1
|
Joshi M, Joshi A, Bartter T. The impact of climate change on respiratory health: current understanding and knowledge gaps. Curr Opin Pulm Med 2025; 31:79-88. [PMID: 39620702 DOI: 10.1097/mcp.0000000000001145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
PURPOSE OF REVIEW To present an overview of the impact of climate change upon human respiratory health. RECENT FINDINGS Climate change is directly impacting air quality. Particulate matter clearly increases mortality rates. Ozone, a longstanding suspect in climate-related injury, turns out not to have the major impact that had been projected at current levels of exposure. The key factors in global warming have been clearly identified, but while these factors collectively cause deleterious changes, a close look at the literature shows that it is unclear to what extent each factor individually is a driver of a specific process. This article summarizes some of those studies. SUMMARY A better understanding of which components of climate change most impact human health is needed in order to re-define environmental standards. PM 2.5 needs to be broken down by chemical composition to study the differential impacts of different sources of PM 2.5 . The detection and study of climate-related changes in respiratory infectious diseases is in a state of relative infancy.
Collapse
Affiliation(s)
- Manish Joshi
- University of Arkansas for Medical Sciences
- Central Arkansas Veterans Healthcare System
| | - Anita Joshi
- Fay W Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Thaddeus Bartter
- University of Arkansas for Medical Sciences
- Central Arkansas Veterans Healthcare System
| |
Collapse
|
2
|
Getachew M, Mekonnen A, Fitsum D. Health and Economic Impact Estimation of Ambient Air Particulate Matter (PM 2.5) Pollution in Addis Ababa Using BenMAP-CE Model. ENVIRONMENTAL HEALTH INSIGHTS 2025; 19:11786302241312061. [PMID: 39839143 PMCID: PMC11748084 DOI: 10.1177/11786302241312061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/19/2024] [Indexed: 01/23/2025]
Abstract
Exposure to ambient air particulate matter (PM2.5) pollution presents a significant public health and economic challenge in Addis Ababa, Ethiopia. This thesis used the Environmental benefits mapping and analysis program-community edition (BenMAP-CE) software tool to estimate health and economic impact of ambient air PM2.5 pollution. The study evaluated the impact of decreasing the annual average PM2.5 concentration in 2019 (32.8 µg/m3) to different international and national air quality standards, including World health Organization's guidelines and the Ethiopian National Ambient Air Quality standard (NAAQS). Results showed that Addis Ababa exceeded both WHO's and Ethiopia's ambient air quality standards in 2019. The study estimated the attributable deaths from cardiovascular, ischemic heart disease (IHD), stroke, chronic obstructive pulmonary disease (COPD), and lower respiratory infection (LRI) due to PM2.5 exposure across 3 reduction scenarios. Additionally, economic benefits associated with avoided deaths were quantified using the Organization for Economic Cooperation and Development (OECD) Value of Statistical Life (VSL) methodology. The finding demonstrated that reducing PM2.5 pollution levels led to a notable decrease in mortality rates from various health conditions in Addis Ababa. Moreover substantial economic benefits, amounting to millions of dollars, were observed across all health endpoints, indicating significant societal savings. This study underscores the importance of implementing interventions to mitigate PM2.5 pollution for improved public health and economic well-being in Addis Ababa and similar urban settings.
