1
|
Maleki AS, Ghahremani MH, Shadboorestan A. Arsenic and Benzo[a]pyrene Co-exposure Effects on MDA-MB-231 Cell Viability and Migration. Biol Trace Elem Res 2025; 203:178-186. [PMID: 38602648 DOI: 10.1007/s12011-024-04170-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
Although humans are frequently exposed to multiple pollutants simultaneously, research on their harmful effects on health has typically focused on studying each pollutant individually. Inorganic arsenic (As) and benzo[a]pyrene (BaP) are well-known pollutants with carcinogenic potential, but their co-exposure effects on breast cancer cell progression remain incompletely understood. This study aimed to assess the combined impact of BaP and As on the viability and migration of MDA-MB-231 cells. The results indicated that even at low levels, both inorganic As (0.01 μM, 0.1 μM, and 1 μM) and BaP (1 μM, 2.5 μM), individually or in combination, enhanced the viability and migration of the cells. However, the cell cycle analysis revealed no significant differences between the control group and the cells exposed to BaP and As. Specifically, exposure to BaP alone or in combination with As (As 0.01 μM + BaP 1 μM) for 24 h led to a significant increase in vimentin gene expression. Interestingly, short-term exposure to As not only did not induce EMT but also modulated the effects of BaP on vimentin gene expression. However, there were no observable changes in the expression of E-cadherin mRNA. Consequently, additional research is required to evaluate the prolonged effects of co-exposure to As and BaP on the initiation of EMT and the progression of breast cancer.
Collapse
Affiliation(s)
- Ahmad Safari Maleki
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Hossein Ghahremani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Shadboorestan
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
2
|
Praud D, Amadou A, Coudon T, Duboeuf M, Mercoeur B, Faure E, Grassot L, Danjou AM, Salizzoni P, Couvidat F, Dossus L, Severi G, Mancini FR, Fervers B. Association between chronic long-term exposure to airborne dioxins and breast cancer. Int J Hyg Environ Health 2025; 263:114489. [PMID: 39579601 DOI: 10.1016/j.ijheh.2024.114489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/06/2024] [Accepted: 11/13/2024] [Indexed: 11/25/2024]
Abstract
Breast cancer is the most common type of cancer among women. Environmental pollutants, specifically those with endocrine disrupting properties like dioxins, may impact breast cancer development. Current epidemiological studies on the association between exposure to dioxins and the risk of breast cancer show inconsistent results. To address these uncertainties, our objective was to investigate the impact of airborne dioxin exposure on breast cancer risk within the E3N cohort, encompassing 5222 cases identified during the 1990-2011 follow-up and 5222 matched controls. Airborne dioxin exposure was assessed using a Geographic Information System-based metric considering residential proximity to dioxin emitting sources, their technical characteristics, exposure duration and wind direction. Additional analyses were performed using dioxin concentrations estimated by a chemistry transport model, CHIMERE. The results suggest a slightly increased risk between cumulative dioxin exposure at the residential address and overall breast cancer risk (adjusted odds ratio (OR) = 1.03, 95% confidence interval (CI): 0.99-1.07, for a one standard deviation (SD) increment among controls (14.47 log-μg-TEQ/m2). The associations remained consistent for sources within 3, 5, and 10 km, and when restricting exposure to dioxin emissions from household waste incinerators. Similar OR estimates (OR = 1.02, 95% CI: 0.97-1.07, for a one SD increment) were obtained using the CHIMERE model. The findings of this study suggest the possibility of an increased risk of breast cancer associated with long-term residential exposure to dioxins and emphasize the importance of efforts to mitigate air pollution exposure.
Collapse
Affiliation(s)
- Delphine Praud
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France; Inserm, U1296 Unit, "Radiation: Defense, Health and Environment", Lyon, France.
| | - Amina Amadou
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France; Inserm, U1296 Unit, "Radiation: Defense, Health and Environment", Lyon, France
| | - Thomas Coudon
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France; Inserm, U1296 Unit, "Radiation: Defense, Health and Environment", Lyon, France
| | - Margaux Duboeuf
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France; Inserm, U1296 Unit, "Radiation: Defense, Health and Environment", Lyon, France
| | - Benoît Mercoeur
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France; Inserm, U1296 Unit, "Radiation: Defense, Health and Environment", Lyon, France
| | - Elodie Faure
- Paris-Saclay University, UVSQ, Inserm U1018 Unit, Gustave Roussy, Centre de Recherche en Epidémiologie et Santé des Populations (CESP), Villejuif, France
| | - Lény Grassot
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France; Inserm, U1296 Unit, "Radiation: Defense, Health and Environment", Lyon, France
| | - Aurélie Mn Danjou
- Paris Cité University, Inserm UMR1153 Epidemiology of Childhood and Adolescent Cancer, Center for Research in Epidemiology and Statistics (CRESS), Villejuif, France
| | - Pietro Salizzoni
- Ecole Centrale de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, Ecully, France
| | - Florian Couvidat
- National Institute for Industrial Environment and Risks (INERIS), Verneuil-en-Halatte, France
| | - Laure Dossus
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Gianluca Severi
- Paris-Saclay University, UVSQ, Inserm U1018 Unit, Gustave Roussy, Centre de Recherche en Epidémiologie et Santé des Populations (CESP), Villejuif, France; Departement of Statistics, Computer Science and Applications "G. Parenti", University of Florence, Italy
| | - Francesca Romana Mancini
- Paris-Saclay University, UVSQ, Inserm U1018 Unit, Gustave Roussy, Centre de Recherche en Epidémiologie et Santé des Populations (CESP), Villejuif, France
| | - Béatrice Fervers
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France; Inserm, U1296 Unit, "Radiation: Defense, Health and Environment", Lyon, France
| |
Collapse
|
3
|
Tippila J, Wah NLS, Akbar KA, Bhummaphan N, Wongsasuluk P, Kallawicha K. Ambient Air Pollution Exposure and Breast Cancer Risk Worldwide: A Systematic Review of Longitudinal Studies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1713. [PMID: 39767552 PMCID: PMC11728426 DOI: 10.3390/ijerph21121713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025]
Abstract
Breast cancer is the most prevalent malignancy among women. Certain air pollutants have carcinogenic and estrogenic properties that can contribute to breast cancer development. This systematic review aimed to investigate the association between air pollution and breast cancer based on epidemiological evidence. This systematic review included articles published between 2013 and 2022 from Scopus and PubMed databases, focusing on cohort and nested case-control studies examining the association between outdoor air pollution and breast cancer. A total of 25 articles were included. A total of eight outdoor pollutants were analyzed, with seven showing a significant association with breast cancer risk. Specifically, the strong association between benzo[a]pyrene and breast cancer risk was reported. Furthermore, all four studies on nitrogen oxides (NOx), fifteen out of eighteen (83.33%) on particulate matter less than 2.5 µm (PM2.5), nine out of thirteen studies (69.23%) on nitrogen dioxide (NO2), and three out of seven studies (42.86%) on particulate matter less than 10 µm PM10 showed an association with breast cancer risk (hazard ratio [HR]: 1.05-1.56; odds ratio [OR]: 1.03-1.86). In contrast, only one out of three studies (33.33%) on O3 (HR: 0.76-1.03) and all studies on cadmium (OR: 0.88-0.97) suggested a negative association with breast cancer risk. None of the studies on black carbon found an association with breast cancer risk. It is important to note the methodological limitations of this review, including potential publication bias due to the inclusion of only English-language articles and a regional focus on developed countries, which may limit the generalizability of findings. This study suggests that exposure to outdoor air pollutants is linked to an increased risk of breast cancer. Further research is needed to establish a causal relationship and the mechanisms by which environmental pollutants may trigger carcinogenic effects and contribute to breast cancer development through epigenetic pathways.
Collapse
Affiliation(s)
- Jeeraporn Tippila
- College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (J.T.); (N.L.S.W.); (K.A.A.); (N.B.); (P.W.)
- College of Medicine and Public Health, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Naw Lah Say Wah
- College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (J.T.); (N.L.S.W.); (K.A.A.); (N.B.); (P.W.)
| | - Kurnia Ardiansyah Akbar
- College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (J.T.); (N.L.S.W.); (K.A.A.); (N.B.); (P.W.)
- Department of Occupational Health, Public Health Faculty, Jember University, Jember 68121, Indonesia
| | - Narumol Bhummaphan
- College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (J.T.); (N.L.S.W.); (K.A.A.); (N.B.); (P.W.)
| | - Pokkate Wongsasuluk
- College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (J.T.); (N.L.S.W.); (K.A.A.); (N.B.); (P.W.)
| | - Kraiwuth Kallawicha
- College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (J.T.); (N.L.S.W.); (K.A.A.); (N.B.); (P.W.)
| |
Collapse
|
4
|
Zou R, Lu J, Bai X, Yang Y, Zhang S, Wu S, Tang Z, Li K, Hua X. The epigenetic-modified downregulation of LOXL1 protein mediates EMT in bladder epithelial cells exposed to benzo[a]pyrene and its metabolite BPDE. Int Immunopharmacol 2024; 142:113232. [PMID: 39340995 DOI: 10.1016/j.intimp.2024.113232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/30/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
Benzo[a]pyrene (B[a]P) is a well-known polycyclic aromatic hydrocarbon (PAH) pollutant with high carcinogenicity, widespread environmental presence, and significant threat to public health. Epidemiological studies have linked exposure to B[a]P and its metabolite 7,8-dihydroxy-9,10-epoxybenzo[a]pyrene (BPDE) to the development and progression of various cancers, including bladder cancer. However, its underlying mechanism remains unclear. Our study revealed that B[a]P and BPDE induced epithelial-mesenchymal transition (EMT), a critical early event in cell malignant transformation, involving a decrease in E-Cadherin and upregulation of N-Cadherin protein levels, leading to increased cell motility and migration in bladder epithelial cells. Further studies have indicated that LOXL1 DNA undergoes methylation and modification influenced by methyltransferase 3a (DNMT3a) and DNMT3b, resulting in decreased LOXL1 protein levels. The decreased LOXL1 promotes the zinc finger transcription factor SLUG, which then inhibits E-Cadherin protein levels and initiates the EMT process. Moreover, DNMT3a/3b expression appears to be influenced by intracellular oxidative stress levels. These findings suggest that exposure to B[a]P/BPDE promotes the EMT process through the pivotal factor LOXL1, thereby contributing to bladder carcinogenesis. Our study provides a theoretical basis for considering LOXL1 as a potential biomarker for early diagnosis and a novel target for the precise diagnosis and treatment of bladder cancer.
Collapse
Affiliation(s)
- Ronghao Zou
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Juan Lu
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Xiaoyue Bai
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yuyao Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Shouyue Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Shuai Wu
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Zhixin Tang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Kang Li
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Xiaohui Hua
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
5
|
Adeniran JA, Ogunlade BT, Toluwalope Odediran E, Olasunkanmi Yusuf R, Ademola Sonibare J. Polycyclic aromatic hydrocarbons within the vicinity of a scrap-iron smelting plant: indoor-outdoor and seasonal pattern, source, and exposure risk assessment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024:1-19. [PMID: 39561051 DOI: 10.1080/09603123.2024.2431228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 11/14/2024] [Indexed: 11/21/2024]
Abstract
The growing demand for ferrous metals and abundant scrap materials has fueled Nigeria's scrap-iron smelting industry, leading to hazardous pollutant emissions. This study investigated the concentrations, seasonal and indoor-outdoor variations, origins, and health impacts of polycyclic aromatic hydrocarbons (PAHs) in dust samples around a scrap-iron smelting facility. Analyses of dust samples revealed that high molecular weight PAHs (HMWPAHs) dominated during both seasons, with 5-ring PAHs (34%) contributing most during the rainy season and 3-ring PAHs (36%) during the dry season. Carcinogenic PAHs were more prevalent in the rainy season compared to the dry season. Seven PAH sources were identified, with gasoline combustion being the dominant source during the rainy season and iron and steel production during the dry season. Incremental lifetime cancer risk (ILCR) assessments showed PAH concentrations within safe limits, with dermal contact identified as the primary exposure pathway for both children and adults in the study area.
Collapse
Affiliation(s)
| | | | | | | | - Jacob Ademola Sonibare
- Environmental Engineering Research Laboratory, Obafemi Awolowo University, Ile-Ife, Nigeria
| |
Collapse
|
6
|
Mercoeur B, Fervers B, Coudon T, Noh H, Giampiccolo C, Grassot L, Faure E, Couvidat F, Severi G, Mancini FR, Roy P, Praud D, Amadou A. Exposure to air pollutants and breast cancer risk: mediating effects of metabolic health biomarkers in a nested case-control study within the E3N-Generations cohort. Breast Cancer Res 2024; 26:159. [PMID: 39548533 PMCID: PMC11568591 DOI: 10.1186/s13058-024-01913-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/31/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Growing epidemiological evidence suggests an association between exposure to air pollutants and breast cancer. Yet, the underlying mechanisms remain poorly understood. This study explored the mediating role of thirteen metabolic health biomarkers in the relationship between exposure to three air pollutants, i.e. nitrogen dioxide (NO2), polychlorinated biphenyls 153 (PCB153), and benzo[a]pyrene (BaP), and breast cancer risk. METHODS We used data from a nested case-control study within the French national prospective E3N-Generations cohort, involving 523 breast cancer cases and 523 matched controls. The four-way decomposition mediation of total effects for thirteen biomarkers was applied to estimate interaction and mediation effects (controlled direct, reference interaction, mediated interaction, and pure indirect effects). RESULTS The analyses indicated a significant increase in breast cancer risk associated with BaP exposure (odds ratio (OR)Q4 vs Q1 = 2.32, 95% confidence intervals (CI): 1.00-5.37). PCB153 exposure showed a positive association only in the third quartile (ORQ3 vs Q1 = 2.25, CI 1.13-4.57), but it appeared to be non-significant in the highest quartile (ORQ4 vs Q1 = 2.07, CI 0.93-4.61). No association was observed between NO2 exposure and breast cancer risk. Estradiol was associated with an increased risk of breast cancer (OR per one standard deviation (SD) increment = 1.22, CI 1.05-1.42), while thyroid-stimulating hormone was inversely related to breast cancer risk (OR per 1SD increase = 0.87, CI 0.75-1.00). We observed a suggestive mediated effect of the association between the three pollutants and breast cancer risk, through albumin, high-density lipoproteins cholesterol, low-density lipoprotein cholesterol, parathormone, and estradiol. CONCLUSION Although limited by a lack of statistical power, this study provides relevant insights into the potential mediating role of certain biomarkers in the association between air pollutant exposure and breast cancer risk, highlighting the need for further in-depth studies in large populations.
