1
|
Tonne C, Ranzani O, Alari A, Ballester J, Basagaña X, Chaccour C, Dadvand P, Duarte T, Foraster M, Milà C, Nieuwenhuijsen MJ, Olmos S, Rico A, Sunyer J, Valentín A, Vivanco R. Air Pollution in Relation to COVID-19 Morbidity and Mortality: A Large Population-Based Cohort Study in Catalonia, Spain (COVAIR-CAT). Res Rep Health Eff Inst 2024:1-48. [PMID: 39468856 PMCID: PMC11525941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024] Open
Abstract
INTRODUCTION Evidence from epidemiological studies based on individual-level data indicates that air pollution may be associated with coronavirus disease 2019 (COVID-19) severity. We aimed to test whether (1) long-term exposure to air pollution is associated with COVID-19-related hospital admission or mortality in the general population; (2) short-term exposure to air pollution is associated with COVID-19-related hospital admission following COVID-19 diagnosis; (3) there are vulnerable population subgroups; and (4) the influence of long-term air pollution exposure on COVID-19-related hospital admissions differed from that for other respiratory infections. METHODS We constructed a cohort covering nearly the full population of Catalonia through registry linkage, with follow- up from January 1, 2015, to December 31, 2020. Exposures at residential addresses were estimated using newly developed spatiotemporal models of nitrogen dioxide (NO23), particulate matter ≤2.5 μm in aerodynamic diameter (PM2.5), particulate matter ≤10 μm in aerodynamic diameter (PM10), and maximum 8-hr-average ozone (O3) at a spatial resolution of 250 m for the period 2018-2020. RESULTS The general population cohort included 4,660,502 individuals; in 2020 there were 340,608 COVID-19 diagnoses, 47,174 COVID-19-related hospital admissions, and 10,001 COVID-19 deaths. Mean (standard deviation) annual exposures were 26.2 (10.3) μg/m3 for NO2, 13.8 (2.2) μg/m3 for PM2.5, and 91.6 (8.2) μg/m3 for O3. In Aim 1, an increase of 16.1 μg/m3 NO2 was associated with a 25% (95% confidence interval [CI]: 22%-29%) increase in hospitalizations and an 18% (10%-27%) increase in deaths. In Aim 2, cumulative air pollution exposure over the previous 7 days was positively associated with COVID-19-related hospital admission in the second pandemic wave (June 20 to December 31, 2020). Associations of exposure were driven by exposure on the day of the hospital admission (lag0). Associations between short-term exposure to air pollution and COVID-19-related hospital admission were similar in all population subgroups. In Aim 3, individuals with lower individual- and area-level socioeconomic status (SES) were identified as particularly vulnerable to the effects of long-term exposure to NO2 and PM2.5 on COVID-19-related hospital admission. In Aim 4, long-term exposure to air pollution was associated with hospital admission for influenza and pneumonia: (6%; 95% CI: 2-11 per 16.4-μg/m3 NO2 and 5%; 1-8 per 2.6-μg/m3 PM2.5) as well as for all lower respiratory infections (LRIs) (18%; 14-22 per 16.4-μg/m3 NO2 and 14%; 11-17 per 2.6-μg/m3 PM2.5) before the COVID-19 pandemic. Associations for COVID-19-related hospital admission were larger than those for influenza or pneumonia for NO2, PM2.5, and O3 when adjusted for NO2. CONCLUSIONS Linkage across several registries allowed the construction of a large population-based cohort, tracking COVID-19 cases from primary care and testing data to hospital admissions, and death. Long- and short-term exposure to ambient air pollution were positively associated with severe COVID-19 events. The effects of long-term air pollution exposure on COVID-19 severity were greater among those with lower individual- and area-level SES.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - C Milà
- ISGlobal, Barcelona, Spain
| | | | | | - A Rico
- ISGlobal, Barcelona, Spain
| | | | | | - R Vivanco
- Agency for Health Quality and Assessment of Catalonia, Barcelona, Spain
| |
Collapse
|
2
|
Zorn J, Simões M, Velders GJM, Gerlofs-Nijland M, Strak M, Jacobs J, Dijkema MBA, Hagenaars TJ, Smit LAM, Vermeulen R, Mughini-Gras L, Hogerwerf L, Klinkenberg D. Effects of long-term exposure to outdoor air pollution on COVID-19 incidence: A population-based cohort study accounting for SARS-CoV-2 exposure levels in the Netherlands. ENVIRONMENTAL RESEARCH 2024; 252:118812. [PMID: 38561121 DOI: 10.1016/j.envres.2024.118812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
Several studies have linked air pollution to COVID-19 morbidity and severity. However, these studies do not account for exposure levels to SARS-CoV-2, nor for different sources of air pollution. We analyzed individual-level data for 8.3 million adults in the Netherlands to assess associations between long-term exposure to ambient air pollution and SARS-CoV-2 infection (i.e., positive test) and COVID-19 hospitalisation risks, accounting for spatiotemporal variation in SARS-CoV-2 exposure levels during the first two major epidemic waves (February 2020-February 2021). We estimated average annual concentrations of PM10, PM2.5 and NO2 at residential addresses, overall and by PM source (road traffic, industry, livestock, other agricultural sources, foreign sources, other Dutch sources), at 1 × 1 km resolution, and weekly SARS-CoV-2 exposure at municipal level. Using generalized additive models, we performed interval-censored survival analyses to assess associations between individuals' average exposure to PM10, PM2.5 and NO2 in the three years before the pandemic (2017-2019) and COVID-19-outcomes, adjusting for SARS-CoV-2 exposure, individual and area-specific confounders. In single-pollutant models, per interquartile (IQR) increase in exposure, PM10 was associated with 7% increased infection risk and 16% increased hospitalisation risk, PM2.5 with 8% increased infection risk and 18% increased hospitalisation risk, and NO2 with 3% increased infection risk and 11% increased hospitalisation risk. Bi-pollutant models suggested that effects were mainly driven by PM. Associations for PM were confirmed when stratifying by urbanization degree, epidemic wave and testing policy. All emission sources of PM, except industry, showed adverse effects on both outcomes. Livestock showed the most detrimental effects per unit exposure, whereas road traffic affected severity (hospitalisation) more than infection risk. This study shows that long-term exposure to air pollution increases both SARS-CoV-2 infection and COVID-19 hospitalisation risks, even after controlling for SARS-CoV-2 exposure levels, and that PM may have differential effects on these COVID-19 outcomes depending on the emission source.
Collapse
Affiliation(s)
- Jelle Zorn
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Mariana Simões
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Guus J M Velders
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Institute for Marine and Atmospheric Research (IMAU), Utrecht University, Utrecht, the Netherlands
| | - Miriam Gerlofs-Nijland
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Maciek Strak
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - José Jacobs
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Marieke B A Dijkema
- Environment and Health in Overijssel and Gelderland, Public Health Services Gelderland-Midden, the Netherlands
| | | | - Lidwien A M Smit
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Lapo Mughini-Gras
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| | - Lenny Hogerwerf
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Don Klinkenberg
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| |
Collapse
|
3
|
Agache I, Annesi-Maesano I, Cecchi L, Biagioni B, Chung KF, Clot B, D'Amato G, Damialis A, Del Giacco S, Dominguez-Ortega J, Galàn C, Gilles S, Holgate S, Jeebhay M, Kazadzis S, Nadeau K, Papadopoulos N, Quirce S, Sastre J, Tummon F, Traidl-Hoffmann C, Walusiak-Skorupa J, Jutel M, Akdis CA. EAACI guidelines on environmental science for allergy and asthma: The impact of short-term exposure to outdoor air pollutants on asthma-related outcomes and recommendations for mitigation measures. Allergy 2024; 79:1656-1686. [PMID: 38563695 DOI: 10.1111/all.16103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 04/04/2024]
Abstract
The EAACI Guidelines on the impact of short-term exposure to outdoor pollutants on asthma-related outcomes provide recommendations for prevention, patient care and mitigation in a framework supporting rational decisions for healthcare professionals and patients to individualize and improve asthma management and for policymakers and regulators as an evidence-informed reference to help setting legally binding standards and goals for outdoor air quality at international, national and local levels. The Guideline was developed using the GRADE approach and evaluated outdoor pollutants referenced in the current Air Quality Guideline of the World Health Organization as single or mixed pollutants and outdoor pesticides. Short-term exposure to all pollutants evaluated increases the risk of asthma-related adverse outcomes, especially hospital admissions and emergency department visits (moderate certainty of evidence at specific lag days). There is limited evidence for the impact of traffic-related air pollution and outdoor pesticides exposure as well as for the interventions to reduce emissions. Due to the quality of evidence, conditional recommendations were formulated for all pollutants and for the interventions reducing outdoor air pollution. Asthma management counselled by the current EAACI guidelines can improve asthma-related outcomes but global measures for clean air are needed to achieve significant impact.
