1
|
Saha A, Sen Gupta B, Patidar S, Hernández-Martínez JL, Martín-Romero F, Meza-Figueroa D, Martínez-Villegas N. A comprehensive study of source apportionment, spatial distribution, and health risks assessment of heavy metal(loid)s in the surface soils of a semi-arid mining region in Matehuala, Mexico. ENVIRONMENTAL RESEARCH 2024; 260:119619. [PMID: 39009213 DOI: 10.1016/j.envres.2024.119619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 06/10/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND This study investigates the contamination level, spatial distribution, pollution sources, potential ecological risks, and human health risks associated with heavy metal(loid)s (i.e., arsenic (As), copper (Cu), iron (Fe), manganese (Mn), lead (Pb), and zinc (Zn)) in surface soils within the mining region of Matehuala, located in central Mexico. OBJECTIVES The primary objectives are to estimate the contamination level of heavy metal(loid)s, identify pollution sources, assess potential ecological risks, and evaluate human health risks associated with heavy metal(loid) contamination. METHODS Soil samples from the study area were analysed using various indices including Igeo, Cf, PLI, mCd, EF, and PERI to evaluate contamination levels. Source apportionment of heavy metal(loid)s was conducted using the APCS-MLR and PMF receptor models. Spatial distribution patterns were determined using the most efficient interpolation technique among five different approaches. The total carcinogenic risk index (TCR) and total non-carcinogenic index (THI) were used in this study to assess the potential carcinogenic and non-carcinogenic hazards posed by heavy metal(loid)s in surface soil to human health. RESULTS The study reveals a high contamination level of heavy metal(loid)s in the surface soil, posing considerable ecological risks. As was identified as a priority metal for regulatory control measures. Mining and smelting activities were identified as the primary factors influencing heavy metal(loid) distributions. Based on spatial distribution mapping, concentrations were higher in the northern, western, and central regions of the study area. As and Fe were found to pose considerable and moderate ecological risks, respectively. Health risk evaluation indicated significant levels of carcinogenic risks for both adults and children, with higher risks for children. CONCLUSION This study highlights the urgent need for monitoring heavy metal(loid) contamination in Matehuala's soils, particularly in regions experiencing strong economic growth, to mitigate potential human health and ecological risks associated with heavy metal(loid) pollution.
Collapse
Affiliation(s)
- Arnab Saha
- Institute of Infrastructure and Environment, School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom.
| | - Bhaskar Sen Gupta
- Institute of Infrastructure and Environment, School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom.
| | - Sandhya Patidar
- Institute of Infrastructure and Environment, School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom.
| | | | - Francisco Martín-Romero
- Department of Geochemistry, Institute of Geology, Universidad Nacional Autónoma de México, Alcandia Coyoacán., Ciudad de México., 04510, Mexico.
| | - Diana Meza-Figueroa
- Department of Geology, UNISON, University of Sonora, Rosales y Encinas S/n, C.P. 83000, Hermosillo, Sonora, Mexico.
| | | |
Collapse
|
2
|
Peng M, Yang Z, Liu Z, Han W, Wang Q, Liu F, Zhou Y, Ma H, Bai J, Cheng H. Heavy metals in roadside soil along an expressway connecting two megacities in China: Accumulation characteristics, sources and influencing factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177095. [PMID: 39461525 DOI: 10.1016/j.scitotenv.2024.177095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/16/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
Transportation is widely recognized as a significant contributor to heavy metal (HM) pollution in roadside soils. A better understanding of HM pollution in soils near expressways is crucial, particularly given the rapid expansion of expressway transportation in China in recent years. In this study, 329 roadside topsoil samples were collected along the Beijing-Tianjin Expressway, which connects two megacities in China. Chemical analysis showed that HM concentrations in the soil samples were generally below national limits. The mean pollution index (Pi) values for As, Cr, Cu, Ni, Pb, and Zn ranged from 0.94 to 1.01, while Cd and Hg exhibited slightly higher mean Pi values of 1.19 and 1.13, respectively. The Nemerow integrated pollution index values for all samples ranged from 0.71 to 4.97, with a mean of 1.26. This suggests a slight enrichment of HM above natural background levels, especially for Cd and Hg. Source apportionment using positive matrix factorization revealed that natural sources contributed the most to soil HMs (64.51 %), followed by agricultural sources (19.15 %), traffic sources (9.77 %), and industrial sources (6.57 %). The Shapley additive explanation analysis, based on the random forest model, identified soil organic carbon, deep soil HM content, altitude, total soil K2O, urbanization composite impact index, and total soil P as primary influencing factors. This indicates that the impact of transportation on roadside soils along the Beijing-Tianjin Expressway is currently relatively limited. The prominent influence of soil properties and altitude underscored the importance of "transport" and "receptor" in the soil HMs accumulation process at the local scale. These findings provide critical data and a scientific basis for decision-makers to develop policies for expressway design and roadside soil protection.
Collapse
Affiliation(s)
- Min Peng
- Key Laboratory of Geochemical Cycling of Carbon and Mercury in the Earth's Critical Zone, Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, China; Research Center of Geochemical Survey and Assessment on Land Quality, China Geological Survey, Langfang 065000, China
| | - Zheng Yang
- Key Laboratory of Geochemical Cycling of Carbon and Mercury in the Earth's Critical Zone, Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, China; Research Center of Geochemical Survey and Assessment on Land Quality, China Geological Survey, Langfang 065000, China.
| | - Zijia Liu
- Key Laboratory of Geochemical Cycling of Carbon and Mercury in the Earth's Critical Zone, Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, China; Research Center of Geochemical Survey and Assessment on Land Quality, China Geological Survey, Langfang 065000, China
| | - Wei Han
- Key Laboratory of Geochemical Cycling of Carbon and Mercury in the Earth's Critical Zone, Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, China; Research Center of Geochemical Survey and Assessment on Land Quality, China Geological Survey, Langfang 065000, China
| | - Qiaolin Wang
- Key Laboratory of Geochemical Cycling of Carbon and Mercury in the Earth's Critical Zone, Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, China; Research Center of Geochemical Survey and Assessment on Land Quality, China Geological Survey, Langfang 065000, China
| | - Fei Liu
- Key Laboratory of Geochemical Cycling of Carbon and Mercury in the Earth's Critical Zone, Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, China; Research Center of Geochemical Survey and Assessment on Land Quality, China Geological Survey, Langfang 065000, China
| | - Yalong Zhou
- Key Laboratory of Geochemical Cycling of Carbon and Mercury in the Earth's Critical Zone, Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, China; Research Center of Geochemical Survey and Assessment on Land Quality, China Geological Survey, Langfang 065000, China
| | - Honghong Ma
- Key Laboratory of Geochemical Cycling of Carbon and Mercury in the Earth's Critical Zone, Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, China; Research Center of Geochemical Survey and Assessment on Land Quality, China Geological Survey, Langfang 065000, China
| | - Jinfeng Bai
- Key Laboratory of Geochemical Cycling of Carbon and Mercury in the Earth's Critical Zone, Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, China; Research Center of Geochemical Survey and Assessment on Land Quality, China Geological Survey, Langfang 065000, China
| | - Hangxin Cheng
- Key Laboratory of Geochemical Cycling of Carbon and Mercury in the Earth's Critical Zone, Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, China; Research Center of Geochemical Survey and Assessment on Land Quality, China Geological Survey, Langfang 065000, China.
| |
Collapse
|
3
|
Lu T, Ge W, Li A, Deng S, Min T, Qiu G. Endogenous silicon-activated rice husk biochar prepared for the remediation of cadmium-contaminated soils: Performance and mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:125030. [PMID: 39332799 DOI: 10.1016/j.envpol.2024.125030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Biochar is widely used for the remediation of heavy metal-contaminated soils. However, pristine biochar generally has limited active functional groups and adsorption sites, thereby exhibiting low immobilization performance for heavy metals. In addition to carbon (C), silicon (Si) is another common macro-element present in rice husk biochar, but it often exists in the form of amorphous oxide and therefore contributes little to the adsorption performance for heavy metals. The transformation of amorphous Si oxide to dissolved silicate through a precipitation effect can significantly improve its heavy metal immobilization capability. Herein, the amorphous Si oxide in rice husk biochar was activated by sodium hydroxide and then the dissolved silicate was immobilized by calcium salt. The as-synthetized Si-activated biochar was used to remediate cadmium (Cd)-contaminated soils. The results indicated that Si-activated rice husk biochar could reduce Cd migration and environmental risks by the transformation from exchangeable Cd into carbonate-bound and residual Cd. With increasing Ca: Si molar ratio, the content of CaCl2 and H2O-extractable Cd exhibited a decreasing trend. Moreover, a higher addition amount of Si-activated biochar improved the Cd immobilization efficiency. The application of 1.0% Ca/Si molar ratio of 2: 2 Si-activated rice husk biochar decreased the CaCl2-Cd and H2O-Cd concentration by a maximum of 83.7% and 90.5% compared with pristine rice husk biochar, respectively. The present work proposes an approach for highly efficient remediation of Cd-polluted soils by biochar.
Collapse
Affiliation(s)
- Tao Lu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Wenzhan Ge
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Anyu Li
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Shengjun Deng
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Tao Min
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Guohong Qiu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China; Hubei Hongshan Laboratory, Wuhan 430070, Hubei Province, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agriculture Genomics Institute at Shenzhen, Chinese Academy of Agriculture Science, Shenzhen, China.
| |
Collapse
|
4
|
Jakhu R, Nekhoroshkov P, Kamnev A, Grozdov D, Krupina M, Stukolova I, Zinicovscaia I. Assessment of potential toxic elements in soils, sediments, and vegetation in the surroundings of Anapa, Russia. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:877. [PMID: 39222252 DOI: 10.1007/s10661-024-13076-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The study presented here reports the concentration of major, trace, and rare earth elements in soil, sediments, and vegetation samples collected from 13 locations around Anapa City located on the northern coast of the Black Sea in Russia. The neutron activation analysis technique has been used to fulfill this objective. Along with this, the bioconcentration and translocation factors were calculated. Overall, the content of 31 elements was detected in soil and sediments while 20 elements were determined in three types of vegetation: macroalgae (Cystoseira sp. and Ulva sp.), aquatic plants (Phragmites australis), and sea grass (Zostera sp.). The quantified concentration followed the order soil > sediment > vegetation. The phytotoxic levels for Zn, V, Mn, and Fe have been quantified as the highest. Bromine was the most abundant and accumulated in Phragmites australis. Based on the results obtained from this investigation, there is a possibility of contamination in the study area.
Collapse
Affiliation(s)
- Rajan Jakhu
- Joint Institute for Nuclear Research, Joliot-Curie 6, 141980, Dubna, Russia.
| | - Pavel Nekhoroshkov
- Joint Institute for Nuclear Research, Joliot-Curie 6, 141980, Dubna, Russia
| | - Aleksandr Kamnev
- P.P. Shirshov Institute of Oceanology of the Russian Academy of Sciences, 117997, Moscow, Russia
- Moscow State University of Psychology and Education, 127051, Moscow, Russia
- Lomonosov Moscow State University, 119992, Moscow, Russia
| | - Dmitrii Grozdov
- Joint Institute for Nuclear Research, Joliot-Curie 6, 141980, Dubna, Russia
| | - Marina Krupina
- Lomonosov Moscow State University, 119992, Moscow, Russia
| | - Irina Stukolova
- A.V.Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences RU (TIPS RAS), Moscow, Russia
| | - Inga Zinicovscaia
- Joint Institute for Nuclear Research, Joliot-Curie 6, 141980, Dubna, Russia
- Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, 30 Reactorului Str., Magurele, Romania
| |
Collapse
|
5
|
Sun J, Zhou H, Cheng H, Chen Z, Wang Y. Distinct strategies of the habitat generalists and specialists in the Arctic sediments: Assembly processes, co-occurrence patterns, and environmental implications. MARINE POLLUTION BULLETIN 2024; 205:116603. [PMID: 38885575 DOI: 10.1016/j.marpolbul.2024.116603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 12/25/2023] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
Microorganisms could be classified as habitat generalists and specialists according to their niche breadth, uncovering their survival strategy is a crucial topic in ecology. Here, differences in environmental adaptation, community assemblies, co-occurrence patterns, and ecological functions between generalists and specialists were explored in the Arctic marine sediments. Compared to specialists, generalists showed lower alpha diversity but stronger environmental adaption, and dispersal limitation contributed more to the community assembly of specialists (74 %) than generalists (46 %). Furthermore, the neutral theory model demonstrated that generalists (m = 0.20) had a higher immigration rate than specialists (m = 0.02), but specialists exhibited more complex co-occurrence patterns than generalists. Our results also found that generalists may play more important roles in C, N, S metabolism but are weaker in carbon fixation and xenobiotic biodegradation and metabolism. This study would broaden our understanding of bacterial generalists' and specialists' survival strategies, and further reveal their ecological functions in marine sediments.
Collapse
Affiliation(s)
- Jianxing Sun
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, PR China
| | - Hongbo Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha 410083, Hunan, PR China
| | - Haina Cheng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha 410083, Hunan, PR China
| | - Zhu Chen
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha 410083, Hunan, PR China
| | - Yuguang Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha 410083, Hunan, PR China.
| |
Collapse
|
6
|
Sun J, Zhou H, Cheng H, Chen Z, Wang Y. Bacterial abundant taxa exhibit stronger environmental adaption than rare taxa in the Arctic Ocean sediments. MARINE ENVIRONMENTAL RESEARCH 2024; 199:106624. [PMID: 38943698 DOI: 10.1016/j.marenvres.2024.106624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
Marine bacteria influence Earth's environmental dynamics in fundamental ways by controlling the biogeochemistry and productivity of the oceans. However, little is known about the survival strategies of their abundant and rare taxa, especially in polar marine environments. Here, bacterial environmental adaptation, community assembly processes, and co-occurrence patterns between abundant and rare taxa were compared in the Arctic Ocean sediments. Results indicated that the diversity of rare taxa is significantly higher than that of abundant taxa, whereas the distance-decay rate of rare taxa community similarity is over 1.5 times higher than that of abundant taxa. Furthermore, abundant taxa exhibited broader environmental breadth and stronger phylogenetic signals compared to rare taxa. Additionally, the community assembly processes of the abundant taxa were predominantly governed by 81% dispersal limitation, while rare taxa were primarily influenced by 48% heterogeneous selection. The co-occurrence network further revealed the abundant taxa formed a more complex network to enhance their environmental adaptability. This study revealed the differences in environmental responses and community assembly processes between bacterial abundant and rare taxa in polar ocean sediments, providing some valuable insights for understanding their environmental adaptation strategies in marine ecosystems.
