1
|
Wang R, Lu P, Chen F, Huang Y, Ding H, Cheng T. Groundwater resistant gene accumulation in mining-agriculture complex zones: Insights from metagenomic analysis of subterranean mineral and terrestrial agricultural interactions. ENVIRONMENTAL RESEARCH 2024; 263:120138. [PMID: 39393455 DOI: 10.1016/j.envres.2024.120138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
During the Mining-Agriculture Complex Areas, the mining and agriculture activities could lead to an excessive presence of sulfate content in the regional groundwater. Sulfate exhibits the potential to influence the positive accumulation of RGs, although its mechanisms remain inadequately explored. To address this gap, this study analyzed the RGs buildup mechanisms in the groundwater of the mining-agriculture complex area. Results showed a widespread presence of antibiotic resistance genes (ARGs) and metal resistance genes (MRGs), especially in coal-seams crevice groundwater. And iron and sulfur are primary environmental factors conducive to RGs accumulation through a synergistic interaction. Microbial annotation of gene sets sourced from coal-seams crevice groundwater samples unveiled part of sulfur-metabolizing microorganisms that were hosts of both ARGs and MRGs. Mechanistic insights revealed that iron may stimulates reactive oxygen species (ROS) generation, facilitating RGs accumulation, while adjusting sulfur metabolism and the synthesis of iron-sulfur clusters, thereby augmenting microbial growth which as predominant hosts of RGs, thereby intensifying the buildup of RGs.
Collapse
Affiliation(s)
- Rui Wang
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Ping Lu
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China.
| | - Fangfang Chen
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Yanchang Huang
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Haoran Ding
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Tianhang Cheng
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| |
Collapse
|
2
|
Wang B, Farhan MHR, Yuan L, Sui Y, Chu J, Yang X, Li Y, Huang L, Cheng G. Transfer dynamics of antimicrobial resistance among gram-negative bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176347. [PMID: 39306135 DOI: 10.1016/j.scitotenv.2024.176347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/09/2024] [Accepted: 09/15/2024] [Indexed: 09/26/2024]
Abstract
Antimicrobial resistance (AMR) in gram-negative bacteria (GNBs) is a significant global health concern, exacerbated by mobile genetic elements (MGEs). This review examines the transfer of antibiotic resistance genes (ARGs) within and between different species of GNB facilitated by MGEs, focusing on the roles of plasmids and phages. The impact of non-antibiotic chemicals, environmental factors affecting ARG transfer frequency, and underlying molecular mechanisms of bacterial resistance evolution are also discussed. Additionally, the study critically assesses the impact of fitness costs and compensatory evolution driven by MGEs in host organisms, shedding light on the transfer frequency of ARGs and host evolution within ecosystems. Overall, this comprehensive review highlights the factors and mechanisms influencing ARG movement among diverse GNB species and underscores the importance of implementing holistic One-Health strategies to effectively address the escalating public health challenges associated with AMR.
Collapse
Affiliation(s)
- Bangjuan Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Muhammad Haris Raza Farhan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Linlin Yuan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yuxin Sui
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jinhua Chu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiaohan Yang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yuxin Li
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lingli Huang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Guyue Cheng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
3
|
Zhang H, Xu L, Hou X, Li Y, Niu L, Zhang J, Wang X. Ketoprofen promotes the conjugative transfer of antibiotic resistance among antibiotic resistant bacteria in natural aqueous environments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124676. [PMID: 39103039 DOI: 10.1016/j.envpol.2024.124676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 08/07/2024]
Abstract
The emergence and spread of antibiotic resistance in the environment pose a serious threat to global public health. It is acknowledged that non-antibiotic stresses, including disinfectants, pharmaceuticals and organic pollutants, play a crucial role in horizontal transmission of antibiotic resistance genes (ARGs). Despite the widespread presence of non-steroidal anti-inflammatory drugs (NSAIDs), notably in surface water, their contributions to the transfer of ARGs have not been systematically explored. Furthermore, previous studies have primarily concentrated on model strains to investigate whether contaminants promote the conjugative transfer of ARGs, leaving the mechanisms of ARG transmission among antibiotic resistant bacteria in natural aqueous environments under the selective pressures of non-antibiotic contaminants remains unclear. In this study, the Escherichia coli (E. coli) K12 carrying RP4 plasmid was used as the donor strain, indigenous strain Aeromonas veronii containing rifampicin resistance genes in Taihu Lake, and E. coli HB101 were used as receptor strains to establish inter-genus and intra-genus conjugative transfer systems, examining the conjugative transfer frequency under the stress of ketoprofen. The results indicated that ketoprofen accelerated the environmental spread of ARGs through several mechanisms. Ketoprofen promoted cell-to-cell contact by increasing cell surface hydrophobicity and reducing cell surface charge, thereby mitigating cell-to-cell repulsion. Furthermore, ketoprofen induced increased levels of reactive oxygen species (ROS) production, activated the DNA damage-induced response (SOS), and enhanced cell membrane permeability, facilitating ARG transmission in intra-genus and inter-genus systems. The upregulation of outer membrane proteins, oxidative stress, SOS response, mating pair formation (Mpf) system, and DNA transfer and replication (Dtr) system related genes, as well as the inhibition of global regulatory genes, all contributed to higher transfer efficiency under ketoprofen treatment. These findings served as an early warning for a comprehensive assessment of the roles of NSAIDs in the spread of antibiotic resistance in natural aqueous environments.
Collapse
Affiliation(s)
- Huanjun Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Linyun Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Xing Hou
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China; Institute of Water Science and Technology, Hohai University, Nanjing, 210098, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Jie Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Xixi Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
4
|
Xiong J, Hu S, Xu Z, Li C, Li Z, Li S, Ma Y, Ren X, Huang B, Pan X. Different paths, same destination: Bisphenol A and its substitute induce the conjugative transfer of antibiotic resistance genes. CHEMOSPHERE 2024; 368:143625. [PMID: 39510271 DOI: 10.1016/j.chemosphere.2024.143625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/19/2024] [Accepted: 10/23/2024] [Indexed: 11/15/2024]
Abstract
Antibiotic resistance genes are primarily spread through horizontal gene transfer in aquatic environments. Bisphenols, which are widely used in industry, are pervasive contaminants in such environments. This study investigated how environmentally relevant concentrations of bisphenol A and its substitute (bisphenol S, Bisphenol AP and Bisphenol AF) affect the spread of antibiotic resistance genes among Escherichia coli. As a result, bisphenol A and its three substitutes were found to promote the RP4 plasmid-mediated conjugative transfer of antibiotic resistance genes with different promotive efficiency. Particularly, bisphenol A and bisphenol S were found to induce more than double the incidence of conjugation at 0.1 nmol/L concentration. They therefore were selected as model compounds to investigate the involved mechanisms. Surprisingly, both slightly inhibited bacterial activity, but there was no significant increase in cell death. Bisphenols exposure changed the polymeric substances excreted by the bacteria, increased the permeability of their cell membranes, induced the secretion of antioxidant enzymes and generated reactive oxygen species. They also affected the expression of genes related to conjugative transfer by upregulating replication and DNA transfer genes and downregulating global regulatory genes. It should be noted that gene expression levels were higher in the BPS-exposed group than in the BPA-exposed group. The synthesis of bacterial metabolites and functional components was also significantly affected by bisphenols exposure. This research has helped to clarify the potential health risks of bisphenol contamination of aquatic environments.
Collapse
Affiliation(s)
- Jinrui Xiong
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Siyuan Hu
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zhixiang Xu
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Caiqing Li
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zihui Li
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Siyuan Li
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yitao Ma
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xiaomin Ren
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Bin Huang
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xuejun Pan
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
5
|
Wang X, Li J, Pan X. How micro-/nano-plastics influence the horizontal transfer of antibiotic resistance genes - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173881. [PMID: 38871331 DOI: 10.1016/j.scitotenv.2024.173881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/29/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024]
Abstract
Plastic debris such as microplastics (MPs) and nanoplastics (NPTs), along with antibiotic resistance genes (ARGs), are pervasive in the environment and are recognized as significant global health and ecological concerns. Micro-/nano-plastics (MNPs) have been demonstrated to favor the spread of ARGs by enhancing the frequency of horizontal gene transfer (HGT) through various pathways. This paper comprehensively and systematically reviews the current study with focus on the influence of plastics on the HGT of ARGs. The critical role of MNPs in the HGT of ARGs has been well illustrated in sewage sludge, livestock farms, constructed wetlands and landfill leachate. A summary of the performed HGT assay and the underlying mechanism of plastic-mediated transfer of ARGs is presented in the paper. MNPs could facilitate or inhibit HGT of ARGs, and their effects depend on the type, size, and concentration. This review provides a comprehensive insight into the effects of MNPs on the HGT of ARGs, and offers suggestions for further study. Further research should attempt to develop a standard HGT assay and focus on investigating the impact of different plastics, including the oligomers they released, under real environmental conditions on the HGT of ARGs.
Collapse
Affiliation(s)
- Xiaonan Wang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Hangzhou 310015, China; School of Environment Science and Spatial Information, China University of Mining and Technology, Xuzhou 221116, China; Shaoxing Research Institute of Zhejiang University of Technology, Shaoxing 312000, China
| | - Jiahao Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
6
|
Xu R, Huang C, Yang B, Wang S, Zhong T, Ma L, Shang Q, Zhang M, Chu Z, Liu X. Influence of Two-Dimensional Black Phosphorus on the Horizontal Transfer of Plasmid-Mediated Antibiotic Resistance Genes: Promotion or Inhibition? Curr Microbiol 2024; 81:344. [PMID: 39235595 DOI: 10.1007/s00284-024-03825-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/26/2024] [Indexed: 09/06/2024]
Abstract
The problem of bacterial resistance caused by antibiotic abuse is seriously detrimental to global human health and ecosystem security. The two-dimensional nanomaterial (2D) such as black phosphorus (BP) is recently expected to become a new bacterial inhibitor and has been widely used in the antibacterial field due to its specific physicochemical properties. Nevertheless, the effects of 2D-BP on the propagation of antibiotic resistance genes (ARGs) in environments and the relevant mechanisms are not clear. Herein, we observed that the sub-inhibitory concentrations of 2D-BP dramatically increased the conjugative transfer of ARGs mediated by the RP4 plasmid up to 2.6-fold at the 125 mg/L exposure level compared with the untreated bacterial cells. Nevertheless, 2D-BP with the inhibitory concentration caused a dramatic decrease in the conjugative frequency. The phenotypic changes revealed that the increase of the conjugative transfer caused by 2D-BP exposure were attributed to the excessive reactive oxygen species and oxidative stress, and increased bacterial cell membrane permeability. The genotypic evidence demonstrated that 2D-BP affecting the horizontal gene transfer of ARGs was probably through the upregulation of mating pair formation genes (trbBp and traF) and DNA transfer and replication genes (trfAp and traJ), as well as the downregulation of global regulatory gene expression (korA, korB, and trbA). In summary, the changes in the functional and regulatory genes in the conjugative transfer contributed to the stimulation of conjugative transfer. This research aims to broaden our comprehension of how nanomaterials influence the dissemination of ARGs by elucidating their effects and mechanisms.
Collapse
Affiliation(s)
- Rongrong Xu
- School of Biology, Food, and Environment, Hefei University, No. 99 Jinxiu Road, Hefei, 230601, China
- International (Sino-German) Joint Research Center for Biomass of Anhui Province, Hefei, 230601, China
| | - Chuang Huang
- School of Biology, Food, and Environment, Hefei University, No. 99 Jinxiu Road, Hefei, 230601, China
- International (Sino-German) Joint Research Center for Biomass of Anhui Province, Hefei, 230601, China
| | - Bo Yang
- School of Biology, Food, and Environment, Hefei University, No. 99 Jinxiu Road, Hefei, 230601, China
- International (Sino-German) Joint Research Center for Biomass of Anhui Province, Hefei, 230601, China
| | - Shengli Wang
- School of Biology, Food, and Environment, Hefei University, No. 99 Jinxiu Road, Hefei, 230601, China
- International (Sino-German) Joint Research Center for Biomass of Anhui Province, Hefei, 230601, China
| | - Tianyang Zhong
- School of Biology, Food, and Environment, Hefei University, No. 99 Jinxiu Road, Hefei, 230601, China
- International (Sino-German) Joint Research Center for Biomass of Anhui Province, Hefei, 230601, China
| | - Lulu Ma
- School of Biology, Food, and Environment, Hefei University, No. 99 Jinxiu Road, Hefei, 230601, China
- International (Sino-German) Joint Research Center for Biomass of Anhui Province, Hefei, 230601, China
| | - Qiannan Shang
- School of Biology, Food, and Environment, Hefei University, No. 99 Jinxiu Road, Hefei, 230601, China
- International (Sino-German) Joint Research Center for Biomass of Anhui Province, Hefei, 230601, China
| | - Mengyao Zhang
- School of Biology, Food, and Environment, Hefei University, No. 99 Jinxiu Road, Hefei, 230601, China
- International (Sino-German) Joint Research Center for Biomass of Anhui Province, Hefei, 230601, China
| | - Zhuding Chu
- School of Biology, Food, and Environment, Hefei University, No. 99 Jinxiu Road, Hefei, 230601, China
- International (Sino-German) Joint Research Center for Biomass of Anhui Province, Hefei, 230601, China
| | - Xiaowei Liu
- School of Biology, Food, and Environment, Hefei University, No. 99 Jinxiu Road, Hefei, 230601, China.
