonal differential distribution among the study population. Targeted measures to reduce phthalate exposure for high-risk pregnant women and during high-exposure seasons may have potential benefits for maternal and fetal health protection.
Collapse
Affiliation(s)
- Juan Liao
- Soochow University Medical College, Suzhou, 215000, Jiangsu, China
- Department of Obstetrics and Gynecology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Derong Fang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Yijun Liu
- School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Shimin Xiong
- School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Xia Wang
- School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Yingkuan Tian
- School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Haonan Zhang
- School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Songlin An
- School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Caidie He
- School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Wei Chen
- School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Xiang Liu
- School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Nian Wu
- School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Kunming Tian
- School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Linglu Wang
- The Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Ya Zhang
- Xishui County People's Hospital, Zunyi, 564600, Guizhou, China
| | - Hongyu Yuan
- Xishui County People's Hospital, Zunyi, 564600, Guizhou, China
| | - Li Zhang
- Meitan County People's Hospital, Zunyi, 564100, Guizhou, China
| | - Quan Li
- Department of Obstetrics and Gynecology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Xubo Shen
- School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Yuanzhong Zhou
- School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, China.
| |
Collapse
|
30
|
Seymore TN, Rivera-Núñez Z, Stapleton PA, Adibi JJ, Barrett ES. Phthalate Exposures and Placental Health in Animal Models and Humans: A Systematic Review. Toxicol Sci 2022; 188:153-179. [PMID: 35686923 PMCID: PMC9333406 DOI: 10.1093/toxsci/kfac060] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Phthalates are ubiquitous compounds known to leach from the plastic products that contain them. Due to their endocrine-disrupting properties, a wide range of studies have elucidated their effects on reproduction, metabolism, neurodevelopment, and growth. Additionally, their impacts during pregnancy and on the developing fetus have been extensively studied. Most recently, there has been interest in the impacts of phthalates on the placenta, a transient major endocrine organ critical to maintenance of the uterine environment and fetal development. Phthalate-induced changes in placental structure and function may have significant impacts on the course of pregnancy and ultimately, child health. Prior reviews have described the literature on phthalates and placental health; however to date, there has been no comprehensive, systematic review on this topic. Here, we review 35 papers (24 human and 11 animal studies) and summarize phthalate exposures in relation to an extensive set of placental measures. Phthalate-related alterations were reported for placental morphology, hormone production, vascularization, histopathology, and gene/protein expression. The most consistent changes were observed in vascular and morphologic endpoints, including cell composition. These changes have implications for pregnancy complications such as preterm birth and intrauterine growth restriction as well as potential ramifications for children's health. This comprehensive review of the literature, including common sources of bias, will inform the future work in this rapidly expanding field.
Collapse
Affiliation(s)
- Talia N Seymore
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey 08854, USA
- Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, New Jersey 08854, USA
| | - Zorimar Rivera-Núñez
- Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, New Jersey 08854, USA
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey 08854, USA
| | - Phoebe A Stapleton
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey 08854, USA
- Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, New Jersey 08854, USA
| | - Jennifer J Adibi
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Emily S Barrett
- Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, New Jersey 08854, USA
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey 08854, USA
| |
Collapse
|
31
|
Cardenas-Iniguez C, Burnor E, Herting MM. Neurotoxicants, the Developing Brain, and Mental Health. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2022; 2:223-232. [PMID: 35911498 PMCID: PMC9337627 DOI: 10.1016/j.bpsgos.2022.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 12/31/2022] Open
Abstract
While life in urban environments may confer a number of benefits, it may also result in a variety of exposures, with toxic consequences for neurodevelopment and neuropsychological health. Neurotoxicants are any of a large number of chemicals or substances that interfere with normal function and/or compromise adaptation in the central and/or peripheral nervous system. Evidence suggests that neurotoxicant effects have a greater effect when occurring in utero and during early childhood. Recent findings exploring neural-level mechanisms provide a crucial opportunity to explore the ways in which environmental conditions may get "under the skin" to impact a number of psychological behaviors and cognitive processes, ultimately allowing for greater synergy between macro- and microlevel efforts to improve mental health in the presence of neurotoxicant exposures. In this review, we provide an overview of 3 types of neurotoxicants related to the built environment and relevant to brain development during childhood and adolescence: lead exposure, outdoor particulate matter pollution, and endocrine-disrupting chemicals. We also discuss mechanisms through which these neurotoxicants affect central nervous system function, including recent evidence from neuroimaging literature. Furthermore, we discuss neurotoxicants and mental health during development in the context of social determinants and how differences in the spatial distribution of neurotoxicant exposures result in health disparities that disproportionately affect low-income and minority populations. Multifaceted approaches incorporating social systems and their effect on neurotoxicant exposures and downstream mental health will be key to reduce societal costs and improve quality of life for children, adolescents, and adults.
Collapse
Affiliation(s)
- Carlos Cardenas-Iniguez
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Elisabeth Burnor
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Megan M. Herting
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, California
- Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, California
| |
Collapse
|
32
|
Saab Y, Oueis E, Mehanna S, Nakad Z, Stephan R, Khnayzer RS. Risk Assessment of Phthalates and Their Metabolites in Hospitalized Patients: A Focus on Di- and Mono-(2-ethylhexyl) Phthalates Exposure from Intravenous Plastic Bags. TOXICS 2022; 10:toxics10070357. [PMID: 35878262 PMCID: PMC9324282 DOI: 10.3390/toxics10070357] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 02/05/2023]
Abstract
Phthalate esters (PAEs) are plasticizers associated with multiple toxicities; however, no strict regulations have been implemented to restrict their use in medical applications in Lebanon. Our study aimed at assessing the potential risks correlated with phthalate exposure from IV bags manufactured in Lebanon. GC–MS analysis showed that di-(2-ethylhexyl) phthalate (DEHP) is the predominant phthalate found in almost all samples tested with values ranging from 32.8 to 39.7% w/w of plastic. DEHP concentrations in the IV solutions reached up to 148 µg/L, as measured by SPME-GC–MS/MS, thus resulting in hazard quotients greater than 1, specifically in neonates. The toxicity of DEHP is mainly attributed to its metabolites, most importantly mono-(2-ethylhexyl) phthalate (MEHP). The IV bag solution with the highest content in DEHP was therefore used to extrapolate the amounts of urinary MEHP. The highest concentrations were found in neonates having the lowest body weight, which is concerning, knowing the adverse effects of MEHP in infants. Our study suggests that the use of IV bags manufactured in Lebanon could pose a significant risk in hospitalized patients, especially infants in neonatal care. Therefore, Lebanon, as well as other countries, should start imposing laws that restrict the use of phthalates in medical IV bags and substitute them with less toxic plasticizers.