Collapse
Affiliation(s)
- Benoît Mercoeur
- Department of Prevention Cancer Environnement, Centre Léon Bérard, Lyon, France
- Inserm U1296 Radiations : Défense, Santé, Environnement, Lyon, France
| | - Béatrice Fervers
- Department of Prevention Cancer Environnement, Centre Léon Bérard, Lyon, France
- Inserm U1296 Radiations : Défense, Santé, Environnement, Lyon, France
| | - Thomas Coudon
- Department of Prevention Cancer Environnement, Centre Léon Bérard, Lyon, France
- Inserm U1296 Radiations : Défense, Santé, Environnement, Lyon, France
| | - Hwayoung Noh
- Department of Prevention Cancer Environnement, Centre Léon Bérard, Lyon, France
- Inserm U1296 Radiations : Défense, Santé, Environnement, Lyon, France
| | - Camille Giampiccolo
- Department of Prevention Cancer Environnement, Centre Léon Bérard, Lyon, France
- Inserm U1296 Radiations : Défense, Santé, Environnement, Lyon, France
- Laboratoire de Biométrie Et Biologie Evolutive, CNRS UMR 5558, Villeurbanne, France
- Service de Biostatistique-Bioinformatique, Pole Sante Publique, Hospices Civils de Lyon, Lyon, France
| | - Lény Grassot
- Department of Prevention Cancer Environnement, Centre Léon Bérard, Lyon, France
- Inserm U1296 Radiations : Défense, Santé, Environnement, Lyon, France
| | - Elodie Faure
- Universite Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, 94805, Villejuif, France
| | - Florian Couvidat
- National Institute for Industrial Environment and Risks (INERIS), Verneuil-en-Halatte, France
| | - Gianluca Severi
- Universite Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, 94805, Villejuif, France
- Department of Statistics, Computer Science and Applications (DISIA), University of Florence, Florence, Italy
| | | | - Pascal Roy
- Laboratoire de Biométrie Et Biologie Evolutive, CNRS UMR 5558, Villeurbanne, France
- Service de Biostatistique-Bioinformatique, Pole Sante Publique, Hospices Civils de Lyon, Lyon, France
- Université Claude Bernard Lyon 1, Lyon, France
| | - Delphine Praud
- Department of Prevention Cancer Environnement, Centre Léon Bérard, Lyon, France
- Inserm U1296 Radiations : Défense, Santé, Environnement, Lyon, France
| | - Amina Amadou
- Department of Prevention Cancer Environnement, Centre Léon Bérard, Lyon, France.
- Inserm U1296 Radiations : Défense, Santé, Environnement, Lyon, France.
| |
Collapse
|
7
|
Waddingham CM, Hinton P, Villeneuve PJ, Brook JR, Lavigne E, Larsen K, King WD, Wen D, Meng J, Zhang J, Galarneau E, Harris SA. Exposure to ambient polycyclic aromatic hydrocarbons and early-onset female breast cancer in a case-control study in Ontario, Canada. Environ Epidemiol 2024; 8:e333. [PMID: 39386012 PMCID: PMC11463212 DOI: 10.1097/ee9.0000000000000333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/02/2024] [Indexed: 10/12/2024] Open
Abstract
Background Ambient polycyclic aromatic hydrocarbons (PAHs) are a class of toxicologically important and understudied air pollutants. Epidemiologic evidence suggests that chronic exposure to PAHs increases breast cancer risk; however, there are few studies in nonoccupational settings that focus on early-onset diagnoses. Methods The relationship between residentially-based ambient PAH concentrations and female breast cancer, among those 18-45 years of age, was characterized in the Ontario Environment and Health Study (OEHS). The OEHS was a population-based case-control study undertaken in Ontario, Canada between 2013 and 2015. Primary incident breast cancers were identified within 3 months of diagnosis, and a population-based series of controls were recruited. Concentrations of ambient PAHs, using fluoranthene as a surrogate, were derived using a chemical transport model at a 2.5 km spatial resolution. These estimates were assigned to participants' residences at the time of the interview and 5 years prior. Logistic regression was used to estimate odds ratios (ORs) and their 95% confidence intervals (CIs) based on a quartile categorization of fluoranthene exposure while adjusting for a series of individual- and area-level risk factors. The shape of the exposure-response trend was evaluated using cubic splines. Results Median fluoranthene exposure for cases and controls was 0.0017 µg/m3 and 0.0014 µg/m3, respectively. In models adjusted for a parsimonious set of risk factors, the highest quartile of exposure was associated with an increased risk of breast cancer (OR = 2.16; 95% CI = 1.22, 3.84). Restricted spline analyses revealed nonlinear dose-response patterns. Conclusions These findings support the hypothesis that ambient PAH exposures increases the risk of early-onset breast cancer.
Collapse
Affiliation(s)
| | - Patrick Hinton
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Paul J. Villeneuve
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Jeffrey R. Brook
- Division of Occupational and Environmental Health, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Eric Lavigne
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - Kristian Larsen
- Office of Environmental Health, Health Canada, Ottawa, Ontario Canada
- Department of Public Health Sciences, Queen’s University, Kingston, Ontario, Canada
- Department of Geography and Planning, University of Toronto, Toronto, Ontario, Canada
| | - Will D. King
- Department of Public Health Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Deyong Wen
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, Ontario, Canada
| | - Jun Meng
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, Ontario, Canada
- Department of Civil and Environmental Engineering, Washington State University, Pullman, Washington
| | - Junhua Zhang
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, Ontario, Canada
| | - Elisabeth Galarneau
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, Ontario, Canada
| | - Shelley A. Harris
- Division of Occupational and Environmental Health, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Desnavailles P, Praud D, Le Provost B, Kobayashi H, Deygas F, Amadou A, Coudon T, Grassot L, Faure E, Couvidat F, Severi G, Mancini FR, Fervers B, Proust-Lima C, Leffondré K. Trajectories of long-term exposure to PCB153 and Benzo[a]pyrene (BaP) air pollution and risk of breast cancer. Environ Health 2024; 23:72. [PMID: 39244555 PMCID: PMC11380782 DOI: 10.1186/s12940-024-01106-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/24/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND While genetic, hormonal, and lifestyle factors partially elucidate the incidence of breast cancer, emerging research has underscored the potential contribution of air pollution. Polychlorinated biphenyls (PCBs) and benzo[a]pyrene (BaP) are of particular concern due to endocrine-disrupting properties and their carcinogenetic effect. OBJECTIVE To identify distinct long term trajectories of exposure to PCB153 and BaP, and estimate their associations with breast cancer risk. METHODS We used data from the XENAIR case-control study, nested within the ongoing prospective French E3N cohort which enrolled 98,995 women aged 40-65 years in 1990-1991. Cases were incident cases of primary invasive breast cancer diagnosed from cohort entry to 2011. Controls were randomly selected by incidence density sampling, and individually matched to cases on delay since cohort entry, and date, age, department of residence, and menopausal status at cohort entry. Annual mean outdoor PCB153 and BaP concentrations at residential addresses from 1990 to 2011 were estimated using the CHIMERE chemistry-transport model. Latent class mixed models were used to identify profiles of exposure trajectories from cohort entry to the index date, and conditional logistic regression to estimate their association with the odds of breast cancer. RESULTS 5058 cases and 5059 controls contributed to the analysis. Five profiles of trajectories of PCB153 exposure were identified. The class with the highest PCB153 concentrations had a 69% increased odds of breast cancer compared to the class with the lowest concentrations (95% CI 1.08, 2.64), after adjustment for education and matching factors. The association between identified BaP trajectories and breast cancer was weaker and suffered from large CI. CONCLUSIONS Our results support an association between long term exposure to PCB153 and the risk of breast cancer, and encourage further studies to account for lifetime exposure to persistent organic pollutants.
Collapse
Affiliation(s)
- Pauline Desnavailles
- Bordeaux Population Health Center (BPH Inserm U1219), Université de Bordeaux, 146 Rue Leo Saignat, Bordeaux, 33000, France
| | - Delphine Praud
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France
- Inserm U1296 Radiations : Défense, Santé, Environnement, Lyon, France
| | - Blandine Le Provost
- Bordeaux Population Health Center (BPH Inserm U1219), Université de Bordeaux, 146 Rue Leo Saignat, Bordeaux, 33000, France
| | - Hidetaka Kobayashi
- Bordeaux Population Health Center (BPH Inserm U1219), Université de Bordeaux, 146 Rue Leo Saignat, Bordeaux, 33000, France
| | - Floriane Deygas
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France
- Inserm U1296 Radiations : Défense, Santé, Environnement, Lyon, France
| | - Amina Amadou
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France
- Inserm U1296 Radiations : Défense, Santé, Environnement, Lyon, France
| | - Thomas Coudon
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France
- Inserm U1296 Radiations : Défense, Santé, Environnement, Lyon, France
| | - Lény Grassot
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France
- Inserm U1296 Radiations : Défense, Santé, Environnement, Lyon, France
| | - Elodie Faure
- Department of Statistics, Computer Science and Applications (DISIA), University of Florence, Florence, Italy
| | - Florian Couvidat
- National Institute for Industrial Environment and Risks (INERIS), Verneuil-en-Halatte, France
| | - Gianluca Severi
- Centre de Recherche en Epidémiologie Et Santé Des Populations (CESP, Inserm U1018), Facultés de Médecine, Université Paris-Saclay, UPS UVSQ, Gustave Roussy, Villejuif, France
- Department of Statistics, Computer Science and Applications (DISIA), University of Florence, Florence, Italy
| | - Francesca Romana Mancini
- Department of Statistics, Computer Science and Applications (DISIA), University of Florence, Florence, Italy
| | - Béatrice Fervers
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France
- Inserm U1296 Radiations : Défense, Santé, Environnement, Lyon, France
| | - Cécile Proust-Lima
- Bordeaux Population Health Center (BPH Inserm U1219), Université de Bordeaux, 146 Rue Leo Saignat, Bordeaux, 33000, France
| | - Karen Leffondré
- Bordeaux Population Health Center (BPH Inserm U1219), Université de Bordeaux, 146 Rue Leo Saignat, Bordeaux, 33000, France.
| |
Collapse
|
9
|
Davies JG, Menzies GE. Utilizing biological experimental data and molecular dynamics for the classification of mutational hotspots through machine learning. BIOINFORMATICS ADVANCES 2024; 4:vbae125. [PMID: 39239360 PMCID: PMC11377099 DOI: 10.1093/bioadv/vbae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/06/2024] [Accepted: 08/23/2024] [Indexed: 09/07/2024]
Abstract
Motivation Benzo[a]pyrene, a notorious DNA-damaging carcinogen, belongs to the family of polycyclic aromatic hydrocarbons commonly found in tobacco smoke. Surprisingly, nucleotide excision repair (NER) machinery exhibits inefficiency in recognizing specific bulky DNA adducts including Benzo[a]pyrene Diol-Epoxide (BPDE), a Benzo[a]pyrene metabolite. While sequence context is emerging as the leading factor linking the inadequate NER response to BPDE adducts, the precise structural attributes governing these disparities remain inadequately understood. We therefore combined the domains of molecular dynamics and machine learning to conduct a comprehensive assessment of helical distortion caused by BPDE-Guanine adducts in multiple gene contexts. Specifically, we implemented a dual approach involving a random forest classification-based analysis and subsequent feature selection to identify precise topological features that may distinguish adduct sites of variable repair capacity. Our models were trained using helical data extracted from duplexes representing both BPDE hotspot and nonhotspot sites within the TP53 gene, then applied to sites within TP53, cII, and lacZ genes. Results We show our optimized model consistently achieved exceptional performance, with accuracy, precision, and f1 scores exceeding 91%. Our feature selection approach uncovered that discernible variance in regional base pair rotation played a pivotal role in informing the decisions of our model. Notably, these disparities were highly conserved among TP53 and lacZ duplexes and appeared to be influenced by the regional GC content. As such, our findings suggest that there are indeed conserved topological features distinguishing hotspots and nonhotpot sites, highlighting regional GC content as a potential biomarker for mutation. Availability and implementation Code for comparing machine learning classifiers and evaluating their performance is available at https://github.com/jdavies24/ML-Classifier-Comparison, and code for analysing DNA structure with Curves+ and Canal using Random Forest is available at https://github.com/jdavies24/ML-classification-of-DNA-trajectories.
Collapse
Affiliation(s)
- James G Davies
- Molecular Bioscience Division, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, United Kingdom
| | - Georgina E Menzies
- Molecular Bioscience Division, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, United Kingdom
| |
Collapse
|
10
|
Giampiccolo C, Amadou A, Coudon T, Praud D, Grassot L, Faure E, Couvidat F, Severi G, Romana Mancini F, Fervers B, Roy P. Multi-pollutant exposure profiles associated with breast cancer risk: A Bayesian profile regression analysis in the French E3N cohort. ENVIRONMENT INTERNATIONAL 2024; 190:108943. [PMID: 39137687 DOI: 10.1016/j.envint.2024.108943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Human exposure to air pollution involves complex mixtures of multiple correlated air pollutants. To date, very few studies have assessed the combined effects of exposure to multiple air pollutants on breast cancer (BC) risk. OBJECTIVES We aimed to assess the association between combined exposures to multiple air pollutants and breast cancer risk. METHODS The study was based on a case-control study nested within the French E3N cohort (5222 incident BC cases/5222 matched controls). For each woman, the average of the mean annual exposure to eight pollutants (benzo(a)oyrene, cadmium, dioxins, polychlorinated biphenyls (PCB153), nitrogen dioxide (NO2), ozone, particulate matter and fine particles (PMs)) was estimated from cohort inclusion in 1990 to the index date. We used the Bayesian Profile Regression (BPR) model, which groups individuals according to their exposure and risk levels, and assigns a risk to each cluster identified. The model was adjusted on a combination of matching variables and confounders to better consider the design of the nested case-control study. Odds ratios (OR) and their 95 % credible intervals (CrI) were estimated. RESULTS Among the 21 clusters identified, the cluster characterised by low exposures to all pollutants, except ozone, was taken as reference. A consistent increase in BC risk compared to the reference cluster was observed for 3 clusters: cluster 9 (OR=1.61; CrI=1.13,2.26), cluster 16 (OR=1.59; CrI=1.10,2.30) and cluster 15 (OR=1.38; CrI=1.00,1.88) characterised by high levels of NO2, PMs and PCB153. The other clusters showed no consistent association with BC. DISCUSSION This is the first study assessing the effect of exposure to a mixture of eight air pollutants on BC risk, using the BPR approach. Overall, results showed evidence of a positive joint effect of exposure to high levels to most pollutants, particularly high for NO2, PMs and PCB153, on the risk of BC.