Collapse
Affiliation(s)
- Mulugeta Getachew
- Center for Environmental Science, College of Natural Science, Addis Ababa University, Addis Ababa, Ethiopia
- Ethiopian Enterprise Development, Addis Ababa, Ethiopia
| | - Andualem Mekonnen
- Center for Environmental Science, College of Natural Science, Addis Ababa University, Addis Ababa, Ethiopia
| | - Desta Fitsum
- Addis Ababa City Mayor’s Office, Addis Ababa, Ethiopia
| |
Collapse
|
3
|
Lim H, Choi J, Bae S, Choi KH, Han X, Ha M, Kim JH, Kim S, Kwon HJ. Confounding effects of socioeconomic status on the association between long-term PM2.5 exposure and mortality in Korea. Int J Epidemiol 2024; 54:dyaf001. [PMID: 39886997 DOI: 10.1093/ije/dyaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 01/08/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND This study assesses the national distribution of ambient fine particulate matter (PM2.5) exposure across socioeconomic status (SES) and its confounding on long-term PM2.5 mortality in Korea, aiming to minimize SES influence. METHODS A nationwide cohort of 5% of Koreans, aged 30 or older, from 2007 to 2019, from the National Health Information Database, was analysed. PM2.5 exposure levels were estimated at the city level using the Community Multiscale Air Quality system. Mortality data were obtained from Statistics Korea. The study examined annual PM2.5 exposure by SES indicators and its confounding on mortality risks associated with PM2.5, using time-varying Cox proportional hazards models. RESULTS The study followed 1 453 036 individuals from 2007 to 2019, totalling 17 760 227 person-years (PYs). The non-accidental (A00-R99), cardiovascular (I00-I99) and respiratory (J00-J99) mortality rates per 1000 PY were 7.6, 1.9 and 0.8, respectively. We observed a trend of decreasing PM2.5 exposure levels but increased mortality among medical aid beneficiaries, those with lower household incomes and those residing in neighbourhoods with a higher area deprivation index. When adjusting for these SES covariates, the long-term mortality effects of PM2.5 shifted in the direction of increased risk [hazard ratio (HR) for cardiovascular mortality in the unadjusted model = 0.968 (95% CI: 0.909-0.959); HR in the fully adjusted model = 1.053 (95% CI: 1.004-1.105)]. CONCLUSION In regions where SES and PM2.5 concentrations are positively correlated, as in Korea, it is crucial to rigorously control for SES confounding to avoid underestimating the mortality effects associated with PM2.5.
Collapse
Affiliation(s)
- Hyungryul Lim
- Department of Preventive Medicine and Public Health, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jonghyuk Choi
- Department of Preventive Medicine, Dankook University College of Medicine, Cheonan, Republic of Korea
| | - Sanghyuk Bae
- Department of Preventive Medicine, College of Medicine, Catholic University of Korea, Seoul, Republic of Korea
| | - Kyung-Hwa Choi
- Department of Preventive Medicine, Dankook University College of Medicine, Cheonan, Republic of Korea
| | - Xue Han
- Department of Preventive Medicine, Dankook University College of Medicine, Cheonan, Republic of Korea
| | - Mina Ha
- Department of Preventive Medicine, Dankook University College of Medicine, Cheonan, Republic of Korea
| | - Jong-Hun Kim
- Department of Social and Preventive Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Soontae Kim
- Department of Environmental and Safety Engineering, Ajou University, Suwon, Republic of Korea
| | - Ho-Jang Kwon
- Department of Preventive Medicine, Dankook University College of Medicine, Cheonan, Republic of Korea
| |
Collapse
|
4
|
Chen X, Gehring U, Dyer GMC, Khomenko S, de Hoogh K, Tonne C, Tatah L, Vermeulen R, Khreis H, Nieuwenhuijsen M, Hoek G. Single- and two-pollutant concentration-response functions for PM 2.5 and NO 2 for quantifying mortality burden in health impact assessments. ENVIRONMENTAL RESEARCH 2024; 263:120215. [PMID: 39448006 DOI: 10.1016/j.envres.2024.120215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
OBJECTIVE Health Impact Assessments (HIAs) for air pollutant mixtures are challenging because risk estimates are primarily derived from single-pollutant models. Combining risk estimates from multiple pollutants requires new approaches, as a simple addition of single pollutant risk estimates from correlated air pollutants may result in double counting. We investigated approaches applying concentration-response functions (CRFs) from single- and two-pollutant models in HIAs, focusing on long-term exposure to particulate matter with a diameter less than 2.5 μm (PM2.5) and nitrogen dioxide (NO2) and their associations with all-cause mortality. METHODS A systematic literature search of MEDLINE and EMBASE identified cohort studies employing single- and two-pollutant models of long-term exposure to PM2.5 and NO2 with all-cause mortality. Pooled CRFs were calculated through random-effects meta-analyses of risk estimates from single- and two-pollutant models. Coefficient differences were calculated by comparing single- and two-pollutant model estimates. Four approaches to estimating population-attributable fractions (PAFs) were compared: PM2.5 or NO2 single-pollutant models to represent the mixture, the sum of single-pollutant models, the sum of two-pollutant models and the sum of single-pollutant models from a larger body of evidence adjusted by coefficient difference. RESULTS Seventeen papers reported both single and two-pollutant estimates. Pooled hazard ratios (HRs) for mortality from single- and two-pollutant models were 1.053 (95% confidence interval: 1.034-1.071) and 1.035 (1.014-1.057), respectively, for a 5 μg/m3 increase in PM2.5. HRs for a 10 μg/m3 increase in NO2 were 1.032 (1.014-1.049) and 1.024 (1.000-1.049) for single- and two-pollutant models, respectively. The average coefficient difference between single- and two-pollutant models was 0.017 for PM2.5 and 0.007 for NO2. Combined PAFs for the PM2.5-NO2 mixture using joint HRs from single- and two-pollutant model CRFs were 0.09 and 0.06, respectively. CONCLUSION Utilizing CRFs from two-pollutant models or applying the coefficient difference to a more extensive evidence base seems to mitigate the potential overestimation of mixture health impacts from adding single-pollutant CRFs.