Collapse
Affiliation(s)
- Ioana Agache
- Faculty of Medicine, Transylvania University, Brasov, Romania
| | - Isabella Annesi-Maesano
- Institute Desbrest of Epidemiology and Public Health, University of Montpellier and INSERM, Montpellier, France
| | - Lorenzo Cecchi
- Centre of Bioclimatology, University of Florence, Florence, Italy
| | - Benedetta Biagioni
- Allergy and Clinical Immunology Unit San Giovanni di Dio Hospital, Florence, Italy
| | - Kian Fan Chung
- National Hearth & Lung Institute, Imperial College London, London, UK
| | - Bernard Clot
- Federal office of meteorology and climatology MeteoSwiss, Payerne, Switzerland
| | - Gennaro D'Amato
- Respiratory Disease Department, Hospital Cardarelli, Naples, Italy
- University of Naples Federico II Medical School of Respiratory Diseases, Naples, Italy
| | - Athanasios Damialis
- Department of Ecology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stefano Del Giacco
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, Italy
| | - Javier Dominguez-Ortega
- Department of Allergy, La Paz University Hospital, IdiPAZ, and CIBER of Respiratory Diseases (CIBERES), Madrid, Spain
| | - Carmen Galàn
- Inter-University Institute for Earth System Research (IISTA), International Campus of Excellence on Agrifood (ceiA3), University of Córdoba, Córdoba, Spain
| | - Stefanie Gilles
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Stephen Holgate
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Mohamed Jeebhay
- Occupational Medicine Division and Centre for Environmental & Occupational Health Research, University of Cape Town, Cape Town, South Africa
| | - Stelios Kazadzis
- Physikalisch-Meteorologisches Observatorium Davos, World Radiation Center, Davos, Switzerland
| | - Kari Nadeau
- John Rock Professor of Climate and Population Studies, Department of Environmental Health, Center for Climate, Health, and the Global Environment, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Nikolaos Papadopoulos
- Allergy and Clinical Immunology Unit, Second Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
- Division of Evolution and Genomic Sciences, University of Manchester, Manchester, UK
| | - Santiago Quirce
- Department of Allergy, La Paz University Hospital, IdiPAZ, and CIBER of Respiratory Diseases (CIBERES), Madrid, Spain
| | - Joaquin Sastre
- Allergy Service, Fundación Jiménez Díaz, Faculty of Medicine Universidad Autónoma de Madrid and CIBERES, Instituto Carlos III, Ministry of Science and Innovation, Madrid, Spain
| | - Fiona Tummon
- Respiratory Disease Department, Hospital Cardarelli, Naples, Italy
- University of Naples Federico II Medical School of Respiratory Diseases, Naples, Italy
| | - Claudia Traidl-Hoffmann
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
- Institute of Environmental Medicine, Helmholtz Center Munich-German Research Center for Environmental Health, Augsburg, Germany
- Christine Kühne Center for Allergy Research and Education, Davos, Switzerland
| | - Jolanta Walusiak-Skorupa
- Department of Occupational Diseases and Environmental Health, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Marek Jutel
- Department of Clinical Immunology, Wrocław Medical University, and ALL-MED Medical Research Institute, Wroclaw, Poland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University Zurich, Davos, Switzerland
| |
Collapse
|
4
|
Huda RK, Kumar P, Gupta R, Sharma AK, Toteja GS, Babu BV. Air Quality Monitoring Using Low-Cost Sensors in Urban Areas of Jodhpur, Rajasthan. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:623. [PMID: 38791837 PMCID: PMC11120845 DOI: 10.3390/ijerph21050623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024]
Abstract
Air pollution poses a significant health hazard in urban areas across the globe, with India being one of the most affected countries. This paper presents environmental monitoring study conducted in Jodhpur, Rajasthan, India, to assess air quality in diverse urban environments. The study involved continuous indoor and outdoor air quality monitoring, focusing on particulate matter (PM2.5) levels, bioaerosols, and associated meteorological parameters. Laser sensor-based low-cost air quality monitors were utilized to monitor air quality and Anderson 6-stage Cascade Impactor & Petri Dish methods for bioaerosol monitoring. The study revealed that PM2.5 levels were consistently high throughout the year, highlighting the severity of air pollution in the region. Notably, indoor PM2.5 levels were often higher than outdoor levels, challenging the common notion of staying indoors during peak pollution. The study explored the spatial and temporal diversity of air pollution across various land-use patterns within the city, emphasizing the need for tailored interventions in different urban areas. Additionally, bioaerosol assessments unveiled the presence of pathogenic organisms in indoor and outdoor environments, posing health risks to residents. These findings underscore the importance of addressing particulate matter and bioaerosols in air quality management strategies. Despite the study's valuable insights, limitations, such as using low-cost air quality sensors and the need for long-term data collection, are acknowledged. Nevertheless, this research contributes to a better understanding of urban air quality dynamics and the importance of public awareness in mitigating the adverse effects of air pollution. In conclusion, this study underscores the urgent need for effective air quality management strategies in urban areas. The findings provide valuable insights for policymakers and researchers striving to address air pollution in rapidly urbanizing regions.
Collapse
Affiliation(s)
- Ramesh Kumar Huda
- Indian Council of Medical Research, National Institute for Implementation Research on Non-Communicable Diseases, Jodhpur 342005, India; (P.K.); (B.V.B.)
| | - Pankaj Kumar
- Indian Council of Medical Research, National Institute for Implementation Research on Non-Communicable Diseases, Jodhpur 342005, India; (P.K.); (B.V.B.)
| | - Rajnish Gupta
- Indian Council of Medical Research, National Institute for Implementation Research on Non-Communicable Diseases, Jodhpur 342005, India; (P.K.); (B.V.B.)
| | - Arun Kumar Sharma
- Department of Community Medicine, University College of Medical Sciences, Delhi 110095, India;
| | - G. S. Toteja
- Indian Institute of Technology, Jodhpur 342030, India;
| | - Bontha V. Babu
- Indian Council of Medical Research, National Institute for Implementation Research on Non-Communicable Diseases, Jodhpur 342005, India; (P.K.); (B.V.B.)
| |
Collapse
|
5
|
Houweling L, Maitland-Van der Zee AH, Holtjer JCS, Bazdar S, Vermeulen RCH, Downward GS, Bloemsma LD. The effect of the urban exposome on COVID-19 health outcomes: A systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2024; 240:117351. [PMID: 37852458 DOI: 10.1016/j.envres.2023.117351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND The global severity of SARS-CoV-2 illness has been associated with various urban characteristics, including exposure to ambient air pollutants. This systematic review and meta-analysis aims to synthesize findings from ecological and non-ecological studies to investigate the impact of multiple urban-related features on a variety of COVID-19 health outcomes. METHODS On December 5, 2022, PubMed was searched to identify all types of observational studies that examined one or more urban exposome characteristics in relation to various COVID-19 health outcomes such as infection severity, the need for hospitalization, ICU admission, COVID pneumonia, and mortality. RESULTS A total of 38 non-ecological and 241 ecological studies were included in this review. Non-ecological studies highlighted the significant effects of population density, urbanization, and exposure to ambient air pollutants, particularly PM2.5. The meta-analyses revealed that a 1 μg/m3 increase in PM2.5 was associated with a higher likelihood of COVID-19 hospitalization (pooled OR 1.08 (95% CI:1.02-1.14)) and death (pooled OR 1.06 (95% CI:1.03-1.09)). Ecological studies, in addition to confirming the findings of non-ecological studies, also indicated that higher exposure to nitrogen dioxide (NO2), ozone (O3), sulphur dioxide (SO2), and carbon monoxide (CO), as well as lower ambient temperature, humidity, ultraviolet (UV) radiation, and less green and blue space exposure, were associated with increased COVID-19 morbidity and mortality. CONCLUSION This systematic review has identified several key vulnerability features related to urban areas in the context of the recent COVID-19 pandemic. The findings underscore the importance of improving policies related to urban exposures and implementing measures to protect individuals from these harmful environmental stressors.