Collapse
Affiliation(s)
- Camille Giampiccolo
- Department of Prevention Cancer Environnent, Centre Léon Bérard, Lyon, France; Inserm U1296 Radiations : Défense, Santé, Environnement, Lyon, France; Laboratoire de Biométrie Et Biologie Evolutive, CNRS UMR 5558, Villeurbanne, France
| | - Amina Amadou
- Department of Prevention Cancer Environnent, Centre Léon Bérard, Lyon, France; Inserm U1296 Radiations : Défense, Santé, Environnement, Lyon, France.
| | - Thomas Coudon
- Department of Prevention Cancer Environnent, Centre Léon Bérard, Lyon, France; Inserm U1296 Radiations : Défense, Santé, Environnement, Lyon, France
| | - Delphine Praud
- Department of Prevention Cancer Environnent, Centre Léon Bérard, Lyon, France; Inserm U1296 Radiations : Défense, Santé, Environnement, Lyon, France
| | - Lény Grassot
- Department of Prevention Cancer Environnent, Centre Léon Bérard, Lyon, France; Inserm U1296 Radiations : Défense, Santé, Environnement, Lyon, France
| | - Elodie Faure
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, Villejuif, France
| | - Florian Couvidat
- National Institute for Industrial Environment and Risks (INERIS), Verneuil-en-Halatte, France
| | - Gianluca Severi
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, Villejuif, France; Department of Statistics, Computer Science and Applications (DISIA), University of Florence, Florence, Italy
| | | | - Béatrice Fervers
- Department of Prevention Cancer Environnent, Centre Léon Bérard, Lyon, France; Inserm U1296 Radiations : Défense, Santé, Environnement, Lyon, France
| | - Pascal Roy
- Laboratoire de Biométrie Et Biologie Evolutive, CNRS UMR 5558, Villeurbanne, France; Université Claude Bernard Lyon 1, Lyon, France; Service de Biostatistique-Bioinformatique, Pole Sante Publique, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
11
|
Hinton P, Villeneuve PJ, Galarneau E, Larsen K, Wen D, Meng J, Savic-Jovcic V, Zhang J, King WD. Ambient polycyclic aromatic hydrocarbon exposure and breast cancer risk in a population-based Canadian case-control study. Cancer Causes Control 2024; 35:1165-1180. [PMID: 38630334 PMCID: PMC11266283 DOI: 10.1007/s10552-024-01866-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/20/2024] [Indexed: 07/24/2024]
Abstract
PURPOSE Polycyclic aromatic hydrocarbons (PAHs) represent a class of ubiquitous pollutants recognized as established human carcinogens and endocrine-disrupting chemicals. PAHs have seldom been modeled at the population-level in epidemiological studies. Fluoranthene is a prevalent PAH in urban settings and correlates with the occurrence of other PAHs. The purpose of this study was to evaluate associations between long-term residential exposure to ambient PAHs and breast cancer risk, both pre- and post-menopausal, in Canada. METHODS Using the National Enhanced Cancer Surveillance System (NECSS), a national-scale Canadian population-based case-control study, annual fluoranthene exposures were estimated using the GEM-MACH-PAH chemical transport model on the basis of geocoded residential histories throughout a 20-year exposure window. Odds ratios (ORs) and 95% confidence intervals (CIs) controlling for potential confounders were estimated using logistic regression. Separate analyses were conducted for Ontario and national samples given a finer-resolution exposure surface and additional risk factor information available for Ontario. RESULTS Positive associations were observed between fluoranthene exposure and premenopausal breast cancer, with inconsistent findings for postmenopausal breast cancer. For premenopausal breast cancer, adjusted ORs of 2.48 (95% CI: 1.29, 4.77) and 1.59 (95% CI: 1.11, 2.29) were observed when comparing the second highest category of exposure to the lowest, among the Ontario and national samples, respectively. For postmenopausal breast cancer, adjusted ORs were 1.10 (95% CI: 0.67, 1.80) and 1.33 (95% CI: 1.02, 1.73). Associations for the highest level of exposure, across both samples and menopausal strata, were non-significant. CONCLUSION This study provides support for the hypothesis that ambient PAH exposures increase the risk of premenopausal breast cancer.
Collapse
Affiliation(s)
- Patrick Hinton
- Department of Public Health Sciences, Queen's University, Kingston, ON, Canada
| | | | - Elisabeth Galarneau
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, ON, Canada
| | - Kristian Larsen
- Office of Environmental Health, Health Canada, Ottawa, ON, Canada
| | - Deyong Wen
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, ON, Canada
| | - Jun Meng
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, ON, Canada
| | - Verica Savic-Jovcic
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, ON, Canada
| | - Junhua Zhang
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, ON, Canada
| | - Will D King
- Department of Public Health Sciences, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
12
|
Abu-Bakar A, Ismail M, Zulkifli MZI, Zaini NAS, Shukor NIA, Harun S, Inayat-Hussain SH. Mapping the influence of hydrocarbons mixture on molecular mechanisms, involved in breast and lung neoplasms: in silico toxicogenomic data-mining. Genes Environ 2024; 46:15. [PMID: 38982523 PMCID: PMC11232146 DOI: 10.1186/s41021-024-00310-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 06/07/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Exposure to chemical mixtures inherent in air pollution, has been shown to be associated with the risk of breast and lung cancers. However, studies on the molecular mechanisms of exposure to a mixture of these pollutants, such as hydrocarbons, in the development of breast and lung cancers are scarce. We utilized in silico toxicogenomic analysis to elucidate the molecular pathways linked to both cancers that are influenced by exposure to a mixture of selected hydrocarbons. The Comparative Toxicogenomics Database and Cytoscape software were used for data mining and visualization. RESULTS Twenty-five hydrocarbons, common in air pollution with carcinogenicity classification of 1 A/B or 2 (known/presumed or suspected human carcinogen), were divided into three groups: alkanes and alkenes, halogenated hydrocarbons, and polyaromatic hydrocarbons. The in silico data-mining revealed 87 and 44 genes commonly interacted with most of the investigated hydrocarbons are linked to breast and lung cancer, respectively. The dominant interactions among the common genes are co-expression, physical interaction, genetic interaction, co-localization, and interaction in shared protein domains. Among these genes, only 16 are common in the development of both cancers. Benzo(a)pyrene and tetrachlorodibenzodioxin interacted with all 16 genes. The molecular pathways potentially affected by the investigated hydrocarbons include aryl hydrocarbon receptor, chemical carcinogenesis, ferroptosis, fluid shear stress and atherosclerosis, interleukin 17 signaling pathway, lipid and atherosclerosis, NRF2 pathway, and oxidative stress response. CONCLUSIONS Within the inherent limitations of in silico toxicogenomics tools, we elucidated the molecular pathways associated with breast and lung cancer development potentially affected by hydrocarbons mixture. Our findings indicate adaptive responses to oxidative stress and inflammatory damages are instrumental in the development of both cancers. Additionally, ferroptosis-a non-apoptotic programmed cell death driven by lipid peroxidation and iron homeostasis-was identified as a new player in these responses. Finally, AHR potential involvement in modulating IL-8, a critical gene that mediates breast cancer invasion and metastasis to the lungs, was also highlighted. A deeper understanding of the interplay between genes associated with these pathways, and other survival signaling pathways identified in this study, will provide invaluable knowledge in assessing the risk of inhalation exposure to hydrocarbons mixture. The findings offer insights into future in vivo and in vitro laboratory investigations that focus on inhalation exposure to the hydrocarbons mixture.
Collapse
Affiliation(s)
- A'edah Abu-Bakar
- Product Stewardship and Toxicology, Environment, Social Performance & Product Stewardship (ESPPS), Group Health, Safety and Environment (GHSE), Petroliam Nasional Berhad (PETRONAS), Kuala Lumpur, 50088, Malaysia.
| | - Maihani Ismail
- Product Stewardship and Toxicology, Environment, Social Performance & Product Stewardship (ESPPS), Group Health, Safety and Environment (GHSE), Petroliam Nasional Berhad (PETRONAS), Kuala Lumpur, 50088, Malaysia.
| | - M Zaqrul Ieman Zulkifli
- Product Stewardship and Toxicology, Environment, Social Performance & Product Stewardship (ESPPS), Group Health, Safety and Environment (GHSE), Petroliam Nasional Berhad (PETRONAS), Kuala Lumpur, 50088, Malaysia
| | - Nur Aini Sofiyya Zaini
- Product Stewardship and Toxicology, Environment, Social Performance & Product Stewardship (ESPPS), Group Health, Safety and Environment (GHSE), Petroliam Nasional Berhad (PETRONAS), Kuala Lumpur, 50088, Malaysia
| | - Nur Izzah Abd Shukor
- Health, Safety and Environment (HSE), KLCC Urusharta, Kuala Lumpur, 50088, Malaysia
| | - Sarahani Harun
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, 43600 UKM, Malaysia
| | - Salmaan Hussain Inayat-Hussain
- ESPPS, GHSE, PETRONAS, Kuala Lumpur, 50088, Malaysia
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, 60 College St, New Haven, CT, 06250, USA
| |
Collapse
|
13
|
Li X, Ye Z, Wang J, Lin P, Zhang X, Xie S, Chen C. Intake of tobacco nitrosamines of smokers in various provinces of China and their cancer risk: A meta-analysis. J Environ Sci (China) 2024; 141:249-260. [PMID: 38408825 DOI: 10.1016/j.jes.2023.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 02/28/2024]
Abstract
Nitrosamines are a class of carcinogens which have been detected widely in food, water, some pharmaceuticals as well as tobacco. The objectives of this paper include reviewing the basic information on tobacco consumption and nitrosamine contents, and assessing the health risks of tobacco nitrosamines exposure to Chinese smokers. We searched the publications in English from "Web of Science" and those in Chinese from the "China National Knowledge Infrastructure" in 2022 and collected 151 literatures with valid information. The content of main nitrosamines in tobacco, including 4-(methylnitrosoamino)-1-(3-pyridyl)-1-butanone (NNK), N-nitrosonornicotine (NNN), N-nitrosoanatabine (NAT), N-nitrosoanabasine (NAB), total tobacco-specific nitrosamines (TSNA), and N-nitrosodimethylamine (NDMA) were summarized. The information of daily tobacco consumption of smokers in 30 provinces of China was also collected. Then, the intakes of NNN, NNK, NAT, NAB, TSNAs, and NDMA via tobacco smoke were estimated as 1534 ng/day, 591 ng/day, 685 ng/day, 81 ng/day, 2543 ng/day, and 484 ng/day by adult smokers in 30 provinces, respectively. The cancer risk (CR) values for NNN and NNK inhalation intake were further calculated as 1.44 × 10-5 and 1.95 × 10-4. The CR value for NDMA intake via tobacco smoke (inhalation: 1.66 × 10-4) indicates that NDMA is similarly dangerous in tobacco smoke when compared with the TSNAs. In China, the CR values caused by average nitrosamines intake via various exposures and their order can be estimated as the following: smoke (3.75 × 10-4) > food (1.74 × 10-4) > drinking water (1.38 × 10-5). Smokers in China averagely suffer 200% of extra cancer risk caused by nitrosamines in tobacco when compared with non-smokers.
Collapse
Affiliation(s)
- Xiao Li
- Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou, Jiangsu 215163, China; Shenzhen Key Laboratory of Organic Pollution Prevention and Control, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Shenzhen 518055, China
| | - Zhiwei Ye
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jun Wang
- Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou, Jiangsu 215163, China; State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Pengfei Lin
- Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou, Jiangsu 215163, China
| | - Xiaojin Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Science and Engineering, Peking University, Beijing 100871, China
| | - Chao Chen
- Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou, Jiangsu 215163, China; State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
14
|
Castillo-Sanchez R, Garcia-Hernandez A, Torres-Alamilla P, Cortes-Reynosa P, Candanedo-Gonzales F, Salazar EP. Benzo[a]pyrene promotes an epithelial-to-mesenchymal transition process in MCF10A cells and mammary tumor growth and brain metastasis in female mice. Mol Carcinog 2024; 63:1319-1333. [PMID: 38629425 DOI: 10.1002/mc.23726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/21/2024] [Accepted: 03/28/2024] [Indexed: 06/12/2024]
Abstract
Breast cancer is the most frequent neoplasia in developed countries and the leading cause of death in women worldwide. Epithelial-to-mesenchymal transition (EMT) is a cellular process through which epithelial cells decrease or lose their epithelial characteristics and gain mesenchymal properties. EMT mediates tumor progression, because tumor cells acquire the capacity to execute the multiple steps of invasion and metastasis. Benzo[a]pyrene (B[a]P) is an environmental organic pollutant generated during the burning of fossil fuels, wood, and other organic materials. B[a]P exposition increases the incidence of breast cancer, and induces migration and/or invasion in MDA-MB-231 and MCF-7 breast cancer cells. However, the role of B[a]P in the induction of an EMT process and metastasis of mammary carcinoma cells has not been studied in detail. In this study, we demonstrate that B[a]P induces an EMT process in MCF10A mammary non-tumorigenic epithelial cells. In addition, B[a]P promotes the formation of larger tumors in Balb/cJ mice inoculated with 4T1 cells than in untreated mice and treated with dimethyl sulfoxide (DMSO). B[a]P also increases the number of mice with metastasis to brain and the total number of brain metastatic nodules in Balb/cJ mice inoculated with 4T1 cells compared with untreated mice and treated with DMSO. In conclusion, B[a]P induces an EMT process in MCF10A cells and the growth of mammary tumors and metastasis to brain in Balb/cJ mice inoculated with 4T1 cells.
Collapse
Affiliation(s)
- Rocio Castillo-Sanchez
- Departamento de Biologia Celular, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Ciudad de Mexico, Mexico
| | - Alejandra Garcia-Hernandez
- Departamento de Biologia Celular, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Ciudad de Mexico, Mexico
| | - Pablo Torres-Alamilla
- Departamento de Biologia Celular, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Ciudad de Mexico, Mexico
| | - Pedro Cortes-Reynosa
- Departamento de Biologia Celular, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Ciudad de Mexico, Mexico
| | - Fernando Candanedo-Gonzales
- Departamento de Patologia, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Ciudad de Mexico, Mexico
| | - Eduardo Perez Salazar
- Departamento de Biologia Celular, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Ciudad de Mexico, Mexico
| |
Collapse
|
15
|
Amadou A, Giampiccolo C, Bibi Ngaleu F, Praud D, Coudon T, Grassot L, Faure E, Couvidat F, Frenoy P, Severi G, Romana Mancini F, Roy P, Fervers B. Multiple xenoestrogen air pollutants and breast cancer risk: Statistical approaches to investigate combined exposures effect. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124043. [PMID: 38679129 DOI: 10.1016/j.envpol.2024.124043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/10/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Studies suggested that exposure to air pollutants, with endocrine disrupting (ED) properties, have a key role in breast cancer (BC) development. Although the population is exposed simultaneously to a mixture of multiple pollutants and ED pollutants may act via common biological mechanisms leading to synergic effects, epidemiological studies generally evaluate the effect of each pollutant separately. We aimed to assess the complex effect of exposure to a mixture of four xenoestrogen air pollutants (benzo-[a]-pyrene (BaP), cadmium, dioxin (2,3,7,8-Tétrachlorodibenzo-p-dioxin TCDD)), and polychlorinated biphenyl 153 (PCB153)) on the risk of BC, using three recent statistical methods, namely weighted quantile sum (WQS), quantile g-computation (QGC) and Bayesian kernel machine regression (BKMR). The study was conducted on 5222 cases and 5222 matched controls nested within the French prospective E3N cohort initiated in 1990. Annual average exposure estimates to the pollutants were assessed using a chemistry transport model, at the participants' residence address between 1990 and 2011. We found a positive association between the WQS index of the joint effect and the risk of overall BC (adjusted odds ratio (OR) = 1.10, 95% confidence intervals (CI): 1.03-1.19). Similar results were found for QGC (OR = 1.11, 95%CI: 1.03-1.19). Despite the association did not reach statistical significance in the BKMR model, we observed an increasing trend between the joint effect of the four pollutants and the risk of BC, when fixing other chemicals at their median concentrations. BaP, cadmium and PCB153 also showed positive trends in the multi-pollutant mixture, while dioxin showed a modest inverse trend. Despite we found a clear evidence of a positive association between the joint exposure to pollutants and BC risk only from WQS and QGC regression, we observed a similar suggestive trend using BKMR. This study makes a major contribution to the understanding of the joint effects of air pollution.