Collapse
Affiliation(s)
- Jianxing Sun
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, PR China
| | - Hongbo Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha, 410083, Hunan, PR China
| | - Haina Cheng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha, 410083, Hunan, PR China
| | - Zhu Chen
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha, 410083, Hunan, PR China
| | - Yuguang Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha, 410083, Hunan, PR China.
| |
Collapse
|
7
|
Chowdhury AI, Alam MR. Health effects of heavy metals in meat and poultry consumption in Noakhali, Bangladesh. Toxicol Rep 2024; 12:168-177. [PMID: 38304698 PMCID: PMC10832487 DOI: 10.1016/j.toxrep.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/30/2023] [Accepted: 01/13/2024] [Indexed: 02/03/2024] Open
Abstract
This study examined the quantities of heavy metals (Cd, Cr, Pb, Ni, Fe, and Cu) in commercially available meat, poultry, and game products in Noakhali, Bangladesh, and their potential health effects, as heavy metal contamination poses a significant food safety risk to human health Atomic Absorption Spectrophotometry was used to analyze heavy metals, and the health risk assessment was based on Estimated Daily Intake (EDI), Targeted Hazard Quotient (THQ), Total THQ, and Total Carcinogenic Risk (TCR). Most samples exceeded Maximum Allowable Concentrations (MAC) for heavy metals. The EDI value of Cd, Pb, and Cr for duck liver, goat liver, and pigeon brain, were higher than the Maximum Tolerable Dietary Intake (MTDI). Children had 1.28 times higher HI values than an adult. The calculation of THQ of all elements in adults and children was in the order of Cu; Pb; Ni; Cr; Cd; and Fe. The calculated TTHQ values were in the range of 0.051 to 1.988 and 0.047 to 3.975 for adults and children, respectively. The TCR values for Cd in poultry liver, brain, and meat, Sonali chicken, cow, pigeon, duck, and goat liver were higher than the reference value for adults and children, suggesting a potential cancer risk. The average exposure to lead leads to an increase in blood pressure by 0.47 mmHg and a decrease in IQ score by 1.94 points. The present study reveals the need to determine strong relationships between heavy metal exposure and food supply.
Collapse
Affiliation(s)
- Akibul Islam Chowdhury
- Department of Food Technology and Nutrition Science, Noakhali Science and Technology University, Noakhali, Bangladesh
- Department of Nutrition and Food Engineering, Daffodil International University, Dhaka, Bangladesh
| | - Mohammad Rahanur Alam
- Department of Food Technology and Nutrition Science, Noakhali Science and Technology University, Noakhali, Bangladesh
- Department of Nutrition, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
8
|
Islam MS, Nur-E-Alam M, Iqbal MA, Khan MB, Mamun SA, Miah MY, Rasheduzzaman M, Appalasamy S, Salam MA. Spatial distribution of heavy metal abundance at distance gradients of roadside agricultural soil from the busiest highway in Bangladesh: A multi-index integration approach. ENVIRONMENTAL RESEARCH 2024; 250:118551. [PMID: 38408626 DOI: 10.1016/j.envres.2024.118551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
Bangladesh is currently experiencing significant infrastructural development in road networking system through the construction or reconstruction of multiple roads and highways. Consequently, there is a rise in traffic intensity on roads and highways, along with a significant contamination of adjacent agricultural soils with heavy metals. The purpose of this study was to evaluate the ecological risk, health risk and the abundance of seven heavy metals (Cu, Mn, Pb, Cd, Cr, As, and Ni) in three distance gradients (0, 300, and 500 m) of agricultural soil along the Dhaka-Chattogram highway. The concentration of heavy metals was measured with an Atomic Absorption Spectrophotometer (AAS) on a total of 36 soil samples that were taken from 12 different sampling sites. Based on the findings, Cd had a high contamination factor for all distance gradients, whereas Cr had a moderate contamination factor in 67% of the study areas. According to the Pollution Load Index (PLI), Cd, Cr, and Pb were the predominant pollutants. Principal component analysis (PCA) result shows these metals mainly came from anthropogenic sources. The considerable positive correlations between Cu-Pb, Cu-Cd, Pb-Cd, and Cr-Ni all pointed to shared anthropogenic origins. As per Potential Ecological Risk Assessment (PERI) analysis, Pb, Cd, Cr, and Ni each contribute significantly and pose a moderate threat. The Target Hazard Quotient (THQ) values for all pathways of exposure to Pb and Cr in soils were more than 1, which would pose a significant risk to human health in the following order: THQadult female > THQadult male > THQchildren. This study will help to evaluate the human health risk and develop a better understanding of the heavy metal abundance scenario in the agricultural fields adjacent to this highway.
Collapse
Affiliation(s)
- Md Saydul Islam
- Department of Environmental Science and Disaster Management, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Md Nur-E-Alam
- Department of Environmental Science and Disaster Management, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Muhammad Anwar Iqbal
- Institute of Water and Flood Management (IWFM), Bangladesh University of Engineering and Technology (BUET), Dhaka, 1000, Bangladesh
| | - Md Badiuzzaman Khan
- Department of Environmental Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Shamim Al Mamun
- Department of Environmental Science and Resource Management, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
| | - Md Yunus Miah
- Department of Soil Science, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Md Rasheduzzaman
- Department of Environmental Science and Disaster Management, Bangabandhu Sheikh Mujibur Rahman Science & Technology University, Gopalganj, 8100, Bangladesh
| | - S Appalasamy
- Institute of Food Security and Sustainable Agriculture (IFSSA), Universiti Malaysia Kelantan, Jeli Campus, 17600, Jeli, Kelantan, Malaysia; Faculty of Earth Science, Universiti Malaysia Kelantan, Jeli Campus, 17600, Jeli, Kelantan, Malaysia
| | - Mohammed Abdus Salam
- Department of Environmental Science and Disaster Management, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh.
| |
Collapse
|
9
|
Gong C, Quan L, Chen W, Tian G, Zhang W, Xiao F, Zhang Z. Ecological risk and spatial distribution, sources of heavy metals in typical purple soils, southwest China. Sci Rep 2024; 14:11342. [PMID: 38762588 PMCID: PMC11102485 DOI: 10.1038/s41598-024-59718-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/15/2024] [Indexed: 05/20/2024] Open
Abstract
The identification and quantification of the ecological risks, sources and distribution of heavy metals in purple soils are essential for regional pollution control and management. In this study, geo-accumulation index (Igeo), enrichment factor (EF), pollution index (PI), potential ecological risk index (RI), principal component analysis (PCA) model and geographical detector (GD) were combined to evaluate the status, ecological risk, and sources of heavy metals (HMs) in soils from a typical purple soil areas of Sichuan province. The results showed that the average contents of As, Cd, Cr, Cu, Hg, Ni, Pb and Zn in purple soil were 7.77, 0.19, 69.5, 27.9, 0.077, 30.9, 26.5 mg/kg and 76.8 mg/kg, and the Igeo, EF and RI of topsoil Hg and Cd in designated area was the highest, and the average contents of Hg and Cd in topsoil were obviously greater than respective soil background value in Sichuan province and purple soil. The hot spots for the spatial distribution of 8 HMs were mainly focused in the southwest and northeast of the designated area, and there were also significant differences for 8 HMs distribution characteristics in the profile soil. Cu comes from both anthropogenic and natural sources, Zn, Ni and Cr mainly come from natural sources, but As, Pb, Hg and Cd mainly derived from human activities. GD results showed that soil texture (X18), altitude (X4), total nitrogen (TN), clay content (X3), sand content (X2) and silt content (X1) had the greatest explanatory power to 8 HMs spatial differentiation.This study provides a reference for understanding the status and influencing factors of HM pollution in typical purple soil, and lays a theoretical foundation for the environmental treatment of purple soil in China.
Collapse
Affiliation(s)
- Cang Gong
- Research Center of Applied Geology of China Geological Survey, Chengdu, 610039, China
- Key Laboratory of Natural Resource Coupling Process and Effects, Beijing, 100055, China
| | - Licheng Quan
- Research Center of Applied Geology of China Geological Survey, Chengdu, 610039, China.
| | - Wenbin Chen
- Research Center of Applied Geology of China Geological Survey, Chengdu, 610039, China
| | - Guanglong Tian
- Research Center of Applied Geology of China Geological Survey, Chengdu, 610039, China
| | - Wei Zhang
- Research Center of Applied Geology of China Geological Survey, Chengdu, 610039, China
| | - Fei Xiao
- Research Center of Applied Geology of China Geological Survey, Chengdu, 610039, China
| | - Zhixiang Zhang
- Research Center of Applied Geology of China Geological Survey, Chengdu, 610039, China.
| |
Collapse
|
10
|
Zhang Z, Lou S, Liu S, Zhou X, Zhou F, Yang Z, Chen S, Zou Y, Radnaeva LD, Nikitina E, Fedorova IV. Potential risk assessment and occurrence characteristic of heavy metals based on artificial neural network model along the Yangtze River Estuary, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:32091-32110. [PMID: 38648002 DOI: 10.1007/s11356-024-33400-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Pollution from heavy metals in estuaries poses potential risks to the aquatic environment and public health. The complexity of the estuarine water environment limits the accurate understanding of its pollution prediction. Field observations were conducted at seven sampling sites along the Yangtze River Estuary (YRE) during summer, autumn, and winter 2021 to analyze the concentrations of seven heavy metals (As, Cd, Cr, Pb, Cu, Ni, Zn) in water and surface sediments. The order of heavy metal concentrations in water samples from highest to lowest was Zn > As > Cu > Ni > Cr > Pb > Cd, while that in surface sediments samples was Zn > Cr > As > Ni > Pb > Cu > Cd. Human health risk assessment of the heavy metals in water samples indicated a chronic and carcinogenic risk associated with As. The risks of heavy metals in surface sediments were evaluated using the geo-accumulation index (Igeo) and potential ecological risk index (RI). Among the seven heavy metals, As and Cd were highly polluted, with Cd being the main contributor to potential ecological risks. Principal component analysis (PCA) was employed to identify the sources of the different heavy metals, revealing that As originated primarily from anthropogenic emissions, while Cd was primarily from atmospheric deposition. To further analyze the influence of water quality indicators on heavy metal pollution, an artificial neural network (ANN) model was utilized. A modified model was proposed, incorporating biochemical parameters to predict the level of heavy metal pollution, achieving an accuracy of 95.1%. This accuracy was 22.5% higher than that of the traditional model and particularly effective in predicting the maximum 20% of values. Results in this paper highlight the pollution of As and Cd along the YRE, and the proposed model provides valuable information for estimating heavy metal pollution in estuarine water environments, facilitating pollution prevention efforts.
Collapse
Affiliation(s)
- Zhirui Zhang
- Department of Hydraulic Engineering, Tongji University, Shanghai, 200092, China
| | - Sha Lou
- Department of Hydraulic Engineering, Tongji University, Shanghai, 200092, China.
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, 200092, China.
| | - Shuguang Liu
- Department of Hydraulic Engineering, Tongji University, Shanghai, 200092, China
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, 200092, China
| | - Xiaosheng Zhou
- Department of Hydraulic Engineering, Tongji University, Shanghai, 200092, China
| | - Feng Zhou
- Department of Hydraulic Engineering, Tongji University, Shanghai, 200092, China
| | - Zhongyuan Yang
- Department of Hydraulic Engineering, Tongji University, Shanghai, 200092, China
| | - Shizhe Chen
- Department of Hydraulic Engineering, Tongji University, Shanghai, 200092, China
| | - Yuwen Zou
- Department of Hydraulic Engineering, Tongji University, Shanghai, 200092, China
| | - Larisa Dorzhievna Radnaeva
- Laboratory of Chemistry of Natural Systems, Baikal Institute of Nature Management of Siberian Branch of the Russian Academy of Sciences, Ulan-Ude, Republic of Buryatia, Russia
| | - Elena Nikitina
- Laboratory of Chemistry of Natural Systems, Baikal Institute of Nature Management of Siberian Branch of the Russian Academy of Sciences, Ulan-Ude, Republic of Buryatia, Russia
| | - Irina Viktorovna Fedorova
- Institute of Earth Sciences, Saint Petersburg State University, 7-9 Universitetskaya Embankment, 199034, St Petersburg, Russia
| |
Collapse
|
11
|
Angon PB, Islam MS, KC S, Das A, Anjum N, Poudel A, Suchi SA. Sources, effects and present perspectives of heavy metals contamination: Soil, plants and human food chain. Heliyon 2024; 10:e28357. [PMID: 38590838 PMCID: PMC10999863 DOI: 10.1016/j.heliyon.2024.e28357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/27/2024] [Accepted: 03/18/2024] [Indexed: 04/10/2024] Open
Abstract
Heavy metal (HM) poisoning of agricultural soils poses a serious risk to plant life, human health, and global food supply. When HM levels in agricultural soils get to dangerous levels, it harms crop health and yield. Chromium (Cr), arsenic (As), nickel (Ni), cadmium (Cd), lead (Pb), mercury (Hg), zinc (Zn), and copper (Cu) are the main heavy metals. The environment contains these metals in varying degrees, such as in soil, food, water, and even the air. These substances damage plants and alter soil characteristics, which lowers crop yield. Crop types, growing circumstances, elemental toxicity, developmental stage, soil physical and chemical properties, and the presence and bioavailability of heavy metals (HMs) in the soil solution are some of the factors affecting the amount of HM toxicity in crops. By interfering with the normal structure and function of cellular components, HMs can impede various metabolic and developmental processes. Humans are exposed to numerous serious diseases by consuming these affected plant products. Exposure to certain metals can harm the kidneys, brain, intestines, lungs, liver, and other organs of the human body. This review assesses (1) contamination of heavy metals in soils through different sources, like anthropogenic and natural; (2) the effect on microorganisms and the chemical and physical properties of soil; (3) the effect on plants as well as crop production; and (4) entering the food chain and associated hazards to human health. Lastly, we identified certain research gaps and suggested further study. If people want to feel safe in their surroundings, there needs to be stringent regulation of the release of heavy metals into the environment.