- International (Sino-German) Joint Research Center for Biomass of Anhui Province, Hefei, 230601, China.
| |
Collapse
|
7
|
Zheng H, Zhu Z, Li S, Niu J, Dong X, Leong YK, Chang JS. Dissecting the ecological risks of sulfadiazine degradation intermediates under different advanced oxidation systems: From toxicity to the fate of antibiotic resistance genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 941:173678. [PMID: 38848919 DOI: 10.1016/j.scitotenv.2024.173678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/20/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024]
Abstract
The incomplete degradation of antibiotics in water can produce intermediates that carry environmental risks and thus warrant concerns. In this study, the degradation of high concentrations of antibiotic sulfadiazine (SDZ) by advanced oxidation processes that leverage different reactive oxide species was systematically evaluated in terms of the influence of different degradation intermediates on the propagation of antibiotic resistance genes (ARGs). The ozone, persulfate, and photocatalytic oxidation systems for SDZ degradation are dominated by ozone, direct electron transfer, and singlet oxygen, hole, and superoxide radicals, respectively. These processes produce 15 intermediates via six degradation pathways. Notably, it was determined that three specific intermediates produced by the ozone and persulfate systems were more toxic than SDZ. In contrast, the photocatalytic system did not produce any intermediates with toxicity exceeding that of SDZ. Microcosm experiments combined with metagenomics confirmed significant changes in microbiota community structure after treatment with SDZ and its intermediates, including significant changes in the abundance of Flavobacterium, Dungenella, Archangium, and Comamonas. This treatment also led to the emergence of sulfonamide ARGs. The total abundance of sulfonamide ARGs was found to be positively correlated with residual SDZ concentration, with the lowest total abundance observed in the photocatalytic system. Additionally, the correlation analysis unveiled microbiota carrying sulfonamide ARGs.
Collapse
Affiliation(s)
- Heshan Zheng
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Zhiwei Zhu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Shuo Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China.
| | - Junfeng Niu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Xu Dong
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Yoong Kit Leong
- Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng-Kung University, Tainan, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li 32003, Taiwan.
| |
Collapse
|
8
|
Zhou H, Lu Z, Liu X, Bie X, Xue F, Tang S, Feng Q, Cheng Y, Yang J. Environmentally Relevant Concentrations of Tetracycline Promote Horizontal Transfer of Antimicrobial Resistance Genes via Plasmid-Mediated Conjugation. Foods 2024; 13:1787. [PMID: 38891015 PMCID: PMC11171790 DOI: 10.3390/foods13111787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
The ubiquitous presence of antimicrobial-resistant organisms and antimicrobial resistance genes (ARGs) constitutes a major threat to global public safety. Tetracycline (TET) is a common antimicrobial agent that inhibits bacterial growth and is frequently detected in aquatic environments. Although TET may display coselection for resistance, limited knowledge is available on whether and how it might influence plasmid-mediated conjugation. Subinhibitory concentrations (3.9-250 ng/mL) of TET promoted horizontal gene transfer (HGT) via the mobilizable plasmid pVP52-1 from the donor Vibrio parahaemolyticus NJIFDCVp52 to the recipient Escherichia coli EC600 by 1.47- to 3.19-fold. The transcription levels of tetracycline resistance genes [tetA, tetR(A)], conjugation-related genes (traA, traD), outer membrane protein genes (ompA, ompK, ompV), reactive oxygen species (ROS)-related genes (oxyR, rpoS), autoinducer-2 (AI-2) synthesis gene (luxS), and SOS-related genes (lexA, recA) in the donor and recipient were significantly increased. Furthermore, the overproduced intracellular ROS generation and increased cell membrane permeability under TET exposure stimulated the conjugative transfer of ARGs. Overall, this study provides important insights into the contributions of TET to the spread of antimicrobial resistance.
Collapse
Affiliation(s)
- Haibo Zhou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Z.)
- Key Laboratory of Detection and Traceability Technology of Foodborne Pathogenic Bacteria for Jiangsu Province Market Regulation, Nanjing Institute for Food and Drug Control, Nanjing 211198, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Z.)
| | - Xinmei Liu
- Key Laboratory of Detection and Traceability Technology of Foodborne Pathogenic Bacteria for Jiangsu Province Market Regulation, Nanjing Institute for Food and Drug Control, Nanjing 211198, China
| | - Xiaomei Bie
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Z.)
| | - Feng Xue
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, China
| | - Sijie Tang
- Key Laboratory of Detection and Traceability Technology of Foodborne Pathogenic Bacteria for Jiangsu Province Market Regulation, Nanjing Institute for Food and Drug Control, Nanjing 211198, China
| | - Qiushi Feng
- Key Laboratory of Detection and Traceability Technology of Foodborne Pathogenic Bacteria for Jiangsu Province Market Regulation, Nanjing Institute for Food and Drug Control, Nanjing 211198, China
| | - Yiyu Cheng
- Key Laboratory of Detection and Traceability Technology of Foodborne Pathogenic Bacteria for Jiangsu Province Market Regulation, Nanjing Institute for Food and Drug Control, Nanjing 211198, China
| | - Jun Yang
- Key Laboratory of Detection and Traceability Technology of Foodborne Pathogenic Bacteria for Jiangsu Province Market Regulation, Nanjing Institute for Food and Drug Control, Nanjing 211198, China
| |
Collapse
|
9
|
Cao J, Xue B, Yang S, Yang X, Zhang X, Qiu Z, Shen Z, Wang J. Chlorite and bromate alter the conjugative transfer of antibiotic resistance genes: Co-regulation of oxidative stress and energy supply. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134257. [PMID: 38636236 DOI: 10.1016/j.jhazmat.2024.134257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024]
Abstract
The widespread use of disinfectants during the global response to the 2019 coronavirus pandemic has increased the co-occurrence of disinfection byproducts (DBPs) and antibiotic resistance genes (ARGs). Although DBPs pose major threats to public health globally, there is limited knowledge regarding their biological effects on ARGs. This study aimed to investigate the effects of two inorganic DBPs (chlorite and bromate) on the conjugative transfer of RP4 plasmid among Escherichia coli strains at environmentally relevant concentrations. Interestingly, the frequency of conjugative transfer was initially inhibited when the exposure time to chlorite or bromate was less than 24 h. However, this inhibition transformed into promotion when the exposure time was extended to 36 h. Short exposures to chlorite or bromate were shown to impede the electron transport chain, resulting in an ATP shortage and subsequently inhibiting conjugative transfer. Consequently, this stimulates the overproduction of reactive oxygen species (ROS) and activation of the SOS response. Upon prolonged exposure, the resurgent energy supply promoted conjugative transfer. These findings offer novel and valuable insights into the effects of environmentally relevant concentrations of inorganic DBPs on the conjugative transfer of ARGs, thereby providing a theoretical basis for the management of DBPs.
Collapse
Affiliation(s)
- Jinrui Cao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Bin Xue
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin 300050, China
| | - Shuran Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Xiaobo Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin 300050, China
| | - Xi Zhang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin 300050, China
| | - Zhigang Qiu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin 300050, China
| | - Zhiqiang Shen
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin 300050, China.
| | - Jingfeng Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin 300050, China.
| |
Collapse
|
10
|
Peng X, Zhou J, Lan Z, Tan R, Chen T, Shi D, Li H, Yang Z, Zhou S, Jin M, Li JW, Yang D. Carbonaceous particulate matter promotes the horizontal transfer of antibiotic resistance genes. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:915-927. [PMID: 38618896 DOI: 10.1039/d3em00547j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
There is growing concern about the transfer of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in airborne particulate matter. In this study, we investigated the effects of various types of carbonaceous particulate matter (CPM) on the transfer of ARGs in vitro. The results showed that CPM promoted the transfer of ARGs, which was related to the concentration and particle size. Compared with the control group, the transfer frequency was 95.5, 74.7, 65.4, 14.7, and 3.8 times higher in G (graphene), CB (carbon black), NGP (nanographite powder), GP1.6 (graphite powder 1.6 micron), and GP45 (graphite powder 45 micron) groups, respectively. Moreover, the transfer frequency gradually increased with the increase in CPM concentration, while there was a negative relationship between the CPM particle size and conjugative transfer frequency. In addition, the results showed that CPM could promote the transfer of ARGs by increasing ROS, as well as activating the SOS response and expression of conjugative transfer-related genes (trbBp, trfAp, korA, kroB, and trbA). These findings are indicative of the potential risk of CPM for the transfer of ARGs in the environment, enriching our understanding of environmental pollution and further raising awareness of environmental protection.
Collapse
Affiliation(s)
- Xuexia Peng
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No. 1 Dali Road, Tianjin 300050, P. R. China.
| | - Jiake Zhou
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No. 1 Dali Road, Tianjin 300050, P. R. China.
| | - Zishu Lan
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No. 1 Dali Road, Tianjin 300050, P. R. China.
| | - Rong Tan
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No. 1 Dali Road, Tianjin 300050, P. R. China.
| | - Tianjiao Chen
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No. 1 Dali Road, Tianjin 300050, P. R. China.
| | - Danyang Shi
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No. 1 Dali Road, Tianjin 300050, P. R. China.
| | - Haibei Li
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No. 1 Dali Road, Tianjin 300050, P. R. China.
| | - Zhongwei Yang
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No. 1 Dali Road, Tianjin 300050, P. R. China.
| | - Shuqing Zhou
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No. 1 Dali Road, Tianjin 300050, P. R. China.
| | - Min Jin
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No. 1 Dali Road, Tianjin 300050, P. R. China.
| | - Jun-Wen Li
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No. 1 Dali Road, Tianjin 300050, P. R. China.
| | - Dong Yang
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No. 1 Dali Road, Tianjin 300050, P. R. China.
| |
Collapse
|
11
|
Yang S, Cao J, Zhao C, Zhang X, Li C, Wang S, Yang X, Qiu Z, Li C, Wang J, Xue B, Shen Z. Cylindrospermopsin enhances the conjugative transfer of plasmid-mediated multi-antibiotic resistance genes through glutathione biosynthesis inhibition. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116288. [PMID: 38581909 DOI: 10.1016/j.ecoenv.2024.116288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/29/2024] [Accepted: 03/31/2024] [Indexed: 04/08/2024]
Abstract
Cylindrospermopsin (CYN), a cyanobacterial toxin, has been detected in the global water environment. However, information concerning the potential environmental risk of CYN is limited, since the majority of previous studies have mainly focused on the adverse health effects of CYN through contaminated drinking water. The present study reported that CYN at environmentally relevant levels (0.1-100 μg/L) can significantly enhance the conjugative transfer of RP4 plasmid in Escherichia coli genera, wherein application of 10 μg/L of CYN led to maximum fold change of ∼6.5- fold at 16 h of exposure. Meanwhile, evaluation of underlying mechanisms revealed that environmental concentration of CYN exposure could increase oxidative stress in the bacterial cells, resulting in ROS overproduction. In turn, this led to an upregulation of antioxidant enzyme-related genes to avoid ROS attack. Further, inhibition of the synthesis of glutathione (GSH) was also detected, which led to the rapid depletion of GSH in cells and thus triggered the SOS response and promoted the conjugative transfer process. Increase in cell membrane permeability, upregulation of expression of genes related to pilus generation, ATP synthesis, and RP4 gene expression were also observed. These results highlight the potential impact on the spread of antimicrobial resistance in water environments.
