1
|
Medgyesi DN, Bangia K, Spielfogel ES, Fisher JA, Madrigal JM, Jones RR, Ward MH, Lacey JV, Sanchez TR. Long-Term Exposure to Arsenic in Community Water Supplies and Risk of Cardiovascular Disease among Women in the California Teachers Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:107006. [PMID: 39440943 PMCID: PMC11498017 DOI: 10.1289/ehp14410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 07/29/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Inorganic arsenic in drinking water (wAs) is linked to atherosclerosis and cardiovascular disease. However, risk is uncertain at lower levels present in US community water supplies (CWS), currently regulated at the federal maximum contaminant level of 10 μ g / L . OBJECTIVES We evaluated the relationship between long-term wAs exposure from CWS and cardiovascular disease in the California Teachers Study cohort. METHODS Using statewide health care administrative records from enrollment through follow-up (1995-2018), we identified fatal and nonfatal cases of ischemic heart disease (IHD) and cardiovascular disease (CVD). Participants' residential addresses were linked to a network of CWS boundaries and annual wAs concentrations (1990-2020). Most participants resided in areas served by a CWS (92%). Exposure was calculated as a time-varying, 10-year moving average up to a participant's event, death, or end of follow-up. Using Cox models, we estimated hazard ratios (HRs) and 95% confidence intervals (95% CIs) for the risk of IHD or CVD. We evaluated wAs exposure categorized by concentration thresholds relevant to regulation standards (< 1.00 , 1.00-2.99, 3.00-4.99, 5.00-9.99, ≥ 10 μ g / L ) and continuously using a log2-transformation (i.e., per doubling). Models were adjusted for baseline age, neighborhood socioeconomic status, race/ethnicity, body mass index (BMI), and smoking status. We also stratified analyses by age, BMI, and smoking status. RESULTS Our analysis included 98,250 participants, 6,119 IHD cases, and 9,936 CVD cases. The HRs for IHD at concentration thresholds (reference, < 1 μ g / L ) were 1.06 (95% CI: 1.00, 1.12), 1.05 (95% CI: 0.94, 1.17), 1.20 (95% CI: 1.02, 1.41), and 1.42 (95% CI: 1.10, 1.84) for 1.00 - 2.99 μ g / L , 3.00 - 4.99 μ g / L , 5.00 - 9.99 μ g / L , and ≥ 10 μ g / L , respectively. HRs for every doubling of wAs exposure were 1.04 (95% CI: 1.02, 1.06) for IHD and 1.02 (95% CI: 1.01, 1.04) for CVD. We observed statistically stronger risk among those ≤ 55 vs. > 55 years of age at enrollment (p interaction = 0.006 and 0.012 for IHD and CVD, respectively). DISCUSSION Long-term wAs exposure from CWS, at and below the regulatory limit, may increase cardiovascular disease risk, particularly IHD. https://doi.org/10.1289/EHP14410.
Collapse
Affiliation(s)
- Danielle N. Medgyesi
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Komal Bangia
- Community and Environmental Epidemiology Research Branch, Office of Environmental Health Hazard Assessment, Oakland, California, USA
| | - Emma S. Spielfogel
- Division of Health Analytics, Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope, Duarte, California, USA
| | - Jared A. Fisher
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Jessica M. Madrigal
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Rena R. Jones
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Mary H. Ward
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - James V. Lacey
- Division of Health Analytics, Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope, Duarte, California, USA
| | - Tiffany R. Sanchez
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| |
Collapse
|
2
|
Bibha K, Akhigbe TM, Hamed MA, Akhigbe RE. Metabolic Derangement by Arsenic: a Review of the Mechanisms. Biol Trace Elem Res 2024; 202:1972-1982. [PMID: 37670201 DOI: 10.1007/s12011-023-03828-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/21/2023] [Indexed: 09/07/2023]
Abstract
Studies have implicated arsenic exposure in various pathological conditions, including metabolic disorders, which have become a global phenomenon, affecting developed, developing, and under-developed nations. Despite the huge risks associated with arsenic exposure, humans remain constantly exposed to it, especially through the consumption of contaminated water and food. This present study provides an in-depth insight into the mechanistic pathways involved in the metabolic derangement by arsenic. Compelling pieces of evidence demonstrate that arsenic induces metabolic disorders via multiple pathways. Apart from the initiation of oxidative stress and inflammation, arsenic prevents the phosphorylation of Akt at Ser473 and Thr308, leading to the inhibition of PDK-1/Akt insulin signaling, thereby reducing GLUT4 translocation through the activation of Nrf2. Also, arsenic downregulates mitochondrial deacetylase Sirt3, decreasing the ability of its associated transcription factor, FOXO3a, to bind to the agents that support the genes for manganese superoxide dismutase and PPARg co-activator (PGC)-1a. In addition, arsenic activates MAPKs, modulates p53/ Bcl-2 signaling, suppresses Mdm-2 and PARP, activates NLRP3 inflammasome and caspase-mediated apoptosis, and induces ER stress, and ox-mtDNA-dependent mitophagy and autophagy. More so, arsenic alters lipid metabolism by decreasing the presence of 3-hydroxy-e-methylglutaryl-CoA synthase 1 and carnitine O-octanoyl transferase (Crot) and increasing the presence of fatty acid-binding protein-3 mRNA. Furthermore, arsenic promotes atherosclerosis by inducing endothelial damage. This cascade of pathophysiological events promotes metabolic derangement. Although the pieces of evidence provided by this study are convincing, future studies evaluating the involvement of other likely mechanisms are important. Also, epidemiological studies might be necessary for the translation of most of the findings in animal models to humans.
Collapse
Affiliation(s)
- K Bibha
- Department of Zoology, Magadh Mahila College, Patna University, Patna, India
| | - T M Akhigbe
- Breeding and Plant Genetics Unit, Department of Agronomy, Osun State University, Osogbo, Osun State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - M A Hamed
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Department of Medical Laboratory Science, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
- The Brainwill Laboratory, Osogbo, Osun State, Nigeria
| | - R E Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria.
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria.
| |
Collapse
|
3
|
Ji S, Qu Y, Sun Q, Zhao F, Qiu Y, Li Z, Li Y, Song H, Zhang M, Zhang W, Fu H, Cai J, Zhang Z, Zhu Y, Cao Z, Lv Y, Shi X. Mediating Role of Liver Dysfunction in the Association between Arsenic Exposure and Diabetes in Chinese Adults: A Nationwide Cross-Sectional Study of China National Human Biomonitoring (CNHBM) 2017-2018. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2693-2703. [PMID: 38285630 DOI: 10.1021/acs.est.3c08718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Inconsistent results have been reported regarding the association between low-to-moderate arsenic (As) exposure and diabetes. The effect of liver dysfunction on As-induced diabetes remains unclear. The cross-sectional study included 10,574 adults from 2017-2018 China National Human Biomonitoring. Urinary total As (TAs) levels were analyzed as markers of As exposure. Generalized linear mixed models and restricted cubic splines models were used to examine the relationships among TAs levels, serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) concentrations, and diabetes prevalence. Mediating analysis was performed to assess whether liver dysfunction mediated the association between TAs and diabetes. Overall, the OR (95% CI) of diabetes in participants in the second, third, and fourth quartiles of TAs were 1.08 (0.88, 1.33), 1.17 (0.94, 1.45), and 1.52 (1.22, 1.90), respectively, in the fully adjusted models compared with those in the lowest quartile. Serum ALT was positively associated with TAs and diabetes. Additionally, mediation analyses showed that ALT mediated 4.32% of the association between TAs and diabetes in the overall population and 8.86% in the population without alcohol consumption in the past year. This study suggested that alleviating the hepatotoxicity of As could have implications for both diabetes and liver disease.