Collapse
Affiliation(s)
- Amina Amadou
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France; Inserm U1296 Radiations: Défense, Santé, Environnement, Lyon, France.
| | - Camille Giampiccolo
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France; Université Claude Bernard Lyon 1, Lyon, France; Service de Biostatistique-Bioinformatique, Pole Sante Publique, Hospices Civils de Lyon, Lyon, France; Laboratoire de Biometrie Et Biologie Evolutive, CNRS UMR 5558, Villeurbanne, France
| | - Fabiola Bibi Ngaleu
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France; Inserm U1296 Radiations: Défense, Santé, Environnement, Lyon, France; Université Claude Bernard Lyon 1, Lyon, France
| | - Delphine Praud
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France; Inserm U1296 Radiations: Défense, Santé, Environnement, Lyon, France
| | - Thomas Coudon
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France; Inserm U1296 Radiations: Défense, Santé, Environnement, Lyon, France
| | - Lény Grassot
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France; Inserm U1296 Radiations: Défense, Santé, Environnement, Lyon, France
| | - Elodie Faure
- Centre de Recherche en Epidémiologie et Santé des Populations (CESP, Inserm U1018), Facultés de Médecine, Université Paris-Saclay, UPS UVSQ, Gustave Roussy, Villejuif, France
| | - Florian Couvidat
- National Institute for industrial Environment and Risks (INERIS), Verneuil-en-Halatte, France
| | - Pauline Frenoy
- Centre de Recherche en Epidémiologie et Santé des Populations (CESP, Inserm U1018), Facultés de Médecine, Université Paris-Saclay, UPS UVSQ, Gustave Roussy, Villejuif, France
| | - Gianluca Severi
- Centre de Recherche en Epidémiologie et Santé des Populations (CESP, Inserm U1018), Facultés de Médecine, Université Paris-Saclay, UPS UVSQ, Gustave Roussy, Villejuif, France; Department of Statistics, Computer Science and Applications (DISIA), University of Florence, Italy
| | - Francesca Romana Mancini
- Centre de Recherche en Epidémiologie et Santé des Populations (CESP, Inserm U1018), Facultés de Médecine, Université Paris-Saclay, UPS UVSQ, Gustave Roussy, Villejuif, France.
| | - Pascal Roy
- Université Claude Bernard Lyon 1, Lyon, France; Service de Biostatistique-Bioinformatique, Pole Sante Publique, Hospices Civils de Lyon, Lyon, France; Laboratoire de Biometrie Et Biologie Evolutive, CNRS UMR 5558, Villeurbanne, France
| | - Béatrice Fervers
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France; Inserm U1296 Radiations: Défense, Santé, Environnement, Lyon, France.
| |
Collapse
|
16
|
Li S, Qiao Z, Huang M, Lao Q, Zhang Q, Xing Y, Pan S, Martin FL, Liu H, Pang W. Combined exposure of polystyrene microplastics and benzo[a]pyrene in rat: Study of the oxidative stress effects in the liver. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116390. [PMID: 38705037 DOI: 10.1016/j.ecoenv.2024.116390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 04/07/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024]
Abstract
Microplastics (MPs) and benzo[a]pyrene (B[a]P) are prevalent environmental pollutants. Numerous studies have extensively reported their individual adverse effects on organisms. However, the combined effects and mechanisms of exposure in mammals remain unknown. Thus, this study aims to investigate the potential effects of oral administration of 0.5μm polystyrene (PS) MPs (1 mg/mL or 5 mg/mL), B[a]P (1 mg/mL or 5 mg/mL) and combined (1 mg/mL or 5 mg/mL) on 64 male SD rats by gavage method over 6-weeks. The results demonstrate that the liver histopathological examination showed that the liver lobules in the combined (5 mg/kg) group had blurred and loose boundaries, liver cord morphological disorders, and significant steatosis. The levels of AST, ALT, TC, and TG in the combined dose groups were significantly higher than those in the other groups, the combined (5 mg/kg) group had the lowest levels of antioxidant enzymes and the highest levels of oxidants. The expression of Nrf2 was lowest and the expression of P38, NF-κB, and TNF-α was highest in the combined (5 mg/kg) group. In conclusion, these findings indicate that the combination of PSMPs and B[a]P can cause the highest levels of oxidative stress and elicit markedly enhanced toxic effects, which cause severe liver damage.
Collapse
Affiliation(s)
- Shengle Li
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi 541199, China; School of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Zipeng Qiao
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi 541199, China; School of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Meidie Huang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi 541199, China; School of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Qiufeng Lao
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi 541199, China; School of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Qingquan Zhang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi 541199, China; School of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Yu Xing
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi 541199, China; School of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Songying Pan
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi 541199, China; School of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Francis L Martin
- Biocel UK Ltd, Hull HU10 6TS, UK; Department of Cellular Pathology, Blackpool Teaching Hospitals NHS Foundation Trust, Whinney Heys Road, Blackpool FY3 8NR, UK
| | - Hui Liu
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi 541199, China; School of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China.
| | - Weiyi Pang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi 541199, China; School of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China; School of Humanities and Management, Guilin Medical University, Guilin, Guangxi 541199, China.
| |
Collapse
|
17
|
Qin Z, Yang QL, Fan W, Wang YG, Fei JL, Yuan JY, Qin Z, Liu HM, Mei HX, Wang XD. Comparison of methods for activating sesame stalk lignin biochar for removing benzo[a]pyrene from sesame oil. Int J Biol Macromol 2024; 266:131208. [PMID: 38552695 DOI: 10.1016/j.ijbiomac.2024.131208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/13/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
In this study, three activators and two activation methods were employed to activate sesame lignin-based biochar. The biochar samples were comprehensively characterized, their abilities to adsorb benzo[a]pyrene (BaP) from sesame oil were assessed, and the mechanism was analyzed. The results showed that the biochar obtained by one-step activation was more effective in removing BaP from sesame oil than the biochar produced by two-step activation. Among them, the biochar generated by one-step activation with ZnCl2 as the activator had the largest specific surface area (1068.8776 m3/g), and the richest mesoporous structure (0.7891 m3/g); it removed 90.53 % of BaP from sesame oil. BaP was mainly adsorbed by the mesopores of biochar. Mechanistically, pore-filling, π-π conjugations, hydrogen bonding, and n-π interactions were involved. The adsorption was spontaneous and heat-absorbing. In conclusion, the preparation of sesame lignin biochar using one-step activation with ZnCl2 as the activator was found to be the best for removing BaP from sesame oil. This biochar may be an economical adsorbent for the industrial removal of BaP from sesame oil.
Collapse
Affiliation(s)
- Zhi Qin
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Qiao-Li Yang
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Wei Fan
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Ying-Ge Wang
- School of International Education, Henan University of Technology, Zhengzhou 450001, China
| | - Jia-Lin Fei
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Jing-Yang Yuan
- School of International Education, Henan University of Technology, Zhengzhou 450001, China
| | - Zhao Qin
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China.
| | - Hua-Min Liu
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China.
| | - Hong-Xian Mei
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450008, China
| | - Xue-De Wang
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
18
|
Wang W, Chang S, He X, Zhou X, Shang P, Chen Y, Wang X, Chen L, Zhang Q, Qiao Y, Feng F. Sulforaphane inhibits the migration and invasion of BPDE-induced lung adenocarcinoma cells by regulating NLRP12. Toxicol Appl Pharmacol 2024; 485:116916. [PMID: 38537874 DOI: 10.1016/j.taap.2024.116916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/11/2024] [Accepted: 03/24/2024] [Indexed: 04/07/2024]
Abstract
This study aims to explore the impact and underlying mechanism of sulforaphane (SFN) intervention on the migration and invasion of lung adenocarcinoma induced by 7, 8-dihydroxy-9, 10-epoxy-benzo (a) pyrene (BPDE). Human lung adenocarcinoma A549 cells were exposed to varying concentrations of BPDE (0.25, 0.50, and 1.00 μM) and subsequently treated with 5 μM SFN. Cell viability was determined using CCK8 assay, while migration and invasion were assessed using Transwell assays. Lentivirus transfection was employed to establish NLRP12 overexpressing A549 cells. ELISA was utilized to quantify IL-33, CXCL12, and CXCL13 levels in the supernatant, while quantitative real-time PCR (qRT-PCR) and Western Blot were used to analyze the expression of NLRP12 and key factors associated with canonical and non-canonical NF-κB pathways. Results indicated an increase in migratory and invasive capabilities, concurrent with heightened expression of IL-33, CXCL12, CXCL13, and factors associated with both canonical and non-canonical NF-κB pathways. Moreover, mRNA and protein levels of NLRP12 were decreased in BPDE-stimulated A549 cells. Subsequent SFN intervention attenuated BPDE-induced migration and invasion of A549 cells. Lentivirus-mediated NLRP12 overexpression not only reversed the observed phenotype in BPDE-induced cells but also led to a reduction in the expression of critical factors associated with both canonical and non-canonical NF-κB pathways. Collectively, we found that SFN could inhibit BPDE-induced migration and invasion of A549 cells by upregulating NLRP12, thereby influencing both canonical and non-canonical NF-κB pathways.
Collapse
Affiliation(s)
- Wei Wang
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shufan Chang
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xi He
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - XiaoLei Zhou
- Department of Pulmonary Medicine, Chest Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Pingping Shang
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute, CNC, Zhengzhou, China
| | - Yusong Chen
- Quality Supervision & Test Center, China National Tobacco Corporation Shandong Branch, Jinan, China
| | - Xiaoke Wang
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Lijuan Chen
- Department of Pulmonary Medicine, Tumor Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Qiao Zhang
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yahong Qiao
- Department of Pulmonary Medicine, Chest Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.
| | - Feifei Feng
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
19
|
Fan L, Wang H, Ben S, Cheng Y, Chen S, Ding Z, Zhao L, Li S, Wang M, Cheng G. Genetic variant in a BaP-activated super-enhancer increases prostate cancer risk by promoting AhR-mediated FAM227A expression. J Biomed Res 2024; 38:149-162. [PMID: 38410974 PMCID: PMC11001591 DOI: 10.7555/jbr.37.20230049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 02/28/2024] Open
Abstract
Genetic variants in super-enhancers (SEs) are increasingly implicated as a disease risk-driving mechanism. Previous studies have reported an associations between benzo[a]pyrene (BaP) exposure and some malignant tumor risk. Currently, it is unclear whether BaP is involved in the effect of genetic variants in SEs on prostate cancer risk, nor the associated intrinsic molecular mechanisms. In the current study, by using logistic regression analysis, we found that rs5750581T>C in 22q-SE was significantly associated with prostate cancer risk (odds ratio = 1.26, P = 7.61 × 10 -5). We also have found that the rs6001092T>G, in a high linkage disequilibrium with rs5750581T>C ( r 2 = 0.98), is located in a regulatory aryl hydrocarbon receptor (AhR) motif and may interact with the FAM227A promoter in further bioinformatics analysis. We then performed a series of functional and BaP acute exposure experiments to assess biological function of the genetic variant and the target gene. Biologically, the rs6001092-G allele strengthened the transcription factor binding affinity to AhR, thereby upregulating FAM227A, especially upon exposure to BaP, which induced the malignant phenotypes of prostate cancer. The current study highlights that AhR acts as an environmental sensor of BaP and is involved in the SE-mediated prostate cancer risk, which may provide new insights into the etiology of prostate cancer associated with the inherited SE variants under environmental carcinogen stressors.
Collapse
Affiliation(s)
- Lulu Fan
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Hao Wang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Shuai Ben
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yifei Cheng
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Silu Chen
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Zhutao Ding
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Lingyan Zhao
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Shuwei Li
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Meilin Wang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Gong Cheng
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, Jiangsu 210029, China
| |
Collapse
|
20
|
Liu X, Zhang X, Zhou W, Liang L, Zhang J, Wen C, Li Y, Xu X, Liu G. Combined toxicity of oil-based PAH4 mixtures on HL-7702 cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169038. [PMID: 38056657 DOI: 10.1016/j.scitotenv.2023.169038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/03/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) as a group of prevalent persistent organic pollutants in the environment are always found as mixtures. The combined toxicity of oil-based PAH4 seems seldom to be mentioned. To evaluate the combined toxicity of oil-based PAH4 mixtures on HL-7702 cells, the effects of single, binary, ternary, and quaternary mixtures on cell viability were examined, and the concentration addition model and combination index (CI)-isobologram model were selected to predict the toxicological interactions of the mixtures. The results showed that the PAH4 mixtures had a concentration-dependent effect on cell viability. The CI model was more suitable for elucidating the toxicity interactions of mixtures. In addition, the combined toxicity of BaA + BaP and BaA + Chr + BbF + BaP was antagonistic, BaA + Chr, BaA + BbF, Chr + BbF, and BaA + Chr + BbF was synergistic, and the remaining mixtures shifted from antagonistic to synergistic. Antagonistic effects were observed in all mixtures containing BaP, indicating that oil-based PAH4 mixtures containing BaP had a mitigating effect on cytotoxicity. Furthermore, BbF was identified as playing a key role in the synergistic effects in binary and ternary mixtures. This study provided a new acknowledgment to assess the interactions of PAH4 mixtures which is helpful for further study of the toxicity risks in the environment.
Collapse
Affiliation(s)
- Xiaofang Liu
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China
| | - Xu Zhang
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Wanli Zhou
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Li Liang
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Jixian Zhang
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Chaoting Wen
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Youdong Li
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xin Xu
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Guoyan Liu
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| |
Collapse
|
21
|
Ferguson DT, Taka E, Messeha S, Flores-Rozas H, Reed SL, Redmond BV, Soliman KFA, Kanga KJW, Darling-Reed SF. The Garlic Compound, Diallyl Trisulfide, Attenuates Benzo[a]Pyrene-Induced Precancerous Effect through Its Antioxidant Effect, AhR Inhibition, and Increased DNA Repair in Human Breast Epithelial Cells. Nutrients 2024; 16:300. [PMID: 38276538 PMCID: PMC10819007 DOI: 10.3390/nu16020300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/05/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Exposure to B[a]P, the most characterized polycyclic aromatic hydrocarbon, significantly increases breast cancer risk. Our lab has previously reported that diallyl trisulfide (DATS), a garlic organosulfur compound (OSC) with chemopreventive and cell cycle arrest properties, reduces lipid peroxides and DNA damage in normal breast epithelial (MCF-10A) cells. In this study, we evaluated the ability of DATS to block the B[a]P-induced initiation of carcinogenesis in MCF-10A cells by examining changes in proliferation, clonogenic formation, reactive oxygen species (ROS) formation, 8-hydroxy-2-deoxyguanosine (8-OHdG) levels, and protein expression of ARNT/HIF-1β, CYP1A1, and DNA POLβ. The study results indicate that B[a]P increased proliferation, clonogenic formation, ROS formation, and 8-OHdG levels, as well as increasing the protein expression of ARNT/HIF-1β and CYP1A1 compared to the control. Conversely, DATS/B[a]P co-treatment (CoTx) inhibited cell proliferation, clonogenic formation, ROS formation, and 8-OHdG levels compared to B[a]P alone. Treatment with DATS significantly inhibited (p < 0.0001) AhR expression, implicated in the development and progression of breast cancer. The CoTx also attenuated all the above-mentioned B[a]P-induced changes in protein expression. At the same time, it increased DNA POLβ protein expression, which indicates increased DNA repair, thus causing a chemopreventive effect. These results provide evidence for the chemopreventive effects of DATS in breast cancer prevention.