Collapse
Affiliation(s)
- Shuran Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Jinrui Cao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin 300050, China
| | - Chen Zhao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin 300050, China
| | - Xi Zhang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Chenyu Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Shang Wang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin 300050, China
| | - Xiaobo Yang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin 300050, China
| | - Zhigang Qiu
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin 300050, China
| | - Chao Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin 300050, China
| | - Jingfeng Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin 300050, China
| | - Bin Xue
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin 300050, China.
| | - Zhiqiang Shen
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| |
Collapse
|
12
|
Xu Z, Hu S, Zhao D, Xiong J, Li C, Ma Y, Li S, Huang B, Pan X. Molybdenum disulfide nanosheets promote the plasmid-mediated conjugative transfer of antibiotic resistance genes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120827. [PMID: 38608575 DOI: 10.1016/j.jenvman.2024.120827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/17/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024]
Abstract
The environmental safety of nanoscale molybdenum disulfide (MoS2) has attracted considerable attention, but its influence on the horizontal migration of antibiotic resistance genes and the ecological risks entailed have not been reported. This study addressed the influence of exposure to MoS2 at different concentrations up to 100 mg/L on the conjugative transfer of antibiotic resistance genes carried by RP4 plasmids with two strains of Escherichia coli. As a result, MoS2 facilitated RP4 plasmid-mediated conjugative transfer in a dose-dependent manner. The conjugation of RP4 plasmids was enhanced as much as 7-fold. The promoting effect is mainly attributable to increased membrane permeability, oxidative stress induced by reactive oxygen species, changes in extracellular polymer secretion and differential expression of the genes involved in horizontal gene transfer. The data highlight the distinct dose dependence of the conjugative transfer of antibiotic resistance genes and the need to improve awareness of the ecological and health risks of nanoscale transition metal dichalcogenides.
Collapse
Affiliation(s)
- Zhixiang Xu
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Siyuan Hu
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Dimeng Zhao
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Jinrui Xiong
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Caiqing Li
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yitao Ma
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Siyuan Li
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Bin Huang
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xuejun Pan
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
13
|
Fang Q, Pan X. A systematic review of antibiotic resistance driven by metal-based nanoparticles: Mechanisms and a call for risk mitigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170080. [PMID: 38220012 DOI: 10.1016/j.scitotenv.2024.170080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
Elevations in antibiotic resistance genes (ARGs) are due not only to the antibiotic burden, but also to numerous environmental pressures (e.g., pesticides, metal ions, or psychotropic pharmaceuticals), which have led to an international public health emergency. Metal-based nanoparticles (MNPs) poison bacteria while propelling nanoresistance at ambient or sub-lethal concentrations, acting as a wide spectrum germicidal agent. Awareness of MNPs driven antibiotic resistance has created a surge of investigation into the molecule mechanisms of evolving and spreading environmental antibiotic resistome. Co-occurrence of MNPs resistance and antibiotic resistance emerge in environmental pathogens and benign microbes may entail a crucial outcome for human health. In this review we expound on the systematic mechanism of ARGs proliferation under the stress of MNPs, including reactive oxygen species (ROS) induced mutation, horizontal gene transfer (HGT) relevant genes regulation, nano-property, quorum sensing, and biofilm formation and highlighting on the momentous contribution of nanoparticle released ion. As antibiotic resistance pattern alteration is closely knit with the mediate activation of nanoparticle in water, soil, manure, or sludge habitats, we have proposed a virulence and evolution based antibiotic resistance risk assessment strategy for MNP contaminated areas and discussed practicable approaches that call for risk management in critical environmental compartments.
Collapse
Affiliation(s)
- Qunkai Fang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiangliang Pan
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
14
|
Wang T, Xu Y, Ling W, Mosa A, Liu S, Lin Z, Wang H, Hu X. Dissemination of antibiotic resistance genes is regulated by iron oxides: Insight into the influence on bacterial transformation. ENVIRONMENT INTERNATIONAL 2024; 185:108499. [PMID: 38368718 DOI: 10.1016/j.envint.2024.108499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/27/2023] [Accepted: 02/11/2024] [Indexed: 02/20/2024]
Abstract
The transportation of antibiotic resistance genes (ARGs) in manure-soil-plant continuums poses risks to human health. Horizontal gene transfer, particularly for bacterial transformation, is an important way for ARG dissemination. As crucial components in soils, iron oxides impacted the fates of various abiotic and biotic contaminants due to their active properties. However, whether they can influence the transformation of ARGs is unknown, which waits to be figured out to boost the assessment and control of ARG spread risks. In this study, we have investigated the effects of goethite, hematite, and magnetite (0-250 mg/L, with sizes < 100 nm and > 100 nm) on the transfer of ampicillin resistance genes to Escherichia coli cells. At lower iron oxide concentrations, the transformation of ARGs was first facilitated (transformation frequency reached up to 3.38-fold higher), but the facilitating effects gradually weakened and eventually disappeared as concentrations further increased. Particle size and iron oxide type were not the universal determinants controlling the transformation. At lower concentrations, iron oxides interacted with proteins and phospholipids in E. coli envelope structures, and induced the overgeneration of intracellular reactive oxygen species. Consequently, they led to pore formation and permeability enhancement on the cell membrane, thus promoting the transformation. The facilitation was also associated with the carrier-like effect of iron oxides for antibiotic resistance plasmids. At higher concentrations, the weakened facilitations were attributed to the aggregation of iron oxides. In this study, we highlight the crucial roles of the concentrations (contents) of iron oxides on the dissemination of ARGs in soils; this study may serve as a reference for ARG pollution control in future agricultural production.
Collapse
Affiliation(s)
- Tingting Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yanxing Xu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ahmed Mosa
- Soils Department, Faculty of Agriculture, Mansoura University, 35516 Mansoura, Egypt
| | - Si Liu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhipeng Lin
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Hefei Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaojie Hu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
15
|
Yan Q, Xu Y, Zhong Z, Xu Y, Lin X, Cao Z, Feng G. Insights into antibiotic resistance-related changes in microbial communities, resistome and mobilome in paddy irrigated with reclaimed wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165672. [PMID: 37478933 DOI: 10.1016/j.scitotenv.2023.165672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
Reclaimed wastewater (reclaimed wastewater, RWW) from municipal wastewater treatment plants for paddy irrigation is a well-established practice to alleviate water scarcity. However, the reuse may result in the persistent exposure of the paddy to residual antibiotics in RWW. Continuous presence of even low-level antibiotics can exert selective pressure on microbiota, resulting in the proliferation and dissemination of antibiotic resistance genes (ARGs) in paddy. In this study, metagenomic analysis was applied to firstly deciphered the effects of residual antibiotics on microbiome and resistome in constructed mesocosm-scale paddy soils. The diversity and abundance of ARG have remarkably risen with the increasing antibiotic concentration in RWW. Network analysis revealed that 28 genera belonging to six phyla were considered as the potential ARG hosts, and their abundances were enhanced with increasing antibiotic concentrations. A partial least-squares path model indicated that the microbial community was the principal direct driver of the ARG abundance and the resistome alteration in paddy soil under long-term RWW irrigation. Microbes may acquire ARGs via horizontal gene transfer. IntI1 could play an essential role in the propagation and spread of ARGs. Functional analysis suggested that enhanced SOS response and T4SSs (Type IV secretion systems) modules could stimulate horizontal transfer potential and promote the ARG abundance. The obtained results provide a scientific decision for assessing the ecological risk of RWW application.
Collapse
Affiliation(s)
- Qing Yan
- China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311400, China.
| | - Yufeng Xu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Zhengzheng Zhong
- China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311400, China
| | - Yuan Xu
- China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311400, China
| | - Xiaoyan Lin
- China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311400, China
| | - Zhaoyun Cao
- China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311400, China
| | - Guozhong Feng
- China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311400, China.
| |
Collapse
|
16
|
Hu X, Xu Y, Liu S, Gudda FO, Ling W, Qin C, Gao Y. Graphene Quantum Dots Nonmonotonically Influence the Horizontal Transfer of Extracellular Antibiotic Resistance Genes via Bacterial Transformation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301177. [PMID: 37144438 DOI: 10.1002/smll.202301177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/10/2023] [Indexed: 05/06/2023]
Abstract
Graphene quantum dots (GQDs) coexist with antibiotic resistance genes (ARGs) in the environment. Whether GQDs influence ARG spread needs investigation, since the resulting development of multidrug-resistant pathogens would threaten human health. This study investigates the effect of GQDs on the horizontal transfer of extracellular ARGs (i.e., transformation, a pivotal way that ARGs spread) mediated by plasmids into competent Escherichia coli cells. GQDs enhance ARG transfer at lower concentrations, which are close to their environmental residual concentrations. However, with further increases in concentration (closer to working concentrations needed for wastewater remediation), the effects of enhancement weaken or even become inhibitory. At lower concentrations, GQDs promote the gene expression related to pore-forming outer membrane proteins and the generation of intracellular reactive oxygen species, thus inducing pore formation and enhancing membrane permeability. GQDs may also act as carriers to transport ARGs into cells. These factors result in enhanced ARG transfer. At higher concentrations, GQD aggregation occurs, and aggregates attach to the cell surface, reducing the effective contact area of recipients for external plasmids. GQDs also form large agglomerates with plasmids and thus hindering ARG entrance. This study could promote the understanding of the GQD-caused ecological risks and benefit their safe application.
Collapse
Affiliation(s)
- Xiaojie Hu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Yanxing Xu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Si Liu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Fredrick Owino Gudda
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Chao Qin
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| |
Collapse
|
17
|
Zhu S, Yang B, Wang Z, Liu Y. Augmented dissemination of antibiotic resistance elicited by non-antibiotic factors. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115124. [PMID: 37327521 DOI: 10.1016/j.ecoenv.2023.115124] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/24/2023] [Accepted: 06/07/2023] [Indexed: 06/18/2023]
Abstract
The emergence and rapid spread of antibiotic resistance seriously compromise the clinical efficacy of current antibiotic therapies, representing a serious public health threat worldwide. Generally, drug-susceptible bacteria can acquire antibiotic resistance through genetic mutation or gene transfer, among which horizontal gene transfer (HGT) plays a dominant role. It is widely acknowledged that the sub-inhibitory concentrations of antibiotics are the key drivers in promoting the transmission of antibiotic resistance. However, accumulating evidence in recent years has shown that in addition to antibiotics, non-antibiotics can also accelerate the horizontal transfer of antibiotic resistance genes (ARGs). Nevertheless, the roles and potential mechanisms of non-antibiotic factors in the transmission of ARGs remain largely underestimated. In this review, we depict the four pathways of HGT and their differences, including conjugation, transformation, transduction and vesiduction. We summarize non-antibiotic factors accounting for the enhanced horizontal transfer of ARGs and their underlying molecular mechanisms. Finally, we discuss the limitations and implications of current studies.
Collapse
Affiliation(s)
- Shuyao Zhu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Bingqing Yang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhiqiang Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Yuan Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
18
|
Liu C, Zhu X, You L, Gin KYH, Chen H, Chen B. Per/polyfluoroalkyl substances modulate plasmid transfer of antibiotic resistance genes: A balance between oxidative stress and energy support. WATER RESEARCH 2023; 240:120086. [PMID: 37257295 DOI: 10.1016/j.watres.2023.120086] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 04/22/2023] [Accepted: 05/15/2023] [Indexed: 06/02/2023]
Abstract
Emerging contaminants can accelerate the transmission of antibiotic resistance genes (ARGs) from environmental bacteria to human pathogens via plasmid conjugation, posing a great challenge to the public health. Although the toxic effects of per/polyfluoroalkyl substances (PFAS) as persistent organic pollutants have been understood, it is still unclear whether and how PFAS modulate the transmission of ARGs. In this study, we for the first time reported that perfluorooctanoic acid (PFOA), perfluorododecanoic acid (PFDoA) and ammonium perfluoro (2-methyl-3-oxahexanoate) (GenX) at relatively low concentrations (0.01, 0.1 mg/L) promoted the conjugative transfer of plasmid RP4 within Escherichia coli, while the plasmid conjugation was inhibited by PFOA, PFDoA and GenX at relatively high concentrations (1, 10 mg/L). The non-unidirectional conjugation result was ascribed to the co-regulation of ROS overproduction, enhanced cell membrane permeability, shortage of energy support as well as l-arginine pool depletion. Taking the well-known PFOA as an example, it significantly enhanced the conjugation frequency by 1.4 and 3.4 times at relatively low concentrations (0.01, 0.1 mg/L), respectively. Exposure to PFOA resulted in enhanced cell membrane permeability and ROS overproduction in donor cells. At high concentrations of PFOA (1, 10 mg/L), although enhanced oxidative stress and cell membrane permeability still occurred, the ATP contents in E. coli decreased, which contributed to the inhibited conjugation. Transcriptome analysis further showed that the expression levels of genes related to arginine biosynthesis (argA, argC, argF, argG, argI) and transport (artJ, artM, artQ) pathways were significantly increased. Intracellular l-arginine concentration deficiency were observed at high concentrations of PFOA. With the supplementary exogenous arginine, it was demonstrated that arginine upregulated conjugation transfer- related genes (trfAp, trbBp) and restores the cell number of transconjugants in PFOA-treated group. Therefore, the inhibited conjugation at high concentrations PFOA were attributed to the shortage of ATP and the depletion of L-arginine pool. These findings provide important insights into the effect environmental concentrations of PFAS on the conjugative transfer of ARGs, and update the regulation mechanism of plasmid conjugation, which is critical for the management of antibiotic resistance in aquatic environments.