Collapse
Affiliation(s)
- Prodipto Bishnu Angon
- Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md. Shafiul Islam
- Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Shreejana KC
- Institute of Agriculture and Animal Science, Tribhuwan University, Nepal
- Department of Plant Sciences and Plant Pathology, Faculty of Plant Science, Montana State University, Bozeman, MT, USA
| | - Arpan Das
- Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Nafisa Anjum
- Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Amrit Poudel
- Institute of Agriculture and Animal Science, Tribhuwan University, Nepal
- Department of Plant Sciences and Plant Pathology, Faculty of Plant Science, Montana State University, Bozeman, MT, USA
| | - Shaharia Akter Suchi
- Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| |
Collapse
|
12
|
Upadhyay V, Kumari A, Kumar S. From soil to health hazards: Heavy metals contamination in northern India and health risk assessment. CHEMOSPHERE 2024; 354:141697. [PMID: 38484997 DOI: 10.1016/j.chemosphere.2024.141697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/21/2024] [Accepted: 03/11/2024] [Indexed: 04/06/2024]
Abstract
Heavy metals contamination in soil is a global concern affecting the environment with far-reaching consequences for ecosystems and the health of human beings. Heavy metals contamination of soil entails a significant threat to the environment and human health. This research paper focuses on the quantification of heavy metals contamination in soil in Kanpur district, a highly industrialized and densely populated region in India. The study was aimed to identify the sources of heavy metals, map their spatial distribution, and evaluate the potential implications on the environment and human well-being. The prime intent of the current study was quantification of heavy metals in the soil as well as the comparison of risk on the health of human being using two different methods i.e., US EPA methodology for risk assessment and epidemiological study-based risk assessment. Heavy metals like Fe, Ni, Co, Cu, Mn, Cr, and Cd were analyzed in agricultural samples of soil with the help of inductively coupled plasma optical emission spectroscopy. On the basis of epidemiological data, the attributable and relative risk came out to be 0.001 and 1.060, respectively. On the basis of the calculation of Cr alone, the values of carcinogenic risk for adults came out to be 3.87 × 10-7 and for children it was 3.01 × 10- 6. In conclusion, this research paper highlights the alarming levels of heavy metals contamination in the soil of Kanpur district, emphasizing the urgent need for remediation and mitigation efforts, thereby guiding policy makers and stakeholders in developing targeted strategies for soil protection and safeguarding human health.
Collapse
Affiliation(s)
- Vidisha Upadhyay
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, Maharashtra, India
| | - Archana Kumari
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, Maharashtra, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, Maharashtra, India.
| |
Collapse
|
13
|
Xu D, Wang Z, Tan X, Xu H, Zhu D, Shen R, Ding K, Li H, Xiang L, Yang Z. Integrated assessment of the pollution and risk of heavy metals in soils near chemical industry parks along the middle Yangtze River. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170431. [PMID: 38301773 DOI: 10.1016/j.scitotenv.2024.170431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/13/2024] [Accepted: 01/23/2024] [Indexed: 02/03/2024]
Abstract
Industrialization in riparian areas of critical rivers has caused significant environmental and health impacts. Taking eight industrial parks along the middle Yangtze River as examples, this study proposes a multiple-criteria approach to investigate soil heavy metal pollution and associated ecological and health risks posed by industrial activities. Aiming at seven heavy metals, the results show that nickel (Ni), cadmium (Cd), and copper (Cu) exhibited the most significant accumulation above background levels. The comprehensive findings from Pearson correlation analysis, cluster analysis, principal component analysis, and industrial investigation uncover the primary sources of Cd, arsenic (As), mercury (Hg), and lead (Pb) to be chemical processing, while Ni and chromium (Cr) are predominantly derived from mechanical and electrical equipment manufacturing. In contrast, Cu exhibits a broad range of origins across various industrial processes. Soil heavy metals can cause serious ecological and carcinogenic health risks, of which Cd and Hg contribute to >70 % of the total ecological risk, and As contributes over 80 % of the total health risk. This study highlights the importance of employing multiple mathematical and statistical models in determining and evaluating environmental hazards, and may aid in planning the environmental remediation engineering and optimizing the industry standards.
Collapse
Affiliation(s)
- Dong Xu
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan 430074, China
| | - Zejun Wang
- School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan 430072, China.
| | - Xiaoyu Tan
- School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan 430072, China
| | - Haohan Xu
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan 430074, China
| | - Dongbo Zhu
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan 430074, China
| | - Ruili Shen
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan 430074, China
| | - Kang Ding
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan 430074, China
| | - Hongcheng Li
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan 430074, China
| | - Luojing Xiang
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan 430074, China.
| | - Zhibing Yang
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
14
|
Cao Y, Mo S, Ma C, Tan Q. Flooding regimes alleviate lead toxicity and enhance phytostabilization of salix: Evidence from physiological responses and iron-plaque formation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120153. [PMID: 38394868 DOI: 10.1016/j.jenvman.2024.120153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/25/2024]
Abstract
Aggravated metal pollution in wetland and riparian zones has become a global environmental issue, necessitating the identification of sustainable remediation approaches. Salix exhibits great potential as a viable candidate for metal(loid) remediation. However, the underlying mechanisms for its effectiveness in different flooding regimes with Pb pollution have not been extensively studied. In this study, fast-growing Salix×jiangsuensis 'J172' was selected and planted in different Pb polluted soils (control, 400 and 800 mg ∙ kg-1) under non-flooded and flooded (CF: continuous flooding and IF: intermittent flooding) conditions for 60 days. This study aimed to explore the effects of flooding on Salix growth performance, physiological traits, and the relationship between Pb uptake/translocation and root Fe plaques. Salix×jiangsuensis 'J172' exhibited excellent tolerance and adaptation to Pb pollution with a tolerance index (TI) exceeding 0.6, even at the highest Pb levels. Moreover, the TIs under flooded conditions were higher than that under non-flooded conditions, suggesting that flooding could alleviate Pb toxicity under co-exposure to Pb and flooding. Leaf malondialdehyde (MDA) exhibited a dose-dependent response to Pb exposure; however, CF or IF mitigated the oxidative damage induced by Pb toxicity with decreased MDA content (2.2-11.9%). The superoxide dismutase and peroxidase activities were generally enhanced by flooding, but combined stress (flooding and Pb) significantly decreased catalase activity. Pb was predominantly accumulated in Salix roots, and flooding markedly increased root Pb accumulation by 19.2-173.0% compared to non-flooded condition. Additionally, a significant positive correlation was observed between the iron (Fe) content of the root plaque and root Pb accumulation, indicating that the formation of Fe plaque on the root surface could enhance the phytostabilization of Pb in Salix. The current findings highlight that fast-growing woody plants are suitable for phyto-management of metal-polluted wetlands and can potentially minimize the risk of metal mobility in soils.
Collapse
Affiliation(s)
- Yini Cao
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Siqi Mo
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Chuanxin Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Qian Tan
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
15
|
Podlasek A, Vaverková MD, Jakimiuk A, Koda E. A comprehensive investigation of geoenvironmental pollution and health effects from municipal solid waste landfills. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:97. [PMID: 38393507 PMCID: PMC10891210 DOI: 10.1007/s10653-024-01852-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/01/2024] [Indexed: 02/25/2024]
Abstract
This study investigates human health risks associated with heavy metals (HMs) occurrence in municipal solid waste (MSW) landfills. For testing of selected MSW landfills steps were involved, including site characterization, soil sampling and chemical testing, statistical analysis, as well as health risk assessment, carcinogenic and non-carcinogenic effects. For the Polish landfill (Radiowo) the average HMs concentrations were found in the following order: Zn (52.74 mg/kg DM) > Pb (28.32 mg/kg DM) > Cu (12.14 mg/kg DM) > Ni (4.50 mg/kg DM) > Cd (3.49 mg/kg DM), while for the Czech landfill (Zdounky): Zn (32.05 mg/kg DM) > Cu (14.73 mg/kg DM) > Ni (4.73 mg/kg DM) > Pb (0.10 mg/kg DM) = Cd (0.10 mg/kg DM). Strong positive correlations between selected HMs demonstrated identical origins. Principal component analysis (PCA) performed for the Radiowo landfill transferred the soil parameters into three principal components (PCs), accounting for 87.12% of the total variance. The results of the PCA analysis for the Zdounky landfill revealed three PCs responsible for 95.16% of the total variance. The exposure pathways of HMs for landfills were in the following order: ingestion > dermal absorption > inhalation. For both landfills, the values of hazard quotient were lower than 1, indicating no potential negative health effects. In terms of the hazard index (HI), for both landfills, no adverse human health effects occur (HI < 1). The incremental lifetime cancer risk (ILCR) values indicated negligible or acceptable carcinogenic risk of HMs (average ILCR in the range from 5.01E-10 to 5.19E-06).
Collapse
Affiliation(s)
- Anna Podlasek
- Department of Revitalization and Architecture, Institute of Civil Engineering, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02 776, Warsaw, Poland
| | - Magdalena Daria Vaverková
- Department of Revitalization and Architecture, Institute of Civil Engineering, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02 776, Warsaw, Poland.
- Department of Applied and Landscape Ecology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00, Brno, Czech Republic.
| | - Aleksandra Jakimiuk
- Department of Revitalization and Architecture, Institute of Civil Engineering, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02 776, Warsaw, Poland
| | - Eugeniusz Koda
- Department of Revitalization and Architecture, Institute of Civil Engineering, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02 776, Warsaw, Poland
| |
Collapse
|
16
|
Li J, Liu JZ, Tai XS, Jiao L, Zhang M, Zang F. Pollution and source-specific risk analysis of potentially toxic metals in urban soils of an oasis-tourist city in northwest China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:55. [PMID: 38263529 DOI: 10.1007/s10653-023-01850-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/27/2023] [Indexed: 01/25/2024]
Abstract
Source-specific risk apportionment for soil potentially toxic metals (PTMs) is of great significance for contamination prevention and risk management in urban environments. Eighty-five urban soil samples were obtained from an oasis-tourist city, China and examined for eight PTMs (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn). The pollution levels, sources, and ecological risk of soil PTMs were quantified, and their source-specific ecological and human health effects were also estimated using the multi-proxy approaches. The results demonstrated that accumulation of Cd, Hg, Pb, Cr, Cu, and Zn in soils was observed compared to their background levels, and the soils experienced varying degrees of PTMs pollution, especially at sites with high-intensity anthropogenic activities. Natural sources, atmospheric deposition, industrial sources, vehicular emissions, and comprehensive inputs were the principal sources, with contributions of 29.28%, 25.86%, 20.13%, 16.50%, and 8.23%, respectively. The integrated ecological risks of PTMs in soils were moderate at most sites, with atmospheric deposition being the dominant contributor to ecological risks. Children exhibited pronounced non-cancer risks, but adults had no notable non-cancer risks. Moreover, there were potential carcinogenic risks for both children and adults within the study region. Non-cancer and carcinogenic risks were more significant for children than adults, and traffic emissions were the primary contributor to non-cancer risks (adults: 20.53%, children: 20.49%) and carcinogenic risks (adults: 22.95%, children: 22.08%). The industrial and traffic activities were considered as priority control sources for soil pollution control and risk management, with Hg, Cd, Zn, and Pb corresponding to the priority elements. This study highlights the source-specific ecological and human health effects of PTMs pollution in urban soils, thereby providing valuable information for targeted pollution control and priority source management.
Collapse
Affiliation(s)
- Jun Li
- College of Urban Environment, Lanzhou City University, Lanzhou, 730070, China.
| | - Jun-Zhuo Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xi-Sheng Tai
- College of Urban Environment, Lanzhou City University, Lanzhou, 730070, China
| | - Liang Jiao
- Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Northwest Normal University, Lanzhou, 730070, China
| | - Ming Zhang
- College of Urban Environment, Lanzhou City University, Lanzhou, 730070, China
| | - Fei Zang
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| |
Collapse
|
17
|
Pulikova E, Ivanov F, Gorovtsov A, Dudnikova T, Zinchenko V, Minkina T, Mandzhieva S, Barahov A, Sherbakov A, Sushkova S. Microbiological status of natural and anthropogenic soils of the Taganrog Bay coast at different levels of combined pollution with heavy metals and PAHs. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:9373-9390. [PMID: 36436180 DOI: 10.1007/s10653-022-01405-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
The effect of heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) pollution on the microbiological status of soils on the coast of the Taganrog Bay and adjacent areas was studied. The content of total and exchangeable forms of HMs, the content of 16 priority PAHs and the abundance of several groups of culturable microorganisms was determined, namely copiotrophic, prototrophic, aerobic spore-forming bacteria, actinomycetes, molds and yeasts. The content of total and exchangeable forms of HMs in urban coastal soils in industrial zone significantly exceeded that in non-urban soils. The maximum concentrations of total forms of Mn, Cr, Ni, Cu, Zn, Pb and Cd are 1821, 871, 143, 89, 1390, 317 and 10 mg/kg, respectively. The median value of the total content of 16 PAHs in urban soils is 3 times higher than in the soils of natural areas and reached 4309 ng/g. The lowest numbers of copiotrophic bacteria, prototrophic bacteria and aerobic spore-forming bacteria were found in the soils of industrial zone: 6.8, 13.8 and 0.63 million CFU g-1 dry soil, respectively. The largest numbers of copiotrophic bacteria, prototrophic bacteria and aerobic spore-forming bacteria were recorded in the soils of natural areas-72.5, 136 and 5.73 million CFU g-1 dry soil, respectively. It was found that the abundance of copiotrophs, prototrophs, and aerobic spore-forming bacteria is more affected by the urbanization of coastal soils including the pollution of HMs and PAHs. Other groups of microorganisms (actinomycetes, molds and yeasts) turned out to be more resistant to anthropogenic factors.
Collapse
Affiliation(s)
| | - Fedor Ivanov
- Southern Federal University, Rostov-on-Don, Russian Federation, 344090
| | - Andrey Gorovtsov
- Southern Federal University, Rostov-on-Don, Russian Federation, 344090
| | - Tamara Dudnikova
- Southern Federal University, Rostov-on-Don, Russian Federation, 344090
| | | | - Tatiana Minkina
- Southern Federal University, Rostov-on-Don, Russian Federation, 344090
| | | | - Anatoly Barahov
- Southern Federal University, Rostov-on-Don, Russian Federation, 344090
| | - Alexey Sherbakov
- Southern Federal University, Rostov-on-Don, Russian Federation, 344090
| | - Svetlana Sushkova
- Southern Federal University, Rostov-on-Don, Russian Federation, 344090.
| |
Collapse
|
18
|
Chen D, Yang S, Jiang Z, Wang Z, Wang Z, Tian H. Spatial distribution, ecological risk and health risk assessment of heavy metals in agricultural soil from Ankang basin, Shaanxi Province. Heliyon 2023; 9:e22580. [PMID: 38046143 PMCID: PMC10687698 DOI: 10.1016/j.heliyon.2023.e22580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/05/2023] Open
Abstract
In order to assess the heavy metal pollution features, ecological dangers, and health risk status posed to human beings by soils in the Ankang Basin, a study was conducted. This involved the collection of 38 surface soil samples, followed by the determination of elemental levels of arsenic, mercury, copper, cadmium, lead, chromium, nickel, and zinc. The concentrations of arsenic, mercury, copper, cadmium, lead, chromium, nickel, and zinc were quantified through the collection of 38 surface soil samples. The data obtained from the study was subjected to analysis and evaluation utilizing various academic methodologies, including the geo-accumulation index method, potential ecological risk assessment method, human health risk assessment model, and Monte Carlo simulation method. The findings indicated that the concentrations of the eight heavy metals in the soil above the background levels, with only Cadmium (Cd) marginally surpassing the threshold set for controlling soil pollution risks. The ground accumulation index revealed a higher degree of soil pollution with mercury, cadmium, copper, and zinc components. According to the possible ecological risk index, the presence of mercury and cadmium elements poses significant ecological hazards. The geographical distribution analysis suggests that these risks mostly stem from the combined impacts of human activities and the topographical and geomorphological characteristics of the river valley. The findings of the human health risk assessment indicated that the non-carcinogenic risk fell within acceptable limits. Additionally, it was observed that the carcinogenic risk associated with arsenic, mercury, cadmium, and nickel was comparatively greater for children as compared to adults. The results of the Monte Carlo simulations indicate that the non-carcinogenic hazards have a negligible effect on human health. However, it was seen that arsenic and nickel have a greater likelihood of presenting a substantial carcinogenic risk to humans, particularly in relation to the pediatric population, hence exerting a more pronounced impact on their health. In general, it is observed that conventional deterministic risk assessments tend to overstate the potential health risks associated with a given situation. Conversely, the utilization of Monte Carlo simulations has been found to effectively mitigate uncertainties in health risk assessments. It has been observed that children exhibit a higher vulnerability to both carcinogenic and non-carcinogenic health impacts resulting from exposure to heavy metals present in soil, in comparison to adults. It is recommended that residents prioritize the surveillance of soil heavy metals in relation to potential impacts on human health.