Collapse
Affiliation(s)
- Laura Houweling
- Department of Environmental Epidemiology, Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands; Dept. of Pulmonary Medicine, Amsterdam UMC, Amsterdam, the Netherlands.
| | - Anke-Hilse Maitland-Van der Zee
- Dept. of Pulmonary Medicine, Amsterdam UMC, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; Amsterdam Public Health, Amsterdam, the Netherlands
| | - Judith C S Holtjer
- Department of Environmental Epidemiology, Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| | - Somayeh Bazdar
- Dept. of Pulmonary Medicine, Amsterdam UMC, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; Amsterdam Public Health, Amsterdam, the Netherlands
| | - Roel C H Vermeulen
- Department of Environmental Epidemiology, Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - George S Downward
- Department of Environmental Epidemiology, Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Lizan D Bloemsma
- Dept. of Pulmonary Medicine, Amsterdam UMC, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; Amsterdam Public Health, Amsterdam, the Netherlands
| |
Collapse
|
6
|
Zoran M, Savastru R, Savastru D, Tautan M, Tenciu D. Linkage between Airborne Particulate Matter and Viral Pandemic COVID-19 in Bucharest. Microorganisms 2023; 11:2531. [PMID: 37894189 PMCID: PMC10609195 DOI: 10.3390/microorganisms11102531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
The long-distance spreading and transport of airborne particulate matter (PM) of biogenic or chemical compounds, which are thought to be possible carriers of SARS-CoV-2 virions, can have a negative impact on the incidence and severity of COVID-19 viral disease. Considering the total Aerosol Optical Depth at 550 nm (AOD) as an atmospheric aerosol loading variable, inhalable fine PM with a diameter ≤2.5 µm (PM2.5) or coarse PM with a diameter ≤10 µm (PM10) during 26 February 2020-31 March 2022, and COVID-19's five waves in Romania, the current study investigates the impact of outdoor PM on the COVID-19 pandemic in Bucharest city. Through descriptive statistics analysis applied to average daily time series in situ and satellite data of PM2.5, PM10, and climate parameters, this study found decreased trends of PM2.5 and PM10 concentrations of 24.58% and 18.9%, respectively compared to the pre-pandemic period (2015-2019). Exposure to high levels of PM2.5 and PM10 particles was positively correlated with COVID-19 incidence and mortality. The derived average PM2.5/PM10 ratios during the entire pandemic period are relatively low (<0.44), indicating a dominance of coarse traffic-related particles' fraction. Significant reductions of the averaged AOD levels over Bucharest were recorded during the first and third waves of COVID-19 pandemic and their associated lockdowns (~28.2% and ~16.4%, respectively) compared to pre-pandemic period (2015-2019) average AOD levels. The findings of this research are important for decision-makers implementing COVID-19 safety controls and health measures during viral infections.
Collapse
Affiliation(s)
- Maria Zoran
- C Department, National Institute of R&D for Optoelectronics, 409 Atomistilor Street, MG5, 077125 Magurele, Romania; (R.S.); (D.S.); (M.T.); (D.T.)
| | | | | | | | | |
Collapse
|
7
|
Zoran MA, Savastru RS, Savastru DM, Tautan MN. Peculiar weather patterns effects on air pollution and COVID-19 spread in Tokyo metropolis. ENVIRONMENTAL RESEARCH 2023; 228:115907. [PMID: 37080275 PMCID: PMC10111861 DOI: 10.1016/j.envres.2023.115907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
As a pandemic hotspot in Japan, between March 1, 2020-October 1, 2022, Tokyo metropolis experienced seven COVID-19 waves. Motivated by the high rate of COVID-19 incidence and mortality during the seventh wave, and environmental/health challenges we conducted a time-series analysis to investigate the long-term interaction of air quality and climate variability with viral pandemic in Tokyo. Through daily time series geospatial and observational air pollution/climate data, and COVID-19 incidence and death cases, this study compared the environmental conditions during COVID-19 multiwaves. In spite of five State of Emergency (SOEs) restrictions associated with COVID-19 pandemic, during (2020-2022) period air quality recorded low improvements relative to (2015-2019) average annual values, namely: Aerosol Optical Depth increased by 9.13% in 2020 year, and declined by 6.64% in 2021, and 12.03% in 2022; particulate matter PM2.5 and PM10 decreased during 2020, 2021, and 2022 years by 10.22%, 62.26%, 0.39%, and respectively by 4.42%, 3.95%, 5.76%. For (2021-2022) period the average ratio of PM2.5/PM10 was (0.319 ± 0.1640), showing a higher contribution to aerosol loading of traffic-related coarse particles in comparison with fine particles. The highest rates of the daily recorded COVID-19 incidence and death cases in Tokyo during the seventh COVID-19 wave (1 July 2022-1 October 2022) may be attributed to accumulation near the ground of high levels of air pollutants and viral pathogens due to: 1) peculiar persistent atmospheric anticyclonic circulation with strong positive anomalies of geopotential height at 500 hPa; 2) lower levels of Planetary Boundary Layer (PBL) heights; 3) high daily maximum air temperature and land surface temperature due to the prolonged heat waves (HWs) in summer 2022; 4) no imposed restrictions. Such findings can guide public decision-makers to design proper strategies to curb pandemics under persistent stable anticyclonic weather conditions and summer HWs in large metropolitan areas.
Collapse
Affiliation(s)
- Maria A Zoran
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania.
| | - Roxana S Savastru
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania
| | - Dan M Savastru
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania
| | - Marina N Tautan
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania
| |
Collapse
|
8
|
Sangkham S, Islam MA, Sarndhong K, Vongruang P, Hasan MN, Tiwari A, Bhattacharya P. Effects of fine particulate matter (PM 2.5) and meteorological factors on the daily confirmed cases of COVID-19 in Bangkok during 2020-2021, Thailand. CASE STUDIES IN CHEMICAL AND ENVIRONMENTAL ENGINEERING 2023; 8:100410. [PMID: 38620170 PMCID: PMC10286573 DOI: 10.1016/j.cscee.2023.100410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 04/17/2024]
Abstract
The ongoing global pandemic caused by the SARS-CoV-2 virus, known as COVID-19, has disrupted public health, businesses, and economies worldwide due to its widespread transmission. While previous research has suggested a possible link between environmental factors and increased COVID-19 cases, the evidence regarding this connection remains inconclusive. The purpose of this research is to determine whether or not there is a connection between the presence of fine particulate matter (PM2.5) and meteorological conditions and COVID-19 infection rates in Bangkok, Thailand. The study employs a statistical method called Generalized Additive Model (GAM) to find a positive and non-linear association between RH, AH, and R and the number of verified COVID-19 cases. The impacts of the seasons (especially summer) and rainfall on the trajectory of COVID-19 cases were also highlighted, with an adjusted R-square of 0.852 and a deviance explained of 85.60%, both of which were statistically significant (p < 0.05). The study results assist in preventing the future seasonal spread of COVID-19, and public health authorities may use these findings to make informed decisions and assess their policies.
Collapse
Affiliation(s)
- Sarawut Sangkham
- Department of Environmental Health, School of Public Health, University of Phayao, Phayao, 56000, Thailand
| | - Md Aminul Islam
- COVID-19 Diagnostic Lab, Department of Microbiology, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
- Advanced Molecular Lab, Department of Microbiology, President Abdul Hamid Medical College, Karimganj, Kishoreganj, Bangladesh
| | - Kritsada Sarndhong
- Department of Community Health, School of Public Health, University of Phayao, Phayao, 56000, Thailand
| | - Patipat Vongruang
- Department of Environmental Health, School of Public Health, University of Phayao, Phayao, 56000, Thailand
- Atmospheric Pollution and Climate Change Research Unit, School of Energy and Environment, University of Phayao, Phayao, 56000, Thailand
| | - Mohammad Nayeem Hasan
- Department of Statistics, Shahjalal University of Science & Technology, Sylhet, Bangladesh
| | - Ananda Tiwari
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, 70701, Kuopio, Finland
| | - Prosun Bhattacharya
- COVID-19 Research, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 10B, SE, 10044, Stockholm, Sweden
| |
Collapse
|
9
|
Ranzani O, Alari A, Olmos S, Milà C, Rico A, Ballester J, Basagaña X, Chaccour C, Dadvand P, Duarte-Salles T, Foraster M, Nieuwenhuijsen M, Sunyer J, Valentín A, Kogevinas M, Lazcano U, Avellaneda-Gómez C, Vivanco R, Tonne C. Long-term exposure to air pollution and severe COVID-19 in Catalonia: a population-based cohort study. Nat Commun 2023; 14:2916. [PMID: 37225741 DOI: 10.1038/s41467-023-38469-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/02/2023] [Indexed: 05/26/2023] Open
Abstract
The association between long-term exposure to ambient air pollutants and severe COVID-19 is uncertain. We followed 4,660,502 adults from the general population in 2020 in Catalonia, Spain. Cox proportional models were fit to evaluate the association between annual averages of PM2.5, NO2, BC, and O3 at each participant's residential address and severe COVID-19. Higher exposure to PM2.5, NO2, and BC was associated with an increased risk of COVID-19 hospitalization, ICU admission, death, and hospital length of stay. An increase of 3.2 µg/m3 of PM2.5 was associated with a 19% (95% CI, 16-21) increase in hospitalizations. An increase of 16.1 µg/m3 of NO2 was associated with a 42% (95% CI, 30-55) increase in ICU admissions. An increase of 0.7 µg/m3 of BC was associated with a 6% (95% CI, 0-13) increase in deaths. O3 was positively associated with severe outcomes when adjusted by NO2. Our study contributes robust evidence that long-term exposure to air pollutants is associated with severe COVID-19.