Collapse
Affiliation(s)
- Congcong Liu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Xiangyu Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Luhua You
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Karina Yew-Hoong Gin
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore; NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore
| | - Hong Chen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| |
Collapse
|
19
|
Wu J, Zhou JH, Liu DF, Wu J, He RL, Cheng ZH, Li HH, Li WW. Phthalates Promote Dissemination of Antibiotic Resistance Genes: An Overlooked Environmental Risk. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6876-6887. [PMID: 37083356 DOI: 10.1021/acs.est.2c09491] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plastics-microorganism interactions have aroused growing environmental and ecological concerns. However, previous studies concentrated mainly on the direct interactions and paid little attention to the ecotoxicology effects of phthalates (PAEs), a common plastic additive that is continuously released and accumulates in the environment. Here, we provide insights into the impacts of PAEs on the dissemination of antibiotic resistance genes (ARGs) among environmental microorganisms. Dimethyl phthalate (DMP, a model PAE) at environmentally relevant concentrations (2-50 μg/L) significantly boosted the plasmid-mediated conjugation transfer of ARGs among intrageneric, intergeneric, and wastewater microbiota by up to 3.82, 4.96, and 4.77 times, respectively. The experimental and molecular dynamics simulation results unveil a strong interaction between the DMP molecules and phosphatidylcholine bilayer of the cell membrane, which lowers the membrane lipid fluidity and increases the membrane permeability to favor transfer of ARGs. In addition, the increased reactive oxygen species generation and conjugation-associated gene overexpression under DMP stress also contribute to the increased gene transfer. This study provides fundamental knowledge of the PAE-bacteria interactions to broaden our understanding of the environmental and ecological risks of plastics, especially in niches with colonized microbes, and to guide the control of ARG environmental spreading.
Collapse
Affiliation(s)
- Jing Wu
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Jun-Hua Zhou
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Dong-Feng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jie Wu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Ru-Li He
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Zhou-Hua Cheng
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Hui-Hui Li
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Wen-Wei Li
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| |
Collapse
|
20
|
Jin C, Cao J, Zhang K, Zhang X, Cao Z, Zou W. Promotion effects and mechanisms of molybdenum disulfide on the propagation of antibiotic resistance genes in soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114913. [PMID: 37062264 DOI: 10.1016/j.ecoenv.2023.114913] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/28/2023] [Accepted: 04/12/2023] [Indexed: 06/19/2023]
Abstract
The rapid development of nanotechnology has aroused considerable attentions toward understanding the effects of engineered nanomaterials (ENMs) on the propagation of antibiotic resistance. Molybdenum disulfide (MoS2) is an extensively used ENM and poses potential risks associated with environmental exposure; nevertheless, the role of MoS2 toward antibiotic resistance genes (ARGs) transfer remains largely unknown. Herein, it was discovered that MoS2 nanosheets accelerated the horizontal transfer of RP4 plasmid across Escherichia coli in a dose-dependent manner (0.5-10 mg/L), with the maximum transfer frequency 2.07-fold higher than that of the control. Integration of physiological, transcriptomics, and metabolomics analyses demonstrated that SOS response in bacteria was activated by MoS2 due to the elevation of oxidative damage, accompanied by cell membrane permeabilization. MoS2 promoted bacterial adhesion and intercellular contact via stimulating the secretion of extracellular polysaccharides. The ATP levels were maximally increased by 305.7 % upon exposure to MoS2, and the expression of plasmid transfer genes was up-regulated, contributing to the accelerated plasmid conjugation and increased ARG abundance in soil. Our findings highlight the roles of emerging ENMs (e.g., MoS2) in ARGs dissemination, which is significant for the safe applications and risk management of ENMs under the development scenarios of nanotechnology.
Collapse
Affiliation(s)
- Caixia Jin
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Jingxin Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Kai Zhang
- School of Geographic Sciences, Henan Key Laboratory for Synergistic Prevention of Water and Soil Environmental Pollution, Xinyang Normal University, Xinyang 464000, China
| | - Xingli Zhang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Wei Zou
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
21
|
Yan X, Liu W, Wen S, Wang L, Zhu L, Wang J, Kim YM, Wang J. Effect of sulfamethazine on the horizontal transfer of plasmid-mediated antibiotic resistance genes and its mechanism of action. J Environ Sci (China) 2023; 127:399-409. [PMID: 36522071 DOI: 10.1016/j.jes.2022.06.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 06/17/2023]
Abstract
As a new type of environmental pollutant, antibiotic resistance genes (ARGs) pose a huge challenge to global health. Horizontal gene transfer (HGT) represents an important route for the spread of ARGs. The widespread use of sulfamethazine (SM2) as a broad-spectrum bacteriostatic agent leads to high residual levels in the environment, thereby increasing the spread of ARGs. Therefore, we chose to study the effect of SM2 on the HGT of ARGs mediated by plasmid RP4 from Escherichia coli (E. coli) HB101 to E. coli NK5449 as well as its mechanism of action. The results showed that compared with the control group, SM2 at concentrations of 10 mg/L and 200 mg/L promoted the HGT of ARGs, but transfer frequency decreased at concentrations of 100 mg/L and 500 mg/L. The transfer frequency at 200 mg/L was 3.04 × 10-5, which was 1.34-fold of the control group. The mechanism of SM2 improving conjugation transfer is via enhancement of the mRNA expression of conjugation genes (trbBP, trfAP) and oxidative stress genes, inhibition of the mRNA expression of vertical transfer genes, up regulation of the outer membrane protein genes (ompC, ompA), promotion of the formation of cell pores, and improvement of the permeability of cell membrane to promote the conjugation transfer of plasmid RP4. The results of this study provide theoretical support for studying the spread of ARGs in the environment.
Collapse
Affiliation(s)
- Xiaojing Yan
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Wenwen Liu
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Shengfang Wen
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Lanjun Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Lusheng Zhu
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Jun Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Young Mo Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul 04763, Korea
| | - Jinhua Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
22
|
Wang S, Li S, Du D, Abass OK, Nasir MS, Yan W. Stimulants and donors promote megaplasmid pND6-2 horizontal gene transfer in activated sludge. J Environ Sci (China) 2023; 126:742-753. [PMID: 36503799 DOI: 10.1016/j.jes.2022.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 06/17/2023]
Abstract
The activated sludge process is characterized by high microbial density and diversity, both of which facilitate antibiotic resistance gene transfer. Many studies have suggested that antibiotic and non-antibiotic drugs at sub-inhibitory concentrations are major inducers of conjugative gene transfer. The self-transmissible plasmid pND6-2 is one of the endogenous plasmids harbored in Pseudomonas putida ND6, which can trigger the transfer of another co-occurring naphthalene-degrading plasmid pND6-1. Therefore, to illustrate the potential influence of stimulants on conjugative transfer of pND6-2, we evaluated the effects of four antibiotics (ampicillin, gentamycin, kanamycin, and tetracycline) and naphthalene, on the conjugal transfer efficiency of pND6-2 by filter-mating experiment. Our findings demonstrated that all stimulants within an optimal dose promoted conjugative transfer of pND6-2 from Pseudomonas putida GKND6 to P. putida KT2440, with tetracycline being the most effective (100 µg/L and 10 µg/L), as it enhanced pND6-2-mediated intra-genera transfer by approximately one hundred-fold. Subsequently, seven AS reactors were constructed with the addition of donors and different stimulants to further elucidate the conjugative behavior of pND6-2 in natural environment. The stimulants positively affected the conjugal process of pND6-2, while donors reshaped the host abundance in the sludge. This was likely because stimulant addition enhanced the expression levels of conjugation transfer-related genes. Furthermore, Blastocatella and Chitinimonas were identified as the potential receptors of plasmid pND6-2, which was not affected by donor types. These findings demonstrate the positive role of sub-inhibitory stimulant treatment on pND6-2 conjugal transfer and the function of donors in re-shaping the host spectrum of pND6-2.
Collapse
Affiliation(s)
- Shan Wang
- Department of Environmental Science and Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shanshan Li
- Department of Environmental Science and Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Dan Du
- Department of Environmental Science and Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Xi'an Jiaotong University, Xi'an 710049, China
| | - Olusegun K Abass
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Muhammad Salman Nasir
- Department of Environmental Science and Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Xi'an Jiaotong University, Xi'an 710049, China; Department of Structures and Environmental Engineering, University of Agriculture, Faisalabad 38040, Pakistan
| | - Wei Yan
- Department of Environmental Science and Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
23
|
Xu Y, Du H, Wang C, Yue L, Chen F, Wang Z. CeO 2 Nanoparticles-Regulated Plasmid Uptake and Bioavailability for Reducing Transformation of Extracellular Antibiotic Resistance Genes. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:969. [PMID: 36985863 PMCID: PMC10053900 DOI: 10.3390/nano13060969] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
The direct uptake of extracellular DNA (eDNA) via transformation facilitates the dissemination of antibiotic resistance genes (ARGs) in the environment. CeO2 nanoparticles (NPs) have potential in the regulation of conjugation-dominated ARGs propagation, whereas their effects on ARGs transformation remain largely unknown. Here, CeO2 NPs at concentrations lower than 50 mg L-1 have been applied to regulate the transformation of plasmid-borne ARGs to competent Escherichia coli (E. coli) cells. Three types of exposure systems were established to optimize the regulation efficiency. Pre-incubation of competent E. coli cells with CeO2 NPs at 0.5 mg L-1 inhibited the transformation (35.4%) by reducing the ROS content (0.9-fold) and cell membrane permeability (0.9-fold), thereby down-regulating the expression of genes related to DNA uptake and processing (bhsA, ybaV, and nfsB, 0.7-0.8 folds). Importantly, CeO2 NPs exhibited an excellent binding capacity with the plasmids, decreasing the amounts of plasmids available for cellular uptake and down-regulating the gene expression of DNA uptake (bhsA, ybaV, and recJ, 0.6-0.7 folds). Altogether, pre-exposure of plasmids with CeO2 NPs (10 and 25 mg L-1) suppressed the transformation with an efficiency of 44.5-51.6%. This study provides a nano-strategy for controlling the transformation of ARGs, improving our understanding on the mechanisms of nanomaterial-mediated ARGs propagation.
Collapse
Affiliation(s)
- Yinuo Xu
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Hao Du
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Feiran Chen
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
24
|
Qiu D, Ke M, Zhang Q, Zhang F, Lu T, Sun L, Qian H. Response of microbial antibiotic resistance to pesticides: An emerging health threat. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:158057. [PMID: 35977623 DOI: 10.1016/j.scitotenv.2022.158057] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
The spread of microbial antibiotic resistance has seriously threatened public health globally. Non-antibiotic stressors have significantly contributed to the evolution of bacterial antibiotic resistance. Although numerous studies have been conducted on the potential risk of pesticide pollution for bacterial antibiotic resistance, a systematic review of these concerns is still lacking. In the present study, we elaborate the mechanism underlying the effects of pesticides on bacterial antibiotic resistance acquisition as well as the propagation of antimicrobial resistance. Pesticide stress enhanced the acquisition of antibiotic resistance in bacteria via various mechanisms, including the activation of efflux pumps, inhibition of outer membrane pores for resistance to antibiotics, and gene mutation induction. Horizontal gene transfer is a major mechanism whereby pesticides influence the transmission of antibiotic resistance genes (ARGs) in bacteria. Pesticides promoted the conjugation transfer of ARGs by increasing cell membrane permeability and increased the proportion of bacterial mobile gene elements, which facilitate the spread of ARGs. This review can improve our understanding regarding the pesticide-induced generation and spread of ARGs and antibiotic resistant bacteria. Moreover, it can be applied to reduce the ecological risks of ARGs in the future.