Collapse
Affiliation(s)
- Yolande Saab
- Pharmaceutical Sciences Department, School of Pharmacy, Lebanese American University, Chouran, Beirut 1102-2801, Lebanon; (E.O.); (R.S.)
- Correspondence: (Y.S.); (R.S.K.)
| | - Emilia Oueis
- Pharmaceutical Sciences Department, School of Pharmacy, Lebanese American University, Chouran, Beirut 1102-2801, Lebanon; (E.O.); (R.S.)
| | - Stephanie Mehanna
- Department of Natural Sciences, Lebanese American University, Chouran, Beirut 1102-2801, Lebanon;
| | - Zahi Nakad
- Electrical and Computer Engineering Department, School of Engineering, Lebanese American University, Chouran, Beirut 1102-2801, Lebanon;
| | - Rita Stephan
- Pharmaceutical Sciences Department, School of Pharmacy, Lebanese American University, Chouran, Beirut 1102-2801, Lebanon; (E.O.); (R.S.)
| | - Rony S. Khnayzer
- Department of Natural Sciences, Lebanese American University, Chouran, Beirut 1102-2801, Lebanon;
- Correspondence: (Y.S.); (R.S.K.)
| |
Collapse
|
33
|
Zhang L, Ruan Z, Jing J, Yang Y, Li Z, Zhang S, Yang J, Ai S, Luo N, Peng Y, Fang P, Lin H, Zou Y. High-Temperature Soup Foods in Plastic Packaging Are Associated with Phthalate Body Burden and Expression of Inflammatory mRNAs: A Dietary Intervention Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8416-8427. [PMID: 35584204 DOI: 10.1021/acs.est.1c08522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Plastic packaging material is widely used to package high-temperature soup food in China, but this combination might lead to increased exposure to phthalates. The health effects and potential biological mechanisms have not been well studied. This study aimed to examine urinary phthalate metabolites and the expression of inflammatory cytokines in the blood before, during, and after a "plastic-packaged high-temperature soup food" dietary intervention in healthy adults. The results showed that compared with those in the preintervention period, urinary creatinine-adjusted levels of monomethyl phthalate (MMP), mono-n-butyl phthalate (MBP), mono-isobutyl phthalate (MIBP), and total phthalate metabolites in the intervention period were significantly higher, with increases of 71.6, 41.8, 38.8, and 29.8% for MMP, MBP, MIBP, and the total phthalate metabolites, respectively. After intervention, the mean levels of IL-1β, IL-4, and TNF-α mRNA increased by 19.0, 21.5, and 25.0%, respectively, while IL-6 and IFN-γ mRNA decreased by 24.2 and 32.9%, respectively, when compared with the preintervention period. We also observed that several phthalates were associated with the mRNA or protein expression of IL-8, TNF-α, and IL-10. Therefore, consumption of plastic-packaged high-temperature soup food was linked to increased phthalate exposure and might result in significant changes in mRNA expression of several inflammatory cytokines.
Collapse
Affiliation(s)
- Li'e Zhang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China
| | - Zengliang Ruan
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing 210096, China
| | - Jiajun Jing
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China
| | - Yin Yang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhiying Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Shiyu Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jie Yang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China
| | - Siqi Ai
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Na Luo
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Yang Peng
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China
| | - Peiyu Fang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yunfeng Zou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
34
|
Razavi N, Taghi Hamed Mosavian M, Es'haghi Z. Curcumin-loaded magnetic chitosan-based solid-phase extraction-gas chromatography of migrated phthalate esters from pacifiers and plastic toys into baby saliva. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
Insights into the Endocrine Disrupting Activity of Emerging Non-Phthalate Alternate Plasticizers against Thyroid Hormone Receptor: A Structural Perspective. TOXICS 2022; 10:toxics10050263. [PMID: 35622676 PMCID: PMC9145736 DOI: 10.3390/toxics10050263] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/02/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022]
Abstract
Many endocrine-disrupting chemicals (EDCs) have a ubiquitous presence in our environment due to anthropogenic activity. These EDCs can disrupt hormone signaling in the human and animal body systems including the very important hypothalamic-pituitary-thyroid (HPT) axis causing adverse health effects. Thyroxine (T4) and triiodothyronine (T3) are hormones of the HPT axis which are essential for regulation of metabolism, heart rate, body temperature, growth, development, etc. In this study, potential endocrine-disrupting activity of the most common phthalate plasticizer, DEHP, and emerging non-phthalate alternate plasticizers, DINCH, ATBC, and DEHA against thyroid hormone receptor (TRα) were characterized. The structural binding characterization of indicated ligands was performed against the TRα ligand binding site employing Schrodinger’s induced fit docking (IFD) approach. The molecular simulations of interactions of the ligands against the residues lining a TRα binding pocket, including bonding interactions, binding energy, docking score, and IFD score were analyzed. In addition, the structural binding characterization of TRα native ligand, T3, was also done for comparative analysis. The results revealed that all ligands were placed stably in the TRα ligand-binding pocket. The binding energy values were highest for DINCH, followed by ATBC, and were higher than the values estimated for TRα native ligand, T3, whereas the values for DEHA and DEHP were similar and comparable to that of T3. This study suggested that all the indicated plasticizers have the potential for thyroid hormone disruption with two alternate plasticizers, DINCH and ATBC, exhibiting higher potential for thyroid dysfunction compared to DEHA and DEHP.