Collapse
Affiliation(s)
- Daokun Chen
- Xi'an Center of Mineral Resources Survey, China Geological Survey, Xi'an 710100 China
- School of Earth and Environment, Anhui University of Science & Technology, Huainan 232001 China
| | - Shengfei Yang
- Xi'an Center of Mineral Resources Survey, China Geological Survey, Xi'an 710100 China
| | - Zhiyang Jiang
- School of Earth and Environment, Anhui University of Science & Technology, Huainan 232001 China
| | - Zhirui Wang
- Xi'an Center of Mineral Resources Survey, China Geological Survey, Xi'an 710100 China
| | - Zhanbin Wang
- Xi'an Center of Mineral Resources Survey, China Geological Survey, Xi'an 710100 China
| | - Hui Tian
- Xi'an Center of Mineral Resources Survey, China Geological Survey, Xi'an 710100 China
| |
Collapse
|
19
|
Al Mazed M, Haque A, Iqbal M, Rana S, Ahammad K, Quader FB, Al Nahid SA, Bhuyan S, Senapathi V, Billah M, Ahmed SI. Heavy metal (As, Cr, and Pb) contamination and associated human health risks in two commercial fish species in Bangladesh. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1400. [PMID: 37917372 DOI: 10.1007/s10661-023-11985-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/12/2023] [Indexed: 11/04/2023]
Abstract
Contamination of fish with metals is a worldwide consumer safety concern. In this study, three metals such as arsenic (As), chromium (Cr), and lead (Pb) were measured in two commonly consumed fish species Oreochromis niloticus (Tilapia) and Pangasianodon hypophthalmus (Pangasius) that are commercially farmed. The concentration of the metals studied was found within the permissible limits. The concentrations of As, Cr, and Pb in tilapia fluctuated, ranging from not detected (ND) to 0.114 mg/kg, ND to 0.009 mg/kg, and ND to 0.085 mg/kg, respectively. For Pangasius, the concentrations were in the range of 0.014 to 0.118 mg/kg for As, ND to 0.02 mg/kg for Cr, and ND to 0.047 mg/kg for Pb. Hierarchical clustering revealed that As was possibly taken up by leachate and groundwater, while Cr and Pb were from contaminated feed. The results of the calculations for estimated daily intake, target hazard quotient, hazard index, and carcinogenic risk made it clear that consumption of the fish studied does not have a significant adverse effect on consumer health. In conclusion, the contamination levels of farmed tilapia and Pangasius sold in the study area are within acceptable limits, but regular monitoring is required to ensure safe production.
Collapse
Affiliation(s)
- Maria Al Mazed
- Bangladesh Fisheries Research Institute, Mymensingh 2201, Bangladesh
| | - Ayenuddin Haque
- Department of Fisheries Resource Management, Faculty of Fisheries, Chattogram Veterinary and Animal Sciences University, Khulshi 4225, Chattogram, Bangladesh
| | - Mehedi Iqbal
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwano-ha, Kashiwa, Chiba, 277-8564, Japan.
| | - Saifuddin Rana
- Bangladesh Fisheries Research Institute, Mymensingh 2201, Bangladesh
| | - Kabir Ahammad
- Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8567, Japan
| | - Fahad Bin Quader
- Department of Applied Chemistry and Chemical Technology, Faculty of Food Science and Technology, Chattogram Veterinary and Animal Sciences University, Khulshi 4225, Chattogram, Bangladesh
| | - Sk Ahmad Al Nahid
- Bangladesh Fisheries Research Institute, Mymensingh 2201, Bangladesh
| | - Simul Bhuyan
- Bangladesh Oceanographic Research Institute, Cox's Bazar, 4730, Bangladesh
| | | | - Masum Billah
- Inter-Departmental Research Centre for Environmental Science-CIRSA, University of Bologna, Ravenna Campus, Via S. Alberto 163, 48123, Ravenna, Italy.
| | - Sk Istiaque Ahmed
- Bangladesh Fisheries Research Institute, Mymensingh 2201, Bangladesh.
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwano-ha, Kashiwa, Chiba, 277-8564, Japan.
- Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8567, Japan.
| |
Collapse
|
20
|
Islam MS, Chowdhury AI, Shill LC, Reza S, Alam MR. Heavy metals induced health risk assessment through consumption of selected commercially available spices in Noakhali district of Bangladesh. Heliyon 2023; 9:e21746. [PMID: 37954396 PMCID: PMC10638016 DOI: 10.1016/j.heliyon.2023.e21746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023] Open
Abstract
There are growing concerns for food safety due to the risks associated with heavy metal contamination of culinary herbs and spices in developing countries like Bangladesh. The objective of the present cross-sectional study is to determine the concentrations of the heavy metals Lead (Pb), Cadmium (Cd), Chromium (Cr), Copper (Cu), and Iron (Fe) in the branded and non-branded spices collected from the Noakhali district by Atomic absorption spectrophotometry method, as well as to assess the health hazard risk associated with heavy metals intake via consumption of spices. The findings revealed that the greatest concentrations of Pb (15.47 ± 1.93), Cd (1.65 ± 0.011), Cr (31.99 ± 3.97), Cu (18.84 ± 1.97), and Fe (9.29 ± 1.71) were found in Cardamom, Coriander leaf, Bay leaf, Dried chili, and Black pepper respectively. Around 37 % of Cr and 5 % of Fe Estimated Daily Intake (EDI) were greater than reference doses (RfD). All spices had Total Hazard Quotient (THQ) values for Pb, Cd, Cu, and Fe that were below acceptable, and 37 % of all spices had Total Target Hazard Quotient (TTHQ) values for Pb, Cd, Cu, and Fe that were over the standard range, suggesting adverse health impacts for consumers. Green chili, ginger, coriander leaf, and all kinds of chili powder and turmeric powder have been reported to have exceptionally high TTHQ levels of Cr. The estimated carcinogenic risk for chromium in non-branded coriander leaf was found to be higher than safe levels. This study provides valuable insights into the commonly consumed spices in Bangladesh and their potential health risks associated with heavy metal contamination. The findings of this study can be used by regulatory authorities to develop effective strategies and actions to mitigate these risks and safeguard public health.
Collapse
Affiliation(s)
- Md Shahedul Islam
- Department of Food Technology and Nutrition Science, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Akibul Islam Chowdhury
- Department of Food Technology and Nutrition Science, Noakhali Science and Technology University, Noakhali, Bangladesh
- Department of Nutrition and Food Engineering, Daffodil International University, Savar, Dhaka, Bangladesh
| | - Lincon Chandra Shill
- Department of Food Technology and Nutrition Science, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Sompa Reza
- Institute of Nutrition and Food Science, University of Dhaka, Dhaka, Bangladesh
| | - Mohammad Rahanur Alam
- Department of Food Technology and Nutrition Science, Noakhali Science and Technology University, Noakhali, Bangladesh
| |
Collapse
|
21
|
Fu C, Li Y, Tu C, Hu J, Zeng L, Qian L, Christie P, Luo Y. Dynamics of trace element enrichment in blue carbon ecosystems in relation to anthropogenic activities. ENVIRONMENT INTERNATIONAL 2023; 180:108232. [PMID: 37778288 DOI: 10.1016/j.envint.2023.108232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/12/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
Blue carbon ecosystems (BCEs), located at the land-sea interface, provide critical ecological services including the buffering of anthropogenic pollutants. Understanding the interactions between trace element (TE) loads in BCEs and socioeconomic development is imperative to informing management plans to address pollution issues. However, the identification of anthropogenic TE pollution in BCEs remains uncertain due to the complex geochemical and depositional processes and asynchronous socioeconomic development along continental coastlines. Here, priority-controlled TE (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) concentrations in the mangrove, saltmarsh and seagrass soils and plant tissues along the coastline of China were investigated while taking bare flat and upland soils as corresponding references. We demonstrate that blue carbon (BC) soils accumulated markedly higher concentrations of anthropogenic TEs than the reference soils, mainly due to the effective trapping of fine-grained particles and higher binding capacities. We identify the time course of TE changes over the last 100 years which shows increasing anthropogenic TE accumulation resulting from military activities (1930-1950) and the growth of industrial and agricultural activities (1950-1980), then reaching a maximum after national economic reform (1980-2000). Since the 2000s, decreases in TE discharges driven by socioeconomic reform and strengthened environmental regulations have led to a widespread reversal of anthropogenic TE concentrations in BC soils. Based on the current TE flux we estimate that BCEs can filter over 27.3-100 % of the TEs emitted in industrial wastewaters from Chinese coastal provinces annually. However, the uptake of these TEs by plants can be substantially reduced through various mechanisms offered by edaphic properties such as organic carbon, clay, and sulfur contents. Therefore, enhancing TE filtering while preventing TEs from entering food webs through the conservation and restoration of BCEs will greatly aid in achieving the sustainable development goal of the coastal zone under intensified anthropogenic activities.
Collapse
Affiliation(s)
- Chuancheng Fu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Marine Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Yuan Li
- CAS Key Laboratory of Coastal Environment Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Chen Tu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Hu
- Key Laboratory of Coastal Salt Marsh Ecosystems and Resources, Ministry of Natural Resources, Jiangsu Geological Bureau, Nanjing 210018, China
| | - Lin Zeng
- School of Resources and Environmental Engineering, Ludong University, Yantai 264025, China
| | - Li Qian
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Peter Christie
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongming Luo
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; CAS Key Laboratory of Coastal Environment Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of the Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
22
|
Sun J, Huang X, Song X, Tang R, Zhao M, Cai B, Wang H, Han Z, Liu Y, Fan Z. New insights into health risk assessment on soil trace metal(loid)s: Model improvement and parameter optimization. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131919. [PMID: 37402323 DOI: 10.1016/j.jhazmat.2023.131919] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/07/2023] [Accepted: 06/21/2023] [Indexed: 07/06/2023]
Abstract
Trace metal(loid)s (TMs) in soils may pose potential health risks to humans. Due to model uncertainty and variability of exposure parameters, the traditional health risk assessment (HRA) model may lead to inaccurate risk assessment results. Therefore, this study developed an improved HRA model to assess health risks by combining two-dimensional Monte Carlo simulation (2-D MCS) with a Logistic Chaotic sequence based on published data from 2000 to 2021. The results showed children and adult females were the high-risks populations for Non-carcinogenic risk and Carcinogenic risk, respectively. Meanwhile, children's Ingestion rate (IngR < 160.233 mg/day) and adult females' Skin adherence factor (0.026 mg/(cm2•d) < AF < 0.263 mg/(cm2•d)) were used as recommended exposure to make the health risk within acceptable range. Additionally, when performing risk assessment using actual exposure parameters, priority control TMs were identified, with As being the priority control TM for Southwest China and Inner Mongolia, whereas Cr and Pb for Tibet and Yunnan, respectively. Compared to health risk assessment, improved models increased risk assessment accuracy and provided recommended exposure parameter for high-risk populations. This study will provide new insights for soil-related health risk assessment.
Collapse
Affiliation(s)
- Jiaxun Sun
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Xinmiao Huang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Xiaoyong Song
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Rui Tang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Menglu Zhao
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Boya Cai
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Huijuan Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Zilin Han
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Yafeng Liu
- School of Resoureces and Environment, Anqing Normal University, Anqing 246133, China.
| | - Zhengqiu Fan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| |
Collapse
|
23
|
Lee H, Kim G, Depuydt S, Shin K, Han T, Park J. Metal Toxicity across Different Thallus Sections of the Green Macroalga, Ulva australis. TOXICS 2023; 11:548. [PMID: 37505514 PMCID: PMC10384764 DOI: 10.3390/toxics11070548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/29/2023]
Abstract
We aimed to identify functional differences between different sections of the thallus of Ulva australis and develop tissue-endpoint combinations to assess the toxicity of six metals (i.e., Ag, As, Cd, Cr, Cu, and Ni). EC50 values for these metals in three sections of the thallus of Ulva were obtained for multiple endpoints: relative growth rate (RGR), chlorophyll a fluorescence, pigment contents, and the expression of the photosynthesis-related gene, rbcL. The responses of the endpoints varied across the respective thallus sections; overall, the most toxic metals were Ag and Cu. These endpoints were the best for evaluating metal toxicity: ETRmax of the middle thallus sections for Ag toxicity; RGR of the middle thallus section for As and Cd; ETRmax of the marginal thallus section for Cr; Chl b contents of the marginal thallus section for Cu; RGR of the basal thallus section for Ni. The EC50 values for the inhibition of ETRmax in middle (0.06 mg∙L-1) and Chl b in the marginal thallus sections (0.06 mg∙L-1) were all lower than those of the quality standard for wastewater discharge values of Ag and Cu in Republic of Korea and the US, pointing to the suitability of U. australis-based endpoints for risk assessment.