Collapse
Affiliation(s)
- Danyan Qiu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Mingjing Ke
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Qi Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Fan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Liwei Sun
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China.
| |
Collapse
|
25
|
Zhai H, Guo Y, Zhang L, Miao Y, Wang J. Presence of bromide and iodide promotes the horizontal transfer of antibiotic resistance genes during chlorination: A preliminary study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157250. [PMID: 35817106 DOI: 10.1016/j.scitotenv.2022.157250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/19/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Chlorination was reported to have a great potential to increase horizontal gene transfer (HGT) of antibiotic resistance genes (ARGs), which poses a great threat to global human health. Bromide (Br-) and iodide (I-) ions are widely spread ions in water and wastewater. In chlorination, Br- and I- can be oxidized to active bromine and iodine species. The influence of the co-existing different halogen oxidants (chlorine + bromine or iodine species) on HGT of ARGs were rarely investigated. In this study, the conjugative transfer of ARGs between a donor strain E. coli K12 and a recipient strain E. coli HB101 was investigated in chlorination without/with the presence of Br- or I-. Immediately after the addition of sodium hypochlorite, 53-88 % of the dosed chlorine was rapidly consumed, 10 %-42 % fast transformed into organic combined chloramines, and only low levels of free chlorine (0.02-0.8 mg/L as Cl2) left in the diluted cultural medium. Conjugative transfer mediated by the RP4 plasmid was not significantly enhanced in chlorination without the presence of Br- or I-. With the presence of Br- (0.5-5.0 mg/L) or I- (0.05-0.5 mg/L) in chlorination, the co-existing free halogen oxidants and their organic combined ones up-regulated the mRNA expression of the oxidative stress-regulatory gene (rpoS), outer membrane protein gene (ompC), and conjugation-relevant genes (trbBp and trfAp), and caused more damage to cell entirety. As a result, the co-existing reactive halogen oxidants enhanced the HGT of ARGs probably via conjugative transfer and transformation. This study showed that the presence of Br- and I- of common levels in aquatic environment promoted HGT of ARGs in chlorination, thus accelerating the transmission and prevalence of ARGs.
Collapse
Affiliation(s)
- Hongyan Zhai
- School of Environmental Science and Engineering, Tianjin University, Weijin Road 92, Tianjin 300072, PR China.
| | - Yujing Guo
- School of Environmental Science and Engineering, Tianjin University, Weijin Road 92, Tianjin 300072, PR China
| | - Liangyu Zhang
- School of Environmental Science and Engineering, Tianjin University, Weijin Road 92, Tianjin 300072, PR China
| | - Yu Miao
- School of Environmental Science and Engineering, Tianjin University, Weijin Road 92, Tianjin 300072, PR China
| | - Jingfeng Wang
- Tianjin Institute of Environmental & Operational Medicine, Dali Road 1, Tianjin 300050, PR China
| |
Collapse
|
26
|
Chen C, Fang Y, Cui X, Zhou D. Effects of trace PFOA on microbial community and metabolisms: Microbial selectivity, regulations and risks. WATER RESEARCH 2022; 226:119273. [PMID: 36283234 DOI: 10.1016/j.watres.2022.119273] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/19/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Perfluorooctanoic acid (PFOA), a "forever chemical", is continuously discharged and mitigated in the environment despite its production and use being severely restricted globally. Due to the transformation, attachment, and adsorption of PFOA in aquatic environments, PFOA accumulates in the porous media of sediments, soils, and vadose regions. However, the impact of trace PFOA in the porous media on interstitial water and water safety is not clear. In this work, we simulated a porous media layer using a sand column and explored the effects of µg-level PFOA migration on microbial community alternation, microbial function regulation, and the generation and spread of microbial risks. After 60 days of PFOA stimulation, Proteobacteria became the dominant phylum with an abundance of 91.8%, since it carried 71% of the antibiotic resistance genes (ARGs). Meanwhile, the halogen-related Dechloromonas abundance increased from 0.4% to 10.6%. In addition, PFOA significantly stimulated protein (more than 1288%) and polysaccharides (more than 4417%) production by up-regulating amino acid metabolism (p< 0.001) and membrane transport (p < 0.001) to accelerate the microbial aggregation. More importantly, the rapidly forming biofilm immobilized and blocked PFOA. The more active antioxidant system repaired the damaged cell membrane by significantly up-regulating glycerophospholipid metabolism and peptidoglycan biosynthesis. It is worth noting that PFOA increased the abundance of antibiotic resistance genes (ARGs) and human bacterial pathogens (HBPs) in porous media by 30% and 106%. PFOA increased the proportion of vertical transmission ARGs (vARGs), and co-occurrence network analysis (r ≥ 0.8, p ≤ 0.01) verified that vARGs were mainly mediated by HBPs. A comprehensive understanding of PFOA interactions with its microecological environment is provided.
Collapse
Affiliation(s)
- Congli Chen
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Yuanping Fang
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Xiaochun Cui
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Dandan Zhou
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, China.
| |
Collapse
|
27
|
Ren CY, Xu QJ, Mathieu J, Alvarez PJJ, Zhu L, Zhao HP. A Carotenoid- and Nuclease-Producing Bacterium Can Mitigate Enterococcus faecalis Transformation by Antibiotic Resistance Genes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15167-15178. [PMID: 35862635 DOI: 10.1021/acs.est.2c03919] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Dissemination of antibiotic resistance genes (ARGs) through natural transformation is facilitated by factors that stabilize extracellular DNA (eDNA) and that induce reactive oxygen species (ROS) that permeabilize receptor cells and upregulate transformation competence genes. In this study, we demonstrate that Deinococcus radiodurans can mitigate this ARG dissemination pathway by removing both eDNA and ROS that make recipient cells more vulnerable to transformation. We used plasmid RP4 as source of extracellular ARGs (tetA, aphA, and blaTEM-2) and the opportunistic pathogen Enterococcus faecalis as receptor. The presence of D. radiodurans significantly reduced the transformation frequency from 2.5 ± 0.7 × 10-6 to 7.4 ± 1.4 × 10-7 (p < 0.05). Based on quantification of intracellular ROS accumulation and superoxide dismutase (SOD) activity, and quantitative polymerase chain reaction (qPCR) and transcriptomic analyses, we propose two mechanisms by which D. radiodurans mitigates E. faecalis transformation by ARGs: (a) residual antibiotics induce D. radiodurans to synthesize liposoluble carotenoids that scavenge ROS and thus mitigate the susceptibility of E. faecalis for eDNA uptake, and (b) eDNA induces D. radiodurans to synthesize extracellular nucleases that degrade eARGs. This mechanistic insight informs biological strategies (including bioaugmentation) to curtail the spread of ARGs through transformation.
Collapse
Affiliation(s)
- Chong-Yang Ren
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China, 310058
| | - Qiu-Jin Xu
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China, 310058
| | - Jacques Mathieu
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
| | - Lizhong Zhu
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China, 310058
| | - He-Ping Zhao
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China, 310058
| |
Collapse
|
28
|
Wang W, Liu Y, Li G, Liu Z, Wong PK, An T. Mechanism insights into bacterial sporulation at natural sphalerite interface with and without light irradiation: The suppressing role in bacterial sporulation by photocatalysis. ENVIRONMENT INTERNATIONAL 2022; 168:107460. [PMID: 35981477 DOI: 10.1016/j.envint.2022.107460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/22/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Unveiling the mechanisms of bacterial sporulation at natural mineral interfaces is crucial to fully understand the interactions of mineral with microorganism in aquatic environment. In this study, the bacterial sporulation mechanisms of Bacillus subtilis (B. subtilis) at natural sphalerite (NS) interface with and without light irradiation were systematically investigated for the first time. Under dark condition, NS was found to inactivate vegetative cells of B. subtilis and promote their sporulation simultaneously. The released Zn2+ from NS was mainly responsible for the bacterial inactivation and sporulation. With light irradiation, the photocatalytic effect from NS could increase the bacterial inactivation efficiency, while the bacterial sporulation efficiency was decreased from 8.1 % to 4.5 %. The photo-generated H2O2 and O2- played the major roles in enhancing bacterial inactivation and suppressing bacterial sporulation process. The intracellular synthesis of dipicolinic acid (DPA) as biomarker for sporulation was promoted by NS in dark, which was suppressed by the photocatalytic effect of NS with light irradiation. The transformation process from vegetative cells to spores was monitored by both 3D-fluerecence EEM and SEM observations. Compared with the NS alone system, the NS/light combined system induced higher level of intracellular ROSs, up-regulated antioxidant enzyme activity and decreased cell metabolism activity, which eventually led to enhanced inactivation of vegetative cells and suppressed bacterial sporulation. These results not only provide in-depth understanding about bacterial sporulation as a new mode of sub-lethal stress response at NS interface, but also shed lights on putting forward suitable strategies for controlling spore-producing bacteria by suppressing their sporulation during water disinfection.
Collapse
Affiliation(s)
- Wanjun Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yan Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhenni Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Po Keung Wong
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
29
|
Zhao Q, Guo W, Luo H, Wang H, Yu T, Liu B, Si Q, Ren N. Dissecting the roles of conductive materials in attenuating antibiotic resistance genes: Evolution of physiological features and bacterial community. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129411. [PMID: 35780739 DOI: 10.1016/j.jhazmat.2022.129411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/08/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Supplying conductive materials (CMs) into anaerobic bioreactors is considered as a promising technology for antibiotic wastewater treatment. However, whether and how CMs influence antibiotic resistance genes (ARGs) spread remains poorly known. Here, we investigated the effects of three CMs, i.e., magnetite, activated carbon (AC), and zero valent iron (ZVI), on ARGs dissemination during treating sulfamethoxazole wastewater, by dissecting the shifts of physiological features and microbial community. With the addition of magnetite, AC, and ZVI, the SMX removal was improved from 49.05 to 71.56-92.27 %, while the absolute abundance of ARGs reducing by 26.48 %, 61.95 %, 48.45 %, respectively. The reduced mobile genetic elements and antibiotic resistant bacteria suggested the inhibition of horizontal and vertical transfer of ARGs. The physiological features, including oxidative stress response, quorum sensing, and secretion system may regulate horizontal transfer of ARGs. The addition of all CMs relieved oxidative stress compared with no CMs, but ZVI may cause additional free radicals that needs to be concerned. Further, ZVI and AC also interfered with cell communication and secretion system. This research deepens the insights about the underlying mechanisms of CMs in regulating ARGs, and is expected to propose practical ways for mitigating ARGs proliferation.
Collapse
Affiliation(s)
- Qi Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Wanqian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China.
| | - Haichao Luo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Huazhe Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Taiping Yu
- Yangtze Ecology and Environment Co. Ltd., Wuhan 430062, China
| | - Banghai Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Qishi Si
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
30
|
Li W, Zhang G. Detection and various environmental factors of antibiotic resistance gene horizontal transfer. ENVIRONMENTAL RESEARCH 2022; 212:113267. [PMID: 35413299 DOI: 10.1016/j.envres.2022.113267] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 05/25/2023]
Abstract
Bacterial antibiotic resistance in water environments is becoming increasingly severe, and new antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) have also attracted the attention of researchers. The horizontal transfer of ARGs in water environments is considered one of the main sources of bacterial resistance in the natural environment. Horizontal gene transfer (HGT) mainly includes conjugation, natural transformation, and transduction, and conjugation has been investigated most. Several studies have shown that there are a large number of environmental factors that might affect the horizontal transfer of ARGs in water environments, such as nanomaterials, various oxidants, and light; however, there is still a lack of systematic and comprehensive reviews on the detection and the effects of the influence factors of on ARG horizontal transfer. Therefore, this study introduced three HGT modes, analysed the advantages and disadvantages of current methods for monitoring HGT, and then summarized the influence and mechanism of various factors on ARG horizontal transfer, and the possible reasons for the different effects caused by similar factors were mainly critically discussed. Finally, existing research deficiencies and future research directions of ARG horizontal transfer in water environments were discussed.
Collapse
Affiliation(s)
- Weiying Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 200092, Shanghai, China.
| | - Guosheng Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 200092, Shanghai, China
| |
Collapse
|
31
|
Wang S, Zhao C, Xue B, Li C, Zhang X, Yang X, Li Y, Yang Y, Shen Z, Wang J, Qiu Z. Nanoalumina triggers the antibiotic persistence of Escherichia coli through quorum sensing regulators lrsF and qseB. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129198. [PMID: 35739728 DOI: 10.1016/j.jhazmat.2022.129198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/13/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Nanomaterials with bactericidal effects might provide novel strategies against bacteria. However, some bacteria can survive despite the exposure to nanomaterials, which challenges the safety of antibacterial nanomaterials. Here, we used a high dose of antibiotics to kill the E. coli. that survived under different concentrations of nanoalumina treatment to screen persisters, and found that nanoalumina could significantly trigger persisters formation. Treatment with 50 mg/L nanoalumina for 4 h resulted in the formation of (0.084 ± 0.005) % persisters. Both reactive oxygen species (ROS) and toxin-antitoxin (TA) system were involved in persisters formation. Interestingly, RT-PCR analysis and knockout of the five genes related to ROS and TA confirmed that only hipB was associated with the formation of persisters, suggesting the involvement of other mechanisms. We further identified 73 differentially expressed genes by transcriptome sequencing and analyzed them with bioinformatics tools. We selected six candidate genes and verified that five of them closely related to quorum sensing (QS) that were involved in persisters formation, and further validated that the coexpression of QS factors lrsF and qseB was a novel pathway for persisters. Our findings provided a better understanding on the emergence of bacterial persistence and the microbial behavior under nanomaterials exposure.