Collapse
|
36
|
Olkowska E, Gržinić G. Skin models for dermal exposure assessment of phthalates. CHEMOSPHERE 2022; 295:133909. [PMID: 35143861 DOI: 10.1016/j.chemosphere.2022.133909] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
Phthalates are a class of compounds that have found widespread use in industrial applications, in particular in the polymer, cosmetics and pharmaceutical industries. While ingestion, and to a lesser degree inhalation, have been considered as the major exposure routes, especially for higher molecular weight phthalates, dermal exposure is an important route for lower weight phthalates such as diethyl phthalate (DEP). Assessing the dermal permeability of such compounds is of great importance for evaluating the impact and toxicity of such compounds in humans. While human skin is still the best model for studying dermal permeation, availability, cost and ethical concerns may preclude or restrict its use. A range of alternative models has been developed over time to substitute for human skin, especially in the early phases of research. These include ex vivo animal skin, human reconstructed skin and artificial skin models. While the results obtained using such alternative models correlate to a lesser or greater degree with those from in vivo human studies, the use of such models is nevertheless vital in dermal permeation research. This review discusses the alternative skin models that are available, their use in phthalate permeation studies and possible new avenues of phthalate research using skin models that have not been used so far.
Collapse
Affiliation(s)
- Ewa Olkowska
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdansk, Debowa Str. 23A, 80-204, Gdansk, Poland.
| | - Goran Gržinić
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdansk, Debowa Str. 23A, 80-204, Gdansk, Poland
| |
Collapse
|
37
|
Yu L, Zhang H, Zheng T, Liu J, Fang X, Cao S, Xia W, Xu S, Li Y. Phthalate Exposure, PPARα Variants, and Neurocognitive Development of Children at Two Years. Front Genet 2022; 13:855544. [PMID: 35464856 PMCID: PMC9019295 DOI: 10.3389/fgene.2022.855544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
Background: The PPARα gene may be crucial to the neurotoxic effect of phthalates. However, epidemiological studies considering the neurodevelopmental influence of phthalates interacting with genetic susceptibility are limited. We hypothesized phthalates could interact with the PPARα gene, synergistically affecting neurocognitive development. Methods: A total of 961 mother-infant pairs were involved in this study. The concentrations of phthalate metabolites in maternal urine during pregnancy were detected. Children’s neurocognitive development was estimated with the Bailey Infant Development Inventory (BSID). Genetic variations in PPARα were genotyped with the Illumina Asian Screening Array. We applied generalized linear regression models to estimate genotypes and phthalate metabolites’ association with children’s neurocognitive development. Results: After adjusting for potential confounders, the mono-n-butyl phthalate (MnBP) concentration was negatively associated with Psychomotor Development Index (PDI) (β = −0.86, 95% CI: −1.67, −0.04). The associations between MnBP and neurocognitive development might be modified by PPARα rs1800246. Compared with low-MnBP individuals carrying rs1800246 GG genotypes, high-MnBP individuals with the AG + AA genotype had a higher risk of neurocognitive developmental delay, with the odds ratio of 2.76 (95% CI:1.14, 6.24). Conclusions: Our current study revealed that prenatal exposure to MnBP was negatively correlated with children’s neurocognitive development, and PPARα rs1800246 might modify the association.
Collapse
Affiliation(s)
- Ling Yu
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongling Zhang
- School of Health and Nursing, Wuchang University of Technology, Wuhan, China
| | - Tongzhang Zheng
- Department of Epidemiology, Brown University, Providence, RI, United States
| | - Juan Liu
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingjie Fang
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuting Cao
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
38
|
Lv J, Li Y, Chen J, Li R, Bao C, Ding Z, Ren W, Du Z, Wang S, Huang Y, Wang QN. Maternal exposure to bis(2-ethylhexyl) phthalate during the thyroid hormone-dependent stage induces persistent emotional and cognitive impairment in middle-aged offspring mice. Food Chem Toxicol 2022; 163:112967. [PMID: 35354077 DOI: 10.1016/j.fct.2022.112967] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 03/10/2022] [Accepted: 03/24/2022] [Indexed: 10/18/2022]
Abstract
Prenatal DEHP exposure can cause offspring neurodevelopmental toxicity, but the persistent effects of such exposure window are unclear. This study aimed to investigate the lasting neurobehavioral impact of DEHP on offspring following early exposure from GD9.5 (fetal neural tube closure) to GD16.5 (fetal thyroxin, TH, synthesis). Data showed maternal exposure to DEHP during the thyroid hormone-dependent stage induced a range of neurobehavioral phenotypic changes in adult and middle-aged mice, including anxiety, depression and cognitive impairment. Significant reductions in free TH, TH transporters, and TH metabolic enzyme deiodinase II (D2) were observed in the fetal brain, whereas D3 was elevated, indicating that TH signaling disruption was caused by in utero exposure. Gene expression analyses suggested the expression levels of the TH receptors Trα1, Trβ1 and their downstream target, brain-derived neurotrophic factor, were significantly attenuated, which may partially explain the mechanisms of neurodevelopmental impairment. This study provides new evidence of the persistent effects of sex-specific neurodevelopmental impairment due to in utero DEHP exposure, possibly through damage to the fetal brain TH signaling systems that causes lifelong brain damage. These results further suggest a profound neurobehavioral toxicity of DEHP that may be programmed during early developmental stage exposure and manifested later in life.