Collapse
Affiliation(s)
- Hojun Lee
- Bio Environmental Science and Technology (BEST) Lab, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Republic of Korea
| | - Geonhee Kim
- Department of Marine Science, Incheon National University, 119, Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Stephen Depuydt
- Erasmus Brussels University of Applied Sciences and Arts, Nijverheidskaai 170, 1070 Brussels, Belgium
| | - Kisik Shin
- Water Environmental Engineering Research Division, National Institute of Environmental Research (NIER), 42, Hwangyeong-ro, Incheon 22689, Republic of Korea
| | - Taejun Han
- Bio Environmental Science and Technology (BEST) Lab, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Republic of Korea
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653-Block F, B-9000 Gent, Belgium
| | - Jihae Park
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653-Block F, B-9000 Gent, Belgium
- Centre for Environmental and Energy Research, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Republic of Korea
| |
Collapse
|
24
|
Liu W, Xing X, Li M, Yu Y, Hu T, Mao Y, Liang L, Zhang Y, Zhang J, Qi S. New insight into the geochemical mechanism and behavior of heavy metals in soil and dust fall of a typical copper smelter. ENVIRONMENTAL RESEARCH 2023; 225:115638. [PMID: 36889563 DOI: 10.1016/j.envres.2023.115638] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
The desorption mechanism of heavy metals (HMs) in soil around the mining region are complex and affected by multiple pollution sources, including sewage discharge and atmospheric deposition. Meanwhile, pollution sources would change soil physical and chemical properties (mineralogy and organic matter), thus affecting the bioavailability of HMs. This study aimed to investigate the pollution source of HMs (Cd, Co, Cu, Cr, Mn, Ni, Pb, and Zn) in soil near mining, and further evaluate influence mechanism of dust fall on HMs pollution in soil by desorption dynamics processes and pH-dependence leaching test. Result presented that dust fall is the primary pollution source to HMs accumulation in soil. Additionally, the result of mineralogical analysis in dust fall revealed that quartz, kaolinite, calcite, chalcopyrite, and magnetite are the major mineralogical phases by XRD and SEM-EDS. Meanwhile, the abundance of kaolinite and calcite in dust fall is higher than in soil, which is the primary reason of higher acid-base buffer capacity of dust fall. Correspondingly, the weakened or disappeared of hydroxyl after the adding acid extraction (0-0.4 mmol· g-1) demonstrated that hydroxyl is the main participants of HMs absorption in soil and dust fall. These combined findings suggested that atmospheric deposition not only increases the pollution loading of HMs in soil, but also changes the mineral phase composition of soil, which would increase the adsorption capacity and bioavailability of HMs in soil. This is very remarkable that heavy metals in soil influenced by dust fall pollution could be released preferentially when soil pH is changed. The present results of this study would provide efficient and scientific targeted strategies for pollution control of HMs in soil near mining areas.
Collapse
Affiliation(s)
- Weijie Liu
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
| | - Xinli Xing
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China.
| | - Miao Li
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
| | - Yue Yu
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Tianpeng Hu
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
| | - Yao Mao
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
| | - Lili Liang
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Yuan Zhang
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Jiaquan Zhang
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
| | - Shihua Qi
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
25
|
Liu P, Wu Q, Hu W, Tian K, Huang B, Zhao Y. Effects of atmospheric deposition on heavy metals accumulation in agricultural soils: Evidence from field monitoring and Pb isotope analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121740. [PMID: 37121303 DOI: 10.1016/j.envpol.2023.121740] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/09/2023] [Accepted: 04/28/2023] [Indexed: 05/08/2023]
Abstract
Atmospheric deposition is an essential pathway of heavy metals (HMs) from the atmosphere to soils, while few studies assess the effects and contributions of atmospheric deposition on HMs accumulations in agricultural soils from the field and regional scales. In this study, eleven representative field monitoring sites from industrial areas, agricultural areas, and reference site in a typical rapid industrial development region were selected to determine the effects of atmospheric deposition on soil HMs accumulation. Industrial activities significantly increased the deposited particles flux from atmospheric deposition, with annual particles fluxes in industrial areas being 1.83 and 1.90 times higher than in agricultural areas and reference site, respectively. Although the HMs deposition fluxes had decreased significantly with time by literature comparison, the deposition fluxes of Cd and Pb were still at high levels in this study area. Precipitation was the key factor affecting seasonal variations of atmospheric HMs deposition. Lead isotope analysis indicated that atmospheric Pb originated from coal combustion, and atmospheric deposition was the primary source of Pb contamination in agricultural soil adjacent to industries. This study provided insight into the effects of atmospheric deposition on agricultural soil HMs accumulations at the regional scale and an important theoretical basis for source-preventing soil HMs contamination in industrial developed and other similar areas.
Collapse
Affiliation(s)
- Peng Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiumei Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenyou Hu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Kang Tian
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Biao Huang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongcun Zhao
- University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| |
Collapse
|
26
|
Xu Q, Wang J, Shi W. Source apportionment and potential ecological risk assessment of heavy metals in soils on a large scale in China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:1413-1427. [PMID: 35438436 DOI: 10.1007/s10653-022-01266-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
The properties and sources of soil heavy metals (Pb, Zn, Cu, Cd, As, Hg, Cr, and Ni) need to be comprehensively analyzed to take effective steps to control and reduce soil pollutants. In this research, 416 soil samples were collected on a large scale in China. Two receptor models (PCA/MLR and PMF) were utilized to identify pollutant sources and quantify the contributions. The means of soil heavy metals (Zn, Cu, As, Hg, Cr, and Ni) were lower than the corresponding screening values and intervention values. Cd was greater than the intervention value, while Pb was between the screening value and the intervention value. Source apportionments suggested that mine sources were the most polluted (64.28%), followed by traffic sources (38.98%), natural sources (11.41-39.58%), industrial sources (9.8-18.65%), and agricultural sources (2.79-14.51%). Compared to the PCA/MLR model, the PMF model had a better effect in evaluating soil heavy metal pollution. It gave corresponding weights according to the data concentration and its uncertainty, which made the result reasonable. The ecological risk assessment indicated that Cd posed a significant risk, while Hg caused a mild risk and the other six heavy metals posed a low risk. The spatial distribution of ecological risk suggested that severe risk points were mainly distributed in the central area, while high-risk points were distributed in the southern region. The SRI method was developed to link pollution sources and their potential ecological risks and indicated better applicability to the PMF model. The study findings could provide guidelines for monitoring the main sources and reducing the pollution of soil heavy metals.
Collapse
Affiliation(s)
- Qisheng Xu
- School of Land Science and Technology, China University of Geosciences, 29 Xueyuan Road, Haidian District, Beijing, 100083, People's Republic of China
| | - Jinman Wang
- School of Land Science and Technology, China University of Geosciences, 29 Xueyuan Road, Haidian District, Beijing, 100083, People's Republic of China.
- Key Laboratory of Land Consolidation and Rehabilitation, Ministry of Land and Resources, Beijing, 100035, People's Republic of China.
| | - Wenting Shi
- School of Land Science and Technology, China University of Geosciences, 29 Xueyuan Road, Haidian District, Beijing, 100083, People's Republic of China
| |
Collapse
|
27
|
Huang F, Chen C. GIS-based approach and multivariate statistical analysis for identifying sources of heavy metals in marine sediments from the coast of Hong Kong. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:518. [PMID: 36976384 DOI: 10.1007/s10661-023-11152-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
Hong Kong is an urbanized coastal city which experiences substantially different metal loads from anthropogenic activities. This study was aimed at analyzing the spatial distribution and pollution evaluation of ten selected heavy metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Zn, Fe, V) in the coastal sediments of Hong Kong. The distribution of heavy metal pollution in sediments has been analyzed using the geographic information system (GIS) technique, and their pollution degrees, corresponding potential ecological risks and source identifications, have been studied by applying the enrichment factor (EF) analysis, contamination factor (CF) analysis, potential ecological risk index (PEI), and integrated multivariate statistical methods, respectively. Firstly, the GIS technique was used to access the spatial distribution of the heavy metals; the result revealed that pollution trend of these metals was decreased from the inner to the outer coast sites of the studied area. Secondly, combining the EF analysis and CF analysis, we found that the pollution degree of heavy metals followed the order of Cu > Cr > Cd > Zn > Pb > Hg > Ni > Fe > As > V. Thirdly, the PERI calculations showed that Cd, Hg, and Cu were the most potential ecological risk factors compared to other metals. Finally, cluster analysis combined with principal component analysis showed that Cr, Cu, Hg, and Ni might originate from the industrial discharges and shipping activities. V, As, and Fe were mainly derived from the natural origin, whereas Cd, Pb, and Zn were identified from the municipal discharges and industrial wastewater. In conclusion, this work should be helpful in the establishment of strategies for contamination control and optimization of industrial structures in Hong Kong.
Collapse
Affiliation(s)
- Fengwen Huang
- Department of Neuroscience, City University of Hong Kong, Hong Kong, 999077, China
| | - Chen Chen
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
28
|
Dong Q, Song C, Yang D, Zhao Y, Yan M. Spatial Distribution, Contamination Assessment and Origin of Soil Heavy Metals in the Danjiangkou Reservoir, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3443. [PMID: 36834134 PMCID: PMC9967374 DOI: 10.3390/ijerph20043443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/07/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Soil heavy metal contamination is crucial due to menacing food safety and mortal health. At present, with the fast advancement of urbanization and industrialization, heavy metals are increasingly released into the soil by anthropogenic activities, and the soil ecosystem contamination around the Danjiangkou Reservoir is directly associated with water quality security of the reservoir. In this paper, using 639 soil samples from the Danjiangkou Reservoir, Henan Province, China, we studied a variety of space distribution characteristics of heavy metals in soil. Geographic information system analysis (GIS), geo-accumulation index (Igeo), contamination factor (CF), principal component analysis (PCA) model, and positive matrix factorization (PMF) model were used together to recognize and quantify the distribution, contamination, and origin of heavy metals. We uncovered an exceptional variety of heavy metal concentrations among the tested soils: the mean arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), manganese (Mn), nickel (Ni), zinc (Zn), lead (Pb) and mercury (Hg) concentrations (14.54, 0.21, 18.69, 81.69, 898.42, 39.37, 79.50, 28.11, 0.04 mg/kg, respectively, in the topsoil (0-20 cm depth)), all exceed their background values. The mean Igeo value and CF values of these trace elements are both in descending order: Cd > Co > Mn > Ni > Pb > Zn > Cr > As > Hg. Cd was the highest contributor to the assessment of heavy metal pollution, with an average Igeo value over three, indicating that the study area is modestly contaminated by Cd. The PCA analysis and PMF model revealed three potential sources, including natural sources (PC1) for Cr, Co, Mn and Ni; agricultural sources (PC2) for Cd, Zn and Hg; and industrial emissions and transportation sources (PC3) for Pb. This study displays a map of heavy metal contamination in the eastern area topsoil of the Danjiangkou Reservoir, showing the most severe pollutant is Cd, which poses a threat to the water quality security of Danjiangkou Reservoir and provides a significant source identification for future contamination control.
Collapse
Affiliation(s)
- Qiuyao Dong
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China
- Key Laboratory of Quaternary Chronology and Hydro-Environmental Evolution, Chinese Geological Survey, Shijiazhuang 050061, China
| | - Chao Song
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China
- Key Laboratory of Quaternary Chronology and Hydro-Environmental Evolution, Chinese Geological Survey, Shijiazhuang 050061, China
| | - Dongxue Yang
- Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing 100083, China
| | - Yuqing Zhao
- Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing 100083, China
| | - Mingjiang Yan
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China
- Key Laboratory of Quaternary Chronology and Hydro-Environmental Evolution, Chinese Geological Survey, Shijiazhuang 050061, China
| |
Collapse
|
29
|
Liu J, Kang H, Tao W, Li H, He D, Ma L, Tang H, Wu S, Yang K, Li X. A spatial distribution - Principal component analysis (SD-PCA) model to assess pollution of heavy metals in soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160112. [PMID: 36375553 DOI: 10.1016/j.scitotenv.2022.160112] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
With the rapid development of urbanization, heavy metal pollution of soil has received great attention. Over-enrichment of heavy metals in soil may endanger human health. Assessing soil pollution and identifying potential sources of heavy metals are crucial for prevention and control of soil heavy metal pollution. This study introduced a spatial distribution - principal component analysis (SD-PCA) model that couples the spatial attributes of soil pollution with linear data transformation by the eigenvector-based principal component analysis. By evaluating soil pollution in the spatial dimension it identifies the potential sources of heavy metals more easily. In this study, soil contamination by eight heavy metals was investigated in the Lintong District, a typical multi-source urban area in Northwest China. In general, the soils in the study area were lightly contaminated by Cr and Pb. Pearson correlation analysis showed that Cr was negatively correlated with other heavy metals, whereas the spatial autocorrelation analysis revealed that there was strong association in the spatial distribution of eight heavy metals. The aggregation forms were more varied and the correlation between Cr contamination and other heavy metals was lower. The aggregation forms of Mn and Cu, Zn and Pb, on the other hand, were remarkably comparable. Agriculture was the largest pollution source, contributing 65.5 % to soil pollution, which was caused by the superposition of multiple heavy metals. Additionally, traffic and natural pollution sources contributed 17.9 % and 11.1 %, respectively. The ability of this model to track pollution of heavy metals has important practical significance for the assessment and control of multi-source soil pollution.
Collapse
Affiliation(s)
- Jiawei Liu
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Hou Kang
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, China.
| | - Wendong Tao
- Department of Environmental Resources Engineering, College of Environmental Science and Forestry, State University of New York, 1 Forestry Drive, Syracuse, NY 13210, USA.
| | - Hanyu Li
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Dan He
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Lixia Ma
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Haojie Tang
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Siqi Wu
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Kexin Yang
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Xuxiang Li
- School of Human Settlements and Civil Engineering, Xi'an Jiao Tong University, Xi'an 710049, China
| |
Collapse
|
30
|
Sun T, Ji C, Li F, Wu H. Bioaccumulation and human health implications of trace metals in oysters from coastal areas of China. MARINE ENVIRONMENTAL RESEARCH 2023; 184:105872. [PMID: 36621131 DOI: 10.1016/j.marenvres.2022.105872] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
This study recompiled a national dataset to characterize the pollution level and health risk of cadmium (Cd), copper (Cu), lead (Pb) and zinc (Zn) in oysters along the coastal areas of China. Results showed that the median concentrations of Cd, Cu, Pb and Zn in nationwide oysters were 5.5, 335, 1.3 and 1280 mg/kg dry weight, respectively. Generally, oysters from the north coasts presented lower metal pollution and higher quality than those from the south. The regional characteristics of trace metals in oysters might be contributed by the interspecific differences. Nationally, the noncarcinogenic risk posed by these four metals in oysters was relatively low, with the risk only occurring in a few hotspots such as the Pearl River Estuary and the Jiulong River Estuary. However, more attention should be paid to the carcinogenic risk of Cd, and priority should be given to formulating control measures to mitigate Cd pollution.