Collapse
Affiliation(s)
- Shang Wang
- Department of Hygienic Toxicology And Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Chen Zhao
- Department of Hygienic Toxicology And Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Bin Xue
- Department of Hygienic Toxicology And Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Chenyu Li
- Department of Hygienic Toxicology And Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Xi Zhang
- Department of Hygienic Toxicology And Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Xiaobo Yang
- Department of Hygienic Toxicology And Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Yan Li
- Department of Hygienic Toxicology And Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Yanping Yang
- Department of Hygienic Toxicology And Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Zhiqiang Shen
- Department of Hygienic Toxicology And Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Jingfeng Wang
- Department of Hygienic Toxicology And Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Zhigang Qiu
- Department of Hygienic Toxicology And Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| |
Collapse
|
32
|
Wang J, Liu C, Sun H, Wang S, Liao X, Zhang L. Membrane disruption boosts iron overload and endogenous oxidative stress to inactivate Escherichia coli by nanoscale zero-valent iron. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128951. [PMID: 35472538 DOI: 10.1016/j.jhazmat.2022.128951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/07/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
The inactivation of microorganisms by nanoscale zero-valent iron (nZVI) was extensively reported, but what happens inside the cells is rarely explored. Herein, we revealed that nZVI caused the drastic increase of intracellular iron concentrations, which subsequently catalyzed the Haber-Weiss reaction to produce high levels of endogenous reactive oxygen species (ROSs) and inactivated E. coli cells by oxidative damage of DNA, evidenced by the significantly higher inactivation efficiencies of E. coli mutant strains deficient in iron uptake regulation and DNA repair than the parental strain. The intracellular iron levels, endogenous ROSs levels and the inactivation efficiencies of E. coli were positively correlated. The permeabilized cytomembrane due to the close contact between nZVI and E. coli was responsible for the iron overload. This work demonstrates experimentally for the first time that nZVI causes iron overload and endogenous oxidative stress to inactivate E. coli, thus deepening our knowledge of the nZVI antimicrobial mechanism.
Collapse
Affiliation(s)
- Jian Wang
- Hubei Key Lab of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Congcong Liu
- Hubei Key Lab of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Hongwei Sun
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, PR China.
| | - Shaohui Wang
- Hubei Key Lab of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Xiaomei Liao
- Hubei Key Lab of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China.
| | - Lizhi Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| |
Collapse
|
33
|
Tang H, Liu Z, Hu B, Zhu L. Effects of iron mineral adhesion on bacterial conjugation: Interfering the transmission of antibiotic resistance genes through an interfacial process. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128889. [PMID: 35472548 DOI: 10.1016/j.jhazmat.2022.128889] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/02/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
Bacterial conjugation is one of the most prominent ways for antibiotic resistance genes (ARGs) transmission in the environment. Interfacial interactions between natural colloidal minerals and bacteria can alter the effective contact of bacteria, thereby affecting ARGs conjugation. Understanding the impact of iron minerals, a core component of colloidal minerals, on ARGs conjugation can help assess and intervene in the risk of ARGs transmission. With three selected iron minerals perturbation experiments, it was found that the conjugative transfer of plasmid that carried kanamycin resistance gene was 1.35 - 3.91-fold promoted by low concentrations of iron minerals (i.e., 5 - 100 mg L-1), but inhibited at high concentrations (i.e., 1000 - 2000 mg L-1) as 0.10 - 0.22-fold. Conjugation occurrence was highly relevant to the number of bacteria adhering per unit mass of mineral, thus switch in the adhesion modes of mineral-bacterial determined whether the conjugate transfer of ARGs was facilitated or inhibited. In addition, a unified model was formularized upon the physicochemical and physiological effects of adhesion on conjugation, and it can be used in estimating the critical inhibitory concentration of different iron minerals on conjugation. Our findings indicate natural colloidal minerals have great potential for applications in preventing the environmental propagation of ARGs through interfacial interactions.
Collapse
Affiliation(s)
- Huiming Tang
- Department of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| | - Zishu Liu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Baolan Hu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lizhong Zhu
- Department of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
34
|
Ji H, Cai Y, Wang Z, Li G, An T. Sub-lethal photocatalysis promotes horizontal transfer of antibiotic resistance genes by conjugation and transformability. WATER RESEARCH 2022; 221:118808. [PMID: 35841790 DOI: 10.1016/j.watres.2022.118808] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/20/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
The spread of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in water is increasingly becoming a worldwide problem due to frequent recent major public health events. Herein, the horizontal ARG transfer mechanisms were studied under sub-lethal photocatalysis. The results show that ARGs had at most a 3- to 6-fold increase in the conjugative transfer frequency when only donor bacteria were induced with sub-lethal photocatalysis, while the frequency exhibited a trend toward inhibition when only the recipient bacteria were induced. However, when the donor or recipient bacteria were induced beforehand for a specific time, the frequency increased by a maximum of 10- to 22-fold. Moreover, the horizontal transfer frequency and its mechanism were related to the oxidative stress systems, ATP systems and the expression of related genes. Furthermore, the transformability of extracellular plasmids of the ARB and the contribution in horizontal transfer were also studied. Results show that the transformation frequency accounted for up to 50% of the total number of transconjugants, indicating that transformation might be a primary mode of horizontal ARG transfer by ARB in water. All of the above results demonstrate that sub-lethal photocatalysis will increase the frequency of horizontal gene transfer of ARGs through both conjugative transfer and the transformation pathway, which increases the risk of ARB in aquatic environments.
Collapse
Affiliation(s)
- Hao Ji
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yiwei Cai
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zaixia Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
35
|
Liu Y, Cai Y, Li G, Wang W, Wong PK, An T. Response mechanisms of different antibiotic-resistant bacteria with different resistance action targets to the stress from photocatalytic oxidation. WATER RESEARCH 2022; 218:118407. [PMID: 35453030 DOI: 10.1016/j.watres.2022.118407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/18/2022] [Accepted: 04/02/2022] [Indexed: 06/14/2023]
Abstract
The stress response of antibiotic-resistant bacteria (ARB) and the spread of antibiotic resistance genes (ARGs) pose a serious threat to the aquatic environment and human beings. This study mainly explored the effect of the heterogeneous photocatalytic oxidation (UVA-TiO2 system) on the stress response mechanism of ARB with different antibiotic resistance action targets, including the cell wall, proteins, DNA, RNA, folate and the cell membrane. Results indicate that the stress response mechanism of tetracycline- and sulfamethoxazole-resistant E. coli DH5α, which targets the synthesis of protein and folate, could rapidly induce global regulators by the overexpression of relative antibiotic resistance action target genes. Different stress response systems were mediated via cross-protection mechanism, causing stronger tolerance to an adverse environment than other ARB. Moreover, the photocatalytic inactivation mechanism of bacterial cells and a graded response of cellular stress mechanism caused differences in the intensity of the stress mechanism of antibiotic resistance action targets. E. coli DH5α resistant to cefotaxime and polymyxin, targeting synthesis of the cell wall and cell membrane, respectively, could confer greater advantages to bacterial survival and higher conjugative transfer frequency than E. coli DH5α resistant to nalidixic acid and rifampicin, which target the synthesis of DNA and RNA, respectively. This new perspective provides detailed information on the practical application of photocatalytic oxidation for inactivating ARB and hampering the spreading of ARGs in the aquatic environment.
Collapse
Affiliation(s)
- Yongjie Liu
- Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yiwei Cai
- Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wanjun Wang
- Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Po Keung Wong
- Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Taicheng An
- Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
36
|
Liu Y, Gao J, Wang Y, Duan W, Zhang Y, Zhang H, Zhao M. Synergistic effect of sulfidated nanoscale zerovalent iron in donor and recipient bacterial inactivation and gene conjugative transfer inhibition. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128722. [PMID: 35334272 DOI: 10.1016/j.jhazmat.2022.128722] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB) are widespread in urban wastewater treatment plants (UWTPs). In this research, a horizontal transfer model of recipient (Pseudomonas. HLS-6) and donor (Escherichia coli DH5α carries RP4 plasmid) was constructed to explore the effect of sulfidated nanoscale zerovalent iron (S-nZVI) on the efficiency of plasmid-mediated horizontal transfer. When the S/Fe was 0.1, the inactivation efficiency of 1120 mg/L S-nZVI on the donor and recipient bacteria were 2.36 ± 0.03 log and 3.50 ± 0.17 log after 30 min, respectively (initial ARB concentration ≈ 5 ×107 CFU/mL). Effects of treatment time, S/Fe molar ratio, S-nZVI dosage and initial bacterial concentration were systemically studied. S-nZVI treatment could increase the extracellular alkaline phosphatase and malondialdehyde content of the ARB, cause oxidative stress in the bacteria, destroy the cell structure and damage the intracellular DNA. This study provided evidence and insights into possible underlying mechanisms for reducing conjugative transfer, such as hindering cell membrane repair, inducing the overproduction of reactive oxygen species, inhibiting the SOS response, reducing the expression of ARGs and related transfer genes. S-nZVI could inhibit the gene conjugative transfer while inactivating the ARB. The findings provided an alternative method for controlling antibiotic resistance.
Collapse
Affiliation(s)
- Ying Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Jingfeng Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| | - Yuwei Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Wanjun Duan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Yi Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Haoran Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Mingyan Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
37
|
Wu S, Ren P, Wu Y, Liu J, Huang Q, Cai P. Effects of hematite on the dissemination of antibiotic resistance in pathogens and underlying mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128537. [PMID: 35278942 DOI: 10.1016/j.jhazmat.2022.128537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/17/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
The dissemination of antibiotic resistance genes (ARGs) in pathogens is becoming a pervasive global health threat, to which the importance of the environment attracts more and more attention. However, how natural minerals affect ARGs transfer in pathogens is still unclear. In this study, the concentration and size effects of hematite on the ARGs conjugative transfer to a common zoonotic pathogen Escherichia coli O157:H7 and underlying mechanisms were explored. Results revealed that bulk hematite reduced the conjugation of resistant plasmids by inhibiting cell growth at any concentration (1-100 mg/L), different from nano-hematite. Low concentrations of nano-hematite (≤ 25 mg/L) induced significant increases in conjugative transfer frequency of 1.83-4.49 folds, while its high concentrations (50 and 100 mg/L) showed no impact, compared with the control group. This low-concentration effect was likely attributed to the increased intracellular ROS level, the reduced intercellular repulsion by increasing the extracellular polymeric substances production and cell surface hydrophobicity, the formation of transfer channels and the increased membrane permeability evidenced by significant changes in gene expression level, and the increased proton motive force by increasing the transmembrane potential of recipients. These findings shed light on potential health risks caused by nano minerals-mediated ARGs dissemination in pathogens in the environment.
Collapse
Affiliation(s)
- Shan Wu
- State Key Laboratory of Agricultural Microbiology, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Pengfei Ren
- State Key Laboratory of Agricultural Microbiology, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yichao Wu
- State Key Laboratory of Agricultural Microbiology, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jun Liu
- State Key Laboratory of Agricultural Microbiology, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Peng Cai
- State Key Laboratory of Agricultural Microbiology, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
38
|
Zha Y, Li Z, Zhong Z, Ruan Y, Sun L, Zuo F, Li L, Hou S. Size-dependent enhancement on conjugative transfer of antibiotic resistance genes by micro/nanoplastics. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128561. [PMID: 35278945 DOI: 10.1016/j.jhazmat.2022.128561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Recently micro/nanoplastics (MNPs) have raised intensive concerns due to their possible enhancement effect on the dissemination of antibiotic genes. Unfortunately, data is still lacking to verify the effect. In the study, the influence of polystyrene MNPs on the conjugative gene transfer was studied by using E. coli DH5ɑ with RP4 plasmid as the donor bacteria and E. coli K12 MG1655 as the recipient bacteria. We found that influence of MNPs on gene transfer was size-dependent. Small MNPs (10 nm in radius) caused an increase and then a decrease in gene transfer efficiency with their concentration increasing. Moderate-sized MNPs (50 nm in radius) caused an increase in gene transfer efficiency. Large MNPs (500 nm in radius) had almost no influence on gene transfer. The gene transfer could be further enhanced by optimizing mating time and mating ratio. Scavenging reactive oxygen species (ROS) production did not affect the cell membrane permeability, indicating that the increase in cell membrane permeability was not related to ROS production. The mechanism of the enhanced gene transfer efficiency was attributed to a combined effect of the increased ROS production and the increased cell membrane permeability, which ultimately regulated the expression of corresponding genes.