Collapse
Affiliation(s)
- Xuan Chen
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands.
| | - Ulrike Gehring
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands.
| | - Georgia M C Dyer
- Barcelona Institute for Global Health (ISGlobal), Doctor Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Doctor Aiguader 88, 08003, Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Melchor Fern'andez Almagro, 3-5, 28029, Madrid, Spain.
| | - Sasha Khomenko
- Barcelona Institute for Global Health (ISGlobal), Doctor Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Doctor Aiguader 88, 08003, Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Melchor Fern'andez Almagro, 3-5, 28029, Madrid, Spain.
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland.
| | - Cathryn Tonne
- Barcelona Institute for Global Health (ISGlobal), Doctor Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Doctor Aiguader 88, 08003, Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Melchor Fern'andez Almagro, 3-5, 28029, Madrid, Spain.
| | - Lambed Tatah
- MRC Epidemiology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK.
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| | - Haneen Khreis
- MRC Epidemiology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK.
| | - Mark Nieuwenhuijsen
- Barcelona Institute for Global Health (ISGlobal), Doctor Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Doctor Aiguader 88, 08003, Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Melchor Fern'andez Almagro, 3-5, 28029, Madrid, Spain.
| | - Gerard Hoek
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
5
|
Wu J, Dai Q, Song S. Optimizing BenMAP health impact assessment with meteorological factor driven machine learning models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175246. [PMID: 39098427 DOI: 10.1016/j.scitotenv.2024.175246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
This study aims to address accuracy challenges in assessing air pollution health impacts using Environmental Benefits Mapping and Analysis Program (BenMap), caused by limited meteorological factor data and missing pollutant data. By employing data increment strategies and multiple machine learning models, this research explores the effects of data volume, time steps, and meteorological factors on model prediction performance using several years of data from Tianjin City as an example. The findings indicate that increasing training data volume enhances the performance of Random Forest Regressor (RF) and Decision Tree Regressor (DT) models, especially for predicting CO, NO2, and PM2.5. The optimal prediction time step varies by pollutant, with the DT model achieving the highest R2 value (0.99) for CO and O3. Combining multiple meteorological factors, such as atmospheric pressure, relative humidity, and dew point temperature, significantly improves model accuracy. When using three meteorological factors, the model achieves an R2 of 0.99 for predicting CO, NO2, PM10, PM2.5, and SO2. Health impact assessments using BenMap demonstrated that the predicted all-cause mortality and specific disease mortalities were highly consistent with actual values, confirming the model's accuracy in assessing health impacts from air pollution. For instance, the predicted and actual all-cause mortality for PM2.5 were both 3120; for cardiovascular disease, both were 1560; and for respiratory disease, both were 780. To validate its generalizability, this method was applied to Chengdu, China, using several years of data for training and prediction of PM2.5, CO, NO2, O3, PM10, and SO2, incorporating atmospheric pressure, relative humidity, and dew point temperature. The model maintained excellent performance, confirming its broad applicability. Overall, we conclude that the machine learning and BenMap-based methods show high accuracy and reliability in predicting air pollutant concentrations and health impacts, providing a valuable reference for air pollution assessment.
Collapse
Affiliation(s)
- Juncheng Wu
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China
| | - Qili Dai
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China
| | - Shaojie Song
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China.