Collapse
Affiliation(s)
- Otavio Ranzani
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Anna Alari
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Sergio Olmos
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Carles Milà
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Alex Rico
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Joan Ballester
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain
| | - Xavier Basagaña
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Carlos Chaccour
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain
- Universidad de Navarra, Pamplona, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Payam Dadvand
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Talita Duarte-Salles
- Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain
| | - Maria Foraster
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- PHAGEX Research Group, Blanquerna School of Health Science, Universitat Ramon Llull (URL), Barcelona, Spain
| | - Mark Nieuwenhuijsen
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Jordi Sunyer
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Antònia Valentín
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Manolis Kogevinas
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Uxue Lazcano
- Instituto Biodonostia, Grupo Atención Primaria, San Sebastian, Spain
- Agency for Health Quality and Assessment of Catalonia (AQuAS), Barcelona, Spain
| | | | - Rosa Vivanco
- Agency for Health Quality and Assessment of Catalonia (AQuAS), Barcelona, Spain
| | - Cathryn Tonne
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| |
Collapse
|
10
|
Marquès M, Iftimie S, Camps J, Joven J, Domingo JL. The concentrations of essential/toxic elements in serum of COVID-19 patients are not directly related to the severity of the disease. J Trace Elem Med Biol 2023; 78:127160. [PMID: 36996642 PMCID: PMC10044018 DOI: 10.1016/j.jtemb.2023.127160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 02/03/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
BACKGROUND In recent months, the current COVID-19 pandemic has generated thousands of studies directly or indirectly related with this disease and/or the coronavirus SARS-CoV-2 causing the infection. On August 22, 2022, the database PUBMED included 287,639 publications containing the term COVID-19. However, in spite of the importance of trace elements in human health, including the immune system, data on the levels of metals/metalloids in COVID-19 patients is very limited. METHODS The concentrations of As, Cd, Cr, Cu, Hg, Fe, Mg, Mn, Pb, Se, V and Zn were determined by inductively coupled plasma-mass spectrometry (ICP-MS) in 126 serum samples of individuals infected with SARS-CoV-2, as well as in 88 samples of non-infected individuals. Participants were divided into four groups: i) individuals COVID-19 positive (COVID-19 +) with an asymptomatic infection course; ii) individuals suffering mild COVID-19; iii) individuals suffering severe COVID-19, and iv) individuals COVID-19 negative (COVID-19-) (control group). The occurrence of the analyzed metals/metalloids was evaluated along with the biochemical profile, including blood cell counts, lipids, proteins and crucial enzymes. RESULTS Serum levels of Mg, V, Cr, Cu, Cd, and Pb were higher in COVID-19 positive patients than those in the control group. Although no significant differences were observed between the different groups of patients, the concentrations of Cd, Pb, V and Zn showed a tendency to be higher in individuals with severe COVID-19 than in those showing mild symptoms or being asymptomatic. Arsenic and Hg were rarely detected, regardless if the subjects were infected by SARS-CoV-2, or not. The current results did not show significant differences in the levels of the rest of analyzed elements according to the severity of the disease (asymptomatic, mild and severe). CONCLUSIONS In spite of the results here obtained, we highlight the need to reduce the exposure to Cd, Pb and V to minimize the potential adverse health outcomes after COVID-19 infection. On the other hand, although a protective role of essential elements was not found, Mg and Cu concentrations were higher in severe COVID-19 patients than in non-infected individuals.
Collapse
Affiliation(s)
- Montse Marquès
- Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, 43201 Reus, Spain; Center of Environmental, Food and Toxicological Technology - TecnATox, Universitat Rovira i Virgili, Spain
| | - Simona Iftimie
- Universitat Rovira i Virgili, Department of Internal Medicine, Hospital Universitari de Sant Joan, IISPV, 43204 Reus, Spain
| | - Jordi Camps
- Universitat Rovira i Virgili, Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, IISPV, 43201 Reus, Spain
| | - Jorge Joven
- Universitat Rovira i Virgili, Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, IISPV, 43201 Reus, Spain
| | - José L Domingo
- Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, 43201 Reus, Spain; Center of Environmental, Food and Toxicological Technology - TecnATox, Universitat Rovira i Virgili, Spain.
| |
Collapse
|
11
|
Mariscal-Aguilar P, Gómez-Carrera L, Carpio C, Zamarrón E, Bonilla G, Fernández-Velilla M, Torres I, Esteban I, Regojo R, Díaz-Almirón M, Gayá F, Villamañán E, Prados C, Álvarez-Sala R. Relationship between air pollution exposure and the progression of idiopathic pulmonary fibrosis in Madrid: Chronic respiratory failure, hospitalizations, and mortality. A retrospective study. Front Public Health 2023; 11:1135162. [PMID: 36969686 PMCID: PMC10036896 DOI: 10.3389/fpubh.2023.1135162] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/20/2023] [Indexed: 03/12/2023] Open
Abstract
IntroductionAir pollution has a significant impact on the morbidity and mortality of various respiratory diseases. However, this has not been widely studied in diffuse interstitial lung diseases, specifically in idiopathic pulmonary fibrosis.ObjectiveIn this study we aimed to assess the relationship between four major air pollutants individually [carbon monoxide (CO), nitrogen dioxide (NO2), ozone (O3), and nitrogen oxides (NOx)] and the development of chronic respiratory failure, hospitalization due to respiratory causes and mortality in patients with idiopathic pulmonary fibrosis.MethodsWe conducted an exploratory retrospective panel study from 2011 to 2020 in 69 patients with idiopathic pulmonary fibrosis from the pulmonary medicine department of a tertiary hospital. Based on their geocoded residential address, levels of each pollutant were estimated 1, 3, 6, 12, and 36 months prior to each event (chronic respiratory failure, hospital admission and mortality). Data was collected from the air quality monitoring stations of the Community of Madrid located <3.5 km (2.2 miles) from each patient's home.ResultsThe increase in average values of CO [OR 1.62 (1.11–2.36) and OR 1.84 (1.1–3.06)], NO2 [OR 1.64 (1.01–2.66)], and NOx [OR 1.11 (1–1.23) and OR 1.19 (1.03–1.38)] were significantly associated with the probability of developing chronic respiratory failure in different periods. In addition, the averages of NO2, O3, and NOx were significantly associated with the probability of hospital admissions due to respiratory causes and mortality in these patients.ConclusionAir pollution is associated with an increase in the probability of developing chronic respiratory failure, hospitalization due to respiratory causes and mortality in patients with idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Pablo Mariscal-Aguilar
- Department of Respiratory Medicine, Hospital Universitario La Paz, Madrid, Spain
- Research Institute of Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
- Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Madrid, Spain
- *Correspondence: Pablo Mariscal-Aguilar
| | - Luis Gómez-Carrera
- Department of Respiratory Medicine, Hospital Universitario La Paz, Madrid, Spain
- Research Institute of Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
- Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Madrid, Spain
| | - Carlos Carpio
- Department of Respiratory Medicine, Hospital Universitario La Paz, Madrid, Spain
- Research Institute of Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
- Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Madrid, Spain
| | - Ester Zamarrón
- Department of Respiratory Medicine, Hospital Universitario La Paz, Madrid, Spain
- Research Institute of Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
- Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Madrid, Spain
| | - Gema Bonilla
- Research Institute of Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
- Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Rheumatology, Hospital Universitario La Paz, Madrid, Spain
| | - María Fernández-Velilla
- Research Institute of Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
- Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Radiology, Hospital Universitario La Paz, Madrid, Spain
| | - Isabel Torres
- Research Institute of Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
- Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Radiology, Hospital Universitario La Paz, Madrid, Spain
| | - Isabel Esteban
- Research Institute of Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
- Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Pathological Anatomy, Hospital Universitario La Paz, Madrid, Spain
| | - Rita Regojo
- Research Institute of Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
- Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Pathological Anatomy, Hospital Universitario La Paz, Madrid, Spain
| | | | - Francisco Gayá
- Research Institute of Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Elena Villamañán
- Research Institute of Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
- Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Pharmacy, Hospital Universitario La Paz, Madrid, Spain
| | - Concepción Prados
- Department of Respiratory Medicine, Hospital Universitario La Paz, Madrid, Spain
- Research Institute of Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
- Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Madrid, Spain
| | - Rodolfo Álvarez-Sala
- Department of Respiratory Medicine, Hospital Universitario La Paz, Madrid, Spain
- Research Institute of Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
- Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Madrid, Spain
| |
Collapse
|
12
|
Podury S, Kwon S, Javed U, Farooqi MS, Li Y, Liu M, Grunig G, Nolan A. Severe Acute Respiratory Syndrome and Particulate Matter Exposure: A Systematic Review. Life (Basel) 2023; 13:538. [PMID: 36836898 PMCID: PMC9962044 DOI: 10.3390/life13020538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Particulate matter (PM) exposure is responsible for seven million deaths annually and has been implicated in the pathogenesis of respiratory infections such as severe acute respiratory syndrome (SARS). Understanding modifiable risk factors of high mortality, resource burdensome C19 and exposure risks such as PM is key to mitigating their devastating effects. This systematic review focuses on the literature available, identifying the spatial and temporal variation in the role of quantified PM exposure in SARS disease outcome and planning our future experimental studies. METHODS The systematic review utilized keywords adhered to the PRISMA guidelines. We included original human research studies in English. RESULTS Initial search yielded N = 906, application of eligibility criteria yielded N = 46. Upon analysis of risk of bias N = 41 demonstrated high risk. Studies found a positive association between elevated PM2.5, PM10 and SARS-related outcomes. A geographic and temporal variation in both PM and C19's role was observed. CONCLUSION C19 is a high mortality and resource intensive disease which devastated the globe. PM exposure is also a global health crisis. Our systematic review focuses on the intersection of this impactful disease-exposure dyad and understanding the role of PM is important in the development of interventions to prevent future spread of viral infections.