Collapse
Affiliation(s)
- Yingying Zha
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Key Laboratory of Philosophy and Social Science in Guangdong Province of Community of Life for Man and Nature, Jinan University, Guangzhou 510632, China; CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ziwei Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Key Laboratory of Philosophy and Social Science in Guangdong Province of Community of Life for Man and Nature, Jinan University, Guangzhou 510632, China
| | - Zheng Zhong
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Key Laboratory of Philosophy and Social Science in Guangdong Province of Community of Life for Man and Nature, Jinan University, Guangzhou 510632, China
| | - Yiming Ruan
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Key Laboratory of Philosophy and Social Science in Guangdong Province of Community of Life for Man and Nature, Jinan University, Guangzhou 510632, China
| | - Lili Sun
- Guangzhou Inspection Testing and Certification Group Co., Ltd., China
| | - Fangfang Zuo
- Guangzhou Inspection Testing and Certification Group Co., Ltd., China; Key Laboratory for Quality Research and Evaluation of Medical Textile Protective Products, Guangdong Medical Products Administration, China
| | - Liangzhong Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Center for Environmental Health Research, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Sen Hou
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Key Laboratory of Philosophy and Social Science in Guangdong Province of Community of Life for Man and Nature, Jinan University, Guangzhou 510632, China; CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
39
|
Zhang L, Ji L, Liu X, Zhu X, Ning K, Wang Z. Linkage and driving mechanisms of antibiotic resistome in surface and ground water: Their responses to land use and seasonal variation. WATER RESEARCH 2022; 215:118279. [PMID: 35305488 DOI: 10.1016/j.watres.2022.118279] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/24/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Antibiotic resistance in the environment, mostly mediated by antibiotic resistance genes (ARGs), has posed a threat to ecological and human health. Contamination of surface water and groundwater with ARGs has become a serious environmental concern. However, the distinctions and similarities across ARG profiles, the various ecological processes associated with ARGs, the driving mechanisms for ARG profiles in surface water and groundwater, and how they respond to land use and seasonal variation remain unknown. To tackle these issues, the contamination of ARGs in surface water and groundwater in central China was investigated using metagenomic technology. The results indicated that seasonal changes in ARG abundance and diversity were inconsistent across surface water and groundwater, and that the relationship between ARGs in surface water and groundwater was stronger during the rainy season. Land use had a greater effect on ARGs in surface water than in groundwater and was stronger during the dry season than during the rainy season. More interestingly, the ideal buffer zones with the greatest impact of land use on the ARGs of surface water and groundwater had distinct radii: 1500 m for both dry and rainy seasons in surface water, and 1000 m for dry season and 500 m for rainy season in groundwater. Furthermore, stochastic mechanisms mediated by mobile gene elements (MGEs) contribute significantly more to ARG assemblages than deterministic processes, particularly in groundwater. Furthermore, our results also showed that ARG enrichment in microbial communities was host- dependent, and the risk of ARGs in groundwater was greater both during the rainy season and dry season. In conclusion, the findings have improved our understanding of the relationship and driving mechanisms of ARGs in surface and ground water, as well as their responses to land use and seasonal variation, which may be beneficial for limiting ARG pollution in a watershed with high levels of anthropogenic activity.
Collapse
Affiliation(s)
- Lu Zhang
- Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430077, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Ji
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xi Liu
- Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430077, China; Ecological Environment Monitoring and Scientific Research Center, Yangtze River Basin Ecological Environment Supervision and Administration Bureau, Ministry of Ecological Environment, Wuhan 430010, China
| | - Xue Zhu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Kang Ning
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| | - Zhi Wang
- Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430077, China.
| |
Collapse
|
40
|
Li X, Wen C, Liu C, Lu S, Xu Z, Yang Q, Chen Z, Liao H, Zhou S. Herbicide promotes the conjugative transfer of multi-resistance genes by facilitating cellular contact and plasmid transfer. J Environ Sci (China) 2022; 115:363-373. [PMID: 34969463 DOI: 10.1016/j.jes.2021.08.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/21/2021] [Accepted: 08/09/2021] [Indexed: 06/14/2023]
Abstract
The global dissemination of antibiotic resistance genes (ARGs), especially via plasmid-mediated horizontal transfer, is becoming a pervasive health threat. While our previous study found that herbicides can accelerate the horizontal gene transfer (HGT) of ARGs in soil bacteria, the underlying mechanisms by which herbicides promote the HGT of ARGs across and within bacterial genera are still unclear. Here, the underlying mechanism associated with herbicide-promoted HGT was analyzed by detecting intracellular reactive oxygen species (ROS) production, extracellular polymeric substance composition, cell membrane integrity and proton motive force combined with genome-wide RNA sequencing. Exposure to herbicides induced a series of the above bacterial responses to promote HGT except for the ROS response, including compact cell-to-cell contact by enhancing pilus-encoded gene expression and decreasing cell surface charge, increasing cell membrane permeability, and enhancing the proton motive force, providing additional power for DNA uptake. This study provides a mechanistic understanding of the risk of bacterial resistance spread promoted by herbicides, which elucidates a new perspective on nonantibiotic agrochemical acceleration of the HGT of ARGs.
Collapse
Affiliation(s)
- Xi Li
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chang Wen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chen Liu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shiyun Lu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhongbing Xu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiue Yang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhi Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hanpeng Liao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
41
|
Gmurek M, Borowska E, Schwartz T, Horn H. Does light-based tertiary treatment prevent the spread of antibiotic resistance genes? Performance, regrowth and future direction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:153001. [PMID: 35031375 DOI: 10.1016/j.scitotenv.2022.153001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
The common occurrence of antibiotic-resistance genes (ARGs) originating from pathogenic and facultative pathogenic bacteria pose a high risk to aquatic environments. Low removal of ARGs in conventional wastewater treatment processes and horizontal dissemination of resistance genes between environmental bacteria and human pathogens have made antibiotic resistance evolution a complex global health issue. The phenomenon of regrowth of bacteria after disinfection raised some concerns regarding the long-lasting safety of treated waters. Despite the inactivation of living antibiotic-resistant bacteria (ARB), the possibility of transferring intact and liberated DNA containing ARGs remains. A step in this direction would be to apply new types of disinfection methods addressing this issue in detail, such as light-based advanced oxidation, that potentially enhance the effect of direct light interaction with DNA. This study is devoted to comprehensively and critically review the current state-of-art for light-driven disinfection. The main focus of the article is to provide an insight into the different photochemical disinfection methods currently being studied worldwide with respect to ARGs removal as an alternative to conventional methods. The systematic comparison of UV/chlorination, UV/H2O2, sulfate radical based-AOPs, photocatalytic processes and photoFenton considering their mode of action on molecular level, operational parameters of the processes, and overall efficiency of removal of ARGs is presented. An in-depth discussion of different light-dependent inactivation pathways, influence of DBP and DOM on ARG removal and the potential bacterial regrowth after treatment is presented. Based on presented revision the risk of ARG transfer from reactivated bacteria has been evaluated, leading to a future direction for research addressing the challenges of light-based disinfection technologies.
Collapse
Affiliation(s)
- M Gmurek
- Department of Molecular Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, 90-924 Lodz, Poland; Karlsruhe Institute of Technology, Engler-Bunte-Institut, Water Chemistry and Water Technology, 76131 Karlsruhe, Germany; Karlsruhe Institute of Technology, Institute of Functional Interfaces, Microbiology/Molecular Biology Department, Eggenstein-Leopoldshafen, Germany.
| | - E Borowska
- Karlsruhe Institute of Technology, Engler-Bunte-Institut, Water Chemistry and Water Technology, 76131 Karlsruhe, Germany
| | - T Schwartz
- Karlsruhe Institute of Technology, Institute of Functional Interfaces, Microbiology/Molecular Biology Department, Eggenstein-Leopoldshafen, Germany
| | - H Horn
- Karlsruhe Institute of Technology, Engler-Bunte-Institut, Water Chemistry and Water Technology, 76131 Karlsruhe, Germany; DVGW German Technical and Scientific Association for Gas and Water Research Laboratories, Water Chemistry and Water Technology, 76131 Karlsruhe, Germany
| |
Collapse
|
42
|
Photocatalytic Inactivation of Bacillus subtilis Spores by Natural Sphalerite with Persulfate under Visible Light Irradiation. COATINGS 2022. [DOI: 10.3390/coatings12040528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Bacterial spores are highly resistant to be inactivated by conventional water disinfection methods. In this study, the inactivation efficiency and mechanisms of Bacillus subtitles (B. subtilis) spores by natural sphalerite (NS) with persulfate (PS) under visible light (Vis) irradiation were investigated for the first time. The NS was composed of ZnS doped with trace amounts of metal ions, including As, Fe, Cd, and Mn. The results showed that 7 log of B. subtilis spores could be completely inactivated within 5 h in the Vis/NS/PS photocatalytic system, and the inactivation efficiency was about four and seven times higher than that of the NS/PS system and the Vis/PS system, respectively. The photo-generated electrons are generated by the excitation of NS under the illumination activated PS to form PS radicals (∙SO4−) and hydroxyl radicals (∙OH), which are the main active species for spore inactivation. Mechanism studies further showed that spore inactivation was related to physiological responses, including the increase in intracellular reactive oxygen species, the change of induced antioxidant enzyme activity, and the change of total protein. Furthermore, the dynamic changes of cells during spore inactivation were observed by SEM. These results not only clarify the relationship between the cell physiological stress response and inactivation mechanism of spores, but also reveal the interaction between minerals and PS under Vis, which provides technical methods for the inactivation of bacterial spores in the field of water disinfection.
Collapse
|
43
|
He K, Xue B, Yang X, Wang S, Li C, Zhang X, Zhao C, Wang X, Qiu Z, Shen Z, Wang J. Low-concentration of trichloromethane and dichloroacetonitrile promote the plasmid-mediated horizontal transfer of antibiotic resistance genes. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:128030. [PMID: 34986571 DOI: 10.1016/j.jhazmat.2021.128030] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/29/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Disinfection by-products (DBPs) are one of the unintended consequences of water disinfection that are commonly detected in various water environments. Although DBPs are known to induce antimicrobial resistance via stimulation of chromosomal mutations, it remains unclear whether low-concentration of DBPs could stimulate the conjugative transfer of antibiotic resistance genes (ARGs). The present study aimed to investigate the effect of two typical DBPs, namely trichloromethane (TCM) and dichloroacetonitrile (DCAN), on the conjugative transfer of RP4 plasmid in Escherichia coli genera. The results of the study demonstrated that exposure to low concentrations of TCM and DCAN significantly stimulated conjugative transfer of ARGs, wherein application of 25 μg/L of TCM and 10 μg/L of DCAN resulted in maximum fold change of ~5.5- and ~6.0-fold, respectively, at 16 h of exposure. Further, assessment of underlying mechanisms revealed the involvement of intracellular reactive oxygen species generation, SOS response, increase in cell membrane permeability, upregulation of expression of genes and proteins related to pilus generation, ATP synthesis, and RP4 gene expression. Our findings provided a better understanding of the hidden biological effects and the ecological risks of DBPs in the water environment, especially concerning their effect on the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Kun He
- School of Environmental Science Engineering, Tiangong University, Tianjin 300387, China
| | - Bin Xue
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin 300050, China
| | - Xiaobo Yang
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin 300050, China
| | - Shang Wang
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin 300050, China
| | - Chenyu Li
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin 300050, China
| | - Xi Zhang
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin 300050, China
| | - Chen Zhao
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin 300050, China
| | - Xuan Wang
- School of Environmental Science Engineering, Tiangong University, Tianjin 300387, China
| | - Zhigang Qiu
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin 300050, China
| | - Zhiqiang Shen
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin 300050, China.
| | - Jingfeng Wang
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin 300050, China.
| |
Collapse
|
44
|
Gao Y, Guo T, Niu X, Luo N, Chen J, Qiu J, Ji Y, Li G, An T. Remediation of preservative ethylparaben in water using natural sphalerite: Kinetics and mechanisms. J Environ Sci (China) 2022; 113:72-80. [PMID: 34963551 DOI: 10.1016/j.jes.2021.05.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 06/14/2023]
Abstract
As a typical class of emerging organic contaminants (EOCs), the environmental transformation and abatement of preservative parabens have raised certain environmental concerns. However, the remediation of parabens-contaminated water using natural matrixes (such as, naturally abundant minerals) is not reported extensively in literature. In this study, the transformation kinetics and the mechanism of ethylparaben using natural sphalerite (NS) were investigated. The results show that around 63% of ethylparaben could be absorbed onto NS within 38 hr, whereas the maximum adsorption capacity was 0.45 mg/g under room temperature. High temperature could improve the adsorption performance of ethylparaben using NS. In particular, for the temperature of 313 K, the adsorption turned spontaneous. The well-fitted adsorption kinetics indicated that both the surface adsorption and intra-particle diffusion contribute to the overall adsorption process. The monolayer adsorption on the surface of NS was primarily responsible for the elimination of ethylparaben. The adsorption mechanism showed that hydrophobic partitioning into organic matter could largely govern the adsorption process, rather than the ZnS that was the main component of NS. Furthermore, the ethylparaben adsorbed on the surface of NS was stable, as only less than 2% was desorbed and photochemically degraded under irradiation of simulated sunlight for 5 days. This study revealed that NS might serve as a potential natural remediation agent for some hydrophobic EOCs including parabens, and emphasized the significant role of naturally abundant minerals on the remediation of EOCs-contaminated water bodies.