Collapse
Affiliation(s)
- Saisai Ji
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yingli Qu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Qi Sun
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Feng Zhao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yidan Qiu
- Department of Big Data in Health Science, School of Public Health, Zhejiang University, Hangzhou 310058, China
| | - Zheng Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yawei Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Haocan Song
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Miao Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Wenli Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Hui Fu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Jiayi Cai
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Zhuona Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Ying Zhu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Zhaojin Cao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yuebin Lv
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| |
Collapse
|
4
|
Martinez-Morata I, Wu H, Galvez-Fernandez M, Ilievski V, Bottiglieri T, Niedzwiecki MM, Goldsmith J, Jones DP, Kioumourtzoglou MA, Pierce B, Walker DI, Gamble MV. Metabolomic Effects of Folic Acid Supplementation in Adults: Evidence from the FACT Trial. J Nutr 2024; 154:670-679. [PMID: 38092151 PMCID: PMC10900167 DOI: 10.1016/j.tjnut.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/31/2023] Open
Abstract
BACKGROUND Folic acid (FA) is the oxidized form of folate found in supplements and FA-fortified foods. Most FA is reduced by dihydrofolate reductase to 5-methyltetrahydrofolate (5mTHF); the latter is the form of folate naturally found in foods. Ingestion of FA increases the plasma levels of both 5mTHF and unmetabolized FA (UMFA). Limited information is available on the downstream metabolic effects of FA supplementation, including potential effects associated with UMFA. OBJECTIVE We aimed to assess the metabolic effects of FA-supplementation, and the associations of plasma 5mTHF and UMFA with the metabolome in FA-naïve Bangladeshi adults. METHODS Sixty participants were selected from the Folic Acid and Creatine Trial; half received 800 μg FA/day for 12 weeks and half placebo. Plasma metabolome profiles were measured by high-resolution mass spectrometry, including 170 identified metabolites and 26,541 metabolic features. Penalized regression methods were used to assess the associations of targeted metabolites with FA-supplementation, plasma 5mTHF, and plasma UMFA. Pathway analyses were conducted using Mummichog. RESULTS In penalized models of identified metabolites, FA-supplementation was associated with higher choline. Changes in 5mTHF concentrations were positively associated with metabolites involved in amino acid metabolism (5-hydroxyindoleacetic acid, acetylmethionine, creatinine, guanidinoacetate, hydroxyproline/n-acetylalanine) and 2 fatty acids (docosahexaenoic acid and linoleic acid). Changes in 5mTHF concentrations were negatively associated with acetylglutamate, acetyllysine, carnitine, propionyl carnitine, cinnamic acid, homogentisate, arachidonic acid, and nicotine. UMFA concentrations were associated with lower levels of arachidonic acid. Together, metabolites selected across all models were related to lipids, aromatic amino acid metabolism, and the urea cycle. Analyses of nontargeted metabolic features identified additional pathways associated with FA supplementation. CONCLUSION In addition to the recapitulation of several expected metabolic changes associated with 5mTHF, we observed additional metabolites/pathways associated with FA-supplementation and UMFA. Further studies are needed to confirm these associations and assess their potential implications for human health. TRIAL REGISTRATION NUMBER This trial was registered at https://clinicaltrials.gov as NCT01050556.
Collapse
Affiliation(s)
- Irene Martinez-Morata
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Haotian Wu
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Marta Galvez-Fernandez
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Vesna Ilievski
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Teodoro Bottiglieri
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, TX, United States
| | - Megan M Niedzwiecki
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jeff Goldsmith
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States; Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States
| | - Marianthi-Anna Kioumourtzoglou
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Brandon Pierce
- Department of Public Health Sciences, University of Chicago, Chicago, IL, United States; Department of Human Genetics, University of Chicago, Chicago, IL, United States; Comprehensive Cancer Center, University of Chicago, Chicago, IL, United States
| | - Douglas I Walker
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Mary V Gamble
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States.
| |
Collapse
|
5
|
Olaya‐Abril A, Biełło K, Rodríguez‐Caballero G, Cabello P, Sáez LP, Moreno‐Vivián C, Luque‐Almagro VM, Roldán MD. Bacterial tolerance and detoxification of cyanide, arsenic and heavy metals: Holistic approaches applied to bioremediation of industrial complex wastes. Microb Biotechnol 2024; 17:e14399. [PMID: 38206076 PMCID: PMC10832572 DOI: 10.1111/1751-7915.14399] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Cyanide is a highly toxic compound that is found in wastewaters generated from different industrial activities, such as mining or jewellery. These residues usually contain high concentrations of other toxic pollutants like arsenic and heavy metals that may form different complexes with cyanide. To develop bioremediation strategies, it is necessary to know the metabolic processes involved in the tolerance and detoxification of these pollutants, but most of the current studies are focused on the characterization of the microbial responses to each one of these environmental hazards individually, and the effect of co-contaminated wastes on microbial metabolism has been hardly addressed. This work summarizes the main strategies developed by bacteria to alleviate the effects of cyanide, arsenic and heavy metals, analysing interactions among these toxic chemicals. Additionally, it is discussed the role of systems biology and synthetic biology as tools for the development of bioremediation strategies of complex industrial wastes and co-contaminated sites, emphasizing the importance and progress derived from meta-omic studies.
Collapse
Affiliation(s)
- Alfonso Olaya‐Abril
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de RabanalesUniversidad de CórdobaCórdobaSpain
| | - Karolina Biełło
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de RabanalesUniversidad de CórdobaCórdobaSpain
| | - Gema Rodríguez‐Caballero
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de RabanalesUniversidad de CórdobaCórdobaSpain
| | - Purificación Cabello
- Departamento de Botánica, Ecología y Fisiología Vegetal, Edificio Celestino Mutis, Campus de RabanalesUniversidad de CórdobaCórdobaSpain
| | - Lara P. Sáez
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de RabanalesUniversidad de CórdobaCórdobaSpain
| | - Conrado Moreno‐Vivián
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de RabanalesUniversidad de CórdobaCórdobaSpain
| | - Víctor Manuel Luque‐Almagro
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de RabanalesUniversidad de CórdobaCórdobaSpain
| | - María Dolores Roldán
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de RabanalesUniversidad de CórdobaCórdobaSpain
| |
Collapse
|
6
|
Ashley-Martin J, Fisher M, Belanger P, Cirtiu CM, Arbuckle TE. Biomonitoring of inorganic arsenic species in pregnancy. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:921-932. [PMID: 35948664 PMCID: PMC10733137 DOI: 10.1038/s41370-022-00457-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 06/22/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Exposure assessment of inorganic arsenic is challenging due to the existence of multiple species, complexity of arsenic metabolism, and variety of exposure sources. Exposure assessment of arsenic during pregnancy is further complicated by the physiological changes that occur to support fetal growth. Given the well-established toxicity of inorganic arsenic at high concentrations, continued research into the potential health effects of low-level exposure on maternal and fetal health is necessary. Our objectives were to review the value of and challenges inherent in measuring inorganic arsenic species in pregnancy and highlight related research priorities. We discussed how the physiological changes of pregnancy influence arsenic metabolism and necessitate the need for pregnancy-specific data. We reviewed the biomonitoring challenges according to common and novel biological matrices and discussed how each matrix differs according to half-life, bioavailability, availability of laboratory methods, and interpretation within pregnancy. Exposure assessment in both established and novel matrices that accounts for the physiological changes of pregnancy and complexity of speciation is a research priority. Standardization of laboratory method for novel matrices will help address these data gaps. Research is particularly lacking in contemporary populations of pregnant women without naturally elevated arsenic drinking water concentrations (i.e. <10 µg/l).