Collapse
Affiliation(s)
- Sanjiti Podury
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University Grossman School of Medicine (NYUGSoM), New York, NY 10016, USA; (S.P.); (S.K.); (U.J.); (M.S.F.)
| | - Sophia Kwon
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University Grossman School of Medicine (NYUGSoM), New York, NY 10016, USA; (S.P.); (S.K.); (U.J.); (M.S.F.)
| | - Urooj Javed
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University Grossman School of Medicine (NYUGSoM), New York, NY 10016, USA; (S.P.); (S.K.); (U.J.); (M.S.F.)
| | - Muhammad S. Farooqi
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University Grossman School of Medicine (NYUGSoM), New York, NY 10016, USA; (S.P.); (S.K.); (U.J.); (M.S.F.)
| | - Yiwei Li
- Department of Population Health, Division of Biostatistics, New York University Grossman School of Medicine (NYUGSoM), New York, NY 10016, USA; (Y.L.); (M.L.)
| | - Mengling Liu
- Department of Population Health, Division of Biostatistics, New York University Grossman School of Medicine (NYUGSoM), New York, NY 10016, USA; (Y.L.); (M.L.)
- Department of Medicine, Division of Environmental Medicine, New York University Grossman School of Medicine (NYUGSoM), New York, NY 10016, USA;
| | - Gabriele Grunig
- Department of Medicine, Division of Environmental Medicine, New York University Grossman School of Medicine (NYUGSoM), New York, NY 10016, USA;
| | - Anna Nolan
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University Grossman School of Medicine (NYUGSoM), New York, NY 10016, USA; (S.P.); (S.K.); (U.J.); (M.S.F.)
- Department of Medicine, Division of Environmental Medicine, New York University Grossman School of Medicine (NYUGSoM), New York, NY 10016, USA;
| |
Collapse
|
13
|
Bonilla JA, Lopez-Feldman A, Pereda PC, Rivera NM, Ruiz-Tagle JC. Association between long-term air pollution exposure and COVID-19 mortality in Latin America. PLoS One 2023; 18:e0280355. [PMID: 36649353 PMCID: PMC9844883 DOI: 10.1371/journal.pone.0280355] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/27/2022] [Indexed: 01/18/2023] Open
Abstract
Recent studies have shown a relationship between air pollution and increased vulnerability and mortality due to COVID-19. Most of these studies have looked at developed countries. This study examines the relationship between long-term exposure to air pollution and COVID-19-related deaths in four countries of Latin America that have been highly affected by the pandemic: Brazil, Chile, Colombia, and Mexico. Our results suggest that an increase in long-term exposure of 1 μg/m3 of fine particles is associated with a 2.7 percent increase in the COVID-19 mortality rate. This relationship is found primarily in municipalities of metropolitan areas, where urban air pollution sources dominate, and air quality guidelines are usually exceeded. By focusing the analysis on Latin America, we provide a first glimpse on the role of air pollution as a risk factor for COVID-19 mortality within a context characterized by weak environmental institutions, limited health care capacity and high levels of inequality.
Collapse
Affiliation(s)
- Jorge A. Bonilla
- Department of Economics, Universidad de Los Andes, Bogota, Colombia
| | - Alejandro Lopez-Feldman
- Environment for Development, University of Gothenburg, Göteborg, Sweden
- Department of Economics, Centro de Investigacion y Docencia Economicas, Mexico City, Mexico
| | - Paula C. Pereda
- Department of Economics, University of São Paulo, São Paulo, Brazil
| | | | - J. Cristobal Ruiz-Tagle
- Department of Geography & Environment, London School of Economics and Political Science, London, United Kingdom
| |
Collapse
|
14
|
Zsichla L, Müller V. Risk Factors of Severe COVID-19: A Review of Host, Viral and Environmental Factors. Viruses 2023; 15:175. [PMID: 36680215 PMCID: PMC9863423 DOI: 10.3390/v15010175] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
The clinical course and outcome of COVID-19 are highly variable, ranging from asymptomatic infections to severe disease and death. Understanding the risk factors of severe COVID-19 is relevant both in the clinical setting and at the epidemiological level. Here, we provide an overview of host, viral and environmental factors that have been shown or (in some cases) hypothesized to be associated with severe clinical outcomes. The factors considered in detail include the age and frailty, genetic polymorphisms, biological sex (and pregnancy), co- and superinfections, non-communicable comorbidities, immunological history, microbiota, and lifestyle of the patient; viral genetic variation and infecting dose; socioeconomic factors; and air pollution. For each category, we compile (sometimes conflicting) evidence for the association of the factor with COVID-19 outcomes (including the strength of the effect) and outline possible action mechanisms. We also discuss the complex interactions between the various risk factors.
Collapse
Affiliation(s)
- Levente Zsichla
- Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary
- National Laboratory for Health Security, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Viktor Müller
- Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary
- National Laboratory for Health Security, Eötvös Loránd University, 1117 Budapest, Hungary
| |
Collapse
|
15
|
Beloconi A, Vounatsou P. Long-term air pollution exposure and COVID-19 case-severity: An analysis of individual-level data from Switzerland. ENVIRONMENTAL RESEARCH 2023; 216:114481. [PMID: 36206929 PMCID: PMC9531360 DOI: 10.1016/j.envres.2022.114481] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 05/05/2023]
Abstract
Several studies are pointing out that exposure to elevated air pollutants could contribute to increased COVID-19 mortality. However, literature on the associations between air pollution exposure and COVID-19 severe morbidity is rather sparse. In addition, the majority of the studies used an ecological study design and were applied in regions with rather high air pollution levels. Here, we study the differential effects of long-term exposure to air pollution on severe morbidity and mortality risks from COVID-19 in various population subgroups in Switzerland, a country known for clean air. We perform individual-level analyses using data covering the first two major waves of COVID-19 between February 2020 and May 2021. High-resolution maps of particulate matter (PM2.5) and nitrogen dioxide (NO2) concentrations were produced for the 6 years preceding the pandemic using Bayesian geostatistical models. Air pollution exposure for each patient was measured by the long-term average concentration across the municipality of residence. The models were adjusted for the effects of individual characteristics, socio-economic, health-system, and climatic factors. The variables with an important association to COVID-19 case-severity were identified using Bayesian spatial variable selection. The results have shown that the individual-level characteristics are important factors related to COVID-19 morbidity and mortality in all the models. Long-term exposure to air pollution appears to influence the severity of the disease only when analyzing data during the first wave; this effect is attenuated upon adjustment for health-system related factors during the entire study period. Our findings suggest that the burden of air pollution increased the risks of COVID-19 in Switzerland during the first wave of the pandemic, but not during the second wave, when the national health system was better prepared.