Collapse
Affiliation(s)
- Dominique T. Ferguson
- Pharmaceutical Sciences Division, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (D.T.F.); (E.T.); (S.M.); (H.F.-R.); (S.L.R.); (K.F.A.S.)
| | - Equar Taka
- Pharmaceutical Sciences Division, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (D.T.F.); (E.T.); (S.M.); (H.F.-R.); (S.L.R.); (K.F.A.S.)
| | - Samia Messeha
- Pharmaceutical Sciences Division, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (D.T.F.); (E.T.); (S.M.); (H.F.-R.); (S.L.R.); (K.F.A.S.)
| | - Hernan Flores-Rozas
- Pharmaceutical Sciences Division, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (D.T.F.); (E.T.); (S.M.); (H.F.-R.); (S.L.R.); (K.F.A.S.)
| | - Sarah L. Reed
- Pharmaceutical Sciences Division, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (D.T.F.); (E.T.); (S.M.); (H.F.-R.); (S.L.R.); (K.F.A.S.)
| | - Bryan V. Redmond
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Karam F. A. Soliman
- Pharmaceutical Sciences Division, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (D.T.F.); (E.T.); (S.M.); (H.F.-R.); (S.L.R.); (K.F.A.S.)
| | - Konan J. W. Kanga
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA;
| | - Selina F. Darling-Reed
- Pharmaceutical Sciences Division, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (D.T.F.); (E.T.); (S.M.); (H.F.-R.); (S.L.R.); (K.F.A.S.)
| |
Collapse
|
22
|
Dong W, Yan J, Yang Y, Wu Q, Hu X. Immobilization of laccase on magnetic mesoporous silica as a recoverable biocatalyst for the efficient degradation of benzo[a]pyrene. CHEMOSPHERE 2024; 346:140642. [PMID: 37939925 DOI: 10.1016/j.chemosphere.2023.140642] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/31/2023] [Accepted: 11/06/2023] [Indexed: 11/10/2023]
Abstract
Laccase is an efficient green biocatalyst, widely used for the degradation of various organic pollutants. However, free laccase is unstable and difficult to recover, which limits its practical application. In this study, a multilayer core-shell magnetic mesoporous silica (Fe3O4@d-SiO2@p-SiO2) microsphere with high specific surface area (275 m2 g-1) was fabricated for immobilization of laccase. The unique structure of Fe3O4@d-SiO2@p-SiO2 enabled the successful immobilization of laccase. Under the optimal immobilization conditions of laccase concentration of 1.5 mg mL-1, immobilization time of 6 h, immobilization pH of 6, the loading capacity of laccase was up to 567 mg g-1. Compared with free laccase, immobilized laccase exhibited remarkable pH stability, thermal stability and storage stability. Moreover, the immobilized laccase was easy to achieve magnetic recovery and possessed excellent reusability, with its activity remaining 58.2% after 10 consecutive reuses. More importantly, immobilized laccase had good degradation performance for benzo[a]pyrene (BaP), which can achieve rapid and efficient degradation of low concentration BaP over a wide range of pH and temperature. The removal efficiency of BaP was up to 99.0% within 1 h, and still exceeded 35.0% after 5 cycles. The removal of BaP by immobilized laccase was achieved through both adsorption and degradation. The degradation products and possible degradation pathways were determined by GC-MS analysis. This study indicated that Fe3O4@d-SiO2@p-SiO2 could effectively enhance the stability and biocatalytic activity of laccase, which is expected to provide a new clean biotechnology for the remediation of BaP contaminated sites.
Collapse
Affiliation(s)
- Wenya Dong
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Jiaqi Yan
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Yaoyu Yang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Qingsheng Wu
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Xiaojun Hu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China.
| |
Collapse
|
23
|
Xu L, Sun X, Wang Y, Zhou T, Jia J, Zhang M, Zhou P, Wang Y, Wang Y, Shou Y, Huo X, Ji X, Chen J, Yu D. Functional polymorphisms in Benzo(a)Pyrene-induced toxicity pathways associated with the risk on laryngeal squamous cell carcinoma. Food Chem Toxicol 2023; 182:114199. [PMID: 38000460 DOI: 10.1016/j.fct.2023.114199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/30/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
Benzo(a)Pyrene (BaP) is a well-known environmental carcinogen that poses a significant risk to human health. The pivotal genes and toxicity pathways have been identified as key events to construct the mode of action (MOA) of BaP. In this study, we focused on evaluating the association between genetic variants in BaP-disturbed toxicity pathways and the susceptibility of laryngeal squamous cell carcinoma (LSCC), based on the data of our previous genome-wide association analysis (GWAS). In addition, we investigated the biological roles of these significant polymorphisms by integrating bioinformatic annotation and experimental validation. Our findings revealed that 15 functional polymorphisms in AHR signaling, p53 signaling, NRF2 signaling, TGF-β signaling, STAT3 signaling, and IL-8 signaling pathways were significantly associated with susceptibility to LSCC. Our study provides a novel approach for identifying novel risk genetic loci utilizing GWAS data, and suggests potential targets for early detection of LSCC in the future.
Collapse
Affiliation(s)
- Lin Xu
- School of Public Health, Qingdao University, Qingdao, China
| | - Xueying Sun
- School of Public Health, Qingdao University, Qingdao, China; Weifang Municipal Center for Disease Control and Prevention, Weifang, Shandong, China
| | - Yiyi Wang
- School of Public Health, Qingdao University, Qingdao, China
| | - Tao Zhou
- School of Public Health, Qingdao University, Qingdao, China
| | - Jingjing Jia
- School of Public Health, Qingdao University, Qingdao, China
| | - Mai Zhang
- School of Public Health, Qingdao University, Qingdao, China
| | - Pengyuan Zhou
- School of Public Health, Qingdao University, Qingdao, China
| | - Yixiao Wang
- School of Public Health, Qingdao University, Qingdao, China
| | - Youshuo Wang
- School of Public Health, Qingdao University, Qingdao, China
| | - Yingqing Shou
- School of Public Health, Qingdao University, Qingdao, China
| | - Xiaoyu Huo
- School of Public Health, Qingdao University, Qingdao, China
| | - Xiaoying Ji
- School of Public Health, Qingdao University, Qingdao, China
| | - Jing Chen
- School of Public Health, Qingdao University, Qingdao, China.
| | - Dianke Yu
- School of Public Health, Qingdao University, Qingdao, China
| |
Collapse
|
24
|
Chatterjee P, Banerjee S. Unveiling the mechanistic role of the Aryl hydrocarbon receptor in environmentally induced Breast cancer. Biochem Pharmacol 2023; 218:115866. [PMID: 37863327 DOI: 10.1016/j.bcp.2023.115866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/25/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is a crucial cytosolic evolutionary conserved ligand-activated transcription factor and a pleiotropic signal transducer. The biosensor activity of the AhR is attributed to the promiscuity of its ligand-binding domain. Evidence suggests exposure to environmental toxins such as polycyclic aromatic hydrocarbons, polychlorinated biphenyls and halogenated aromatic hydrocarbons activates the AhR signaling pathway. The constitutive activation of the receptor signaling system leads to multiple health adversities and enhances the risk of several cancers, including breast cancer (BC). This review evaluates several mechanisms that integrate the tumor-inducing property of such environmental contaminants with the AhR pathway assisting in BC tumorigenesis, progress and metastasis. Intriguingly, immune evasion is identified as a prominent hallmark in BC. Several emerging pieces of evidence have identified AhR as a potent immunosuppressive effector in several cancers. Through AhR signaling pathways, some tumors can avoid immune detection. Thus the relevance of AhR in the immunomodulation of breast tumors and its putative mode of action in the breast tumor microenvironment are discussed in this review. Additionally, the work also explores BC stemness and its associated inflammation in response to several environmental cues. The review elucidates the context-dependent ambiguous behavior of AhR either as an oncogene or a tumor suppressor with respect to its ligand. Conclusively, this holistic piece of literature attempts to potentiate AhR as a promising pharmacological target in BC and updates on the therapeutic manipulation of its various exogenous and endogenous ligands.
Collapse
Affiliation(s)
- Prarthana Chatterjee
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore- 632014, Tamil Nadu, India
| | - Satarupa Banerjee
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore- 632014, Tamil Nadu, India.
| |
Collapse
|
25
|
Zhang P, Zhou C, Zhao K, Liu C, Liu C, He F, Peng W, Jia X, Mi J. Associations of air pollution and greenness with global burden of breast cancer: an ecological study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:103921-103931. [PMID: 37697184 DOI: 10.1007/s11356-023-29579-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/25/2023] [Indexed: 09/13/2023]
Abstract
Despite the significance of the associations of air pollution and greenness with the risk of breast cancer, this topic has not been investigated on a global scale. We conducted an ecological study using 7 years of data from 162 countries. Disability-adjusted life years (DALYs) and incidence data were used to represent the breast cancer disease burden. Particulate matter with a diameter < 2.5 μm (PM2.5), ozone (O3), nitrogen dioxide (NO2), and the normalized difference vegetation index (NDVI) were adopted as our exposures. We employed generalized linear mixed models to explore the relationship between air pollution and greenness on breast cancer disease burden. The rate ratio (RR) and its 95% confidence interval (CI) indicate the effect size. There is a positive association between air pollution and the burden of breast cancer disease. Contrarily, per interquartile range increment in NDVI was negatively associated with DALYs and incidence. In terms of air pollutants and breast cancer, NDVI seems to have a significant influence on the relationship between these two conditions. A higher amount of greenness helps to alleviate the negative association of air pollution on breast cancer. PM2.5 and O3 play a mediating role in the relationship between greenness and breast cancer disease burden. In areas with higher levels of greenness, there is a possibility that the inverse association between air pollutants and the burden of breast cancer may be influenced.
Collapse
Affiliation(s)
- Peiyao Zhang
- Department of Epidemiology and Statistics, School of Public Health, Bengbu Medical College, No. 2600 Donghai Avenue, Bengbu, 233000, China
| | - Cheng Zhou
- Department of Epidemiology and Statistics, School of Public Health, Bengbu Medical College, No. 2600 Donghai Avenue, Bengbu, 233000, China
| | - Ke Zhao
- Department of Epidemiology and Statistics, School of Public Health, Bengbu Medical College, No. 2600 Donghai Avenue, Bengbu, 233000, China
| | - Chengrong Liu
- Department of Epidemiology and Statistics, School of Public Health, Bengbu Medical College, No. 2600 Donghai Avenue, Bengbu, 233000, China
| | - Chao Liu
- Department of Epidemiology and Statistics, School of Public Health, Bengbu Medical College, No. 2600 Donghai Avenue, Bengbu, 233000, China
| | - Fenfen He
- Department of Epidemiology and Statistics, School of Public Health, Bengbu Medical College, No. 2600 Donghai Avenue, Bengbu, 233000, China
| | - Wenjia Peng
- School of Public Health, Fudan University, Shanghai, China
| | - Xianjie Jia
- Department of Epidemiology and Statistics, School of Public Health, Bengbu Medical College, No. 2600 Donghai Avenue, Bengbu, 233000, China
| | - Jing Mi
- Department of Epidemiology and Statistics, School of Public Health, Bengbu Medical College, No. 2600 Donghai Avenue, Bengbu, 233000, China.
| |
Collapse
|
26
|
Almendarez-Reyna CI, de la Trinidad Chacón CG, Ochoa-Martínez ÁC, Rico-Guerrero LA, Pérez-Maldonado IN. The aryl hydrocarbon receptor (AhR) activation mediates benzo(a)pyrene-induced overexpression of AQP3 and Notch1 in HaCaT cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2023; 64:466-472. [PMID: 37984337 DOI: 10.1002/em.22580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
The aim of this study was twofold: (1) evaluate the effect of benzo[a]pyrene (BaP) on expression levels of AQP3 and Notch1 genes in HaCaT cells exposed "in vitro" and (2) investigate the possible biological role of assessed genes by bioinformatics methods. Cells were exposed to increasing concentrations of BaP (0.0-4.0 μM) for 1-4 days. After treatments, cell viability and expression levels of AhR, CYP1A1, AQP3, and Notch1 genes were evaluated. The possible biological role of assessed genes was evaluated using bioinformatics tools. Low cytotoxicity in HaCaT cells dosed with BaP was detected. A significant overexpression (p < .05) of CYP1A1, AQP3, and Notch1 was found in exposed HaCaT cells. The gene expression upregulation was dependent on AhR activation. The bioinformatics analysis showed that these genes were enriched in related cancer signaling pathways. The findings suggest that AQP3 and Notch1 are upregulated by AhR activation in HaCaT cells exposed to BaP.
Collapse
Affiliation(s)
- Claudia I Almendarez-Reyna
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Carlos Gabriel de la Trinidad Chacón
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Ángeles C Ochoa-Martínez
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Luis A Rico-Guerrero
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Iván N Pérez-Maldonado
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| |
Collapse
|
27
|
Zhang J, Tan LJ, Jung H, Jung J, Lee J, Lee G, Park S, Moon B, Choi K, Shin S. Association of smoking and dietary polycyclic aromatic hydrocarbon exposure on the prevalence of metabolic syndrome in Korean adults. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:831-839. [PMID: 37019984 DOI: 10.1038/s41370-023-00541-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Polycyclic aromatic hydrocarbons (PAHs) are environmental pollutants that are potentially hazardous to human health. Dietary exposure is recognized as one of the major pathways of exposure to PAHs among humans. While some PAH exposures have been associated with metabolic syndrome (MetS) in the general population, most epidemiological studies are based on urinary metabolites of a few noncarcinogenic PAHs. OBJECTIVE To investigate the association between estimates of dietary exposure to major carcinogenic PAHs and MetS in Korean adults. METHODS Multi-cycle Korean National Health and Nutrition Examination Survey (KNHANES) database (n = 16,015) and PAH measurement data from the total diet survey were employed to estimate daily PAH intake for each participating adult. After adjusting for potential confounders, multinomial logistic regression analysis was used to calculate the odds ratios (ORs) and 95% confidence intervals (CIs) between PAHs and MetS of the participating adults. RESULTS Benzo(a)pyrene exposure was associated with an increased risk of MetS in men (OR = 1.30; 95% Cl: 1.03-1.63; P-trend = 0.03). In women, however, only chrysene and low high-density lipoprotein (HDL-c) were positively associated with an increased risk of MetS (OR = 1.24; 95% CI: 1.03-1.48; P-trend = 0.0172). Among men, smokers were at an increased risk for MetS, regardless of whether they were exposed to low or high total PAHs and benzo(a)pyrene levels. SIGNIFICANCE Our findings suggested that PAHs are associated with the risk of MetS and MetS components in Korean adults. In particular, it was confirmed that smoking may influence the relationship between PAH exposure and MetS.Further prospective cohort studies are required to confirm the causal relationship between PAHs and MetS. IMPACT STATEMENT Epidemiological studies on PAH exposure are often hampered by a lack of reliable exposure estimates, as biomonitoring of urine does not capture exposure to more toxic PAHs. Using multi-cycle KNHANES data and the measurement data from a total diet survey of Korea, we could develop a personalized PAH intake estimate for each participating adult and assessed the association with MetS.