Collapse
Affiliation(s)
- Jillian Ashley-Martin
- Environmental Health, Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
| | - Mandy Fisher
- Environmental Health, Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Patrick Belanger
- INSPQ, Centre de toxicologie du Québec, Direction de la santé environnementale, au travail et de la toxicology, Quebec, QC, Canada
| | - Ciprian Mihai Cirtiu
- INSPQ, Centre de toxicologie du Québec, Direction de la santé environnementale, au travail et de la toxicology, Quebec, QC, Canada
| | - Tye E Arbuckle
- Environmental Health, Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| |
Collapse
|
7
|
Smith TJS, Navas-Acien A, Baker S, Kok C, Kruczynski K, Avolio LN, Pisanic N, Randad PR, Fry RC, Goessler W, van Geen A, Buckley JP, Rahman MH, Ali H, Haque R, Shaikh S, Siddiqua TJ, Schulze K, West KP, Labrique AB, Heaney CD. Anthropometric measures and arsenic methylation among pregnant women in rural northern Bangladesh. ENVIRONMENTAL RESEARCH 2023; 234:116453. [PMID: 37343752 PMCID: PMC10518461 DOI: 10.1016/j.envres.2023.116453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/02/2023] [Accepted: 06/17/2023] [Indexed: 06/23/2023]
Abstract
INTRODUCTION Arsenic methylation converts inorganic arsenic (iAs) to monomethyl (MMA) and dimethyl (DMA) arsenic compounds. Body mass index (BMI) has been positively associated with arsenic methylation efficiency (higher DMA%) in adults, but evidence in pregnancy is inconsistent. We estimated associations between anthropometric measures and arsenic methylation among pregnant women in rural northern Bangladesh. METHODS We enrolled pregnant women (n = 784) (median [IQR] gestational week: 14 [13, 15]) in Gaibandha District, Bangladesh from 2018 to 2019. Anthropometric measures were BMI, subscapular and triceps skinfold thicknesses, and mid-upper arm circumference (MUAC), fat area (MUAFA), and muscle area (MUAMA). Arsenic methylation measures were urinary iAs, MMA, and DMA divided by their sum and multiplied by 100 (iAs%, MMA%, and DMA%), primary methylation index (MMA/iAs; PMI), and secondary methylation index (DMA/MMA; SMI). In complete cases (n = 765 [97.6%]), we fitted linear, beta, and Dirichlet regression models to estimate cross-sectional differences in iAs%, MMA%, DMA%, PMI, and SMI per IQR-unit difference in each anthropometric measure, adjusting for drinking water arsenic, age, gestational age, education, living standards index, and plasma folate, vitamin B12, and homocysteine. RESULTS Median (IQR) BMI, subscapular skinfold thickness, triceps skinfold thickness, MUAC, MUAFA, and MUAMA were 21.5 (19.4, 23.8) kg/m2, 17.9 (13.2, 24.2) mm, 14.2 (10.2, 18.7) mm, 25.9 (23.8, 28.0) cm, 15.3 (10.5, 20.3) cm2, and 29.9 (25.6, 34.2) cm2, respectively. Median (IQR) iAs%, MMA%, DMA%, PMI, and SMI were 12.0 (9.3, 15.2)%, 6.6 (5.3, 8.3)%, 81.0 (77.1, 84.6)%, 0.6 (0.4, 0.7), and 12.2 (9.3, 15.7), respectively. In both unadjusted and adjusted linear models, all anthropometric measures were negatively associated with iAs%, MMA%, and PMI and positively associated with DMA% and SMI. For example, fully adjusted mean differences (95% CI) in DMA% per IQR-unit difference in BMI, subscapular skinfolds thickness, triceps skinfold thickness, MUAC, MUAFA, and MUAMA were 1.72 (1.16, 2.28), 1.58 (0.95, 2.21), 1.74 (1.11, 2.37), 1.45 (0.85, 2.06), 1.70 (1.08, 2.31), and 0.70 (0.13, 1.27) pp, respectively. CONCLUSIONS Anthropometric measures were positively associated with arsenic methylation efficiency among pregnant women in the early second trimester.
Collapse
Affiliation(s)
- Tyler J S Smith
- Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Sarah Baker
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Caryn Kok
- Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Kate Kruczynski
- Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Lindsay N Avolio
- Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Nora Pisanic
- Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Pranay R Randad
- Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Rebecca C Fry
- Department of Environmental Sciences & Engineering, University of North Carolina at Chapel Hill Gillings School of Global Public Health, Chapel Hill, NC, USA
| | - Walter Goessler
- Institute of Chemistry - Analytical Chemistry, University of Graz, Graz, Austria
| | - Alexander van Geen
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA
| | - Jessie P Buckley
- Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Md Hafizur Rahman
- JiVitA Maternal and Child Health and Nutrition Research Project, Rangpur, Bangladesh
| | - Hasmot Ali
- JiVitA Maternal and Child Health and Nutrition Research Project, Rangpur, Bangladesh
| | - Rezwanul Haque
- JiVitA Maternal and Child Health and Nutrition Research Project, Rangpur, Bangladesh
| | - Saijuddin Shaikh
- JiVitA Maternal and Child Health and Nutrition Research Project, Rangpur, Bangladesh
| | - Towfida J Siddiqua
- JiVitA Maternal and Child Health and Nutrition Research Project, Rangpur, Bangladesh
| | - Kerry Schulze
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Keith P West
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Alain B Labrique
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Christopher D Heaney
- Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
8
|
Martins AC, Ferrer B, Tinkov AA, Caito S, Deza-Ponzio R, Skalny AV, Bowman AB, Aschner M. Association between Heavy Metals, Metalloids and Metabolic Syndrome: New Insights and Approaches. TOXICS 2023; 11:670. [PMID: 37624175 PMCID: PMC10459190 DOI: 10.3390/toxics11080670] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023]
Abstract
Metabolic syndrome (MetS) is an important public health issue that affects millions of people around the world and is growing to pandemic-like proportions. This syndrome is defined by the World Health Organization (WHO) as a pathologic condition characterized by abdominal obesity, insulin resistance, hypertension, and hyperlipidemia. Moreover, the etiology of MetS is multifactorial, involving many environmental factors, including toxicant exposures. Several studies have associated MetS with heavy metals exposure, which is the focus of this review. Environmental and/or occupational exposure to heavy metals are a major risk, contributing to the development of chronic diseases. Of particular note, toxic metals such as mercury, lead, and cadmium may contribute to the development of MetS by altering oxidative stress, IL-6 signaling, apoptosis, altered lipoprotein metabolism, fluid shear stress and atherosclerosis, and other mechanisms. In this review, we discuss the known and potential roles of heavy metals in MetS etiology as well as potential targeted pathways that are associated with MetS. Furthermore, we describe how new approaches involving proteomic and transcriptome analysis, as well as bioinformatic tools, may help bring about an understanding of the involvement of heavy metals and metalloids in MetS.