Collapse
Affiliation(s)
- Anton Beloconi
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Penelope Vounatsou
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland.
| |
Collapse
|
16
|
Koch S, Hoffmann C, Caseiro A, Ledebur M, Menk M, von Schneidemesser E. Air quality in Germany as a contributing factor to morbidity from COVID-19. ENVIRONMENTAL RESEARCH 2022; 214:113896. [PMID: 35841971 PMCID: PMC9277987 DOI: 10.1016/j.envres.2022.113896] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/27/2022] [Accepted: 07/10/2022] [Indexed: 05/07/2023]
Abstract
BACKGROUND The SARS-CoV-2 virus has been spreading in Germany since January 2020, with regional differences in incidence, morbidity, and mortality. Long-term exposure to air pollutants as nitrogen dioxide (NO2), nitrogen monoxide (NO), ozone (O3), and particulate matter (<10 μm PM10, <2.5 μm PM2.5) has a negative impact on respiratory functions. We analyze the association between long-term air pollution and the outcome of SARS-CoV-2 infections in Germany. METHODS We conducted an observational study in Germany on county-level, investigating the association between long-term (2010-2019) air pollutant exposure (European Environment Agency, AirBase data set) and COVID-19 incidence, morbidity, and mortality rate during the first outbreak of SARS-CoV-2 (open source data Robert Koch Institute). We used negative binominal models, including adjustment for risk factors (age, sex, days since first COVID-19 case, population density, socio-economic and health parameters). RESULTS After adjustment for risk factors in the tri-pollutant model (NO2, O3, PM2.5) an increase of 1 μg/m³ NO2 was associated with an increase of the need for intensive care due to COVID-19 by 4.2% (95% CI 1.011-1.074), and mechanical ventilation by 4.6% (95% CI 1.010-1.084). A tendency towards an association of NO2 with COVID-19 incidence was indicated, as the results were just outside of the defined statistical significance (+1.6% (95% CI 1.000-1.032)). Long-term annual mean NO2 level ranged from 4.6 μg/m³ to 32 μg/m³. CONCLUSIONS Our results indicate that long-term NO2 exposure may have increased susceptibility for COVID-19 morbidity in Germany. The results demonstrate the need to reduce ambient air pollution to improve public health.
Collapse
Affiliation(s)
- Susanne Koch
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Anaesthesiology and Operative Intensive Care Medicine, Campus Virchow-Klinikum and Campus Charité Mitte, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Christina Hoffmann
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry, And Pathobiochemistry, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Alexandre Caseiro
- Institute for Advanced Sustainability Studies e.V. (IASS), Berliner Strasse 130, 14467, Potsdam, Germany
| | - Marie Ledebur
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Anaesthesiology and Operative Intensive Care Medicine, Campus Virchow-Klinikum and Campus Charité Mitte, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Mario Menk
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Anaesthesiology and Operative Intensive Care Medicine, Campus Virchow-Klinikum and Campus Charité Mitte, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Erika von Schneidemesser
- Institute for Advanced Sustainability Studies e.V. (IASS), Berliner Strasse 130, 14467, Potsdam, Germany
| |
Collapse
|
17
|
Zoran MA, Savastru RS, Savastru DM, Tautan MN. Cumulative effects of air pollution and climate drivers on COVID-19 multiwaves in Bucharest, Romania. PROCESS SAFETY AND ENVIRONMENTAL PROTECTION : TRANSACTIONS OF THE INSTITUTION OF CHEMICAL ENGINEERS, PART B 2022; 166:368-383. [PMID: 36034108 PMCID: PMC9391082 DOI: 10.1016/j.psep.2022.08.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Over more than two years of global health crisis due to ongoing COVID-19 pandemic, Romania experienced a five-wave pattern. This study aims to assess the potential impact of environmental drivers on COVID-19 transmission in Bucharest, capital of Romania during the analyzed epidemic period. Through descriptive statistics and cross-correlation tests applied to time series of daily observational and geospatial data of major outdoor inhalable particulate matter with aerodynamic diameter ≤ 2.5 µm (PM2.5) or ≤ 10 µm (PM10), nitrogen dioxide (NO2), ozone (O3), sulfur dioxide (SO2), carbon monoxide (CO), Aerosol Optical Depth at 550 nm (AOD) and radon (222Rn), we investigated the COVID-19 waves patterns under different meteorological conditions. This study examined the contribution of individual climate variables on the ground level air pollutants concentrations and COVID-19 disease severity. As compared to the long-term average AOD over Bucharest from 2015 to 2019, for the same year periods, this study revealed major AOD level reduction by ~28 % during the spring lockdown of the first COVID-19 wave (15 March 2020-15 May 2020), and ~16 % during the third COVID-19 wave (1 February 2021-1 June 2021). This study found positive correlations between exposure to air pollutants PM2.5, PM10, NO2, SO2, CO and 222Rn, and significant negative correlations, especially for spring-summer periods between ground O3 levels, air temperature, Planetary Boundary Layer height, and surface solar irradiance with COVID-19 incidence and deaths. For the analyzed time period 1 January 2020-1 April 2022, before and during each COVID-19 wave were recorded stagnant synoptic anticyclonic conditions favorable for SARS-CoV-2 virus spreading, with positive Omega surface charts composite average (Pa/s) at 850 mb during fall- winter seasons, clearly evidenced for the second, the fourth and the fifth waves. These findings are relevant for viral infections controls and health safety strategies design in highly polluted urban environments.
Collapse
Key Words
- 222Rn
- 222Rn, Radon
- AOD, Total Aerosol Optical Depth at 550 nm
- Aerosol Optical Depth (AOD)
- CAMS, Copernicus Atmosphere Monitoring Service
- CO, Carbon monoxide
- COVID, 19 Coronavirus Disease 2019
- COVID-19 disease
- Climate variables
- DNC, Daily New COVID-19 positive cases
- DND, Daily New COVID-19 Deaths
- MERS, CoV Middle East respiratory syndrome coronavirus
- NO2, Nitrogen dioxide
- NOAA, National Oceanic and Atmospheric Administration U.S.A.
- O3, Ozone
- Outdoor air pollutants
- PBL, Planetary Boundary Layer height
- PM, Particulate Matter: PM1(1 µm), PM2.5 (2.5 µm) and PM10(10.0 µm) diameter
- RH, Air relative humidity
- SARS, CoV Severe Outdoor Respiratory Syndrome Coronavirus
- SARS, CoV-2 Severe Outdoor Respiratory Syndrome Coronavirus 2
- SI, Surface solar global irradiance
- SO2, Sulfur dioxide
- Synoptic meteorological circulation
- T, Air temperature at 2 m height
- p, Air pressure
- w, Wind speed intensity
Collapse
Affiliation(s)
- Maria A Zoran
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele, Bucharest 077125, Romania
| | - Roxana S Savastru
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele, Bucharest 077125, Romania
| | - Dan M Savastru
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele, Bucharest 077125, Romania
| | - Marina N Tautan
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele, Bucharest 077125, Romania
| |
Collapse
|
18
|
Orak NH. Effect of ambient air pollution and meteorological factors on the potential transmission of COVID-19 in Turkey. ENVIRONMENTAL RESEARCH 2022; 212:113646. [PMID: 35688216 PMCID: PMC9172252 DOI: 10.1016/j.envres.2022.113646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 05/22/2023]
Abstract
There is a need to improve the understanding of air quality parameters and meteorological conditions on the transmission of SARS-CoV-2 in different regions of the world. In this preliminary study, we explore the relationship between short-term air quality (nitrogen dioxide (NO2), sulfur dioxide (SO2), ozone (O3), and particulate matter (PM2.5, PM10)) exposure, temperature, humidity, and wind speed on SARS-CoV-2 transmission in 41 cities of Turkey with reported weekly cases from February 8 to April 2, 2021. Both linear and non-linear relationships were explored. The nonlinear association between weekly confirmed cases and short-term exposure to predictor factors was investigated using a generalized additive model (GAM). The preliminary results indicate that there was a significant association between humidity and weekly confirmed COVID-19 cases. The cooler temperatures had a positive correlation with the occurrence of new confirmed cases. The low PM2.5 concentrations had a negative correlation with the number of new cases, while reducing SO2 concentrations may help decrease the number of new cases. This is the first study investigating the relationship between measured air pollutants, meteorological factors, and the number of weekly confirmed COVID-19 cases across Turkey. There are several limitations of the presented study, however, the preliminary results show that there is a need to understand the impacts of regional air quality parameters and meteorological factors on the transmission of the virus.