Collapse
Affiliation(s)
- Yanpeng Gao
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2G3, Canada
| | - Teng Guo
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaolin Niu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Na Luo
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jia Chen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Junlang Qiu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2G3, Canada
| | - Yuemeng Ji
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
45
|
Grenni P. Antimicrobial Resistance in Rivers: A Review of the Genes Detected and New Challenges. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:687-714. [PMID: 35191071 DOI: 10.1002/etc.5289] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 11/11/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
River ecosystems are very important parts of the water cycle and an excellent habitat, food, and drinking water source for many organisms, including humans. Antibiotics are emerging contaminants which can enter rivers from various sources. Several antibiotics and their related antibiotic resistance genes (ARGs) have been detected in these ecosystems by various research programs and could constitute a substantial problem. The presence of antibiotics and other resistance cofactors can boost the development of ARGs in the chromosomes or mobile genetic elements of natural bacteria in rivers. The ARGs in environmental bacteria can also be transferred to clinically important pathogens. However, antibiotics and their resistance genes are both not currently monitored by national or international authorities responsible for controlling the quality of water bodies. For example, they are not included in the contaminant list in the European Water Framework Directive or in the US list of Water-Quality Benchmarks for Contaminants. Although ARGs are naturally present in the environment, very few studies have focused on non-impacted rivers to assess the background ARG levels in rivers, which could provide some useful indications for future environmental regulation and legislation. The present study reviews the antibiotics and associated ARGs most commonly measured and detected in rivers, including the primary analysis tools used for their assessment. In addition, other factors that could enhance antibiotic resistance, such as the effects of chemical mixtures, the effects of climate change, and the potential effects of the coronavirus disease 2019 pandemic, are discussed. Environ Toxicol Chem 2022;41:687-714. © 2022 SETAC.
Collapse
Affiliation(s)
- Paola Grenni
- Water Research Institute, National Research Council of Italy, via Salaria km 29.300, Monterotondo, Rome, 00015, Italy
| |
Collapse
|
46
|
Cui H, Smith AL. Impact of engineered nanoparticles on the fate of antibiotic resistance genes in wastewater and receiving environments: A comprehensive review. ENVIRONMENTAL RESEARCH 2022; 204:112373. [PMID: 34774508 DOI: 10.1016/j.envres.2021.112373] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Nanoparticles (NPs) and antibiotic resistance elements are ubiquitous in wastewater and consequently, in receiving environments. Sub-lethal levels of engineered NPs potentially result in a selective pressure on antibiotic resistance gene (ARG) propagation in wastewater treatment plants. Conversely, emergent NPs are being designed to naturally attenuate ARGs based on special physical and electrochemical properties, which could alleviate dissemination of ARGs to the environment. The complex interactions between NPs and antibiotic resistance elements have heightened interest in elucidating the potential positive and negative implications. This review focuses on the properties of NPs and ARGs and how their interactions could increase or decrease antibiotic resistance at wastewater treatment plants and in receiving environments. Further, the potential for sub-lethal level NPs to facilitate horizontal gene transfer of ARGs and increase mutagenesis rates, which adds a layer of complexity to combatting antibiotic resistance associated with wastewater management, is discussed. Notably, the literature revealed that sub-lethal exposure of engineered NPs may facilitate conjugative transfer of ARGs by increasing cell membrane permeability. The enhanced permeability is a result of direct damage via NP attachment and indirect damage by generating reactive oxygen species (ROS) and causing genetic changes relevant to conjugation. Finally, current knowledge gaps and future research directions (e.g., deciphering the fate of NPs in the environment and examining the long-term cytotoxicity of NPs) are identified for this emerging field.
Collapse
Affiliation(s)
- Hanlin Cui
- Sonny Astani Department of Civil and Environmental Engineering, University of Southern California, 3620 South Vermont Avenue, Los Angeles, CA, 90089, United States
| | - Adam L Smith
- Sonny Astani Department of Civil and Environmental Engineering, University of Southern California, 3620 South Vermont Avenue, Los Angeles, CA, 90089, United States.
| |
Collapse
|
47
|
Jiang Q, Feng M, Ye C, Yu X. Effects and relevant mechanisms of non-antibiotic factors on the horizontal transfer of antibiotic resistance genes in water environments: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150568. [PMID: 34627113 DOI: 10.1016/j.scitotenv.2021.150568] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/27/2021] [Accepted: 09/20/2021] [Indexed: 05/17/2023]
Abstract
Antibiotic resistance has created obstacles in the treatment of infectious diseases with antibiotics. The horizontal transfer of antibiotic resistance genes (ARGs) can exacerbate the dissemination of antibiotic resistance in water environments. In addition to antibiotic selective pressure, multiple non-antibiotic factors can affect the horizontal transfer of ARGs. Herein, we seek to comprehensively review the effects and relevant mechanisms of non-antibiotic factors on the horizontal transfer of ARGs in water environments, especially contaminants from human activities and water treatment processes. Four pathways have been identified to accomplish horizontal gene transfer (HGT), i.e., conjugation, transformation, transduction, and vesiduction. Changes in conjugative frequencies by non-antibiotic factors are mainly related to their concentrations, which conform to hormesis. Relevant mechanisms involve the alteration in cell membrane permeability, reactive oxygen species, SOS response, pilus, and mRNA expression of relevant genes. Transformation induced by extracellular DNA may be more vulnerable to non-antibiotic factors than other pathways. Except bacteriophage infection, the effects of non-antibiotic factors on transduction exhibit many similarities with that of conjugation. Given the secretion of membrane vesicles stimulated by non-antibiotic factors, their effects on vesiduction can be inferred. Furthermore, contaminants from human activities at sub-inhibitory or environmentally relevant concentrations usually promote HGT, resulting in further dissemination of antibiotic resistance. The horizontal transfer of ARGs is difficult to be inhibited by individual water treatment processes (e.g., chlorination, UV treatment, and photocatalysis) unless they attain sufficient intensity. Accordingly, the synergistic application containing two or more water treatment processes is recommended. Overall, we believe this review can elucidate the significance for risk assessments of contaminants from human activities and provide insights into the development of environment-friendly and cost-efficient water treatment processes to inhibit the horizontal transfer of ARGs.
Collapse
Affiliation(s)
- Qi Jiang
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Mingbao Feng
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Chengsong Ye
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Xin Yu
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
48
|
Liu Y, Gao P, Wu Y, Wang X, Lu X, Liu C, Li N, Sun J, Xiao J, Jesus SG. The Formation of Antibiotic Resistance Genes in Bacterial Communities During Garlic Powder Processing. Front Nutr 2022; 8:800932. [PMID: 34977133 PMCID: PMC8717741 DOI: 10.3389/fnut.2021.800932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 11/02/2021] [Indexed: 02/05/2023] Open
Abstract
Chinese garlic powder (GP) is exported to all countries in the world, but the excess of microorganisms is a serious problem that affects export. The number of microorganisms has a serious impact on the pricing of GP. It is very important to detect and control the microorganism in GP. The purpose of this study was to investigate the contamination and drug resistance of microorganisms during the processing of GP. We used metagenomics and Illumina sequencing to study the composition and dynamic distribution of antibiotic resistance genes (ARGs), but also the microbial community in three kinds of garlic products from factory processing. The results showed that a total of 126 ARG genes were detected in all the samples, which belonged to 11 ARG species. With the processing of GP, the expression of ARGs showed a trend to increase at first and then to decrease. Network analysis was used to study the co-occurrence patterns among ARG subtypes and bacterial communities and ARGs.
Collapse
Affiliation(s)
- Yanxia Liu
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Peng Gao
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Yuhao Wu
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Xiaorui Wang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Xiaoming Lu
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Chao Liu
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Ningyang Li
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Jinyue Sun
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
| | - Simal-Gandara Jesus
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
| |
Collapse
|
49
|
Morgado-Gamero WB, Parody A, Medina J, Rodriguez-Villamizar LA, Agudelo-Castañeda D. Multi-antibiotic resistant bacteria in landfill bioaerosols: Environmental conditions and biological risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118037. [PMID: 34482243 DOI: 10.1016/j.envpol.2021.118037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/31/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
Landfills, as well as other waste management facilities are well-known bioaerosols sources. These places may foment antibiotic-resistance in bacterial bioaerosol (A.R.B.) due to inadequate pharmaceutical waste disposal. This issue may foster the necessity of using last-generation antibiotics with extra costs in the health care system, and deaths. The aim of this study was to reveal the multi-antibiotic resistant bacterial bioaerosol emitted by a sanitary landfill and the surrounding area. We evaluated the influence of environmental conditions in the occurrence of A.R.B. and biological risk assessment. Antibiotic resistance found in the bacteria aerosols was compared with the AWaRE consumption classification. We used the BIOGAVAL method to assess the workers' occupational exposure to antibiotic-resistant bacterial bioaerosols in the landfill. This study confirmed the multi-antibiotic resistant in bacterial bioaerosol in a landfill and in the surrounding area. Obtained mean concentrations of bacterial bioaerosols, as well as antibiotic-resistant in bacterial bioaerosol (A.R.B.), were high, especially for fine particles that may be a threat for human health. Results suggest the possible risk of antibiotic-resistance interchange between pathogenic and non-pathogenic species in the landfill facilities, thus promoting antibiotic multi-resistance genes spreading into the environment.
Collapse
Affiliation(s)
- Wendy B Morgado-Gamero
- Department of Exact and Natural Sciences, Universidad de la Costa, Calle 58#55-66, Barranquilla, Colombia.
| | - Alexander Parody
- Engineering Faculty, Universidad Libre Barranquilla, Cra 46 No. 48-170, Barranquilla, Colombia.
| | - Jhorma Medina
- Department of Exact and Natural Sciences, Universidad de la Costa, Calle 58#55-66, Barranquilla, Colombia.
| | | | - Dayana Agudelo-Castañeda
- Department of Civil and Environmental Engineering, Universidad del Norte, Km 5 via Puerto, Colombia.
| |
Collapse
|
50
|
Tang Y, Liang Z, Li G, Zhao H, An T. Metagenomic profiles and health risks of pathogens and antibiotic resistance genes in various industrial wastewaters and the associated receiving surface water. CHEMOSPHERE 2021; 283:131224. [PMID: 34153911 DOI: 10.1016/j.chemosphere.2021.131224] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/06/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
The aquatic environment may represent an essential route for transmission of antibiotic resistance to opportunistic human pathogens. Since industrial wastewater is discharged into the river after treatment, understanding the distribution of antibiotic resistance genes (ARGs) in river systems and the possibility of pathogens acquiring antibiotic resistance are challenges with far-reaching significance. This work mainly studied distribution profiles of pathogens and ARGs, and compared their health risk in various industrial wastewater with that of river water. Results showed that 166 pathogens were concurrently shared by the six water samples, with Salmonella enterica and Pseudomonas aeruginosa being the most abundant, followed by Fusarium graminearum and Magnaporthe oryzae. The similar composition of the pathogens suggests that pathogens in river water may mainly come from sewage discharge of slaughterhouses and that changes in water quality contribute significantly to the prevalence of these pathogens. Of the 57 ARG types detected, bacitracin was the most abundant, followed by sulfonamide, chloramphenicol, tetracycline, and aminoglycoside. Strikingly, the wastewater from a pharmaceutical factory producing Chinese medicine was also rich in bacA, sul1, mexW, mexB, mexF and oprn. It can be seen from the co-occurrence patterns that pathogens and the main ARGs have strong co-occurrence. Higher abundance of offensive virulence factors in industrial wastewater and their strong correlation with pathogens containing ARGs suggest higher microbiological risk. These findings highlight the need to assess ARG acquisition by pathogens in the surface water of human-impacted environments where pathogens and ARGs may co-thrive.
Collapse
Affiliation(s)
- Yao Tang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhishu Liang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Huijun Zhao
- Griffith University, Griffith School Environment, Gold Coast Campus, Southport, Qld, 4222, Australia
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|