Collapse
Affiliation(s)
- Jiaqi Zhang
- Department of Food and Nutrition, Chung-Ang University, Gyeonggi-do, 17546, Republic of Korea
| | - Li-Juan Tan
- Department of Food and Nutrition, Chung-Ang University, Gyeonggi-do, 17546, Republic of Korea
| | - Hyein Jung
- Department of Food and Nutrition, Chung-Ang University, Gyeonggi-do, 17546, Republic of Korea
| | - Jongseok Jung
- Department of Food and Nutrition, Chung-Ang University, Gyeonggi-do, 17546, Republic of Korea
| | - JiYun Lee
- Department of Food and Nutrition, Chung-Ang University, Gyeonggi-do, 17546, Republic of Korea
| | - Gowoon Lee
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Suhyun Park
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - BoKyung Moon
- Department of Food and Nutrition, Chung-Ang University, Gyeonggi-do, 17546, Republic of Korea
| | - Kyungho Choi
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Sangah Shin
- Department of Food and Nutrition, Chung-Ang University, Gyeonggi-do, 17546, Republic of Korea.
| |
Collapse
|
28
|
Chen J, Li Y, Yin X, Man J, Zhang X, Zhang T, Yang X, Lu M. Dose-response association of polycyclic aromatic hydrocarbon with self-reported trouble sleeping in adults: evidence from the National Health and Nutrition Examination Survey. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:82613-82624. [PMID: 37330443 DOI: 10.1007/s11356-023-28218-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/07/2023] [Indexed: 06/19/2023]
Abstract
Previous epidemiological evidence from large population-based studies on the association between polycyclic aromatic hydrocarbons (PAH) exposure and the risk of sleep disorders is inadequate. To comprehensively examine the relationship between independent and combined PAHs and trouble sleeping, we analyzed data from 8194 participants from the National Health and Nutrition Survey (NHANES) cycles. Multivariate adjusted logistic regression and restricted cubic spline models were applied to assess the relationship between PAH exposure and the risk of trouble sleeping. Bayesian kernel machine regression and weighted quantile sum regression models were used to estimate the combined association of urinary PAHs with trouble sleeping. In the single-exposure analyses, compared with the lowest level, the respective adjusted odds ratios (ORs) for trouble sleeping among subjects from the highest quartile were 1.34 (95% CI, 1.15, 1.56), 1.23 (95% CI, 1.05, 1.44), 1.31 (95% CI, 1.11, 1.54), 1.35 (95% CI, 1.15, 1.58), and 1.29 (95% CI, 1.08, 1.53) for 1-hydroxynaphthalene (1-NAP), 2-hydroxynaphthalene (2-NAP), 3-hydroxyfluorene (3-FLU), 2-hydroxyfluorene(2-FLU), and 1-hydroxypyrene(1-PYR). An overall positive correlation between the PAH mixture and trouble sleeping was observed when the mixture was at the 50th percentile or higher. The current study reveals that PAH metabolites (1-NAP, 2-NAP, 3-FLU, 2-FLU, and 1-PYR) may be detrimental to trouble sleeping. PAH mixture exposure was positively associated with trouble sleeping. The results suggested the potential impacts of PAHs and expressed concerns regarding the potential impact of PAHs on health. More intensive research and monitoring of environmental pollutants in the future will contribute to preventing environmental hazards.
Collapse
Affiliation(s)
- Jiaqi Chen
- Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yufei Li
- Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaolin Yin
- Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jinyu Man
- Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xuening Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Tongchao Zhang
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Shandong, 250012, Jinan, China
- Clinical Research Center of Shandong University, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaorong Yang
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Shandong, 250012, Jinan, China
- Clinical Research Center of Shandong University, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ming Lu
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Shandong, 250012, Jinan, China.
- Clinical Research Center of Shandong University, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
29
|
Wang H, Liu B, Chen H, Xu P, Xue H, Yuan J. Dynamic changes of DNA methylation induced by benzo(a)pyrene in cancer. Genes Environ 2023; 45:21. [PMID: 37391844 DOI: 10.1186/s41021-023-00278-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/07/2023] [Indexed: 07/02/2023] Open
Abstract
Benzo(a)pyrene (BaP), the earliest and most significant carcinogen among polycyclic aromatic hydrocarbons (PAHs), has been found in foods, tobacco smoke, and automobiles exhaust, etc. Exposure to BaP induced DNA damage directly, or oxidative stress-related damage, resulting in cell apoptosis and carcinogenesis in human respiratory system, digestive system, reproductive system, etc. Moreover, BaP triggered genome-wide epigenetic alterations by methylation, which might cause disturbances in regulation of gene expression, and thereby induced cancer. It has been proved that BaP reduced genome-wide DNA methylation, and activated proto-oncogene by hypomethylation in the promoter region, but silenced tumor suppressor genes by promoter hypermethylation, resulting in cancer initiation and progression. Here we summarized the changes in DNA methylation in BaP exposure, and revealed the methylation of DNA plays a role in cancer development.
Collapse
Affiliation(s)
- Huizeng Wang
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China
| | - Bingchun Liu
- Stem Cell Research Center, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China
| | - Hong Chen
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China
| | - Peixin Xu
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China
| | - Huiting Xue
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010010, China.
| | - Jianlong Yuan
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China.
| |
Collapse
|
30
|
Wu K, Yao Y, Meng Y, Zhang X, Zhou R, Liu W, Ding X. Long-Term Atmosphere Surveillance (2016-2021) of PM 2.5-bound Polycyclic Aromatic Hydrocarbons and Health Risk Assessment in Yangtze River Delta, China. EXPOSURE AND HEALTH 2023:1-14. [PMID: 37360513 PMCID: PMC10208184 DOI: 10.1007/s12403-023-00572-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 04/06/2023] [Accepted: 05/17/2023] [Indexed: 06/28/2023]
Abstract
Long-term atmospheric quality monitoring of fine particulate matter (PM2.5) and PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) was performed in Wuxi from 2016 to 2021. In total, 504 atmospheric PM2.5 samples were collected, and PM2.5-bound 16 PAHs were detected. The PM2.5 and ∑PAHs level decreased annually from 2016 to 2021, from 64.3 to 34.0 μg/m3 and 5.27 to 4.22 ng/m3, respectively. The benzo[a]pyrene (BaP) levels of 42% of the monitoring days in 2017 exceeded the recommended European Union (EU) health-based standard of 1 ng/m3. Five- and six-ring PAHs were found, including benz[a]anthracene, benzo[k]fluoranthene (Bkf), BaP, and benzo[g,h,i]perylene, which were the dominant components (indicating a prominent petroleum, biomass, and coal combustion contribution) using molecular diagnostic ratios and positive matrix factorization analysis. Moreover, PM2.5 and PAHs were significantly negatively associated with local precipitation over a period of six years. Statistically significant temporal and spatial distribution differences of PM2.5, and ∑PAHs were also found. The toxicity equivalent quotient (TEQ) of total PAHs was 0.70, and the TEQ of BaP (0.178) was the highest, followed by that of Bkf (0.090), dibenz[a,h]anthracene (Dah) (0.048), and indeno[1,2,3-cd]pyrene (0.034). The medians of the incremental lifetime cancer risk for long-term exposure to PAHs were 2.74E-8, 1.98E-8, and 1.71E-7 for children, teenagers, and adults, respectively, indicating that the carcinogenic risk of PAHs pollution in air was acceptable to local residents in this area. Sensitivity analysis revealed that BaP, Bkf, and Dah significantly contributed to carcinogenic toxicity. This research provides comprehensive statistics on the local air persistent organic pollutants profile, helps to identify the principal pollution source and compounds, and contributes to the prevention of regional air pollution. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s12403-023-00572-x.
Collapse
Affiliation(s)
- Keqin Wu
- Wuxi Center for Disease Control and Prevention (The Affiliated Wuxi Center for Disease Control and Prevention, Nanjing Medical University), Wuxi, 214023 China
- Research Base for Environment and Health in Wuxi, Chinese Center for Disease Control and Prevention, Wuxi, 214023 China
| | - Yuyang Yao
- Wuxi Center for Disease Control and Prevention (The Affiliated Wuxi Center for Disease Control and Prevention, Nanjing Medical University), Wuxi, 214023 China
| | - Yuanhua Meng
- Wuxi Center for Disease Control and Prevention (The Affiliated Wuxi Center for Disease Control and Prevention, Nanjing Medical University), Wuxi, 214023 China
- Research Base for Environment and Health in Wuxi, Chinese Center for Disease Control and Prevention, Wuxi, 214023 China
| | - Xuhui Zhang
- Wuxi Center for Disease Control and Prevention (The Affiliated Wuxi Center for Disease Control and Prevention, Nanjing Medical University), Wuxi, 214023 China
| | - Run Zhou
- Wuxi Center for Disease Control and Prevention (The Affiliated Wuxi Center for Disease Control and Prevention, Nanjing Medical University), Wuxi, 214023 China
- Research Base for Environment and Health in Wuxi, Chinese Center for Disease Control and Prevention, Wuxi, 214023 China
| | - Wenwei Liu
- Wuxi Center for Disease Control and Prevention (The Affiliated Wuxi Center for Disease Control and Prevention, Nanjing Medical University), Wuxi, 214023 China
- Research Base for Environment and Health in Wuxi, Chinese Center for Disease Control and Prevention, Wuxi, 214023 China
| | - Xinliang Ding
- Wuxi Center for Disease Control and Prevention (The Affiliated Wuxi Center for Disease Control and Prevention, Nanjing Medical University), Wuxi, 214023 China
- Research Base for Environment and Health in Wuxi, Chinese Center for Disease Control and Prevention, Wuxi, 214023 China
| |
Collapse
|
31
|
Goveas LC, Selvaraj R, Vinayagam R, Sajankila SP, Pugazhendhi A. Biodegradation of benzo(a)pyrene by Pseudomonas strains, isolated from petroleum refinery effluent: Degradation, inhibition kinetics and metabolic pathway. CHEMOSPHERE 2023; 321:138066. [PMID: 36781003 DOI: 10.1016/j.chemosphere.2023.138066] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/19/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Benzo(a)pyrene, a five-ring polyaromatic hydrocarbon, originating from coal tar, crude oil, tobacco, grilled foods, car exhaust etc, is highly persistent in the environment. It has been classified as a Group I carcinogen, as on its ingestion in human body, diol epoxide metabolites are generated, which bind to DNA causing mutations and eventual cancer. Among various removal methods, bioremediation is most preferred as it is a sustainable approach resulting in complete mineralization of benzo(a)pyrene. Therefore, in this study, biodegradation of benzo(a)pyrene was performed by two strains of Pseudomonas, i. e WDE11 and WD23, isolated from refinery effluent. Maximum benzo(a)pyrene tolerance was 250 mg/L and 225 mg/L against Pseudomonas sp. WD23 and Pseudomonas sp. WDE11 correspondingly. Degradation rate constants varied between 0.0468 and 0.0513/day at 50 mg/L with half-life values between 13.5 and 14.3 days as per first order kinetics, while for 100 mg/L, the respective values varied between 0.006 and 0.007 L/mg. day and 15.28-16.67 days, as per second order kinetics. The maximum specific growth rate of strains WDE11 and WD23 was 0.3512/day and 0.38/day accordingly, while concentrations over 75 mg/L had an inhibitory effect on growth. Major degradation metabolites were identified as dihydroxy-pyrene, naphthalene-1,2-dicarboxylic acid, salicylic acid, and oxalic acid, indicating benzo(a)pyrene was degraded via pyrene intermediates by salicylate pathway through catechol meta-cleavage. The substantial activity of the catechol 2,3 dioxygenase enzyme was noted during the benzo(a)pyrene metabolism by both strains with minimal catechol 1,2 dioxygenase activity. This study demonstrates the exceptional potential of indigenous Pseudomonas strains in complete metabolism of benzo(a)pyrene.
Collapse
Affiliation(s)
- Louella Concepta Goveas
- Nitte (Deemed to be University), Department of Biotechnology Engineering, NMAM Institute of Technology, Nitte - 574110, Karnataka, India.
| | - Raja Selvaraj
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ramesh Vinayagam
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shyama Prasad Sajankila
- Nitte (Deemed to be University), Department of Biotechnology Engineering, NMAM Institute of Technology, Nitte - 574110, Karnataka, India
| | - Arivalagan Pugazhendhi
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research & Development, Department of Civil Engineering, Chandigarh University, Mohali, India.
| |
Collapse
|
32
|
Fayyad-Kazan M, Kobaisi F, Nasrallah A, Matarrese P, Fitoussi R, Bourgoin-Voillard S, Seve M, Rachidi W. Effect of Ultraviolet Radiation and Benzo[a]pyrene Co-Exposure on Skin Biology: Autophagy as a Potential Target. Int J Mol Sci 2023; 24:ijms24065863. [PMID: 36982934 PMCID: PMC10056937 DOI: 10.3390/ijms24065863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/03/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
The skin is the outermost protective barrier of the human body. Its role is to protect against different physical, chemical, biological and environmental stressors. The vast majority of studies have focused on investigating the effects of single environmental stressors on skin homeostasis and the induction of several skin disorders, such as cancer or ageing. On the other hand, much fewer studies have explored the consequences of the co-exposure of skin cells to two or more stressors simultaneously, which is much more realistic. In the present study, we investigated, using mass-spectrometry-based proteomic analysis, the dysregulated biological functions in skin explants after their co-exposure to ultraviolet radiation (UV) and benzo[a]pyrene (BaP). We observed that several biological processes were dysregulated, among which autophagy appeared to be significantly downregulated. Furthermore, immunohistochemistry analysis was carried out to validate the downregulation of the autophagy process further. Altogether, the output of this study provides an insight into the biological responses of skin to combined exposure to UV + BaP and highlights autophagy as a potential target that might be considered in the future as a novel candidate for pharmacological intervention under such stress conditions.