Collapse
Affiliation(s)
- Tao Sun
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, PR China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, PR China.
| |
Collapse
|
31
|
Wang F, Huo L, Li Y, Wu L, Zhang Y, Shi G, An Y. A hybrid framework for delineating the migration route of soil heavy metal pollution by heavy metal similarity calculation and machine learning method. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160065. [PMID: 36356739 DOI: 10.1016/j.scitotenv.2022.160065] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/16/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Soil heavy metal contamination was a global environmental issue that posed adverse impacts on ecological and human health risks. The controlling of soil heavy metal is mainly focused on the emission source and pipe-end treatment, less is known about the intermediate controlling process. The migration route of heavy metals exhibited the spatial evolution of pollutants from the sources to the pipe-end, which provided the more reasonable location for the target-oriented treatment of soil heavy metal. Here, we proposed a new view of heavy metal similarity, which quantitatively expressed how closely of the contaminations between the study area and the test areas. We found that the similarity of different heavy metals was unequally distributed across locations that were related with five main sources, namely agricultural activities, natural sources, traffic emissions, industrial activities, and other sources. Based on the similarity, a state-of-the-art machine learning method was applied to delineate the migration route of soil heavy metals. Thereinto, As was concentrated around livestock farms, and its migration route was close to the water system. Cd migration route was over-dispersed in the areas where located mine fields and chemical plants. Migration routes of Hg and Pb were along rivers, which were related to agricultural activities and natural sources. Overall, the perspective on similarity and migration routes provided theoretical basis and method to alleviate soil heavy metal pollution at regional scale and can be extended across largescale regions.
Collapse
Affiliation(s)
- Feng Wang
- Agro-environmental Protection Institute, Ministry of Agriculture, Tianjin 300071, China; College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lili Huo
- Agro-environmental Protection Institute, Ministry of Agriculture, Tianjin 300071, China
| | - Yue Li
- College of Computer Science, Nankai University, Tianjin 300350, China
| | - Lina Wu
- Agro-environmental Protection Institute, Ministry of Agriculture, Tianjin 300071, China
| | - Yanqiu Zhang
- Agro-environmental Protection Institute, Ministry of Agriculture, Tianjin 300071, China; College of Resource and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Guoliang Shi
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yi An
- Agro-environmental Protection Institute, Ministry of Agriculture, Tianjin 300071, China.
| |
Collapse
|
32
|
Wang F, Zhang Y, Wu T, Wu L, Shi G, An Y. The high-dimensional geographic dataset revealed significant differences in the migration ability of cadmium from various sources in paddy fields. Sci Rep 2023; 13:1589. [PMID: 36709230 PMCID: PMC9884224 DOI: 10.1038/s41598-023-28812-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/24/2023] [Indexed: 01/30/2023] Open
Abstract
Cadmium (Cd) contamination in paddy fields and its subsequent transfer in soil-rice systems are of particular concern. Significant discrepancies exist in the transfer process of Cd pollution sources from soil to rice. Here, we proposed a novel hybrid framework to reveal the priority of controlling Cd pollution sources in soil-rice systems, based on a high-dimensional geographical database. We further defined transfer potential (TP) to describe the ability of Cd from soil to rice (TPr = Cdr/Cds) and activated status (TPa = Cda/Cds), respectively, to reveal the priority sources of Cd pollution at the regional scale. The mining source has both high levels of TPr and TPa, which should be a controlled priority. Followed by traffic sources with a higher value of TPr, showing the risk to rice rather than the soil. The activated and enriched capacities of soil Cd are unequal in different sources that we attribute to the disparities of Cd transport in soil-rice systems. Cd contamination shows a significant spatial heterogeneity due to the difference in its transport performance. Our findings provide support for designing site-specific and pollution-targeted control priorities for suitable Cd pollution mitigation strategies at the regional scale.
Collapse
Affiliation(s)
- Feng Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300071, China
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yanqiu Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300071, China
- College of Resource and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ting Wu
- State Key Laboratory on Odor Pollution Control, Tianjin Academy of Eco-Environmental Sciences, Tianjin, 300191, China
| | - Lina Wu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300071, China
| | - Guoliang Shi
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yi An
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300071, China.
| |
Collapse
|
33
|
Su C, Wang J, Chen Z, Meng J, Yin G, Zhou Y, Wang T. Sources and health risks of heavy metals in soils and vegetables from intensive human intervention areas in South China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159389. [PMID: 36243077 DOI: 10.1016/j.scitotenv.2022.159389] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/30/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Heavy metal pollution greatly harms the soil environment and poses threats to food safety and human health. This study aimed to quantify and analyze the sources of heavy metals and assess the health risks associated with the human intake of contaminated vegetables in South China. Heavy metals (Cd, As, Hg, Cu, Ni, Pb, Zn, and Cr) in soil and vegetables (leaf vegetables, legume vegetables, and cucurbits) were investigated and evaluated for contamination. By combining the correlation analysis (CA), positive matrix factorization (PMF), and GeoDetector model, source apportionments were comprehensively identified. Results showed that Cd was the predominant element in soils throughout the study area. Industrial (28.36 %, 20.24 %, 31.50 %), agricultural (27.19 %, 46.50 %, 27.30 %), besides traffic, atmospheric deposition and natural sources were identified as the dominant sources of heavy metals in GD01, GD02, and GD03, respectively. The human health risk assessment showed that the total non-cancer risk of heavy metals (i.e., Cr, Ni, As, Cd, and Pb) ingested through vegetables was 2.3E+00 for children and 9.67E-01 for adults, and the total cancer risk for children was 2.54E-02 and 1.07E-02 for adults, both of which exceeded acceptable levels. It is worth noting that children are more susceptible to health risks due to the consumption of contaminated vegetables than adults.
Collapse
Affiliation(s)
- Chuanghong Su
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Jianwen Wang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Zhenwei Chen
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Jing Meng
- Key Laboratory of Environment Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guangcai Yin
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment, Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yunqiao Zhou
- Key Laboratory of Environment Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Tieyu Wang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China.
| |
Collapse
|
34
|
Liu Z, Du Q, Guan Q, Luo H, Shan Y, Shao W. A Monte Carlo simulation-based health risk assessment of heavy metals in soils of an oasis agricultural region in northwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159543. [PMID: 36272483 DOI: 10.1016/j.scitotenv.2022.159543] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/10/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
In recent years, heavy metal contamination of soils has been increasing, posing a major threat to food security, human health, and soil ecosystems. This study analyzed the spatial characteristics, contamination sources, risks of heavy metals by collecting topsoil samples from farmland in an oasis agricultural region in northwest China. The results found that soil heavy metals in farmland were at a moderate contamination level. The PMF model classifies soil heavy metals as fertilizer and pesticide sources dominated by As and Mn with 27.8 %, mixed sources of transport and agricultural sources dominated by Cu, Zn, Cd and Pb with 26.9 %, metal processing sources dominated by Cr and Ni with 22.6 %, and the combined pollution sources of Ti, V, Cr, Mn, Fe, As, Pb dominated by natural sources and fuel combustion. The noncarcinogenic and carcinogenic risks values from the ingestion route were higher for children than for adults. The non-carcinogenic risk of heavy metals to adults in the southwestern and central regions of the study area was >1 × 10-4. The carcinogenic risk was >1 in all adults, but >1 in children in the central and southwestern study areas. Monte Carlo simulation takes into account the parameters and their distributions that affect the health risk assessment model by combining the uncertainty assessment with the health risk, which will reduce the uncertainty of the health risk assessment. The results showed that conventional deterministic risk assessment may overestimate health risk outcomes. In addition, As has a 1.85 % probability of non-carcinogenic risk to children, and an 85.3 % probability of total non-carcinogenic risk for children for all heavy metals. 69.5 % and 11.4 % probability of carcinogenic risk for children and adults respectively for Ni, and 96.4 % and 52.1 % probability of total carcinogenic risk, suggesting that Ni is a priority control heavy metal.
Collapse
Affiliation(s)
- Zhan Liu
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qinqin Du
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qingyu Guan
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Haiping Luo
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yuxin Shan
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Wenyan Shao
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
35
|
Xiang J, Xu P, Chen W, Wang X, Chen Z, Xu D, Chen Y, Xing M, Cheng P, Wu L, Zhu B. Pollution Characteristics and Health Risk Assessment of Heavy Metals in Agricultural Soils over the Past Five Years in Zhejiang, Southeast China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14642. [PMID: 36429355 PMCID: PMC9690052 DOI: 10.3390/ijerph192214642] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 05/21/2023]
Abstract
Heavy metal contamination in agricultural soils has attracted increasing attention in recent years. In this study, 1999 agricultural soil samples were collected from 11 cities in Zhejiang Province from 2016 to 2020, and the spatial and temporal variation characteristics of 3 of the most important heavy metals, i.e., lead (Pb), cadmium (Cd), and chromium (Cr) were analyzed. The results showed that Cd had a slightly higher sample over-standard rate of 12.06%. Spatial distribution and temporal trends showed that the Pb concentrations overall increased from 2016 to 2020 and mainly accumulated in southern Zhejiang. In addition, multiple exposure routes were evaluated for human health risks. Children are more susceptible to the adverse effects of heavy metals in agricultural soils, and oral ingestion was the major exposure route. Cr poses higher human health risks to humans than Pb and Cd in agricultural soils. Therefore, more rigid environmental monitoring and related soil remediation counter-measures for some sites with high concentrations of heavy metals are necessary to limit the potential threat to human health.
Collapse
Affiliation(s)
- Jie Xiang
- Department of Environmental Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310000, China
| | - Peiwei Xu
- Department of Environmental Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310000, China
| | - Weizhong Chen
- Department of Environmental Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310000, China
| | - Xiaofeng Wang
- Department of Environmental Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310000, China
| | - Zhijian Chen
- Department of Environmental Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310000, China
| | - Dandan Xu
- Department of Environmental Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310000, China
| | - Yuan Chen
- Department of Environmental Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310000, China
| | - Mingluan Xing
- Department of Environmental Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310000, China
| | - Ping Cheng
- Department of Environmental Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310000, China
| | - Lizhi Wu
- Department of Environmental Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310000, China
| | - Bing Zhu
- Hangzhou Center for Disease Control and Prevention, Hangzhou 310000, China
| |
Collapse
|
36
|
Pan Y, Xie J, Yan W, Zhang TC, Chen C. Response of microbial community to different land-use types, nutrients and heavy metals in urban river sediment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:115855. [PMID: 35994962 DOI: 10.1016/j.jenvman.2022.115855] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/14/2022] [Accepted: 07/21/2022] [Indexed: 05/27/2023]
Abstract
Nutrients and heavy metals (HM) in the sediment have an impact on microbial diversity and community structure. In this study, the distribution characteristics of nutrients, HM, and microbial community in the sediments along the Longsha River, a tributary of the Pearl River (or Zhu Jiang), China were investigated by analyzing samples from 11 sites. On the basis of the HM-contamination level, the 11 sampling sites were divided into three groups to explore the changes in microbial communities at different ecological risk levels. Results indicated that nutrient concentrations were higher near farmlands and residential lands, while the ecological risk of HM at the 11 sampling sites was from high to low as S10 > S2 > S9 > S6 > S11 > S7 > S5 > S8 > S3 > S4 > S1. Among these HM, Cu, Cr, and Ni had intense ecological risks. In addition, the results of Variance Partitioning Analysis (VPA) revealed a higher contribution of HM (35.93%) to microbial community variation than nutrients (12.08%) and pH (4.08%). Furthermore, the HM-tolerant microbial taxa (Clostridium_sensu_stricto_1, Romboutsia, norank_o__Gaiellales, and etc.) were the dominant genera, and they were more dynamic around industrial lands, while microbes involved in the C, N, and S cycles (e.g., Smithella, Thiobacillus, Dechloromonas, Bacter oidetes_vadinHA17, and Syntrophorhabdus) were inhibited by HM, while their abundance was lower near industrial lands and highway but higher around residential lands. A three-unit monitoring program of land-use types, pollutants, and microbial communities was proposed. These results provide a new perspective on the control of riparian land-use types based on contaminants and microbes, and different microbial community response patterns may provide a reference for contaminant control in sediments with intensive industrial activities.
Collapse
Affiliation(s)
- Yuwei Pan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Jiawei Xie
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Weixing Yan
- Foshan Nanhai Suzhou University of Science and Technology Environmental Research Institute, Foshan 528226, PR China
| | - Tian C Zhang
- Civil & Environmental Engineering Dept., University of Nebraska-Lincoln (Omaha Campus), Omaha, NE 68182-0178, USA
| | - Chongjun Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; Foshan Nanhai Suzhou University of Science and Technology Environmental Research Institute, Foshan 528226, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, PR China.
| |
Collapse
|
37
|
Qi H, Huang D, Wang F, Ye M, Jiang X. Spatial dynamics of prokaryotic microbial communities in sediments of the Yellow Sea: Assembly process, co-occurrence relationships, and environmental implications. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 319:115645. [PMID: 35797911 DOI: 10.1016/j.jenvman.2022.115645] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Marine sediment microorganisms play an important role in the biogeochemical cycle of elements and the transformation of exogenous pollutants; therefore, it is important to study the microbial assembly process and inter taxa associations. In this study, we investigated the profiles and assembly processes of microbial communities of sediments collected from 19 points in the Yellow Sea. As revealed by 16S rRNA sequencing, Proteobacteria (43.11%-65.54%) was the dominant phylum in marine sediment. Further, the physicochemical properties of sediments were significantly influenced by depth (P < 0.05), and the effects of homogeneous selection became greater with increasing depth. The microbial species located in marine sediment at 35°N had a significantly higher co-occurrence relationship (82.76%) than those at 34°N (57.99%) and 36°N (54.07%). Additionally, the microbial community structure of the sediments changed significantly at the genus level with strong fluctuations in the physicochemical properties. By contrast, the carbon, nitrogen, and sulfur associated functional gene diversity and abundance showed no clear variation among different locations, indicating the probable functional redundancy and a potential functional gene pool of the microbes in marine sediments. This study could provide new insights into the composition of microorganisms in sediments in the Yellow Sea, the driving force of microbial diversity, the assembly process, the modes of species' co-occurrence, and their ecological functions.
Collapse
Affiliation(s)
- Huiyuan Qi
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Dan Huang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Fenghe Wang
- School of Environment, Nanjing Normal University, Nanjing, 210023, PR China
| | - Mao Ye
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China.
| | - Xin Jiang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China
| |
Collapse
|
38
|
Xue ZF, Cheng WC, Wang L, Xie YX. Catalyzing urea hydrolysis using two-step microbial-induced carbonate precipitation for copper immobilization: Perspective of pH regulation. Front Microbiol 2022; 13:1001464. [PMID: 36187975 PMCID: PMC9522901 DOI: 10.3389/fmicb.2022.1001464] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Microbial induced carbonate precipitation (MICP) has recently applied to immobilize heavy metals toward preventing their threats to public health and sustainable development of surrounding environments. However, for copper metallurgy activities higher copper ion concentrations cause the ureolytic bacteria to lose their activity, leading to some difficulty in forming carbonate precipitation for copper immobilization (referred to also as “biomineralization”). A series test tube experiments were conducted in the present work to investigate the effects of bacterial inoculation and pH conditions on the copper immobilization efficiency. The numerical simulations mainly aimed to compare with the experimental results to verify its applicability. The copper immobilization efficiency was attained through azurite precipitation under pH in a 4–6 range, while due to Cu2+ migration and diffusion, it reduced to zero under pH below 4. In case pH fell within a 7–9 range, the immobilization efficiency was attained via malachite precipitation. The copper-ammonia complexes formation reduced the immobilization efficiency to zero. The reductions were attributed either to the low degree of urea hydrolysis or to inappropriate pH conditions. The findings shed light on the necessity of securing the urease activity and modifying pH conditions using the two-step biomineralization approach while applying the MICP technology to remedy copper-rich water bodies.