Collapse
Affiliation(s)
- Nur H Orak
- Marmara University, Department of Environmental Engineering, Istanbul, Turkey.
| |
Collapse
|
19
|
Sheridan C, Klompmaker J, Cummins S, James P, Fecht D, Roscoe C. Associations of air pollution with COVID-19 positivity, hospitalisations, and mortality: Observational evidence from UK Biobank. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119686. [PMID: 35779662 PMCID: PMC9243647 DOI: 10.1016/j.envpol.2022.119686] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 05/26/2023]
Abstract
Individual-level studies with adjustment for important COVID-19 risk factors suggest positive associations of long-term air pollution exposure (particulate matter and nitrogen dioxide) with COVID-19 infection, hospitalisations and mortality. The evidence, however, remains limited and mechanisms unclear. We aimed to investigate these associations within UK Biobank, and to examine the role of underlying chronic disease as a potential mechanism. UK Biobank COVID-19 positive laboratory test results were ascertained via Public Health England and general practitioner record linkage, COVID-19 hospitalisations via Hospital Episode Statistics, and COVID-19 mortality via Office for National Statistics mortality records from March-December 2020. We used annual average outdoor air pollution modelled at 2010 residential addresses of UK Biobank participants who resided in England (n = 424,721). We obtained important COVID-19 risk factors from baseline UK Biobank questionnaire responses (2006-2010) and general practitioner record linkage. We used logistic regression models to assess associations of air pollution with COVID-19 outcomes, adjusted for relevant confounders, and conducted sensitivity analyses. We found positive associations of fine particulate matter (PM2.5) and nitrogen dioxide (NO2) with COVID-19 positive test result after adjustment for confounders and COVID-19 risk factors, with odds ratios of 1.05 (95% confidence intervals (CI) = 1.02, 1.08), and 1.05 (95% CI = 1.01, 1.08), respectively. PM 2.5 and NO 2 were positively associated with COVID-19 hospitalisations and deaths in minimally adjusted models, but not in fully adjusted models. No associations for PM10 were found. In analyses with additional adjustment for pre-existing chronic disease, effect estimates were not substantially attenuated, indicating that underlying chronic disease may not fully explain associations. We found some evidence that long-term exposure to PM2.5 and NO2 was associated with a COVID-19 positive test result in UK Biobank, though not with COVID-19 hospitalisations or deaths.
Collapse
Affiliation(s)
- Charlotte Sheridan
- London School of Hygiene & Tropical Medicine, Keppel St., London, WC1E 7HT, United Kingdom.
| | - Jochem Klompmaker
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA, 02115, United States.
| | - Steven Cummins
- Population Health Innovation Lab, Department of Public Health, Environments and Society, Faculty of Public Health and Policy, London School of Hygiene & Tropical Medicine, Keppel St., London, United Kingdom.
| | - Peter James
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA, 02115, United States; Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, 401 Park Drive, Suite 401 East, Boston, MA, 02215, United States.
| | - Daniela Fecht
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Medicine, St Mary's Campus, Imperial College London, London, W2 1PG, United Kingdom.
| | - Charlotte Roscoe
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA, 02115, United States; MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Medicine, St Mary's Campus, Imperial College London, London, W2 1PG, United Kingdom; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA, 02115, United States.
| |
Collapse
|
20
|
Zoran MA, Savastru RS, Savastru DM, Tautan MN. Impacts of exposure to air pollution, radon and climate drivers on the COVID-19 pandemic in Bucharest, Romania: A time series study. ENVIRONMENTAL RESEARCH 2022; 212:113437. [PMID: 35594963 PMCID: PMC9113773 DOI: 10.1016/j.envres.2022.113437] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 05/05/2023]
Abstract
During the ongoing global COVID-19 pandemic disease, like several countries, Romania experienced a multiwaves pattern over more than two years. The spreading pattern of SARS-CoV-2 pathogens in the Bucharest, capital of Romania is a multi-factorial process involving among other factors outdoor environmental variables and viral inactivation. Through descriptive statistics and cross-correlation analysis applied to daily time series of observational and geospatial data, this study aims to evaluate the synergy of COVID-19 incidence and lethality with air pollution and radon under different climate conditions, which may exacerbate the coronavirus' effect on human health. During the entire analyzed period 1 January 2020-21 December 2021, for each of the four COVID-19 waves were recorded different anomalous anticyclonic synoptic meteorological patterns in the mid-troposphere, and favorable stability conditions during fall-early winter seasons for COVID-19 disease fast-spreading, mostly during the second, and the fourth waves. As the temporal pattern of airborne SARS-CoV-2 and its mutagen variants is affected by seasonal variability of the main air pollutants and climate parameters, this paper found: 1) the daily outdoor exposures to air pollutants (particulate matter PM2.5 and PM10, nitrogen dioxide-NO2, sulfur dioxide-SO2, carbon monoxide-CO) and radon - 222Rn, are directly correlated with the daily COVID-19 incidence and mortality, and may contribute to the spread and the severity of the pandemic; 2) the daily ground ozone-O3 levels, air temperature, Planetary Boundary Layer height, and surface solar irradiance are anticorrelated with the daily new COVID-19 incidence and deaths, averageingful for spring-summer periods. Outdoor exposure to ambient air pollution associated with radon is a non-negligible driver of COVID-19 transmission in large metropolitan areas, and climate variables are risk factors in spreading the viral infection. The findings of this study provide useful information for public health authorities and decision-makers to develop future pandemic diseases strategies in high polluted metropolitan environments.
Collapse
Affiliation(s)
- Maria A Zoran
- National Institute of R&D for Optoelectronics, Bucharest, Magurele, Romania.
| | - Roxana S Savastru
- National Institute of R&D for Optoelectronics, Bucharest, Magurele, Romania
| | - Dan M Savastru
- National Institute of R&D for Optoelectronics, Bucharest, Magurele, Romania
| | - Marina N Tautan
- National Institute of R&D for Optoelectronics, Bucharest, Magurele, Romania
| |
Collapse
|
21
|
Fang C, Zhou Z, Zhou M, Li J. Decrease in incidence of Streptococcus pyogenes-induced vulvovaginitis among prepubertal girls after COVID-19 outbreak. Infect Dis (Lond) 2022; 54:947-950. [PMID: 35950317 DOI: 10.1080/23744235.2022.2109726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Chao Fang
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Zheng Zhou
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Mingming Zhou
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jianping Li
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
22
|
Borna M, Woloshynowych M, Schiano-Phan R, Volpi EV, Usman M. A correlational analysis of COVID-19 incidence and mortality and urban determinants of vitamin D status across the London boroughs. Sci Rep 2022; 12:11741. [PMID: 35817805 PMCID: PMC9272647 DOI: 10.1038/s41598-022-15664-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 06/27/2022] [Indexed: 02/06/2023] Open
Abstract
One of the biggest challenges of the COVID-19 pandemic is the heterogeneity in disease severity exhibited amongst patients. Among multiple factors, latest studies suggest vitamin D deficiency and pre-existing health conditions to be major contributors to death from COVID-19. It is known that certain urban form attributes can impact sun exposure and vitamin D synthesis. Also, long-term exposure to air pollution can play an independent role in vitamin D deficiency. We conducted a correlational analysis of urban form and air quality in relation to the demographics and COVID-19 incidence and mortality across 32 London boroughs between March 2020 and January 2021. We found total population, number of residents of Asian ethnicity, 4-year average PM10 levels and road length to be positively correlated with COVID-19 cases and deaths. We also found percentage of households with access to total open space to be negatively correlated with COVID-19 deaths. Our findings link COVID-19 incidence and mortality across London with environmental variables linked to vitamin D status. Our study is entirely based on publicly available data and provides a reference framework for further research as more data are gathered and the syndemic dimension of COVID-19 becomes increasingly relevant in connection to health inequalities within large urban areas.