Collapse
Affiliation(s)
- Airton C. Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY 10461, USA; (A.C.M.)
| | - Beatriz Ferrer
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY 10461, USA; (A.C.M.)
| | - Alexey A. Tinkov
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003 Yaroslavl, Russia; (A.A.T.)
- IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Samuel Caito
- School of Pharmacy, Husson University, Bangor, ME 04401, USA
| | - Romina Deza-Ponzio
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY 10461, USA; (A.C.M.)
| | - Anatoly V. Skalny
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003 Yaroslavl, Russia; (A.A.T.)
- IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Aaron B. Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907-2051, USA;
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY 10461, USA; (A.C.M.)
| |
Collapse
|
9
|
Biełło KA, Cabello P, Rodríguez-Caballero G, Sáez LP, Luque-Almagro VM, Roldán MD, Olaya-Abril A, Moreno-Vivián C. Proteomic Analysis of Arsenic Resistance during Cyanide Assimilation by Pseudomonas pseudoalcaligenes CECT 5344. Int J Mol Sci 2023; 24:ijms24087232. [PMID: 37108394 PMCID: PMC10138600 DOI: 10.3390/ijms24087232] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Wastewater from mining and other industries usually contains arsenic and cyanide, two highly toxic pollutants, thereby creating the need to develop bioremediation strategies. Here, molecular mechanisms triggered by the simultaneous presence of cyanide and arsenite were analyzed by quantitative proteomics, complemented with qRT-PCR analysis and determination of analytes in the cyanide-assimilating bacterium Pseudomonas pseudoalcaligenes CECT 5344. Several proteins encoded by two ars gene clusters and other Ars-related proteins were up-regulated by arsenite, even during cyanide assimilation. Although some proteins encoded by the cio gene cluster responsible for cyanide-insensitive respiration decreased in the presence of arsenite, the nitrilase NitC required for cyanide assimilation was unaffected, thus allowing bacterial growth with cyanide and arsenic. Two complementary As-resistance mechanisms were developed in this bacterium, the extrusion of As(III) and its extracellular sequestration in biofilm, whose synthesis increased in the presence of arsenite, and the formation of organoarsenicals such as arseno-phosphoglycerate and methyl-As. Tetrahydrofolate metabolism was also stimulated by arsenite. In addition, the ArsH2 protein increased in the presence of arsenite or cyanide, suggesting its role in the protection from oxidative stress caused by both toxics. These results could be useful for the development of bioremediation strategies for industrial wastes co-contaminated with cyanide and arsenic.
Collapse
Affiliation(s)
- Karolina A Biełło
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Purificación Cabello
- Departamento de Botánica, Ecología y Fisiología Vegetal, Edificio Celestino Mutis, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Gema Rodríguez-Caballero
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Lara P Sáez
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Víctor M Luque-Almagro
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain
| | - María Dolores Roldán
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Alfonso Olaya-Abril
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Conrado Moreno-Vivián
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain
| |
Collapse
|
10
|
Wu H, Kalia V, Niedzwiecki MM, Kioumourtzoglou MA, Pierce B, Ilievski V, Goldsmith J, Jones DP, Navas-Acien A, Walker DI, Gamble MV. Metabolomic changes associated with chronic arsenic exposure in a Bangladeshi population. CHEMOSPHERE 2023; 320:137998. [PMID: 36746250 PMCID: PMC9993428 DOI: 10.1016/j.chemosphere.2023.137998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/10/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Chronic exposure to arsenic (As) remains a global public health concern and our understanding of the biological mechanisms underlying the adverse effects of As exposure remains incomplete. Here, we used a high-resolution metabolomics approach to examine how As affects metabolic pathways in humans. We selected 60 non-smoking adults from the Folic Acid and Creatine Trial (FACT). Inorganic (AsIII, AsV) and organic (monomethylarsonous acid [MMAs], dimethylarsinous Acid [DMAs]) As species were measured in blood and urine collected at baseline and at 12 weeks. Plasma metabolome profiles were measured using untargeted high-resolution mass spectrometry. Associations of blood and urinary As with 170 confirmed metabolites and >26,000 untargeted spectral features were modeled using a metabolome-wide association study (MWAS) approach. Models were adjusted for age, sex, visit, and BMI and corrected for false discovery rate (FDR). In the MWAS screening of confirmed metabolites, 17 were associated with ≥1 blood As species (FDR<0.05), including fatty acids, neurotransmitter metabolites, and amino acids. These results were consistent across blood As species and between blood and urine As. Untargeted MWAS identified 423 spectral features associated with ≥1 blood As species. Unlike the confirmed metabolites, untargeted model results were not consistent across As species, with AsV and DMAs showing distinct association patterns. Mummichog pathway analysis revealed 12 enriched metabolic pathways that overlapped with the 17 identified metabolites, including one carbon metabolism, tricarboxylic acid cycle, fatty acid metabolism, and purine metabolism. Exposure to As may affect numerous essential pathways that underlie the well-characterized associations of As with multiple chronic diseases.
Collapse
Affiliation(s)
- Haotian Wu
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Vrinda Kalia
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Megan M Niedzwiecki
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Brandon Pierce
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA; Department of Human Genetics, University of Chicago, Chicago, IL, USA; Comprehensive Cancer Center, University of Chicago, Chicago, IL, USA
| | - Vesna Ilievski
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Jeff Goldsmith
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, USA; Department of Biochemistry, Emory University School of Medicine, Atlanta, USA
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Douglas I Walker
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| | - Mary V Gamble
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA.
| |
Collapse
|
11
|
Liang X, Guo G, Wang Y, Wang M, Chen X, Zhang J, Li S, Liu L, Huang Q, Cui B, Zhang M, Sun G, Tang N, Zhang X, Zhang Q. Arsenic metabolism, N6AMT1 and AS3MT single nucleotide polymorphisms, and their interaction on gestational diabetes mellitus in Chinese pregnant women. ENVIRONMENTAL RESEARCH 2023; 221:115331. [PMID: 36681142 DOI: 10.1016/j.envres.2023.115331] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Single nucleotide polymorphisms (SNPs) in N6AMT1 and AS3MT are associated with arsenic (As) metabolism, and efficient As methylation capacity has been associated with diabetes. However, little is known about the gene-As interaction on gestational diabetes mellitus (GDM). OBJECTIVE This study aimed to explore the individual and combined effects of N6AMT1 and AS3MT SNPs with As metabolism on GDM. METHODS A cross-sectional study was performed among 385 Chinese pregnant women (86 GDM and 299 Non-GDM). Four SNPs in N6AMT1 (rs1997605 and rs1003671) and AS3MT (rs1046778 and rs11191453) were genotyped. Urinary inorganic arsenic (iAs), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) were determined, and the percentages of As species (iAs%, MMA%, and DMA%) were calculated to assess the efficiency of As metabolism. RESULTS Pregnant women with N6AMT1 rs1997605 AA genotype had lower iAs% (B: 2.11; 95% CI: 4.08, -0.13) and MMA% (B: 0.21; 95% CI: 0.39, -0.04) than pregnant women with GG genotype. The AS3MT rs1046778 and rs11191453 C alleles were negatively associated with iAs% and MMA% but positively associated with DMA%. Higher urinary MMA% was significantly associated with a lower risk of GDM (OR: 0.54; 95% CI: 0.30, 0.97). The A allele in N6AMT1 rs1997605 (OR: 0.46; 95% CI: 0.26, 0.79) was associated with a decreased risk of GDM. The additive interactions between N6AMT1 rs1997605 GG genotypes and lower iAs% (AP: 0.50; 95% CI: 0.01, 0.99) or higher DMA% (AP: 0.52; 95% CI: 0.04, 0.99) were statistically significant. Similar additive interactions were also found between N6AMT1 rs1003671 GG genotypes and lower iAs% or higher DMA%. CONCLUSIONS Genetic variants in N6AMT1 and efficient As metabolism (indicated by lower iAs% and higher DMA%) can interact to influence GDM occurrence synergistically in Chinese pregnant women.