Collapse
Affiliation(s)
- Zhong-Fei Xue
- School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an, China
- Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi’an, China
| | - Wen-Chieh Cheng
- School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an, China
- Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi’an, China
- *Correspondence: Wen-Chieh Cheng,
| | - Lin Wang
- School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an, China
- Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi’an, China
| | - Yi-Xin Xie
- School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an, China
- Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi’an, China
| |
Collapse
|
39
|
Li K, Wang J, Zhang Y. Heavy metal pollution risk of cultivated land from industrial production in China: Spatial pattern and its enlightenment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154382. [PMID: 35278565 DOI: 10.1016/j.scitotenv.2022.154382] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Industrial production is the main source of heavy metals for cultivated land in China as it has been the world's factory. However, owing to there being insufficient data and appropriate methods, it is difficult to rank the risk level and identify spatial patterns of heavy metal pollution in cultivated land. This study developed an innovative methodology for relative regional risk assessment based on the risk theory of source-pathway-receptor, and the heavy metal pollution risks of cultivated land were appraised on a national scale. The results showed that: (i) the cultivated land with high, medium, and low risk of heavy metal pollution accounted for 4.23%, 10.01%, and 4.53% in China; (ii) the heavy metal pollution risk level of cultivated land increased gradually from the northwest to the southeast of China, and the risk in the north was more serious than that in the south; (iii) the aggregated distribution areas of high-risk regions in China were the Yangtze River Delta, the Pearl River Delta, the Tianjin coastal area, the Sichuan-Chongqing economic zone, central-southern Hunan, central Hebei, and the Yellow River coast of Henan; and (iv) China's prevention and control policies effectively curbed heavy metal pollution in cultivated land, the pollution risks have declined significantly. It is suggested that different protection and control strategies should be upgraded and implemented according to different risk modes.
Collapse
Affiliation(s)
- Kai Li
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jieyong Wang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | | |
Collapse
|
40
|
Yoon SJ, Hong S, Lee C, Lee J, Kim T, Lee J, Kim B, Noh J, Kwon BO, Khim JS. 10 years long-term assessment on characterizing spatiotemporal trend and source apportionment of metal(loid)s in terrestrial soils along the west coast of South Korea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154214. [PMID: 35240181 DOI: 10.1016/j.scitotenv.2022.154214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Long-term trends in the spatial distributions and sources of metal(loid)s in soils adjacent to the west coastal areas of South Korea have been systematically investigated for 10 years (2010-2019). Monitoring in 17 sites clearly showed site- and region-specific distributions, being associated with land use type (significant differences, as road > agriculture > wild) (P < 0.05), rather than temporal variation. The great concentrations of all metal(loid)s were found near Lake Shihwa (LS) and Geum River (GG), near the road, indicating that transportation activity was the main source of metal(loid)s contamination in soil. Especially, Cd (0.5 mg kg-1), Hg (0.04 mg kg-1), Pb (65 mg kg-1), and Zn (184 mg kg-1), related to the transportation activity near the road, showed twice greater than other land use types, on average. The concentration of metal(loid)s in each site and with the same land use type did not greatly vary over the years, with no significant annual difference (P > 0.05). The degree of metal(loid)s contamination compared to the background levels was identified in the order of Pb > Zn > Cr > Cu > As>Cd > Ni > Hg, with the contaminated hotspots mostly in LS or GG. The potential ecological risk was evidenced for Cd and Hg, but such a trend was temporally irregular over the years, indicating site-specificity. The sources of metal(loid)s were carefully determined as natural (20%), fuel combustion & agricultural pollution (43%), and vehicular emissions (37%) using the Positive Matrix Factorization model. The relative contribution of each source to contamination over the last decade was found to be similar, supporting that site-dependent lesser variation in metal(loid)s contamination in the coastal areas of South Korea. Overall, the distribution of metal(loid)s in the soil near the west coastal areas over the last decade largely depended on land use activities, and contamination degree was associated with non-point sources, such as transportation and fuel combustion.
Collapse
Affiliation(s)
- Seo Joon Yoon
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Seongjin Hong
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Changkeun Lee
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Junghyun Lee
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Taewoo Kim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Jongmin Lee
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Beomgi Kim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Junsung Noh
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Bong-Oh Kwon
- Department of Marine Biotechnology, Kunsan National University, Kunsan 54150, Republic of Korea
| | - Jong Seong Khim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
41
|
Yin G, Chen X, Zhu H, Chen Z, Su C, He Z, Qiu J, Wang T. A novel interpolation method to predict soil heavy metals based on a genetic algorithm and neural network model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:153948. [PMID: 35219652 DOI: 10.1016/j.scitotenv.2022.153948] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/13/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
To improve the prediction accuracy of soil heavy metals (HMs) by spatial interpolation, a novel interpolation method based on genetic algorithm and neural network model (GANN model), which integrates soil properties and environmental factors, was proposed to predict the soil HM content. Eleven soil HMs (Cu, Pb, Zn, Cd, Ni, Cr, Hg, As, Co, V and Mn) were predicted using the GANN model. The results showed that the model had a good prediction performance with correlation coefficients (R2) varying from 0.7901 to 0.9776. Compared with other traditional interpolation methods, including inverse distance weighting (IDW), ordinary kriging (OK), universal kriging (UK), and spline with barriers interpolation (SBI) methods, the GANN model had a relatively lower root mean square error value, ranging from 0.0497 to 77.43, suggesting that the GANN model might be a more accurate spatial interpolation method and the soil properties together with the environmental geographical factors played key roles in prediction of soil HMs.
Collapse
Affiliation(s)
- Guangcai Yin
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment, Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xingling Chen
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment, Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Hanghai Zhu
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment, Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhiliang Chen
- Research center for eco-environment restoration technology, South China Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou 510006, China
| | - Chuanghong Su
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Zechen He
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment, Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jinrong Qiu
- Research center for eco-environment restoration technology, South China Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou 510006, China
| | - Tieyu Wang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China.
| |
Collapse
|
42
|
Bourliva A, Aidona E, Papadopoulou L, Ferreira da Silva E, Patinha C, Sarafidis C, Kantiranis N. An integrated approach combining magnetic, geochemical and particle-based techniques to assess metal(loid) loadings in urban venues frequented by children. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153600. [PMID: 35121035 DOI: 10.1016/j.scitotenv.2022.153600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Urban venues frequented by children, such as playgrounds, are potentially important sources of exposure to anthropogenic metal(loids). Environmental quality of outdoor playgrounds is mainly assessed through direct geochemical monitoring, which is time-consuming and expensive. In this study we adapted a multidisciplinary approach combining magnetic measurements, geochemical analyses, particle-based techniques and bioaccessibility data so as to evaluate the applicability of magnetic methods as a low-cost and easy-to-use technology to monitor pollution level in public playgrounds. Playground sands were collected and their magnetic characteristics were studied in detail aiming to gain helpful additional details in relation to the type, concentration and particle-size distribution of the sand-bound magnetic particles. The obtained χlf values indicated an enhanced level of sand-bound magnetic components, while the dominant control of SSD grains on the magnetic load of playground-PG sands was revealed. Hysteresis parameters and thermomagnetic curves indicated low-coercivity ferrimagnetic minerals, such as magnetite and/or maghemite, as the predominant magnetic carriers. Ratios of χARM/χlf and χARM/SIRM indicated the dominance of coarser anthropogenic magnetic grains in the sampled PG sands compared to other recreational areas. Correlation analysis among magnetic variables and reported metal(loid) contents designated χARM as a more effective indicator for the detection of anthropogenic load in PG sand samples than χlf or SIRM. Simultaneously, through geochemical analyses in magnetic extracts separated from PG sands, metal(loid) contents were notably enriched in the magnetic fraction validating their strong affinity with sand-bound magnetic particles. Finally, bioaccessibility tests revealed lower UBM-extracted fractions for the magnetic extracts of PG sands compared to bulk samples. However, arsenic (As) was more bioaccessible in the sand-bound magnetic particles raising serious concerns for the children exposed to playground sands.
Collapse
Affiliation(s)
- A Bourliva
- Chemical Process and Energy Resources Institute, Centre for Research and Technology Hellas-CERTH, 6th km Charilaou-Thermi Rd, 57001 Thessaloniki, Greece; Department of Geophysics, School of Geology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - E Aidona
- Department of Geophysics, School of Geology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - L Papadopoulou
- Department of Mineralogy-Petrology-Economic Geology, School of Geology, Aristotle University of Thessaloniki, 54124 Thessaloniki, GREECE
| | - E Ferreira da Silva
- GeoBioTec, Department of Geoscience, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - C Patinha
- GeoBioTec, Department of Geoscience, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - C Sarafidis
- Laboratory of Physics, Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - N Kantiranis
- Department of Mineralogy-Petrology-Economic Geology, School of Geology, Aristotle University of Thessaloniki, 54124 Thessaloniki, GREECE
| |
Collapse
|
43
|
Liu P, Wu Q, Wang X, Hu W, Liu X, Tian K, Fan Y, Xie E, Zhao Y, Huang B, Yoon SJ, Kwon BO, Khim JS. Spatiotemporal variation and sources of soil heavy metals along the lower reaches of Yangtze River, China. CHEMOSPHERE 2022; 291:132768. [PMID: 34736947 DOI: 10.1016/j.chemosphere.2021.132768] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/27/2021] [Accepted: 10/31/2021] [Indexed: 06/13/2023]
Abstract
Excessive accumulation of soil heavy metals (HMs) result in the deterioration of soil quality and reduction of agricultural productivity and safety. The accumulation status, temporal change, and sources of soil HMs were determined by large-scale field surveys in 2014 and 2019 in rapid urbanization and industrialization area along the lower reaches of the Yangtze River, China. Eighty-two surface soil samples were collected in 2014 and ninety-five surface soil samples and seven soil profiles (0-100 cm) were collected in 2019. The mean concentrations (in, mg kg-1) of As (10.17), Cd (0.33), Cr (86.38), Cu (38.22), Hg (0.11), Ni (37.67), Pb (43.95), and Zn (113.15) were greater than the corresponding background values. The concentrations of these 8 HMs significantly varied with site-specific distributions depending on nearby landscape patterns with decreasing order: agricultural soil around industrial > agricultural soil > fallow soil. Cd and Hg were found to be priority pollutants due to their greater accumulations in this study area. Combined analyses of principal component analysis and positive matrix factorization model addressed source apportionment of soil HMs. Industrial activities, parent materials, and agricultural and traffic activities were three major sources and their contributions were 35.56%, 35.20%, and 29.23%, respectively. The concentrations of soil As, Cd, Cr and Pb increased with time. This study elucidates how changes in land uses and time affect soil HMs and provides reasonable suggestions for the effective reduction of HM contamination in economically and industrially developed areas of China, and elsewhere.
Collapse
Affiliation(s)
- Peng Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiumei Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xinkai Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenyou Hu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiaoyan Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kang Tian
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Ya'nan Fan
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Enze Xie
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yongcun Zhao
- University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Biao Huang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Seo Joon Yoon
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul, 08826, Republic of Korea
| | - Bong-Oh Kwon
- Department of Marine Biotechnology, Kunsan National University, Kunsan, 54150, Republic of Korea
| | - Jong Seong Khim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
44
|
Tang J, Zhu Y, Xiang B, Li Y, Tan T, Xu Y, Li M. Multiple pollutants in groundwater near an abandoned Chinese fluorine chemical park: concentrations, correlations and health risk assessments. Sci Rep 2022; 12:3370. [PMID: 35232998 PMCID: PMC8888542 DOI: 10.1038/s41598-022-07201-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/10/2022] [Indexed: 11/25/2022] Open
Abstract
Contamination and adverse effects from various pollutants often appear in abandoned industrial regions. Thus, nine groundwater samples were collected from the vicinity of the fluorochemical industry in Fuxin City, Liaoning Province, to determine concentrations of the ten heavy metals arsenic (As), chromium (Cr), cadmium (Cd), lead (Pb), nickel (Ni), copper (Cu), manganese (Mn), zinc (Zn), iron (Fe) and mercury(Hg), as well as those of fluorine (F−) and eighteen poly- and perfluorinated substances (PFASs), analyse correlation relationships, and assess the health risks for different age groups. The results showed that the levels of fluorine (F−) (0.92–4.42 mg·L−1), Mn (0.0005–4.91 mg·L−1) and Fe (1.45–5.61 mg·L−1) exceeded the standard limits for drinking water. Short chain perfluorobutanoic acid (PFBA) (4.14–2501.42 ng·L−1), perfluorobutane sulfonate (PFBS) (17.07–51,818.61 ng·L−1) and perfluorohexanoic acid (PFHxA) (0.47–936.32 ng·L−1) were the predominant substances from the PFASs group. No individual PFASs levels had significant relationships with F− or heavy metal contents. There was a positive relationship between short chain PFASs concentrations and water depth and a negative relationship between long chain PFASs concentration and water depth. The hazard quotient (HQ) decreased in the order F− > heavy metals > PFASs and also decreased for older age groups. In addition, As, Fe, Mn and perfluorooctanoic acid (PFOA) were the main sources of risk from the heavy metal and PFASs groups, respectively.