Collapse
Affiliation(s)
- Mohammad Fayyad-Kazan
- Department of Natural and Applied Sciences, College of Arts and Sciences, The American University of Iraq-Baghdad (AUIB), Baghdad 10001, Iraq
| | - Farah Kobaisi
- Univ. Grenoble Alpes, CEA, INSERM, IRIG-BGE UA13, 38000 Grenoble, France
| | - Ali Nasrallah
- Univ. Grenoble Alpes, CEA, INSERM, IRIG-BGE UA13, 38000 Grenoble, France
| | | | - Richard Fitoussi
- Laboratoires Clarins, Centre de Recherche, 95000 Pontoise, France
| | | | - Michel Seve
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | - Walid Rachidi
- Univ. Grenoble Alpes, CEA, INSERM, IRIG-BGE UA13, 38000 Grenoble, France
| |
Collapse
|
33
|
Hong S, Song JM. High-Resolution In Situ High-Content Imaging of 3D-Bioprinted Single Breast Cancer Spheroids for Advanced Quantification of Benzo( a)pyrene Carcinogen-Induced Breast Cancer Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11416-11430. [PMID: 36812369 DOI: 10.1021/acsami.2c17877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Cancer stem cells (CSCs), also known as tumor-initiating cells, are critically correlated with carcinogenesis and are strongly affected by the environmental factors. Environmental carcinogens, such as benzo(a)pyrene (BaP), are associated with the overproduction of CSCs in various types of cancers, including breast cancer. In this report, we present a sophisticated 3D breast cancer spheroid model for the direct identification and quantitative determination of CSCs induced by carcinogens within intact 3D spheroids. To this end, hydrogel microconstructs containing MCF-7 breast cancer cells were bioprinted within direct-made diminutive multi-well chambers, which were utilized for the mass cultivation of spheroids and in situ detection of CSCs. We found that the breast CSCs caused by BaP-induced mutations were higher in the biomimetic MCF-7 breast cancer spheroids than that in standard 2D monolayer cultures. Precisely controlled MCF-7 cancer spheroids could be generated by serially cultivating MCF-7 cells within the printed hydrogel microconstructs, which could be further utilized for high-resolution in situ high-content 3D imaging analysis to spatially identify the emergence of CSCs at the single spheroid level. Additionally, potential therapeutic agents specific to breast CSCs were successfully evaluated to verify the effectiveness of this model. This bioengineered 3D cancer spheroid system provides a novel approach to investigating the emergence of CSC induced by a carcinogen for environmental hazard assessment in a reproducible and scalable format.
Collapse
Affiliation(s)
- Sera Hong
- College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Joon Myong Song
- College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
34
|
Lao QF, Zhang QQ, Qiao ZP, Li SL, Liu L, Martin FL, Pang WY. Whole transcriptome sequencing and competitive endogenous RNA regulation network construction analysis in benzo[a]pyrene-treated breast cancer cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160564. [PMID: 36455743 DOI: 10.1016/j.scitotenv.2022.160564] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Breast cancer is the most common malignant tumor in women worldwide, and environmental pollutants are considered to be risk factors. Currently, most studies into benzo[a]pyrene (B[a]P)-induced breast cancer focus on biological effects such as proliferation, invasion, and metastasis, DNA damage, estrogen receptor (ER)-related molecular mechanisms, oxidative damage, and other metabolic pathways. This study aims to provide insights into the role of B[a]P in breast cancer development through RNA-seq and bioinformatics analysis and construction of a competing endogenous RNA (ceRNA) regulatory network. By analyzing RNA-seq results, we identified 144 differentially-expressed circRNAs, 69 differentially-expressed lncRNAs, 20 differentially-expressed miRNAs, and 212 differentially-expressed mRNAs. Following on, we analyzed the gene ontology (GO) and KEGG enrichment functions of the differentially-expressed RNAs. In addition, the protein-protein interaction (PPI) network was mapped for differentially-expressed mRNAs. Subsequently, we constructed ceRNA networks, one of which consisted of 45 dysregulated circRNAs, 11 miRNAs, and 9 mRNAs, and a second consisted of 40 lncRNAs, 11 miRNAs, and 9 mRNAs. Finally, 6 circRNAs, 4 lncRNAs, 1 miRNA, and 4 mRNAs were randomly selected for quantitative real-time PCR verification. PCR results were further verified by Western blotting assays. These results show that the expression level of differentially-expressed RNA was consistent with the sequencing data, and the Western blotting results were highly consistent with the PCR results, confirming that the sequencing result was very reliable. This study systematically explores the ceRNA atlas of differentially-expressed genes related to B[a]P exposure in breast cancer cells, providing new insights into mechanisms of environmental pollutants in breast cancer.
Collapse
Affiliation(s)
- Qiu-Feng Lao
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin 541199, Guangxi, China; School of Public Health, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Qing-Quan Zhang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin 541199, Guangxi, China; School of Public Health, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Zi-Peng Qiao
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin 541199, Guangxi, China; School of Public Health, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Sheng-le Li
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin 541199, Guangxi, China; School of Public Health, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Liu Liu
- School of Pharmacy, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Francis L Martin
- Biocel UK Ltd, Hull HU10 6TS, UK; Department of Cellular Pathology, Blackpool Teaching Hospitals NHS Foundation Trust, Whinney Heys Road, Blackpool FY3 8NR, UK
| | - Wei-Yi Pang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin 541199, Guangxi, China; School of Public Health, Guilin Medical University, Guilin 541199, Guangxi, China; School of Humanities and Management, Guilin Medical University, Guilin 541199, Guangxi, China.
| |
Collapse
|
35
|
Xing Y, Liu Z, Ma X, Zhou C, Wang Y, Yao B, Fu J, Qi Y, Zhao P. Targeted metabolomics analysis identified the role of FOXA1 in the change in glutamate-glutamine metabolic pattern of BaP malignantly transformed 16HBE cells. Toxicol Appl Pharmacol 2023; 461:116402. [PMID: 36702312 DOI: 10.1016/j.taap.2023.116402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023]
Abstract
The carcinogenic mechanism of benzo[a]pyrene (BaP) is far from being elucidated. FOXA1 has been confirmed to play an oncogenic role in BaP-transformed cell THBEc1. To explore the changes in amino acid metabolic patterns, especially glutamate-glutamine (Glu-Gln) metabolic pattern caused by BaP-induced transformation and the possible role FOXA1 might play in it, we compared amino acid metabolic characteristics between THBEc1 cells and control 16HBE cells using a targeted metabolomics method and determined the effects of FOXA1 knockout on the amino acid metabolic pattern using FOXA1 knockout cell THBEc1-ΔFOXA1-c34. The amino acid metabolic patterns of THBEc1 and 16HBE cells were different, which was manifested by the differential consumption of 18 amino acids and the difference in the intracellular content of 21 amino acids. The consumption and intracellular content of Glu and Gln are different between the two types of cells, accompanied by upregulation of FOXA1, GLUL, SLC1A3, SLC1A4, SLC1A5 and SLC6A14, and downregulation of FOXA2 and GPT2 in THBEc1 cells. FOXA1 knockout changed the consumption of 19 amino acids and the intracellular content of 21 amino acids and reversed the metabolic pattern of Glu and the changes in FOXA2, GLUL, SLC1A3 and SLC6A14 in THBEc1 cells. Additionally, FOXA1 knockout inhibited cell proliferation and further increased the dependence of THBEc1 cells on Glu. In conclusion, FOXA1 knockout partially reversed the change in Glu-Gln metabolism caused by BaP-induced transformation by upregulating the expression of GLUL and SLC1A3. Our findings provide a clue for the possible role of FOXA1 in amino acid metabolism regulation.
Collapse
Affiliation(s)
- Yunkun Xing
- Department of Toxicology, School of Public Health, Peking University Health Science Center, Beijing 100191, People's Republic of China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University Health Science Center, Beijing 100191, People's Republic of China
| | - Zhiyu Liu
- Department of Toxicology, School of Public Health, Peking University Health Science Center, Beijing 100191, People's Republic of China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University Health Science Center, Beijing 100191, People's Republic of China
| | - Xue Ma
- Department of Toxicology, School of Public Health, Peking University Health Science Center, Beijing 100191, People's Republic of China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University Health Science Center, Beijing 100191, People's Republic of China; Zhejiang Province Center for Disease Control and Prevention, Hangzhou 310051, People's Republic of China
| | - Chuan Zhou
- Department of Toxicology, School of Public Health, Peking University Health Science Center, Beijing 100191, People's Republic of China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University Health Science Center, Beijing 100191, People's Republic of China
| | - Yu Wang
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 10021, People's Republic of China
| | - Biyun Yao
- Department of Toxicology, School of Public Health, Peking University Health Science Center, Beijing 100191, People's Republic of China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University Health Science Center, Beijing 100191, People's Republic of China
| | - Juanling Fu
- Department of Toxicology, School of Public Health, Peking University Health Science Center, Beijing 100191, People's Republic of China
| | - Yanmin Qi
- Civil Aviation Medicine Center, Civil Aviation Administration of China, Beijing 10123, People's Republic of China
| | - Peng Zhao
- Department of Toxicology, School of Public Health, Peking University Health Science Center, Beijing 100191, People's Republic of China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University Health Science Center, Beijing 100191, People's Republic of China.
| |
Collapse
|
36
|
Chen J, Song Y, Liu Y, Chen W, Cen Y, You M, Yang G. DBP and BaP co-exposure induces kidney injury via promoting pyroptosis of renal tubular epithelial cells in rats. CHEMOSPHERE 2023; 314:137714. [PMID: 36592837 DOI: 10.1016/j.chemosphere.2022.137714] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/19/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Dibutyl phthalate (DBP) and benzo(a)pyrene (BaP) are widespread environmental and foodborne contaminants that have detrimental effects on human health. Although people are often simultaneously exposed to DBP and BaP via the intake of polluted food and water, the combined effects on the kidney and potential mechanisms remain unclear. Hence, we treated rats with DBP and BaP for 90 days to investigate their effects on kidney histopathology and function. We also investigated the levels of paramount proteins and genes involved in pyroptosis and TLR4/NF-κB p65 signaling in the kidney. Our research showed that combined exposure to DBP and BaP triggered more severe histopathological and renal function abnormalities than in those exposed to DBP or BaP alone. Simultaneously, combined exposure to DBP and BaP enhanced the excretion of IL-1β and IL-18, along with the release of LDH in rat renal tubular epithelial cells (RTECs). Moreover, combined exposure to DBP and BaP increased the expression of pyroptosis marker molecules, including NLRP3, ASC, cleaved-Caspase-1, and GSDMD. Meanwhile, the combination of DBP and BaP activated TLR4/NF-κB signaling in the kidney. Taken together, the combined exposure to DBP and BaP causes more severe kidney injury than that caused by DBP or BaP exposure separately. In addition, pyroptosis of RTECs regulated by TLR4/NF-κB signaling may add to the kidney damage triggered by combined exposure to DBP and BaP.
Collapse
Affiliation(s)
- Jing Chen
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Yawen Song
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Yining Liu
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Wenyan Chen
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Yanli Cen
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Mingdan You
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 550025, China.
| | - Guanghong Yang
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, 550004, China; School of Public Health, Guizhou Medical University, Guiyang, Guizhou, 550025, China.
| |
Collapse
|
37
|
Amadou A, Praud D, Coudon T, Deygas F, Grassot L, Dubuis M, Faure E, Couvidat F, Caudeville J, Bessagnet B, Salizzoni P, Leffondré K, Gulliver J, Severi G, Mancini FR, Fervers B. Long-term exposure to nitrogen dioxide air pollution and breast cancer risk: A nested case-control within the French E3N cohort study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120719. [PMID: 36435283 DOI: 10.1016/j.envpol.2022.120719] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Nitrogen dioxide (NO2) is an important air pollutant due to its adverse effects on human health. Yet, current evidence on the association between NO2 and the risk of breast cancer lacks consistency. In this study, we investigated the association between long-term exposure to NO2 and breast cancer risk in the French E3N cohort study. Association of breast cancer risk with NO2 exposure was assessed in a nested case-control study within the French E3N cohort including 5222 breast cancer cases identified over the 1990-2011 follow-up period and 5222 matched controls. Annual mean concentrations of NO2 at participants' residential addresses for each year from recruitment 1990 through 2011, were estimated using a land use regression (LUR) model. Multivariable conditional logistic regression models were used to compute odds ratios (ORs) and their 95% confidence intervals (CIs). Additional analyses were performed using NO2 concentrations estimated by CHIMERE, a chemistry transport model. Overall, the mean NO2 exposure was associated with an increased risk of breast cancer. In all women, for each interquartile range (IQR) increase in NO2 levels (LUR: 17.8 μg/m3), the OR of the model adjusted for confounders was 1.09 (95% CI: 1.01-1.18). The corresponding OR in the fully adjusted model (additionally adjusted for established breast cancer risk factors) was 1.07 (95% CI: 0.98-1.15). By menopausal status, results for postmenopausal women were comparable to those for all women, while no association was observed among premenopausal women. By hormone receptor status, the OR of estrogen receptor positive breast cancer = 1.07 (95% CI: 0.97-1.19) in the fully adjusted model. Additional analyses using the CHIMERE model showed slight differences in ORs estimates. The results of this study indicate an increased risk of breast cancer associated with long-term exposure to NO2 air pollution. Observing comparable effects of NO2 exposure estimated by two different models, reinforces these findings.
Collapse
Affiliation(s)
- Amina Amadou
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France; Inserm U1296 Radiations, Défense, Santé, Environnement, Lyon, France
| | - Delphine Praud
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France; Inserm U1296 Radiations, Défense, Santé, Environnement, Lyon, France.
| | - Thomas Coudon
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France; Inserm U1296 Radiations, Défense, Santé, Environnement, Lyon, France; Ecole Centrale de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, Ecully, France
| | - Floriane Deygas
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France; Inserm U1296 Radiations, Défense, Santé, Environnement, Lyon, France
| | - Lény Grassot
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France; Inserm U1296 Radiations, Défense, Santé, Environnement, Lyon, France
| | - Mathieu Dubuis
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France; Inserm U1296 Radiations, Défense, Santé, Environnement, Lyon, France
| | - Elodie Faure
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France; Université Paris-Saclay, UVSQ, Inserm U1018, CESP, "Exposome Heredity, Cancer and Health", Gustave Roussy, Villejuif, France
| | - Florian Couvidat
- National Institute for Industrial Environment and Risks (INERIS), Verneuil-en-Halatte, France
| | - Julien Caudeville
- National Institute for Industrial Environment and Risks (INERIS), Verneuil-en-Halatte, France
| | - Bertrand Bessagnet
- National Institute for Industrial Environment and Risks (INERIS), Verneuil-en-Halatte, France; Citepa, Technical Reference Center for Air Pollution and Climate Change, Paris, France
| | - Pietro Salizzoni
- Ecole Centrale de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, Ecully, France
| | - Karen Leffondré
- Univ Bordeaux, ISPED, INSERM, Bordeaux Population Health Research Center, UMR1219, Bordeaux, France
| | - John Gulliver
- Centre for Environmental Health and Sustainability, School of Geography, Geology and the Environment, University of Leicester, United Kingdom
| | - Gianluca Severi
- Université Paris-Saclay, UVSQ, Inserm U1018, CESP, "Exposome Heredity, Cancer and Health", Gustave Roussy, Villejuif, France; Department of Statistics, Computer Science and Applications (DISIA), University of Florence, Italy
| | - Francesca Romana Mancini
- Université Paris-Saclay, UVSQ, Inserm U1018, CESP, "Exposome Heredity, Cancer and Health", Gustave Roussy, Villejuif, France
| | - Béatrice Fervers
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France; Inserm U1296 Radiations, Défense, Santé, Environnement, Lyon, France
| |
Collapse
|
38
|
Sweeney C, Lazennec G, Vogel CFA. Environmental exposure and the role of AhR in the tumor microenvironment of breast cancer. Front Pharmacol 2022; 13:1095289. [PMID: 36588678 PMCID: PMC9797527 DOI: 10.3389/fphar.2022.1095289] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Activation of the aryl hydrocarbon receptor (AhR) through environmental exposure to chemicals including polycyclic aromatic hydrocarbons (PAHs) and polychlorinated dibenzo-p-dioxins (PCDDs) can lead to severe adverse health effects and increase the risk of breast cancer. This review considers several mechanisms which link the tumor promoting effects of environmental pollutants with the AhR signaling pathway, contributing to the development and progression of breast cancer. We explore AhR's function in shaping the tumor microenvironment, modifying immune tolerance, and regulating cancer stemness, driving breast cancer chemoresistance and metastasis. The complexity of AhR, with evidence for both oncogenic and tumor suppressor roles is discussed. We propose that AhR functions as a "molecular bridge", linking disproportionate toxin exposure and policies which underlie environmental injustice with tumor cell behaviors which drive poor patient outcomes.