Collapse
Affiliation(s)
- Jia Lv
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China
| | - Yanling Li
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China; Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China
| | - Jianrong Chen
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China
| | - Rong Li
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China
| | - Chao Bao
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China
| | - Zheng Ding
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China
| | - Wenqiang Ren
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China
| | - Zhiping Du
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China; Jinhua Center for Disease Control and Prevention, Jinhua, Zhejiang, China
| | - Sheng Wang
- Center for Scientific Research of Anhui Medical University, Hefei, China
| | - Yichao Huang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China.
| | - Qu-Nan Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China.
| |
Collapse
|
39
|
Wu C, Ma Y, Wang D, Shan Y, Song X, Hu H, Ren X, Ma X, Luo J, Cui J, Ma Y. Microbiology combined with metabonomics revealing the response of soil microorganisms and their metabolic functions exposed to phthalic acid esters. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 233:113338. [PMID: 35228031 DOI: 10.1016/j.ecoenv.2022.113338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/02/2022] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
As microplastics became the focus of global attention, the hazards of plastic plasticizers (PAEs) have gradually attracted people's attention. Agricultural soil is one of its hardest hit areas. However, current research of its impact on soil ecology only stops at the microorganism itself, and there is still lack of conclusion on the impact of soil metabolism. To this end, three most common PAEs (Dimethyl phthalate: DMP, Dibutyl phthalate: DBP and Bis (2-ethylhexyl) phthalate: DEHP) were selected and based on high-throughput sequencing and metabolomics platforms, the influence of PAEs residues on soil metabolic functions were revealed for the first time. PAEs did not significantly changed the alpha diversity of soil bacteria in the short term, but changed their community structure and interfered with the complexity of community symbiosis network. Metabolomics indicated that exposure to DBP can significantly change the soil metabolite profile. A total of 172 differential metabolites were found, of which 100 were up-regulated and 72 were down-regulated. DBP treatment interfered with 43 metabolic pathways including basic metabolic processes. In particular, it interfered with the metabolism of residual steroids and promoted the metabolism of various plasticizers. In addition, through differential labeling and collinear analysis, some bacteria with the degradation potential of PAEs, such as Gordonia, were excavated.
Collapse
Affiliation(s)
- Changcai Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, 450001 Zhengzhou, China
| | - Yajie Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Dan Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Yongpan Shan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Xianpeng Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Hongyan Hu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Xiangliang Ren
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Xiaoyan Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Junyu Luo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China.
| | - Jinjie Cui
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, 450001 Zhengzhou, China.
| | - Yan Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China.
| |
Collapse
|
40
|
Zhao A, Wang L, Pang X, Liu F. Phthalates in skin wipes: Distribution, sources, and exposure via dermal absorption. ENVIRONMENTAL RESEARCH 2022; 204:112041. [PMID: 34529968 DOI: 10.1016/j.envres.2021.112041] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Phthalates, which are widely used in industrial products, can be dermally absorbed into the human body and harm human health. In this study, we measured the levels of phthalates in skin wipes collected from 30 undergraduate volunteers. The body surfaces wiped include the forehead, forearms, hands, back, calves, and insteps. We analyzed the characteristics and possible sources of phthalates on the skin surface and used Monte Carlo simulations to estimate dermal exposure. The mean total dermal exposure was in the range of 0.129-8.25 μg/(kg·day). Seven phthalates were detected, with a detection frequency of 57-100%. Phthalate levels were not significantly different between symmetrical locations, but differed significantly at the same sampling location. The mean dinonyl phthalate (DNP) contribution was the highest on the forehead, back, and forearm. The mean DNP and di (2-n-butoxyethyl) phthalate (DBEP) contributions on hands were the highest and second-highest, respectively. The mean DBEP contribution was the highest on calf and instep. Phthalates level was the maximum on the forehead and instep. Habit and activities can lead to significant differences in phthalate concentrations on the skin surfaces of male and female students. The sum of dermal exposure on the torso, head, and feet perhaps best approximates the total body exposure. To date, information on the dermal exposure and related species of phthalates are limited; therefore, further study is needed.
Collapse
Affiliation(s)
- Anqi Zhao
- Beijing Key Laboratory of Heating, Gas Supply, Ventilation and Air Conditioning, Beijing University of Civil Engineering and Architecture, Beijing, China
| | - Lixin Wang
- Beijing Key Laboratory of Heating, Gas Supply, Ventilation and Air Conditioning, Beijing University of Civil Engineering and Architecture, Beijing, China.
| | - Xueying Pang
- Beijing Key Laboratory of Heating, Gas Supply, Ventilation and Air Conditioning, Beijing University of Civil Engineering and Architecture, Beijing, China
| | - Fang Liu
- Beijing Key Laboratory of Heating, Gas Supply, Ventilation and Air Conditioning, Beijing University of Civil Engineering and Architecture, Beijing, China
| |
Collapse
|
41
|
Ramírez V, Gálvez-Ontiveros Y, González-Domenech PJ, Baca MÁ, Rodrigo L, Rivas A. Role of endocrine disrupting chemicals in children's neurodevelopment. ENVIRONMENTAL RESEARCH 2022; 203:111890. [PMID: 34418446 DOI: 10.1016/j.envres.2021.111890] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/08/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Environmental stressors, like endocrine disrupting chemicals (EDC), are considered important contributors to the increased rates of neurodevelopmental dysfunctions. Considering the cumulative research on adverse neurodevelopmental effects associated with prenatal exposure to EDC, the purpose of this study was to review the available limited literature about the effects of postnatal exposure to EDC on child neurodevelopment and behaviour. Despite widespread children's exposure to EDC, there are a limited number of epidemiological studies on the association of this exposure with neurodevelopmental disorders, in particular in the postnatal period. The available research suggests that postnatal EDC exposure is related to adverse neurobehavioral outcomes in children; however the underlying mechanisms of action remain unclear. Timing of exposure is a key factor determining potential neurodevelopmental consequences, hence studying the impact of multiple EDC co-exposure in different vulnerable life periods could guide the identification of sensitive subpopulations. Most of the reviewed studies did not take into account sex differences in the EDC effects on children neurodevelopment. We believe that the inclusion of sex in the study design should be considered as the role of EDC on children neurodevelopment are likely sex-specific and should be taken into consideration when determining susceptibility and potential mechanisms of action.