Collapse
Affiliation(s)
- Xiaoshan Liang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Guanshuai Guo
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Yiyun Wang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Meng Wang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Xi Chen
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Jingran Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Shuying Li
- Department of Endocrinology, Tianjin Xiqing Hospital, Tianjin, 300380, China
| | - Liangpo Liu
- School of Public Health, Shanxi Medical University, Taiyuan, 030001 China
| | - Qingyu Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Bo Cui
- Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Tianjin, 300050, China
| | - Ming Zhang
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, 518020, China
| | - Guifan Sun
- Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Naijun Tang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Xumei Zhang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Qiang Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
12
|
Singh RD, Tiwari R, Sharma V, Khan H, Gangopadhyay S, Singh S, Koshta K, Shukla S, Arjaria N, Mandrah K, Jagdale PR, Patnaik S, Roy SK, Singh D, Giri AK, Srivastava V. Prenatal arsenic exposure induces immunometabolic alteration and renal injury in rats. Front Med (Lausanne) 2023; 9:1045692. [PMID: 36714129 PMCID: PMC9874122 DOI: 10.3389/fmed.2022.1045692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/12/2022] [Indexed: 01/12/2023] Open
Abstract
Arsenic (As) exposure is progressively associated with chronic kidney disease (CKD), a leading public health concern present worldwide. The adverse effect of As exposure on the kidneys of people living in As endemic areas have not been extensively studied. Furthermore, the impact of only prenatal exposure to As on the progression of CKD also has not been fully characterized. In the present study, we examined the effect of prenatal exposure to low doses of As 0.04 and 0.4 mg/kg body weight (0.04 and 0.4 ppm, respectively) on the progression of CKD in male offspring using a Wistar rat model. Interestingly, only prenatal As exposure was sufficient to elevate the expression of profibrotic (TGF-β1) and proinflammatory (IL-1α, MIP-2α, RANTES, and TNF-α) cytokines at 2-day, 12- and 38-week time points in the exposed progeny. Further, alteration in adipogenic factors (ghrelin, leptin, and glucagon) was also observed in 12- and 38-week old male offspring prenatally exposed to As. An altered level of these factors coincides with impaired glucose metabolism and homeostasis accompanied by progressive kidney damage. We observed a significant increase in the deposition of extracellular matrix components and glomerular and tubular damage in the kidneys of 38-week-old male offspring prenatally exposed to As. Furthermore, the overexpression of TGF-β1 in kidneys corresponds with hypermethylation of the TGF-β1 gene-body, indicating a possible involvement of prenatal As exposure-driven epigenetic modulations of TGF-β1 expression. Our study provides evidence that prenatal As exposure to males can adversely affect the immunometabolism of offspring which can promote kidney damage later in life.
Collapse
Affiliation(s)
- Radha Dutt Singh
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India,Academy of Scientific and Innovative Research, New Delhi, India,Radha Dutt Singh, ,
| | - Ratnakar Tiwari
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Vineeta Sharma
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India,Department of Biotechnology, Faculty of Engineering and Technology, Manav Rachna International Institute of Research and Studies, Faridabad, Haryana, India
| | - Hafizurrahman Khan
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India,Academy of Scientific and Innovative Research, New Delhi, India
| | - Siddhartha Gangopadhyay
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India,Academy of Scientific and Innovative Research, New Delhi, India
| | - Sukhveer Singh
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India,Academy of Scientific and Innovative Research, New Delhi, India
| | - Kavita Koshta
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India,Academy of Scientific and Innovative Research, New Delhi, India
| | - Shagun Shukla
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Nidhi Arjaria
- Advanced Imaging Facility, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Kapil Mandrah
- Academy of Scientific and Innovative Research, New Delhi, India,Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Pankaj Ramji Jagdale
- Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Satyakam Patnaik
- Academy of Scientific and Innovative Research, New Delhi, India,Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Somendu Kumar Roy
- Academy of Scientific and Innovative Research, New Delhi, India,Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Dhirendra Singh
- Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Ashok Kumar Giri
- Molecular and Human Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Vikas Srivastava
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India,Academy of Scientific and Innovative Research, New Delhi, India,*Correspondence: Vikas Srivastava, ,
| |
Collapse
|
13
|
Choi JW, Song YC, Cheong NY, Lee K, Kim S, Lee KM, Ji K, Shin MY, Kim S. Concentrations of blood and urinary arsenic species and their characteristics in general Korean population. ENVIRONMENTAL RESEARCH 2022; 214:113846. [PMID: 35820651 DOI: 10.1016/j.envres.2022.113846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/22/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Arsenic (As) exposure has been extensively studied by investigating As species (e.g., inorganic arsenic (iAs), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA)) in urine, yet recent research suggests that blood could be a possible biomarker of As exposure. These investigations, however, were conducted on iAs-contaminated areas, and evidence on populations exposed to low levels of iAs is limited. This study aimed to describe the levels and distributions of As species in urine and blood, as well as to estimate methylation efficiency and related factors in the Korean population. Biological samples were obtained by the Korean Ministry of Food and Drug Safety. A total of 2025 urine samples and 598 blood samples were utilized in this study. Six As species were measured using ultra-high-performance liquid chromatography with inductively coupled plasma mass spectrometry (UPLC-ICP-MS): As(V), As(III), MMA, DMA, arsenobetaine (AsB), and arsenocholine (AsC). Multiple linear regression models were used to examine the relationship between As species (concentrations and proportions) and covariates. AsB was the most prevalent species in urine and blood. The relative composition of iAs, MMA, DMA, and AsC in urine and blood differed significantly. Consumption of blue-backed fish was linked to higher levels of AsB in urine and blood. Type of drinking water and multigrain rice consumption were associated with increased iAs concentration in urine. Except for iAs, every species had correlations in urine and blood in both univariate and multivariate analyses. Adolescents and smokers presented a lower methylation efficiency (higher %MMA and lower %DMA in urine) and females presented a higher methylation efficiency (lower %iAs, %MMA, and higher %DMA in urine). In conclusion, blood iAs concentration cannot represent urinary iAs; nonetheless, different compositions of urine and blood might reflect distinct information about iAs exposure. Further investigations on exposure factors and health are needed using low-exposure groups.