Collapse
Affiliation(s)
- Mehrdad Borna
- School of Architecture and Cities, University of Westminster, 35 Marylebone Road, London, NW1 5LS, UK.
| | | | - Rosa Schiano-Phan
- School of Architecture and Cities, University of Westminster, 35 Marylebone Road, London, NW1 5LS, UK
| | | | - Moonisah Usman
- Centre for Education and Teaching Innovation, University of Westminster, London, UK
| |
Collapse
|
23
|
Xiong J, Li J, Wu X, Wolfson JM, Lawrence J, Stern RA, Koutrakis P, Wei J, Huang S. The association between daily-diagnosed COVID-19 morbidity and short-term exposure to PM 1 is larger than associations with PM 2.5 and PM 10. ENVIRONMENTAL RESEARCH 2022; 210:113016. [PMID: 35218713 PMCID: PMC8865934 DOI: 10.1016/j.envres.2022.113016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 06/11/2023]
Abstract
Exposure to particulate matter (PM) could increase both susceptibility to SARS-CoV-2 infection and severity of COVID-19 disease. Prior studies investigating associations between PM and COVID-19 morbidity have only considered PM2.5 or PM10, rather than PM1. We investigated the associations between daily-diagnosed COVID-19 morbidity and average exposures to ambient PM1 starting at 0 through 21 days before the day of diagnosis in 12 cities in China using a two-step analysis: a time-series quasi-Poisson analysis to analyze the associations in each city; and then a meta-analysis to estimate the overall association. Diagnosed morbidities and PM1 data were obtained from National Health Commission in China and China Meteorological Administration, respectively. We found association between short-term exposures to ambient PM1 with COVID-19 morbidity was significantly positive, and larger than the associations with PM2.5 and PM10. Percent increases in daily-diagnosed COVID-19 morbidity per IQR/10 PM1 for different moving averages ranged from 1.50% (-1.20%, 4.30%) to 241% (95%CI: 80.7%, 545%), with largest values for exposure windows starting at 17 days before diagnosis. Our results indicate that smaller particles are more highly associated with COVID-19 morbidity, and most of the effects from PM2.5 and PM10 on COVID-19 may be primarily due to the PM1. This study will be helpful for implementing measures and policies to control the spread of COVID-19.
Collapse
Affiliation(s)
- Jianyin Xiong
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China
| | - Jing Li
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, China; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Xiao Wu
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, USA
| | - Jack M Wolfson
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Joy Lawrence
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Rebecca A Stern
- Harvard John A. Paulson School of Engineering & Applied Sciences, Cambridge, MA, USA
| | - Petros Koutrakis
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA.
| | - Shaodan Huang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
24
|
Li S, Ren J, Hou H, Han X, Xu J, Duan G, Wang Y, Yang H. The association between stroke and COVID-19-related mortality: a systematic review and meta-analysis based on adjusted effect estimates. Neurol Sci 2022; 43:4049-4059. [PMID: 35325320 PMCID: PMC8943353 DOI: 10.1007/s10072-022-06024-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 03/17/2022] [Indexed: 12/15/2022]
Abstract
Objective To investigate the association between stroke and the risk for mortality among coronavirus disease 2019 (COVID-19) patients. Methods We performed systematic searches through electronic databases including PubMed, Embase, Scopus, and Web of Science to identify potential articles reporting adjusted effect estimates on the association of stroke with COVID-19-related mortality. To estimate pooled effects, the random-effects model was applied. Subgroup analyses and meta-regression were performed to explore the possible sources of heterogeneity. The stability of the results was assessed by sensitivity analysis. Publication bias was evaluated by Begg’s test and Egger’s test. Results This meta-analysis included 47 studies involving 7,267,055 patients. The stroke was associated with higher COVID-19 mortality (pooled effect = 1.30, 95% confidence interval (CI): 1.16–1.44; I2 = 89%, P < 0.01; random-effects model). Subgroup analyses yielded consistent results among area, age, proportion of males, setting, cases, effect type, and proportion of severe COVID-19 cases. Statistical heterogeneity might result from the different effect type according to the meta-regression (P = 0.0105). Sensitivity analysis suggested that our results were stable and robust. Both Begg’s test and Egger’s test indicated that potential publication bias did not exist. Conclusion Stroke was independently associated with a significantly increased risk for mortality in COVID-19 patients.
Collapse
Affiliation(s)
- Shuwen Li
- Department of Epidemiology, School of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Jiahao Ren
- Department of Epidemiology, School of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Hongjie Hou
- Department of Epidemiology, School of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Xueya Han
- Department of Epidemiology, School of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Jie Xu
- Department of Epidemiology, School of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Guangcai Duan
- Department of Epidemiology, School of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Yadong Wang
- Department of Toxicology, Henan Center for Disease Control and Prevention, Zhengzhou, 450016, China
| | - Haiyan Yang
- Department of Epidemiology, School of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China.
| |
Collapse
|
25
|
Theoretical and experimental investigations of time-dependent mass transfer mechanism of fine particulate matter under the sink effect. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Analysis of Particulate Matter Concentration Changes before, during, and Post COVID-19 Lockdown: A Case Study from Victoria, Mexico. ATMOSPHERE 2022. [DOI: 10.3390/atmos13050827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The lockdown measures implemented due to the SARS-CoV-2 pandemic to reduce the epidemic curve, in most cases, have had a positive impact on air quality indices. Our study describes the changes in the concentration levels of PM2.5 and PM10 during the lockdown and post-lockdown in Victoria, Mexico, considering the following periods: before the lockdown (BL) from 16 February to 14 March, during the lockdown (DL) from 15 March to 2 May, and in the partial lockdown (PL) from 3 May to 6 June. When comparing the DL period of 2019 and 2020, we document a reduction in the average concentration of PM2.5 and PM10 of −55.56% and −55.17%, respectively. Moreover, we note a decrease of −53.57% for PM2.5 and −51.61% for PM10 in the PL period. When contrasting the average concentration between the DL periods of 2020 and 2021, an increase of 91.67% for PM2.5 and 100.00% for PM10 was identified. Furthermore, in the PL periods of 2020 and 2021, an increase of 38.46% and 31.33% was observed for PM2.5 and PM10, respectively. On the other hand, when comparing the concentrations of PM2.5 in the three periods of 2020, we found a decrease between BL and DL of −50.00%, between BL and PL a decrease of −45.83%, and an increase of 8.33% between DL and PL. In the case of PM10, a decrease of −48.00% between BL and DL, −40.00% between BL and PL, and an increase of 15.38% between the DL and PL periods were observed. In addition, we performed a non-parametric statistical analysis, where a significant statistical difference was found between the DL-2020 and DL-2019 pairs (x2 = 1.204) and between the DL-2021 and DL-2019 pairs (x2 = 0.372), with a p<0.000 for PM2.5, and the contrast between pairs of PM10 (DL) showed a significant difference between all pairs with p<0.01.
Collapse
|
27
|
Yin C, Zhao W, Pereira P. Meteorological factors' effects on COVID-19 show seasonality and spatiality in Brazil. ENVIRONMENTAL RESEARCH 2022; 208:112690. [PMID: 34999027 PMCID: PMC8734082 DOI: 10.1016/j.envres.2022.112690] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/04/2022] [Accepted: 01/04/2022] [Indexed: 05/28/2023]
Abstract
The meteorological conditions may affect COVID-19 transmission. However, the roles of seasonality and macro-climate are still contentious due to the limited time series for early-stage studies. We studied meteorological factors' effects on COVID-19 transmission in Brazil from February 25 to November 15, 2020. We aimed to explore whether this impact showed seasonal characteristics and spatial variations related to the macro-climate. We applied two-way fixed-effect models to identify the effects of meteorological factors on COVID-19 transmission and used spatial analysis to explore their spatial-temporal characteristics with a relatively long-time span. The results showed that cold, dry and windless conditions aggravated COVID-19 transmission. The daily average temperature, humidity, and wind speed negatively affected the daily new cases. Humidity and temperature played a dominant role in this process. For the time series, the influences of meteorological conditions on COVID-19 had a periodic fluctuation of 3-4 months (in line with the seasons in Brazil). The turning points of this fluctuation occurred at the turn of seasons. Spatially, the negative effects of temperature and humidity on COVID-19 transmission clustered in the northeastern and central parts of Brazil. This is consistent with the range of arid climate types. Overall, the seasonality and similar climate types should be considered to estimate the spatial-temporal COVID-19 patterns. Winter is a critical time to be alert for COVID-19, especially in the northern part of Brazil.
Collapse
Affiliation(s)
- Caichun Yin
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China; Institute of Land Surface System and Sustainable Development, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Wenwu Zhao
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China; Institute of Land Surface System and Sustainable Development, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China.
| | - Paulo Pereira
- Environmental Management Center, Mykolas Romeris University, Vilnius, 08303, Lithuania
| |
Collapse
|
28
|
Abstract
Certain cells that participate in the immune response are known to become polarized in their production of cytokines. It is postulated that, after initial polarization at the site of antigenic encounter, the different types of cell arriving at this site are induced to conform to the local cytokine field, implying that they share common regulatory circuits. As they migrate, these cells might, in turn, spread the particular cytokine field. Therefore, the field is 'infectious' in nature. Propagation of the cytokine field must be regulated somehow. The invasion of the cytokine field into an organ or the entire body could have major immunological consequences.
Collapse
Affiliation(s)
- P Kourilsky
- Department of Immunology, Institut Pasteur, 75724 Paris, Cedex 15, France.
| | | |
Collapse
|