Collapse
Affiliation(s)
- Viviana Ramírez
- Department of Nutrition and Food Science, University of Granada, Granada, Spain
| | - Yolanda Gálvez-Ontiveros
- Department of Nutrition and Food Science, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| | - Pablo José González-Domenech
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain; Department of Psychiatry, University of Granada, Granada, Spain
| | | | - Lourdes Rodrigo
- Department of Legal Medicine and Toxicology, University of Granada, Granada, Spain.
| | - Ana Rivas
- Department of Nutrition and Food Science, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| |
Collapse
|
42
|
Sprowles JL, Dzwilewski KL, Merced-Nieves FM, Musaad SM, Schantz SL, Geiger SD. Associations of prenatal phthalate exposure with neurobehavioral outcomes in 4.5- and 7.5-month-old infants. Neurotoxicol Teratol 2022; 92:107102. [PMID: 35588931 PMCID: PMC9271634 DOI: 10.1016/j.ntt.2022.107102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 05/05/2022] [Accepted: 05/12/2022] [Indexed: 01/25/2023]
Abstract
Phthalates are ubiquitous endocrine-disrupting chemicals, and research indicates that prenatal exposure to some phthalates may affect neurodevelopment. In a prospective birth cohort study, five first-morning urine samples collected across pregnancy were pooled and the following phthalate biomarkers assessed: sum of di-(2-ethylhexyl) phthalate metabolites (ΣDEHP), sum of diisononyl phthalate metabolites (ΣDINP), sum of dibutyl phthalate metabolites (ΣDBP), sum of anti-androgenic metabolites (ΣAA), monoethyl phthalate (MEP), and sum of all phthalate metabolites (ΣAll). The Ages & Stages Questionnaires® (ASQ), a standardized parent-reported, age-adapted screening tool, measured communication, personal-social, problem solving, and motor domains in infants at 4.5 and 7.5 months (n = 123). Adjusting for maternal age, annual household income, gestational age at birth, infant age at assessment, and sex, repeated-measures generalized linear regression models were used to examine associations between prenatal phthalate urine biomarker concentrations and domain scores (assuming a Poisson distribution). Beta estimates were exponentiated back to the domain scale for ease of interpretation. Mothers were mostly white and college-educated, and most reported an annual household income of ≥$60,000. Associations of phthalate concentrations with ASQ outcomes are presented as follows: (1) anti-androgenic phthalate metabolites (ΣDEHP, ΣDINP, ΣDBP, and ΣAA), (2) MEP, which is not anti-androgenic, and (3) ΣAll. Overall, anti-androgenic phthalates were associated with higher (i.e., better) scores. However, there were exceptions, including the finding that a one-unit increase in ΣDBP was associated with a 12% increase in problem solving scores in 4.5-month-old females (β = 1.12; 95% CI: 0.99, 1.28; p = 0.067) but a 85% decrease for 7.5-month-old females (β = 0.54; 95% CI: 0.3, 0.99; p = 0.047). In contrast, MEP was associated with poorer scores on several outcomes. Sex- and timepoint-specific estimates demonstrated a one-unit increase in MEP was associated with: a 52% decrease in personal-social scores in 7.5-month-old males (β = 0.66; 95% CI: 0.46, 0.95; p = 0.02), a 39% decrease in fine motor scores in 7.5-month-old males (β = 0.72; 95% CI: 0.52, 0.98; p = 0.035), and a 6% decrease in fine motor scores in 4.5-month-old females (β = 0.94; 95% CI: 0.88, 0.99; p = 0.03). A one-unit increase in ΣAll was associated with a 4% increase in personal-social scores in 4.5-month-old males (β = 1.04; 95% CI: 0.99, 1.1; p = 0.08) but a 17% decrease in 7.5-month-old males (β = 0.85; 95% CI: 0.73, 0.99; p = 0.03). These data suggest age- and sex-specific associations of prenatal phthalates with infant neurobehavior. The current findings should be confirmed by longitudinal studies with larger sample sizes.
Collapse
Affiliation(s)
- Jenna L.N. Sprowles
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, 405 N. Matthews Ave., Urbana, IL 61801, USA.,Corresponding author at: Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, 405 N. Matthews Ave., Urbana, IL 61801, USA. (J. L. N. Sprowles)
| | - Kelsey L.C. Dzwilewski
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, 405 N. Matthews Ave., Urbana, IL 61801, USA
| | - Francheska M. Merced-Nieves
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Salma M.A. Musaad
- United States Department of Agriculture/Agricultural Research Service, Children’s Nutrition Research Center, Baylor College of Medicine, 1100 Bates Ave., Houston, TX 77030, USA
| | - Susan L. Schantz
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, 405 N. Matthews Ave., Urbana, IL 61801, USA
| | - Sarah D. Geiger
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, 405 N. Matthews Ave., Urbana, IL 61801, USA.,Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Khan Annex Room 2013, 1206 S. Fourth St., Champaign, IL 61820, USA
| |
Collapse
|
43
|
Review of the Existing Evidence for Sex-Specific Relationships between Prenatal Phthalate Exposure and Children's Neurodevelopment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182413013. [PMID: 34948625 PMCID: PMC8700807 DOI: 10.3390/ijerph182413013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/24/2021] [Accepted: 12/04/2021] [Indexed: 11/16/2022]
Abstract
Phthalates are well-known, ubiquitous environmental contaminants influencing children's health and their neurodevelopment. However, results of the previously conducted studies are not entirely conclusive. The aim of this review is to present the current state of knowledge with respect to the association between the prenatal phthalate exposure and sex-specific child neurodevelopmental outcomes. A systematic search of the literature was carried out to identify the studies that analyse the sex-specific association between prenatal exposure to phthalates and cognitive, psychomotor outcomes and behavioural and emotional problems. The search was conducted in May 2021, and it was limited to the papers published in English between January 2015 and April 2021. The following databases were used: PubMed, Scopus and Elsevier. The selection process was carried out by two independent authors according to the inclusion criteria. Of a total of 7542 records, 17 epidemiological studies met the inclusion criteria with regards to phthalate exposure and sex-specific differences in child neurobehavioural development. The review shows no clear pattern of association between maternal exposure to phthalates during pregnancy and offspring neurodevelopment. No clearly pronounced sex specific effects, except for BBzP exposure and decreased motor ablates among girls, have been indicated. Inconsistences in the results, as well as unsolved issues related to the interpretation of the results in the context of the exposure level, outcomes, confounders, and biological plausibility highlight the necessity for further research in the field.