Collapse
Affiliation(s)
- Jiaxi Tang
- College of Environmental Science and Engineering, Liaoning Technical University, Fuxin, 123000, China. .,Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China.
| | - Yongle Zhu
- College of Environmental Science and Engineering, Liaoning Technical University, Fuxin, 123000, China
| | - Biao Xiang
- College of Environmental Science and Engineering, Liaoning Technical University, Fuxin, 123000, China
| | - Yu Li
- College of Environmental Science and Engineering, Liaoning Technical University, Fuxin, 123000, China
| | - Ting Tan
- College of Environmental Science and Engineering, Liaoning Technical University, Fuxin, 123000, China
| | - Ying Xu
- College of Environmental Science and Engineering, Liaoning Technical University, Fuxin, 123000, China
| | - Mengxue Li
- College of Environmental Science and Engineering, Liaoning Technical University, Fuxin, 123000, China
| |
Collapse
|
45
|
Wei C, Lei M, Chen T, Zhou C, Gu R. Method on site-specific source apportionment of domestic soil pollution across China through public data mining: A case study on cadmium from non-ferrous industries. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 295:118605. [PMID: 34896223 DOI: 10.1016/j.envpol.2021.118605] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/10/2021] [Accepted: 11/27/2021] [Indexed: 06/14/2023]
Abstract
The lack of emission data of major Cd-emitting enterprises has long limited the source apportionment of soil cadmium (Cd). Non-ferrous metal enterprises (NMEs) contribute the most Cd emissions in China in recent years. We estimated the cumulative Cd emission of 8750 NMEs across China through public data collection and material balance methods for the first time. The results showed that the total Cd emissions were estimated at 133,177 tons, of which 78.68% contributed by zinc primary smelting and mining. The emission hotspots are mainly concentrated in the south of the Yangtze River, such as Nanling Mountain areas, Nanpan River Basin, and Jincheng River Basin, as well as a few parts of the North and Northwest China. Then a significant positive spatial correlation was furtherly detected between NMEs and soil Cd, except for secondary smelting enterprises. Moreover, the hotspots of soil Cd pollution caused by NMEs were identified across China. By promoting the accounting calibrator from annual emission intensity of regional (mainly provincial) scale to the cumulative emission of site-specific enterprise in its entire life cycle, this study realized the finer description of the spatial heterogeneity of Cd emission from non-ferrous industry on a large scale and make it possible to refine the reliability of follow-up site-specific source apportionment, by introducing the emission intensity instead of the enterprise sites density. Finally, a modified approach for the regional source apportionment of soil pollution was proposed to obtain a more realistic and precise drawing. The results pointed out key NMEs subcategories and the affected hotspots which require continuous strengthening of Cd-related rectification. This methodological framework is expected to contribute to the precise management and differential sources control of Cd pollution and can be further extended to other pollutants for the precise targeting of key industries and hotspots during source pollution control in the future.
Collapse
Affiliation(s)
- Changhe Wei
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Mei Lei
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Tongbin Chen
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chenghu Zhou
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Resources and Environmental Information System, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Runyao Gu
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guizhou, 550025, China
| |
Collapse
|
46
|
Ali MM, Islam MS, Islam ARMT, Bhuyan MS, Ahmed ASS, Rahman MZ, Rahman MM. Toxic metal pollution and ecological risk assessment in water and sediment at ship breaking sites in the Bay of Bengal Coast, Bangladesh. MARINE POLLUTION BULLETIN 2022; 175:113274. [PMID: 35066413 DOI: 10.1016/j.marpolbul.2021.113274] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/28/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Quantification of four toxic metals (As, Cr, Cd, and Pb) in water and sediments at the Sitakunda ship breaking area in Bangladesh was studied. Along with this, sediment quality and ecological risk were evaluated for the metal intrusion to the study area. A total sample number of 120 (water; n = 60 and sediment; n = 60) were analyzed for both winter and summer seasons using atomic absorption spectrophotometer (AAS). The trace metal concentration in both water and sediment showed decreasing trend as follows; Cr (mean-W: 0.118 mg/L; mean-S:121.87 mg/kg) > Pb (mean-W: 0.064 mg/L; mean-S: 65.31 mg/kg) > As (mean-W: 0.03 mg/L; mean-S: 32.53 mg/kg) > Cd (mean-W: 0.004 mg/L; mean-S: 4.81 mg/kg). However, in both segments, the concentrations of the toxic metals exceeded the recommended acceptable limits. As and Cd showed significant variation (water and sediment) between the seasons, while Pb and Cr had no seasonal impact. Metal pollution index (MPI) and contamination factor (CF) was evaluated and revealed that the study area exhibited the critical score of water quality (MPI > 100). The cumulative effect of the metal concentrations was high (CI > 3). The assessed mean geoaccumulaiton index (Igeo) revealed that the study area was moderate to strongly polluted except for Cr. According to the contamination factor (CF), the sediment samples were moderate to highly contaminated by Cd, Pb, and As. Moreover, the explored range of pollution load index (PLI) in all sampling sites in the ship breaking region was from 1.75 to 3.10, suggesting that the sediment in the study area was highly polluted by heavy metals (PLI > 1). The risk index and the potential ecological risk index (PERI) suggested that the study area was at high risk due to metals pollution. Therefore, it is obligatory to maintain some crucial efforts for the betterment of the surrounding environment near the investigated sites.
Collapse
Affiliation(s)
- Mir Mohammad Ali
- Department of Aquaculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Patuakhali 8602, Bangladesh; Environmental Assessment and Technology for Hazardous Waste Management Research Center, Faculty of Environmental Management, Prince of Songkla University, Songkhla 90112, Thailand
| | | | - Md Simul Bhuyan
- Institute of Marine Sciences, Faculty of Marine Sciences & Fisheries, University of Chittagong, Chittagong 4331, Bangladesh
| | - A S Shafiuddin Ahmed
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Bangladesh
| | - Md Zillur Rahman
- Quality Control Laboratory, Department of Fisheries, Khulna 9000, Bangladesh
| | - Md Mostafizur Rahman
- Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh.
| |
Collapse
|
47
|
Cui M, Xu S, Song W, Ye H, Huang J, Liu B, Dong B, Xu Z. Trace metals, polycyclic aromatic hydrocarbons and polychlorinated biphenyls in the surface sediments from Sanya River, China: Distribution, sources and ecological risk. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 294:118614. [PMID: 34863889 DOI: 10.1016/j.envpol.2021.118614] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 11/21/2021] [Accepted: 11/29/2021] [Indexed: 06/13/2023]
Abstract
The urban inland river ecosystems are now facing comprehensive pollution and governance pressures. Up to now, few works related to the multiple pollution assessment of trace metals, polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) for the urban inland river sediments have been reported in China. Our study investigated the spatial distribution, ecological risk and potential sources of trace metals, PAHs and PCBs in surface sediment collected from 20 sampling sites of Sanya River, Hainan Province, China. The pollution status and potential ecological risk of trace metals were evaluated using the contamination indexes including geoaccumulation index (Igeo), individual potential ecological risk (Eri), potential ecological risk index (RI) and pollution load index (PLI). Considering the carcinogenicity and toxicity of PAHs and PCBs to human health and the ecological environment, we also analyzed the distributions, sources and adverse biological effects of PAHs and PCBs according to the sediment quality guidelines (SQGs), principal component analysis (PCA) and other source analysis. This study revealed that the surface sediments in Sanya River were extremely slight pollution and showed a very low ecological risk according to Igeo, Eri, PLI and RI results for trace metals. Besides, PAHs and PCBs pollution detected may not pose considerable adverse biological effect to ecological environment in a foreseeable period on the basis of comprehensive research results. The overall surface sediments quality of the Sanya River not seem to pose a serious pollution and ecological risk based on the evaluation results of multiple pollution factors. The study provided detailed information on the multiple pollution status and location of surface sediments, one of the key environmental indicators of international tourism cities, in the Sanya River, which would be useful for the water quality improvement of Sanya River and the environmental remediation of the other coastal ecosystems from different regions.
Collapse
Affiliation(s)
- Mengke Cui
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Shiliang Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Municipal Engineering Design Institute (Group) Co., Ltd., Shanghai, 200092, PR China
| | - Wenqing Song
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Municipal Engineering Design Institute (Group) Co., Ltd., Shanghai, 200092, PR China
| | - Huibin Ye
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Jialiang Huang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing, 100038, PR China
| | - Binhan Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Bin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing, 100038, PR China.
| | - Zuxin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| |
Collapse
|
48
|
Yan X, An J, Yin Y, Gao C, Wang B, Wei S. Heavy metals uptake and translocation of typical wetland plants and their ecological effects on the coastal soil of a contaminated bay in Northeast China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:149871. [PMID: 34525770 DOI: 10.1016/j.scitotenv.2021.149871] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 05/19/2023]
Abstract
Heavy metal pollution in coastal zone is a global environment problem concerning the international society. As an eco-friendly and economical method, phytoremediation is a promising strategy for improving heavy metal pollution in coastal soil. In order to alleviate the ecological risk of heavy metal pollution in Jinzhou Bay, a typical and important heavy industrial area in China, three local wetland plants (Scirpus validus, Typha orientalis and Phragmites australis) were selected and planted in the field. The plants showed strong tolerance of high concentrations of heavy metals. Stressed by the heavy metals, the root weight of S. validus and P. australis increased 114.74% and 49.91%, respectively. The concentrations of heavy metals (Cd, Cr, Cu, Ni, Pb, Zn, As, Hg) accumulated in the plant roots were 4-60 times higher than that in plant shoots. The SEM analysis found that abundant heavy metals were adhered to the root surface closely. Bioconcentration factor of heavy metals on the plant roots were 0.08-0.89 (except Cr, Ni), while the translocation factor from roots to above ground of plants were 0.02-0.27. Furthermore, the wetland plants improved the regional ecological environment quality. The concentrations of heavy metals in the rhizosphere soil decreased significantly. Compared with the bulk soil, the potential ecological risk index in the rhizosphere soil reduced 26.51%-69.14%. Moreover, the microbial diversity in rhizosphere soil increased significantly, and the abundances of Proteobacteria and Bacteroidetes also increased in rhizosphere soil. Pearson correlations indicated that Hg, As, Ni and Cr were negatively correlated with Proteobacteria (p < 0.05), and Cu was significantly negative correlated with Bacteroidetes (p < 0.05). The results support that using suitable local plants is a promising approach for repairing heavy metal contaminated costal soil, not only because it can improve the regional ecological environment quality, but also because it can enhance the landscape value of coastal zone.
Collapse
Affiliation(s)
- Xiuxiu Yan
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing An
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Yongchao Yin
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Chengcheng Gao
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baoyu Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuhe Wei
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
49
|
Guo X, Wang L, Ma F, You Y, Ju C. Multi-level methods to quantify risk assessment, source apportionment and identifying key risk areas of soil toxic elements in Ashi River watershed, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149385. [PMID: 34399335 DOI: 10.1016/j.scitotenv.2021.149385] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/09/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
With the advancement of small watershed governance in agricultural production process, soil toxic element pollution issue in watersheds constitutes a recent research hot spot. The Ashi River watershed is an agriculture-dominated small watershed which is exposed to toxic element sources, posing high risk of toxic element pollution to the planting areas. In this study, collection of soil samples was carried out along the periphery of the river network, and the soil physicochemical parameters and toxic elements (As, Cd, Cr, Cu, Pb, and Zn) were analyzed. The results showed that: (1) The geo-accumulation index (Igeo) and potential ecological risk index were used to evaluate the pollution degree, and the contents of As, Cd, and Zn in some sampling sites exceeded risk screening values. Moreover, soils closer to mining sources were found to be more polluted; (2) Redundancy analysis confirmed the contribution rate relationship between environmental factors and toxic elements. C/N ratio, total carbon (C), and total potassium (K) exhibited significant relationships with toxic elements (P < 0.01 or P < 0.05), respectively. Moreover, geographic locations (longitude, latitude, and elevation) showed significant impacts on toxic element contents (except for Cu); (3) The apportionment of toxic element pollution sources by using principal component analysis showed that Pb, Zn, Cu, and Cd were mainly related to mining activities, while As was closely related to insecticide and herbicide, and Cr was mainly related to soil parent material and electroplating factory; (4) Through the integrated resistance base surface and toxic element sources combined with minimum cumulative resistance model, the toxic element risk areas were identified. The middle reaches corresponded to the extremely high risk zone, which undeniably requires the strengthening of the environmental management.
Collapse
Affiliation(s)
- Xiaomeng Guo
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No.73 Huanghe Road, Harbin 150090, China
| | - Li Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No.73 Huanghe Road, Harbin 150090, China.
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No.73 Huanghe Road, Harbin 150090, China
| | - Yongqiang You
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No.73 Huanghe Road, Harbin 150090, China
| | - Chang Ju
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No.73 Huanghe Road, Harbin 150090, China
| |
Collapse
|
50
|
Xu L, Dai H, Skuza L, Wei S. Comprehensive exploration of heavy metal contamination and risk assessment at two common smelter sites. CHEMOSPHERE 2021; 285:131350. [PMID: 34265711 DOI: 10.1016/j.chemosphere.2021.131350] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/18/2021] [Accepted: 06/26/2021] [Indexed: 06/13/2023]
Abstract
This study investigated the horizontal, vertical and fractional distribution of heavy metals in the soil and the pollution and risk assessment of two smelter sites in Daye (a Cu smelter) and Zhuzhou (a Zn oxide smelter). Nine sampling points were reasonably established at each site, and nine soil samples were collected in each soil profile, with a total of 81 samples at each site. The results indicated that only As concentration was exceeded in most of the samples from the Daye site, and several were contaminated with multiple heavy metals, i.e. As, Cd and Pb; the values exceeding the standard were significant. Most of the samples at the Zhuzhou site were contaminated with many heavy metals, i.e. As, Cd, Pb and Ni. With increasing depth, the proportion of the acid-soluble and reducible heavy metal fraction decreased, while the proportion of the oxidized and residual fraction increased. The pollution index (PI) indicated that As at all positions, and Cd and Pb at several positions at the Daye site, as well as Cd and Pb at all points of Zhuzhou should have received more attention. The Nemerow integrated pollution index (NIPI) showed that a few sampling points in Daye were severely polluted, i.e. the points D5 with the value of 77.49 and the point D7 with 62.33, were more than the threshold value with 3 of severe pollution. Almost all sampling points in Zhuzhou were severely polluted, but the pollution degree was slightly lower than at Daye. The hazard index (HI) indicated the potential non-carcinogenic risk at the Daye and Zhuzhou sites. These values were unacceptable for both adults and children. The carcinogenic risk (CR) index indicated that the potential carcinogen risk due to As and Ni contamination were unacceptable at both sites, especially for children with 9.27E-03 and 1.99E-03 of As and Ni at Daye site, while 4.55E-03 and 4.09E-03 at Zhuzhou site. Strict control of industrial waste residues and smelters emissions into the soil is necessary to avoid further aggravation of heavy metal pollution.
Collapse
Affiliation(s)
- Lei Xu
- Key Laboratory of Pollution Ecology and Environment Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Huiping Dai
- College of Biological Science & Engineering, Shaanxi Province Key Laboratory of Bio-resources, Shaanxi University of Technology, Hanzhong, 723001, China.
| | - Lidia Skuza
- Institute of Biology, Centre for Molecular Biology and Biotechnology, University of Szczecin, Szczecin, 71-415, Poland
| | - Shuhe Wei
- Key Laboratory of Pollution Ecology and Environment Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| |
Collapse
|