Collapse
Affiliation(s)
- Jeong Weon Choi
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea
| | - Yoon Chae Song
- Korea Apparel Testing and Research Institute (KATRI), Anyang, Gyeonggi-do, South Korea
| | - Nam-Yong Cheong
- Korea Apparel Testing and Research Institute (KATRI), Anyang, Gyeonggi-do, South Korea
| | - Kiyoung Lee
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea; Institute of Health and Environment, Seoul National University, Seoul, South Korea
| | - Sunmi Kim
- Chemical Safety Research Center, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Kyoung-Mu Lee
- Department of Environmental Health, Korea National Open University, Seoul, South Korea
| | - Kyunghee Ji
- Department of Occupational and Environmental Health, Yongin University, Yongin, Gyeonggi-do, South Korea
| | - Mi-Yeon Shin
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea; Office of Dental Education, School of Dentistry, Seoul National University, Seoul, South Korea.
| | - Sungkyoon Kim
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea; Institute of Health and Environment, Seoul National University, Seoul, South Korea.
| |
Collapse
|
14
|
Nie Y, Wang C, Yang L, Yang Z, Sun Y, Tian M, Ma Y, Zhang Y, Yuan Y, Zhang L. Relationship Analysis of Inorganic Arsenic Exposure and Metabolic Syndrome Based on Propensity Score Matching in Xinjiang, China. Diabetes Metab Syndr Obes 2022; 15:921-931. [PMID: 35370411 PMCID: PMC8965335 DOI: 10.2147/dmso.s349583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/17/2022] [Indexed: 11/23/2022] Open
Abstract
PURPOSE The role of inorganic arsenic (iAs) in the risk of metabolic syndrome (MetS) remains unclear. This investigation focused on the effect of iAs exposure on MetS and whether the results are consistent in different subgroups. PATIENTS AND METHODS The present study was conducted on 629 men and 616 women aged 35-70 years and living in Xinjiang Uygur Autonomous Region, China. The 1:1 propensity score matching (PSM) was adopted to regulate the confounding factors, and the multivariate logistic regression was performed to assess the relationship between urinary iAs and MetS. RESULTS The median content of urinary iAs was examined as 2.20 μg/dL (interquartile range: 1.30-3.20 μg/dL), and the MetS prevalence reached 23.69% (295 cases/950 participants). After the confounding factors were adjusted, the ORs (95% CIs) for MetS from the minimal to the maximum urinary iAs quartiles reached 1.171 (0.736,1.863), 1.568 (1.008, 2.440) and 2.011 (1.296, 3.120), respectively (referencing 1.00) (P for trend=0.001). After the PSM, the urinary iAs content still plays a potential prediction role in MetS (P for trend=0.011). In addition, as revealed from the subgroup analysis, the urinary iAs content was a predictor of MetS in the female patients, whereas it did not serve as a significant predictor of MetS in the male patients (P for interaction<0.05). CONCLUSION The increased urinary iAs content was associated with the increased prevalence of MetS in Chinese population. More attention should be paid to female urinary iAs content to avoid the high prevalence of MetS.
Collapse
Affiliation(s)
- Yanwu Nie
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, School of Public Health, Xinjiang Medical University, Urumqi, 830017, People’s Republic of China
| | - Chenchen Wang
- Center for Disease Control and prevention of Xinjiang Uygur Autonomous Region, Urumqi, 830017, People’s Republic of China
| | - Lei Yang
- School of Nursing, Xinjiang Medical University, Urumqi, 830017, People’s Republic of China
| | - Zhen Yang
- School of Public Health, Xinjiang Medical University, Urumqi, 830017, People’s Republic of China
| | - Yahong Sun
- School of Public Health, Xinjiang Medical University, Urumqi, 830017, People’s Republic of China
| | - Maozai Tian
- Center for Applied Statistics, School of Statistics, Renmin University of China, Beijing, 100872, People’s Republic of China
- College of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, 830017, People’s Republic of China
| | - Yuhua Ma
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, People’s Republic of China
- Department of Pathology, Karamay Central Hospital of XinJiang Karamay, Karamay, Xinjiang Uygur Autonomous Region, 834000, People’s Republic of China
| | - Yuxia Zhang
- Department of Clinical Nutrition, Urumqi Maternal and Child Health Institute, Urumqi, 830001, People’s Republic of China
| | - Yimu Yuan
- Department of General Practice Medicine, Xinjiang Corps Hospital, Urumqi, People’s Republic of China
| | - Liping Zhang
- College of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, 830017, People’s Republic of China
- Correspondence: Liping Zhang, Email
| |
Collapse
|
15
|
Bae S, Kamynina E, Guetterman HM, Farinola AF, Caudill MA, Berry RJ, Cassano PA, Stover PJ. Provision of folic acid for reducing arsenic toxicity in arsenic-exposed children and adults. Cochrane Database Syst Rev 2021; 10:CD012649. [PMID: 34661903 PMCID: PMC8522704 DOI: 10.1002/14651858.cd012649.pub2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Arsenic is a common environmental toxin. Exposure to arsenic (particularly its inorganic form) through contaminated food and drinking water is an important public health burden worldwide, and is associated with increased risk of neurotoxicity, congenital anomalies, cancer, and adverse neurodevelopment in children. Arsenic is excreted following methylation reactions, which are mediated by folate. Provision of folate through folic acid supplements could facilitate arsenic methylation and excretion, thereby reducing arsenic toxicity. OBJECTIVES To assess the effects of provision of folic acid (through fortified foods or supplements), alone or in combination with other nutrients, in lessening the burden of arsenic-related health outcomes and reducing arsenic toxicity in arsenic-exposed populations. SEARCH METHODS In September 2020, we searched CENTRAL, MEDLINE, Embase, 10 other international databases, nine regional databases, and two trials registers. SELECTION CRITERIA Randomised controlled trials (RCTs) and quasi-RCTs comparing the provision of folic acid (at any dose or duration), alone or in combination with other nutrients or nutrient supplements, with no intervention, placebo, unfortified food, or the same nutrient or supplements without folic acid, in arsenic-exposed populations of all ages and genders. DATA COLLECTION AND ANALYSIS We used standard methodological procedures expected by Cochrane. MAIN RESULTS We included two RCTs with 822 adults exposed to arsenic-contaminated drinking water in Bangladesh. The RCTs compared 400 µg/d (FA400) or 800 µg/d (FA800) folic acid supplements, given for 12 or 24 weeks, with placebo. One RCT, a multi-armed trial, compared FA400 plus creatine (3 g/d) to creatine alone. We judged both RCTs at low risk of bias in all domains. Due to differences in co-intervention, arsenic exposure, and participants' nutritional status, we could not conduct meta-analyses, and therefore, provide a narrative description of the data. Neither RCT reported on cancer, all-cause mortality, neurocognitive function, or congenital anomalies. Folic acid supplements alone versus placebo Blood arsenic. In arsenic-exposed individuals, FA likely reduces blood arsenic concentrations compared to placebo (2 studies, 536 participants; moderate-certainty evidence). For folate-deficient and folate-replete participants who received arsenic-removal water filters as a co-intervention, FA800 reduced blood arsenic levels more than placebo (percentage change (%change) in geometric mean (GM) FA800 -17.8%, 95% confidence intervals (CI) -25.0 to -9.8; placebo GM -9.5%, 95% CI -16.5 to -1.8; 1 study, 406 participants). In one study with 130 participants with low baseline plasma folate, FA400 reduced total blood arsenic (%change FA400 mean (M) -13.62%, standard error (SE) ± 2.87; placebo M -2.49%, SE ± 3.25), and monomethylarsonic acid (MMA) concentrations (%change FA400 M -22.24%, SE ± 2.86; placebo M -1.24%, SE ± 3.59) more than placebo. Inorganic arsenic (InAs) concentrations reduced in both groups (%change FA400 M -18.54%, SE ± 3.60; placebo M -10.61%, SE ± 3.38). There was little to no change in dimethylarsinic acid (DMA) in either group. Urinary arsenic. In