Collapse
|
44
|
Martínez-Martínez MI, Alegre-Martínez A, Cauli O. Prenatal exposure to phthalates and its effects upon cognitive and motor functions: A systematic review. Toxicology 2021; 463:152980. [PMID: 34624397 DOI: 10.1016/j.tox.2021.152980] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 01/15/2023]
Abstract
Phthalates are chemicals widely used in packaging and consumer products, which have been shown to interfere with normal hormonal function and development in some human and animal studies. In recent decades, pregnant women's exposure to phthalates has been shown to alter the cognitive outcomes of their babies, and some studies have found delays in motor development. METHODS electronic databases including PubMed/MEDLINE and Scopus were searched from their inception to March 2021, using the keywords "phthalate", "cognitive" and "motor". RESULTS most studies find statistically significant inverse relationships between maternal urinary phthalate concentration during pregnancy and subsequent outcomes in children's cognitive and motor scales, especially in boys rather than girls. However, many associations are not significant, and there were even positive associations, especially in the third trimester. CONCLUSION the relationship between exposure to phthalates during pregnancy and low results on neurocognitive scales is sufficiently clear to adopt policies to reduce exposure. Further studies are needed to analyze sex differences, coordination and motor scales, and phthalate levels during breastfeeding.
Collapse
Affiliation(s)
- María Isabel Martínez-Martínez
- Department of Nursing, University of Valencia, Valencia, Spain; Frailty and Cognitive Impairment Group (FROG), University of Valencia, Valencia, Spain
| | - Antoni Alegre-Martínez
- Department of Biomedical Sciences, CEU Cardinal Herrera University. Avenida Seminario, s/n, 46113 Montcada, Valencia, Spain
| | - Omar Cauli
- Department of Nursing, University of Valencia, Valencia, Spain; Frailty and Cognitive Impairment Group (FROG), University of Valencia, Valencia, Spain.
| |
Collapse
|
45
|
Fang X, Qu J, Huan S, Sun X, Li J, Liu Q, Jin S, Xia W, Xu S, Wu Y, Li J, Zheng T, Li Y. Associations of urine metals and metal mixtures during pregnancy with cord serum vitamin D Levels: A prospective cohort study with repeated measurements of maternal urinary metal concentrations. ENVIRONMENT INTERNATIONAL 2021; 155:106660. [PMID: 34052726 DOI: 10.1016/j.envint.2021.106660] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/16/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Vitamin D deficiency has been associated with the increased risk of many diseases, especially during early life. Exposure to some toxic metals may decrease vitamin D levels in adults and children in previous studies. However, less is known about the associations of maternal metals exposure during pregnancy with newborns' vitamin D status. OBJECTIVE We conducted a prospective cohort study to investigate the relationships between urine metals and metal mixtures during pregnancy and newborns' vitamin D status. METHODS Urine samples of 598 pregnant women were collected in each trimester and cord blood samples of newborns were collected at delivery. The concentrations of 20 metals in urine and 25-hydroxyvitamin D [25(OH)D] in cord serum were quantified. Generalized linear models were used to estimate the associations between individual metals and cord serum total 25(OH)D. We applied Bayesian Kernel Machine Regression (BKMR) to evaluate the mixture and interaction effects of urine metals. RESULTS In individual metals analyses, we reported that a double increase in urine vanadium (V), cobalt (Co), and thallium (Tl) throughout pregnancy was associated with a 9.91% [95% confidence interval (CI): -18.58%, -0.30%], 11.42% (95% CI: -17.73%, -4.63%), and 12.64% (95% CI: -21.44%, -2.86%) decrease in cord serum total 25(OH)D, respectively. Exposures to the three metals during the whole pregnancy were also correlated to increased odds for newborns' vitamin D deficiency (<20 ng/mL) [odds ratio (95% CI): 1.80 (1.05, 3.10) for V, 1.88 (1.25, 2.82) for Co, and 1.90 (1.07, 3.38) for Tl]. BKMR analyses revealed a negative influence of metal mixtures (V+Co+Tl) on neonatal vitamin D status, as well as potential synergism between V and Co and between V and Tl. CONCLUSIONS Our study provides evidence of negative impacts of maternal exposure to V, Co, and Tl during pregnancy on cord serum vitamin D levels at delivery. Potential synergism between V and Co and between V and Tl existed in their associations with cord serum total 25(OH)D.
Collapse
Affiliation(s)
- Xingjie Fang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jingyu Qu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shu Huan
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaojie Sun
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Juxiao Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qi Liu
- Department of Maternal and Child Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuna Jin
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Jingguang Li
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Tongzhang Zheng
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI 02912, United States
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
46
|
Wu W, Cao L, Zheng TT, Feng SY, Ma GW, He YY, Wu P. Prenatal phthalate exposure reduction through an integrated intervention strategy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:57183-57191. [PMID: 34085200 DOI: 10.1007/s11356-021-14613-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Pregnancy represents a sensitive susceptibility window to phthalate esters (PAEs). In this study, we develop an intervention strategy for reducing the exposure of pregnant women to phthalates. Thirty-five pregnant women, who initially underwent maternity examination, were recruited from an ongoing longitudinal prospective prenatal cohort study. The intervention strategy integrates diet, lifestyle, and environmental factors. Participants were encouraged to modify their behaviors and habits according to the intervention strategy at three different periods. Urine samples were collected from the participants after antenatal examination every month, for 8 months, to measure ten PAE metabolites. Mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), mono-n-butyl phthalate (MnBP), and mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP) declined significantly after the 1st intervention, while mono-isobutyl phthalate (MiBP) and mono-methyl phthalate (MMP) noticeably decreased after the 2nd intervention. The sum of the molar concentrations of MEHP, MEHHP, MEOHP, and MECPP reduced by 20 to 40% during subsequent intervention. In addition, the sum of the molar concentrations of MEP, MnBP, MMP, and MiBP as well as the sum of the molar concentrations of the ten metabolites also reduced. Our findings suggest that intervention through written recommendations can effectively reduce the burden of phthalates during pregnancy.