Collapse
Affiliation(s)
- Colleen Sweeney
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA, United States
| | - Gwendal Lazennec
- Centre National de la Recherche Scientifique, SYS2DIAG-ALCEN, Cap Delta, Montpellier, France
| | - Christoph F. A. Vogel
- Center for Health and the Environment, University of California Davis, Davis, CA, United States
- Department of Environmental Toxicology, University of California Davis, Davis, CA, United States
| |
Collapse
|
39
|
He Y, Si Y, Li X, Hong J, Yu C, He N. The relationship between tobacco and breast cancer incidence: A systematic review and meta-analysis of observational studies. Front Oncol 2022; 12:961970. [PMID: 36185316 PMCID: PMC9520920 DOI: 10.3389/fonc.2022.961970] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThe effect of tobacco on breast cancer (BC) is controversial. The purpose of this study was to investigate the relationship between tobacco and BC.MethodsA search was conducted in PubMed, EBSCO, Web of Science and Cochrane Library databases before February 2022. The adjusted odd ratio (OR) and corresponding 95% confidence interval (CI) were used to examine the relationship between active or passive smoking and BC risk.ResultsA total of 77 articles composed of 2,326,987 participants were included for this meta-analysis. Active (OR=1.15, 95% CI=1.11-1.20, p<0.001) and passive (OR=1.17, 95% CI=1.09-1.24, p<0.001) smoking increased the risk of BC in the female population, especially premenopausal BC (active smoking: OR=1.24, p<0.001; passive smoking: OR=1.29, p<0.001), but had no effect on postmenopausal BC (active smoking: OR=1.03, p=0.314; passive smoking: OR=1.13, p=0.218). Active smoking increased the risk of estrogen receptor-positive (ER+) BC risk (OR=1.13, p<0.001), but had no effect on estrogen receptor-negative (ER-) BC (OR=1.08, p=0.155). The risk of BC was positively associated with the duration and intensity of smoking, negatively associated with the duration of smoking cessation. Active smoking increased the risk of BC in the multiparous population (OR=1.13, p<0.001), but had no effect on the nulliparous population (OR=1.05, p=0.432), and smoking before the first birth (OR=1.22, 95% CI=1.17-1.27) had a greater impact on the risk of BC than smoking after the first birth (OR=1.08, 95% CI=1.04-1.12).ConclusionSmoking (active and passive) increased the risk of BC in women. The effect of smoking on BC was influenced by smoking-related factors (duration, intensity, years of quitting), population-related factors (fertility status), and BC subtypes.Systematic Review Registrationidentifier CRD42022322699.
Collapse
Affiliation(s)
- Yujing He
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuexiu Si
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiangyuan Li
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiaze Hong
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chiyuan Yu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ning He
- Department of Tumor High-intensity focused ultrasound (HIFU) Therapy, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
- *Correspondence: Ning He,
| |
Collapse
|
40
|
Castañeda-Chávez MDR, Isidoro-Pio ADJ, Lango-Reynoso F, Lizardi-Jiménez MA. Bubble Column Bioreactor using native non-genetically modified organisms: a remediation alternative by hydrocarbon-polluted water from the Gulf of Mexico. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2022. [DOI: 10.1515/ijcre-2022-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Notwithstanding the benefits that oil provides as a source of energy, society also recognizes the environmental problems caused by its use. We evaluated eight coastal sites in the central area of the Gulf of Mexico. At these sites, 14 hydrocarbons were detected which belong to compounds formed by carbons ranging from C9 to C27. The hydrocarbons with the highest concentrations were n-nonane (3.07 ± 1.60 mg L−1), carbazole (0.93 ± 0.12 mg L−1) and benzo [a] pyrene (1.33 ± 0.71 mg L−1). The hydrocarbons found belong mostly to medium fraction hydrocarbons, which are mostly found in fuels such as diesel. Therefore, this fuel was used as a carbon source or substrate in bubble column bioreactors. The capacity of non-genetically modified organisms to degrade microbial hydrocarbons was evaluated using a mineral medium for a period of 14 days. Suspended solids increased from 0.8 to 2.94 g L−1. Diesel consumption was achieved in 12 days of operation.
Collapse
Affiliation(s)
| | | | - Fabiola Lango-Reynoso
- Tecnológico de Boca del Río , Carretera Veracruz-Córdoba Km.12 C.P. 94290 , Boca del Río , Veracruz
| | | |
Collapse
|
41
|
Bukowska B, Mokra K, Michałowicz J. Benzo[ a]pyrene-Environmental Occurrence, Human Exposure, and Mechanisms of Toxicity. Int J Mol Sci 2022; 23:6348. [PMID: 35683027 PMCID: PMC9181839 DOI: 10.3390/ijms23116348] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 12/15/2022] Open
Abstract
Benzo[a]pyrene (B[a]P) is the main representative of polycyclic aromatic hydrocarbons (PAHs), and has been repeatedly found in the air, surface water, soil, and sediments. It is present in cigarette smoke as well as in food products, especially when smoked and grilled. Human exposure to B[a]P is therefore common. Research shows growing evidence concerning toxic effects induced by this substance. This xenobiotic is metabolized by cytochrome P450 (CYP P450) to carcinogenic metabolite: 7β,8α-dihydroxy-9α,10α-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE), which creates DNA adducts, causing mutations and malignant transformations. Moreover, B[a]P is epigenotoxic, neurotoxic, and teratogenic, and exhibits pro-oxidative potential and causes impairment of animals' fertility. CYP P450 is strongly involved in B[a]P metabolism, and it is simultaneously expressed as a result of the association of B[a]P with aromatic hydrocarbon receptor (AhR), playing an essential role in the cancerogenic potential of various xenobiotics. In turn, polymorphism of CYP P450 genes determines the sensitivity of the organism to B[a]P. It was also observed that B[a]P facilitates the multiplication of viruses, which may be an additional problem with the widespread COVID-19 pandemic. Based on publications mainly from 2017 to 2022, this paper presents the occurrence of B[a]P in various environmental compartments and human surroundings, shows the exposure of humans to this substance, and describes the mechanisms of its toxicity.
Collapse
Affiliation(s)
- Bożena Bukowska
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska Str. 141/143, 90-236 Lodz, Poland; (K.M.); (J.M.)
| | | | | |
Collapse
|
42
|
Cheng P, Lin Z, Zhao X, Waigi MG, Vasilyeva GK, Gao Y. Enhanced transformation capability towards benzo(a)pyrene by Fe(III)-modified manganese oxides. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128637. [PMID: 35278963 DOI: 10.1016/j.jhazmat.2022.128637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/24/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Manganese oxides (Mn oxides) are ubiquitous and may coexist with Fe(III) ions in soil environments. In this study, acid birnessite, alkaline birnessite, cryptomelane, pyrolusite, manganite, and their Fe(III)-modified analogues were synthesized and used for benzo(a)pyrene transformation. Fe-modified Mn oxides show a markedly enhanced transformation capability towards benzo(a)pyrene. Specifically, the benzo(a)pyrene transformation rate constants k for Bir-H, Bir-OH, Cry, Pyr, and Man were 0.49, 0.080, 0.0071, 0.0055, and 0.0022 h-1, respectively. After Fe(III) modification, the transformation rate constants were increased to 22, 2.7, 0.25, 0.0072 and 0.0098 h-1, respectively. Fe(III)-modified layered birnessites exhibited better activity than Fe(III)-modified tunnel Mn oxides, which was attributed to their high Fe(III) contents and abundant active free radicals. Fe(III) was found to accept electrons from benzo(a)pyrene, thereby accelerating the benzo(a)pyrene transformation. Moreover, modification with Fe(III) increased the surface adsorbed water and oxygen, and promoted the generation of active free radicals. Finally, the physicochemical and biochemical properties of transformation products showed the environmental benefits of this process. Overall, the results indicate that the occurrence of Fe(III) ions could promote the removal of PAHs in Mn oxides-rich soils, and this study provides a credible understanding of PAH fates in natural soils.
Collapse
Affiliation(s)
- Pengfei Cheng
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhipeng Lin
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuqiang Zhao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Galina K Vasilyeva
- Institute of Physicochemical and Biological Problems in Soil Science, RAS, Pushchino, Moscow Region 142290, Russia
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
43
|
Bukowska B, Sicińska P. Influence of Benzo(a)pyrene on Different Epigenetic Processes. Int J Mol Sci 2021; 22:ijms222413453. [PMID: 34948252 PMCID: PMC8707600 DOI: 10.3390/ijms222413453] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/28/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022] Open
Abstract
Epigenetic changes constitute one of the processes that is involved in the mechanisms of carcinogenicity. They include dysregulation of DNA methylation processes, disruption of post-translational patterns of histone modifications, and changes in the composition and/or organization of chromatin. Benzo(a)pyrene (BaP) influences DNA methylation and, depending on its concentrations, as well as the type of cell, tissue and organism it causes hypomethylation or hypermethylation. Moreover, the exposure to polyaromatic hydrocarbons (PAHs), including BaP in tobacco smoke results in an altered methylation status of the offsprings. Researches have indicated a potential relationship between toxicity of BaP and deregulation of the biotin homeostasis pathway that plays an important role in the process of carcinogenesis. Animal studies have shown that parental-induced BaP toxicity can be passed on to the F1 generation as studied on marine medaka (Oryzias melastigma), and the underlying mechanism is likely related to a disturbance in the circadian rhythm. In addition, ancestral exposure of fish to BaP may cause intergenerational osteotoxicity in non-exposed F3 offsprings. Epidemiological studies of lung cancer have indicated that exposure to BaP is associated with changes in methylation levels at 15 CpG; therefore, changes in DNA methylation may be considered as potential mediators of BaP-induced lung cancer. The mechanism of epigenetic changes induced by BaP are mainly due to the formation of CpG-BPDE adducts, between metabolite of BaP-BPDE and CpG, which leads to changes in the level of 5-methylcytosine. BaP also acts through inhibition of DNA methyltransferases activity, as well as by increasing histone deacetylases HDACs, i.e., HDAC2 and HDAC3 activity. The aim of this review is to discuss the mechanism of the epigenetic action of BaP on the basis of the latest publications.
Collapse
|
44
|
Wei W, Wu BJ, Wu Y, Tong ZT, Zhong F, Hu CY. Association between long-term ambient air pollution exposure and the risk of breast cancer: a systematic review and meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:63278-63296. [PMID: 34227005 DOI: 10.1007/s11356-021-14903-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
Breast cancer is a complex and multifactorial disease which stems significantly from both environmental and genetic factors. A growing number of epidemiological studies have suggested that ambient air pollution (AAP) exposure may play an important role in breast cancer development. However, no consistency has been reached concerning whether high levels of air pollutant exposure were related to increased breast cancer risk among the current evidence. To further clarify such association of long-term AAP exposure with risk of breast cancer, a systematic review and meta-analysis of available evidence was performed. An extensive literature search in 3 academic databases was conducted before March 10, 2020. The risk of bias (RoB) for each individual study was evaluated with a domain-based assessment tool, developed by the National Toxicology Program/Office of Health Assessment and Translation (NTP/OHAT). Meta-estimates for air pollutant-breast cancer combinations were calculated for a standardized increment in exposure by random-effect models. The confidence level in the body of evidence and the certainty of evidence was also assessed for each air pollutant-breast cancer combination. The initial search identified 5446 studies, and 18 of them were eligible. The pooled analysis found an increased risk of breast cancer was associated with an increase in each 10 μg/m3 in nitrogen dioxide (NO2) exposure (hazard ratio (HR) = 1.02, 95% confidence interval (CI) = 1.01, 1.04), while particulate matter with aerodynamic diameters ≤ 2.5 μm and 10 μm (PM2.5, PM10) revealed no statistically significant associations with breast cancer risk. Our evaluation on the certainty of evidence indicates that there was a "moderate level of evidence" in the body of evidence for an association of NO2 exposure with an increased breast cancer risk and an "inadequate level of evidence" in the body of evidence for an association of PM2.5 and PM10 exposure with an increased breast cancer risk. Our study suggests long-term exposure to NO2 is related to an increased risk of breast cancer. However, in consideration of the limitations, further studies, especially performed in developing countries, with improvements in exposure assessment, outcome ascertainment, and confounder adjustment, are needed to draw a definite evidence of a causal relationship.
Collapse
Affiliation(s)
- Wu Wei
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, China
| | - Bing-Jie Wu
- Department of Oncology, Fuyang Hospital of Anhui Medical University, 99 Huangshan Road, Fuyang, 236000, China
| | - Yue Wu
- Department of Traditional and Western Integrative Medicine Oncology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, China
| | - Zhu-Ting Tong
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, China
| | - Fei Zhong
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, China.
- Department of Oncology, Fuyang Hospital of Anhui Medical University, 99 Huangshan Road, Fuyang, 236000, China.
| | - Cheng-Yang Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.
- Department of Humanistic Medicine, School of Humanistic Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.
| |
Collapse
|
45
|
Curcumin Suppresses the Lipid Accumulation and Oxidative Stress Induced by Benzo[a]pyrene Toxicity in HepG2 Cells. Antioxidants (Basel) 2021; 10:antiox10081314. [PMID: 34439562 PMCID: PMC8389208 DOI: 10.3390/antiox10081314] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 01/14/2023] Open
Abstract
Benzo[a]pyrene (B[a]P) is a potentially hepatotoxic group-1 carcinogen taken up by the body through ingestion of daily foods. B[a]P is widely known to cause DNA and protein damages, which are closely related to cell transformation. Accordingly, studies on natural bioactive compounds that attenuate such chemical-induced toxicities have significant impacts on public health. This study aimed to uncover the mechanism of curcumin, the major curcuminoid in turmeric (Curcuma longa), in modulating the lipid accumulation and oxidative stress mediated by B[a]P cytotoxicity in HepG2 cells. Curcumin treatment reduced the B[a]P-induced lipid accumulation and reactive oxygen spicies (ROS) upregulation and recovered the cell viability. Cytochrome P450 family 1 subfamily A polypeptide 1 (CYP1A1) and Cytochrome P450 subfamily B polypeptide 1 (CYP1B1) downregulation resulting from decreased aryl hydrocarbon receptor (AhR) translocation into nuclei attenuated the effects of B[a]P-induced lipid accumulation and repressed cell viability, respectively. Moreover, the curcumin-induced reduction in ROS generation decreased the nuclear translocation of Nuclear factor erythroid-2-related factor 2 (Nrf2) and the expression of phase-II detoxifying enzymes. These results indicate that curcumin suppresses B[a]P-induced lipid accumulation and ROS generation which can potentially induce nonalcoholic fatty liver disease (NAFLD) and can shed a light on the detoxifying effect of curcumin.
Collapse
|