arsenic-exposed individuals, FA likely reduces the proportion of total urinary arsenic excreted as InAs (%InAs) and MMA (%MMA) and increases the proportion excreted as DMA (%DMA) to a greater extent than placebo (2 studies, 546 participants; moderate-certainty evidence), suggesting that FA enhances arsenic methylation. In a mixed folate-deficient and folate-replete population (1 study, 352 participants) receiving arsenic-removal water filters as a co-intervention, groups receiving FA had a greater decrease in %InAs (within-person change FA400 M -0.09%, 95% CI -0.17 to -0.01; FA800 M -0.14%, 95% CI -0.21 to -0.06; placebo M 0.05%, 95% CI 0.00 to 0.10), a greater decrease in %MMA (within-person change FA400 M -1.80%, 95% CI -2.53 to -1.07; FA800 M -2.60%, 95% CI -3.35 to -1.85; placebo M 0.15%, 95% CI -0.37 to 0.68), and a greater increase in %DMA (within-person change FA400 M 3.25%, 95% CI 1.81 to 4.68; FA800 M 4.57%, 95% CI 3.20 to 5.95; placebo M -1.17%, 95% CI -2.18 to -0.17), compared to placebo. In 194 participants with low baseline plasma folate, FA reduced %InAs (%change FA400 M -0.31%, SE ± 0.04; placebo M -0.13%, SE ± 0.04) and %MMA (%change FA400 M -2.6%, SE ± 0.37; placebo M -0.71%, SE ± 0.43), and increased %DMA (%change FA400 M 5.9%, SE ± 0.82; placebo M 2.14%, SE ± 0.71), more than placebo. Plasma homocysteine: In arsenic-exposed individuals, FA400 likely reduces homocysteine concentrations to a greater extent than placebo (2 studies, 448 participants; moderate-certainty evidence), in the mixed folate-deficient and folate-replete population receiving arsenic-removal water filters as a co-intervention (%change in GM FA400 -23.4%, 95% CI -27.1 to -19.5; placebo -1.3%, 95% CI -5.3 to 3.1; 1 study, 254 participants), and participants with low baseline plasma folate (within-person change FA400 M -3.06 µmol/L, SE ± 3.51; placebo M -0.05 µmol/L, SE ± 4.31; 1 study, 194 participants). FA supplements plus other nutrient supplements versus nutrient supplements alone In arsenic-exposed individuals who received arsenic-removal water filters as a co-intervention, FA400 plus creatine may reduce blood arsenic concentrations more than creatine alone (%change in GM FA400 + creatine -14%, 95% CI -22.2 to -5.0; creatine -7.0%, 95% CI -14.8 to 1.5; 1 study, 204 participants; low-certainty evidence); may not change urinary arsenic methylation indices (FA400 + creatine: %InAs M 13.2%, SE ± 7.0; %MMA M 10.8, SE ± 4.1; %DMA M 76, SE ± 7.8; creatine: %InAs M 14.8, SE ± 5.5; %MMA M 12.8, SE ± 4.0; %DMA M 72.4, SE ±7.6; 1 study, 190 participants; low-certainty evidence); and may reduce homocysteine concentrations to a greater extent (%change in GM FA400 + creatinine -21%, 95% CI -25.2 to -16.4; creatine -4.3%, 95% CI -9.0 to 0.7; 1 study, 204 participants; low-certainty evidence) than creatine alone. AUTHORS' CONCLUSIONS There is moderate-certainty evidence that FA supplements may benefit blood arsenic concentration, urinary arsenic methylation profiles, and plasma homocysteine concentration versus placebo. There is low-certainty evidence that FA supplements plus other nutrients may benefit blood arsenic and plasma homocysteine concentrations versus nutrients alone. No studies reported on cancer, all-cause mortality, neurocognitive function, or congenital anomalies. Given the limited number of RCTs, more studies conducted in diverse settings are needed to assess the effects of FA on arsenic-related health outcomes and arsenic toxicity in arsenic-exposed adults and children.
Collapse
Affiliation(s)
- Sajin Bae
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Elena Kamynina
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | | | - Adetutu F Farinola
- Faculty of Public Health, Department of Human Nutrition and Dietetics, University of Ibadan, Ibadan, Nigeria
| | - Marie A Caudill
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Robert J Berry
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | |
Collapse
|
16
|
Gade M, Comfort N, Re DB. Sex-specific neurotoxic effects of heavy metal pollutants: Epidemiological, experimental evidence and candidate mechanisms. ENVIRONMENTAL RESEARCH 2021; 201:111558. [PMID: 34224706 PMCID: PMC8478794 DOI: 10.1016/j.envres.2021.111558] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/14/2021] [Accepted: 06/17/2021] [Indexed: 05/19/2023]
Abstract
The heavy metals lead (Pb), mercury (Hg), and cadmium (Cd) are ubiquitous environmental pollutants and are known to exert severe adverse impacts on the nervous system even at low concentrations. In contrast, the heavy metal manganese (Mn) is first and foremost an essential nutrient, but it becomes neurotoxic at high levels. Neurotoxic metals also include the less prevalent metalloid arsenic (As) which is found in excessive concentrations in drinking water and food sources in many regions of the world. Males and females often differ in how they respond to environmental exposures and adverse effects on their nervous systems are no exception. Here, we review the different types of sex-specific neurotoxic effects, such as cognitive and motor impairments, that have been attributed to Pb, Hg, Mn, Cd, and As exposure throughout the life course in epidemiological as well as in experimental toxicological studies. We also discuss differential vulnerability to these metals such as distinctions in behaviors and occupations across the sexes. Finally, we explore the different mechanisms hypothesized to account for sex-based differential susceptibility including hormonal, genetic, metabolic, anatomical, neurochemical, and epigenetic perturbations. An understanding of the sex-specific effects of environmental heavy metal neurotoxicity can aid in the development of more efficient systematic approaches in risk assessment and better exposure mitigation strategies with regard to sex-linked susceptibilities and vulnerabilities.
Collapse
Affiliation(s)
- Meethila Gade
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Nicole Comfort
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Diane B Re
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA; NIEHS Center of Northern Manhattan, Columbia University, New York, NY, USA; Motor Neuron Center for Biology and Disease, Columbia University, New York, NY, USA.
| |
Collapse
|
17
|
Sarker MK, Tony SR, Siddique AE, Karim MR, Haque N, Islam Z, Islam MS, Khatun M, Islam J, Hossain S, Alam Saud Z, Miyataka H, Sumi D, Barchowsky A, Himeno S, Hossain K. Arsenic Secondary Methylation Capacity Is Inversely Associated with Arsenic Exposure-Related Muscle Mass Reduction. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:9730. [PMID: 34574656 PMCID: PMC8472591 DOI: 10.3390/ijerph18189730] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/25/2022]
Abstract
Skeletal muscle mass reduction has been implicated in insulin resistance (IR) that promotes cardiometabolic diseases. We have previously reported that arsenic exposure increases IR concomitantly with the reduction of skeletal muscle mass among individuals exposed to arsenic. The arsenic methylation capacity is linked to the susceptibility to some arsenic exposure-related diseases. However, it remains unknown whether the arsenic methylation capacity affects the arsenic-induced reduction of muscle mass and elevation of IR. Therefore, this study examined the associations between the arsenic methylation status and skeletal muscle mass measures with regard to IR by recruiting 437 participants from low- and high-arsenic exposure areas in Bangladesh. The subjects' skeletal muscle mass was estimated by their lean body mass (LBM) and serum creatinine levels. Subjects' drinking water arsenic concentrations were positively associated with total urinary arsenic concentrations and the percentages of MMA, as well as inversely associated with the percentages of DMA and the secondary methylation index (SMI). Subjects' LBM and serum creatinine levels were positively associated with the percentage of DMA and SMI, as well as inversely associated with the percentage of MMA. HOMA-IR showed an inverse association with SMI, with a confounding effect of sex. Our results suggest that reduced secondary methylation capacity is involved in the arsenic-induced skeletal muscle loss that may be implicated in arsenic-induced IR and cardiometabolic diseases.