Collapse
Affiliation(s)
- Wei Wu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, China.
| | - Liu Cao
- Ezhou Maternal And Child Health Hospital, Ezhou, 436000, China
| | - Ting-Ting Zheng
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, China
| | - Shu-Yu Feng
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, China
| | - Guan-Wei Ma
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, China
| | - Ying-Ying He
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, China
| | - Ping Wu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, China.
| |
Collapse
|
47
|
Cauli O. Oxidative Stress and Cognitive Alterations Induced by Cancer Chemotherapy Drugs: A Scoping Review. Antioxidants (Basel) 2021; 10:1116. [PMID: 34356349 PMCID: PMC8301189 DOI: 10.3390/antiox10071116] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/01/2021] [Accepted: 07/08/2021] [Indexed: 02/06/2023] Open
Abstract
Cognitive impairment is one of the most deleterious effects of chemotherapy treatment in cancer patients, and this problem sometimes remains even after chemotherapy ends. Common classes of chemotherapy-based regimens such as anthracyclines, taxanes, and platinum derivatives can induce both oxidative stress in the blood and in the brain, and these effects can be reproduced in neuronal and glia cell cultures. In rodent models, both the acute and repeated administration of doxorubicin or adriamycin (anthracyclines) or cisplatin impairs cognitive functions, as shown by their diminished performance in different learning and memory behavioural tasks. Administration of compounds with strong antioxidant effects such as N-acetylcysteine, gamma-glutamyl cysteine ethyl ester, polydatin, caffeic acid phenethyl ester, and 2-mercaptoethane sulfonate sodium (MESNA) counteract both oxidative stress and cognitive alterations induced by chemotherapeutic drugs. These antioxidant molecules provide the scientific basis to design clinical trials in patients with the aim of reducing the oxidative stress and cognitive alterations, among other probable central nervous system changes, elicited by chemotherapy in cancer patients. In particular, N-acetylcysteine and MESNA are currently used in clinical settings and are therefore attracting scientific attention.
Collapse
Affiliation(s)
- Omar Cauli
- Frailty and Cognitive Impairment Group (FROG), University of Valencia, 46010 Valencia, Spain; ; Tel.: +34-96-386-41-82; Fax: +34-96-398-30-35
- Department of Nursing, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
48
|
Savoca D, Arculeo M, Vecchioni L, Cambera I, Visconti G, Melfi R, Arizza V, Palumbo Piccionello A, Buscemi S, Pace A. Can phthalates move into the eggs of the loggerhead sea turtle Caretta caretta? The case of the nests on the Linosa Island in the Mediterranean Sea. MARINE POLLUTION BULLETIN 2021; 168:112395. [PMID: 33991990 DOI: 10.1016/j.marpolbul.2021.112395] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
During the monitoring of Caretta caretta nests on the island of Linosa, 30 unhatched eggs from four nests were collected to study the presence of phthalates in their three components (shell, yolk, and albumen). Four phthalates, namely diethyl (DEP), dibutyl (DBP), di-(2-ethylhexyl) (DEHP), and dioctyl (DOTP) phthalic acid esters (PAE), which are widely used as additives in plastics, were detected in all egg components. The most frequently found phthalate was DBP, followed by DEHP in eggshell and yolk. Dimethyl- (DMP) and butylbenzyl-phthalate (BBP) were below the limits of detection for all samples. The high total phthalate recorded in the yolk suggests that contamination could arise by vitellogenesis. PERMANOVA analysis (p = 0.01) confirmed significant differences in the PAEs contamination profiles in the eggs from the four nests. This study confirms the negative impact of plastic related compounds posing questions about the potential adverse effects on organisms and their conservation status.
Collapse
Affiliation(s)
- Dario Savoca
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90100 Palermo, Italy
| | - Marco Arculeo
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90100 Palermo, Italy
| | - Luca Vecchioni
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90100 Palermo, Italy
| | - Irene Cambera
- Marine Protected Area 'Isole Pelagie', Via Cameroni, Lampedusa AG 92031, Italy
| | - Giulia Visconti
- Marine Protected Area 'Isole Pelagie', Via Cameroni, Lampedusa AG 92031, Italy
| | - Raffaella Melfi
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90100 Palermo, Italy
| | - Vincenzo Arizza
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90100 Palermo, Italy
| | - Antonio Palumbo Piccionello
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90100 Palermo, Italy
| | - Silvestre Buscemi
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90100 Palermo, Italy
| | - Andrea Pace
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90100 Palermo, Italy.
| |
Collapse
|
49
|
Lucarini F, Blanchard M, Krasniqi T, Duda N, Bailat Rosset G, Ceschi A, Roth N, Hopf NB, Broillet MC, Staedler D. Concentrations of Seven Phthalate Monoesters in Infants and Toddlers Quantified in Urine Extracted from Diapers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:6806. [PMID: 34202865 PMCID: PMC8297146 DOI: 10.3390/ijerph18136806] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/13/2021] [Accepted: 06/23/2021] [Indexed: 12/03/2022]
Abstract
Carrying out exposure studies on children who are not toilet trained is challenging because of the difficulty of urine sampling. In this study, we optimized a protocol for urine collection from disposable diapers for the analysis of phthalate metabolites. The exposure of Swiss children (n = 113) between 6 months and 3 years of life to seven phthalates was assessed by gas chromatography-mass spectrometry measurements. The study showed limited exposures to phthalates, with only 22% of the samples containing some of the metabolites investigated. The three most frequently detected metabolites were monoethyl phthalate, mono-cyclohexyl phthalate, and mono-benzyl phthalate. We also detected mono-n-octyl phthalate and mono(3,5,5-trimethylhexyl) phthalate, which have rarely been observed in urine from infants and toddlers; therefore, di-n-octyl phthalate and bis(3,5,5-trimethylhexyl) phthalate can be considered as potentially new emerging phthalates. This study presents an initial snapshot of the Swiss children's exposure to phthalates and provides a promising approach for further phthalate biomonitoring studies on young children using disposable diapers as urine sampling technique.
Collapse
Affiliation(s)
- Fiorella Lucarini
- Department of Biomedical Sciences, University of Lausanne, 1011 Lausanne, Switzerland; (F.L.); (M.B.); (T.K.); (N.D.); (M.-C.B.)
| | - Marc Blanchard
- Department of Biomedical Sciences, University of Lausanne, 1011 Lausanne, Switzerland; (F.L.); (M.B.); (T.K.); (N.D.); (M.-C.B.)
| | - Tropoja Krasniqi
- Department of Biomedical Sciences, University of Lausanne, 1011 Lausanne, Switzerland; (F.L.); (M.B.); (T.K.); (N.D.); (M.-C.B.)
| | - Nicolas Duda
- Department of Biomedical Sciences, University of Lausanne, 1011 Lausanne, Switzerland; (F.L.); (M.B.); (T.K.); (N.D.); (M.-C.B.)
| | | | - Alessandro Ceschi
- Division of Clinical Pharmacology and Toxicology, Institute of Pharmacological Sciences of Southern Switzerland, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland;
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Nicolas Roth
- Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, 4055 Basel, Switzerland; (N.R.); (N.B.H.)
| | - Nancy B. Hopf
- Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, 4055 Basel, Switzerland; (N.R.); (N.B.H.)
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, 1007 Lausanne, Switzerland
| | - Marie-Christine Broillet
- Department of Biomedical Sciences, University of Lausanne, 1011 Lausanne, Switzerland; (F.L.); (M.B.); (T.K.); (N.D.); (M.-C.B.)
| | - Davide Staedler
- Department of Biomedical Sciences, University of Lausanne, 1011 Lausanne, Switzerland; (F.L.); (M.B.); (T.K.); (N.D.); (M.-C.B.)
- Scitec Research SA, Av. De Provence 18, 1007 Lausanne, Switzerland;
| |
Collapse
|
50
|
Loftus CT, Bush NR, Day DB, Ni Y, Tylavsky FA, Karr CJ, Kannan K, Barrett ES, Szpiro AA, Sathyanarayana S, LeWinn KZ. Exposure to prenatal phthalate mixtures and neurodevelopment in the Conditions Affecting Neurocognitive Development and Learning in Early childhood (CANDLE) study. ENVIRONMENT INTERNATIONAL 2021; 150:106409. [PMID: 33556913 PMCID: PMC8162924 DOI: 10.1016/j.envint.2021.106409] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 05/22/2023]
Abstract
BACKGROUND Findings from epidemiological studies of prenatal phthalate exposure and child cognitive development are inconsistent. Methods for evaluating mixtures of phthalates, such as weighted quantile sum (WQS) regression, have rarely been applied. We developed a new extension of the WQS method to improve specificity of full-sample analyses and applied it to estimate associations between prenatal phthalate mixtures and cognitive and language outcomes in a diverse pregnancy cohort. METHODS We measured 22 phthalate metabolites in third trimester urine from mother-child dyads who completed early childhood visits in the Conditions Affecting Neurodevelopment and Learning in Early childhood (CANDLE) study. Language and cognitive ability were assessed using the Bayley Scales of Infant Development (age 3) and the Stanford Binet-5 (age 4-6), respectively. We used multivariable WQS regression to identify phthalate mixtures that were negatively and positively associated with language score and full-scale IQ, in separate models, adjusted for maternal IQ, race, marital status, smoking, BMI, socioeconomic status (SES), child age, sex, and breastfeeding. We evaluated effect modification by sex and SES. If full sample 95% WQS confidence intervals (which are known to be anti-conservative) excluded the null, we calculated a p-value using a permutation test (ppermutation). The performance of this new approach to WQS regression was evaluated in simulated data. We compared the power and type I error rate of WQS regression conducted within datasets split into training and validation samples (WQSSplit) and in the full sample (WQSNosplit) to WQS regression with a permutation test (WQSpermutation). Individual metabolite associations were explored in secondary analyses. RESULTS The analytic sample (N = 1015) was 62.1% Black/31.5% White, and the majority of mothers had a high school education or less (56.7%) at enrollment. Associations between phthalate mixtures and primary outcomes (language score and full-scale IQ) in the full sample were null. Individual metabolites were not associated with IQ, and only one metabolite (mono-benzyl phthalate, MBzP) was associated with Bayley language score (β = -0.68, 95% CI: -1.37, 0.00). In analyses stratified by sex or SES, mixtures were positively and negatively associated with outcomes, but the precision of full-sample WQS regression results were not supported by permutation tests, with one exception. In the lowest SES category, a phthalate mixture dominated by mono-methyl phthalate (MMP) and mono-carboxy-isooctyl phthalate (MCOP) was associated with higher language scores (βlow SES = 2.41, full-sample 95%CI: 0.58, 4.24; ppermutation = 0.04). Performance testing in simulated data showed that WQSpermutation had improved power over WQSSplit (90% versus 56%) and a lower type I error rate than WQSNosplit (7% versus 47%). CONCLUSIONS In the largest study of these relationships to date, we observed predominantly null associations between mixtures of prenatal phthalates and both language and IQ. Our novel extension of WQS regression improved sensitivity to detect true associations by obviating the need to split the data into training and test sets and should be considered for future analyses of exposure mixtures.
Collapse
Affiliation(s)
- Christine T Loftus
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, United States.
| | - Nicole R Bush
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, San Francisco, United States; Department of Pediatrics, School of Medicine, University of California, San Francisco, United States
| | - Drew B Day
- Center for Child Health, Behavior, and Development, Seattle Children's Research Institute, United States
| | - Yu Ni
- Department of Epidemiology, School of Public Health, University of Washington, United States
| | | | - Catherine J Karr
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, United States; Department of Epidemiology, School of Public Health, University of Washington, United States; Department of Pediatrics, School of Medicine, University of Washington, United States
| | - Kurunthachalam Kannan
- Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, United States
| | - Emily S Barrett
- Department of Biostatistics and Epidemiology, Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, United States
| | - Adam A Szpiro
- Department of Biostatistics, School of Public Health, University of Washington, United States
| | - Sheela Sathyanarayana
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, United States; Center for Child Health, Behavior, and Development, Seattle Children's Research Institute, United States; Department of Pediatrics, School of Medicine, University of Washington, United States
| | - Kaja Z LeWinn
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, San Francisco, United States
| |
Collapse
|