Collapse
Affiliation(s)
| | - Selim Reza Tony
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.R.T.); (A.E.S.); (N.H.); (Z.I.); (M.K.); (J.I.); (S.H.); (Z.A.S.)
| | - Abu Eabrahim Siddique
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.R.T.); (A.E.S.); (N.H.); (Z.I.); (M.K.); (J.I.); (S.H.); (Z.A.S.)
| | - Md. Rezaul Karim
- Department of Applied Nutrition and Food Technology, Islamic University, Kushtia 7003, Bangladesh; (M.R.K.); (M.S.I.)
| | - Nazmul Haque
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.R.T.); (A.E.S.); (N.H.); (Z.I.); (M.K.); (J.I.); (S.H.); (Z.A.S.)
| | - Zohurul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.R.T.); (A.E.S.); (N.H.); (Z.I.); (M.K.); (J.I.); (S.H.); (Z.A.S.)
| | - Md. Shofikul Islam
- Department of Applied Nutrition and Food Technology, Islamic University, Kushtia 7003, Bangladesh; (M.R.K.); (M.S.I.)
| | - Moriom Khatun
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.R.T.); (A.E.S.); (N.H.); (Z.I.); (M.K.); (J.I.); (S.H.); (Z.A.S.)
| | - Jahidul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.R.T.); (A.E.S.); (N.H.); (Z.I.); (M.K.); (J.I.); (S.H.); (Z.A.S.)
| | - Shakhawoat Hossain
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.R.T.); (A.E.S.); (N.H.); (Z.I.); (M.K.); (J.I.); (S.H.); (Z.A.S.)
| | - Zahangir Alam Saud
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.R.T.); (A.E.S.); (N.H.); (Z.I.); (M.K.); (J.I.); (S.H.); (Z.A.S.)
| | - Hideki Miyataka
- Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan; (H.M.); (D.S.); (S.H.)
| | - Daigo Sumi
- Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan; (H.M.); (D.S.); (S.H.)
| | - Aaron Barchowsky
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Seiichiro Himeno
- Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan; (H.M.); (D.S.); (S.H.)
- Division of Health Chemistry, School of Pharmacy, Showa University, Tokyo 142-8555, Japan
| | - Khaled Hossain
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.R.T.); (A.E.S.); (N.H.); (Z.I.); (M.K.); (J.I.); (S.H.); (Z.A.S.)
| |
Collapse
|
18
|
Khair A, Awal MA, Islam MS, Islam MZ, Rao DR. Potency of spirulina ( Spirulina platensis) on arsenic-induced lipid peroxidation in rat. J Adv Vet Anim Res 2021; 8:330-338. [PMID: 34395605 PMCID: PMC8280986 DOI: 10.5455/javar.2021.h519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/28/2021] [Accepted: 05/19/2021] [Indexed: 11/03/2022] Open
Abstract
Objective Natural substances found in dietary sources and medicinal plants have attracted considerable attention in recent years as chemopreventive agents. Spirulina is a blue-green alga that possesses chemopreventive properties. The purpose of this study was to determine the effect of spirulina on rats with inorganic arsenic (As) [sodium arsenite (NaAsO2)]-induced lipid peroxidation. Materials and Methods 120 rats were randomly assigned to 10 groups and designated T0, T1, T2, T3, T4, T5, T6, T7, T8, and T9. One group was kept as a control (T0) that received no treatment. The seven groups received 3.0 mg of NaAsO2/kg body weight in drinking water and were given spirulina ad libitum. T1 was treated with NaAsO2 but not with spirulina. Two groups of rats (T2 and T3), on the other hand, were treated with spirulina without receiving any As (NaAsO2). T2 received agro-based spirulina (Ab-Sp; grown in 1.5% soybean meal media and harvested on day 12 of seed inoculation) at 2.0 gm/kg feed, whereas T3 received commercially available spirulina (Com-Sp) at 2.0 gm/kg feed. T4, T5, and T6 were concurrently treated with Ab-Sp at 1.0, 1.5, and 2.0 gm/kg of feed. On the other hand, T7, T8, and T9 induced by NaAsO2 were concurrently treated with Com-Sp at 1.0, 1.5, and 2.0 gm/kg feed. All groups received treatment for 90 days. Results The efficacy of both spirulina in preventing lipid peroxidation caused by As was determined quantitatively by measuring the rats' serum malondialdehyde (MDA). The results indicated that As supplementation increased serum MDA levels, whereas both types of spirulina significantly decreased them. The highest dose of Ab-Sp (2.0 gm/kg feed) was found to be the most effective in preventing lipid peroxidation in rats treated with inorganic As. Conclusion Ab-Sp could be a natural, cost-effective, and safe measure to mitigate As toxicity.
Collapse
Affiliation(s)
- Abul Khair
- Department of Pharmacology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh.,Department of Livestock Services, Quality Control Laboratory, Savar, Dhaka, Bangladesh
| | - Md Abdul Awal
- Department of Livestock Services, Quality Control Laboratory, Savar, Dhaka, Bangladesh
| | - Md Shafiqul Islam
- Department of Livestock Services, Quality Control Laboratory, Savar, Dhaka, Bangladesh
| | - Md Zahorul Islam
- Department of Livestock Services, Quality Control Laboratory, Savar, Dhaka, Bangladesh
| | - Damanna R Rao
- National Institute of Food and Agriculture-USDA, Washington DC, USA
| |
Collapse
|
19
|
Abuawad A, Bozack AK, Saxena R, Gamble MV. Nutrition, one-carbon metabolism and arsenic methylation. Toxicology 2021; 457:152803. [PMID: 33905762 PMCID: PMC8349595 DOI: 10.1016/j.tox.2021.152803] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 12/16/2022]
Abstract
Exposure to arsenic (As) is a major public health concern globally. Inorganic As (InAs) undergoes hepatic methylation to form monomethyl (MMAs)- and dimethyl (DMAs)-arsenical species, facilitating urinary As elimination. MMAsIII is considerably more toxic than either InAsIII or DMAsV, and a higher proportion of MMAs in urine has been associated with risk for a wide range of adverse health outcomes. Efficiency of As methylation differs substantially between species, between individuals, and across populations. One-carbon metabolism (OCM) is a biochemical pathway that provides methyl groups for the methylation of As, and is influenced by folate and other micronutrients, such as vitamin B12, choline, betaine and creatine. A growing body of evidence has demonstrated that OCM-related micronutrients play a critical role in As methylation. This review will summarize observational epidemiological studies, interventions, and relevant experimental evidence examining the role that OCM-related micronutrients have on As methylation, toxicity of As, and risk for associated adverse health-related outcomes. There is fairly robust evidence supporting the impact of folate on As methylation, and some evidence from case-control studies indicating that folate nutritional status influences risk for As-induced skin lesions and bladder cancer. However, the potential for folate to be protective for other As-related health outcomes, and the potential beneficial effects of other OCM-related micronutrients on As methylation and risk for health outcomes are less well studied and warrant additional research.
Collapse
Affiliation(s)
- Ahlam Abuawad
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Anne K Bozack
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA; Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Roheeni Saxena
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Mary V Gamble
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA.
| |
Collapse
|