| |
Collapse
|
6
|
Sundas A, Contreras I, Mujahid O, Beneyto A, Vehi J. The Effects of Environmental Factors on General Human Health: A Scoping Review. Healthcare (Basel) 2024; 12:2123. [PMID: 39517336 PMCID: PMC11545045 DOI: 10.3390/healthcare12212123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Background/Objectives: The external environment constantly influences human health through many factors, including air quality, access to green spaces, exposure to pollutants, and climate change. Contamination poses a substantial threat to human well-being; conversely, environmental factors also positively impact health. The purpose of this study is to provide a comprehensive review of the complex relationship between various environmental factors and human health. While individual studies have explored specific aspects, a broader integrative understanding is lacking. Methods: Through databases (PubMed, Cochrane, Copernicus), 4888 papers were identified, with 166 selected for detailed analysis. Results: We summarized recent research, identifying multiple associations between environmental factors such as air pollution, climate change, solar radiation, and meteorological conditions and their impact on various health outcomes, including respiratory, cardiovascular, metabolic and gastrointestinal, renal and urogenital, neurological and psychological health, infectious and skin diseases, and major cancers. We use chord diagrams to illustrate these links. We also show the interaction between different environmental factors. Findings begin with exploring the direct impact of environmental factors on human health; then, the interplay and combined effects of environmental factors, elucidating their (often indirect) interaction and collective contribution to human health; and finally, the implications of climate change on human health. Conclusions: Researchers and policymakers need to consider that individuals are exposed to multiple pollutants simultaneously, the "multipollutant exposure phenomenon". It is important to study and regulate environmental factors by considering the combined impact of various pollutants rather than looking at each pollutant separately. We emphasize actionable recommendations and solutions.
Collapse
Affiliation(s)
- Amina Sundas
- Modeling & Intelligent Control Engineering Laboratory, Institut d’Informatica i Applicacions, Universitat de Girona, 17003 Girona, Spain; (A.S.); (O.M.); (A.B.); (J.V.)
| | - Ivan Contreras
- Modeling & Intelligent Control Engineering Laboratory, Institut d’Informatica i Applicacions, Universitat de Girona, 17003 Girona, Spain; (A.S.); (O.M.); (A.B.); (J.V.)
| | - Omer Mujahid
- Modeling & Intelligent Control Engineering Laboratory, Institut d’Informatica i Applicacions, Universitat de Girona, 17003 Girona, Spain; (A.S.); (O.M.); (A.B.); (J.V.)
| | - Aleix Beneyto
- Modeling & Intelligent Control Engineering Laboratory, Institut d’Informatica i Applicacions, Universitat de Girona, 17003 Girona, Spain; (A.S.); (O.M.); (A.B.); (J.V.)
| | - Josep Vehi
- Modeling & Intelligent Control Engineering Laboratory, Institut d’Informatica i Applicacions, Universitat de Girona, 17003 Girona, Spain; (A.S.); (O.M.); (A.B.); (J.V.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 17003 Girona, Spain
| |
Collapse
|
7
|
Kasdagli MI, Orellano P, Pérez Velasco R, Samoli E. Long-Term Exposure to Nitrogen Dioxide and Ozone and Mortality: Update of the WHO Air Quality Guidelines Systematic Review and Meta-Analysis. Int J Public Health 2024; 69:1607676. [PMID: 39494092 PMCID: PMC11527649 DOI: 10.3389/ijph.2024.1607676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/26/2024] [Indexed: 11/05/2024] Open
Abstract
Objectives We performed a systematic review and meta-analysis on long-term exposure to nitrogen dioxide (NO2) and ozone (O3) with mortality, to expand evidence that informed 2021 the WHO Air Quality Guidelines and guide the Health Risks of Air Pollution in Europe project. Methods We included cohorts investigating NO2 and O3 mortality from all-causes, respiratory diseases, chronic obstructive pulmonary disease (COPD), acute lower respiratory infections (ALRI); and NO2 mortality from circulatory, ischemic heart, cerebrovascular diseases and lung cancer. We pooled estimates by random-effects models and investigated heterogeneity. We assessed the certainty of the evidence using the Grading of Recommendations Assessment Development approach and Evaluation (GRADE). Results We selected 83 studies for NO2 and 26 for O3 for the meta-analysis. NO2 was associated with all outcomes, except for cerebrovascular mortality. O3 was associated with respiratory mortality following annual exposure. There was high heterogeneity, partly explained by region and pollutant levels. Certainty was high for NO2 with COPD and ALRI, and annual O3 with respiratory mortality. Conclusion An increasing body of evidence, with new results from countrywide areas and the Western Pacific, supports certainty, including new outcomes.
Collapse
Affiliation(s)
- Maria-Iosifina Kasdagli
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Pablo Orellano
- Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Universidad Tecnologica Nacional, Facultad Regional San Nicolas, San Nicolas, Argentina
| | - Román Pérez Velasco
- World Health Organization (WHO) Regional Office for Europe, European Centre for Environment and Health, Bonn, Germany
| | - Evangelia Samoli
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
8
|
Liang KH, Colombijn JMT, Verhaar MC, Ghannoum M, Timmermans EJ, Vernooij RWM. The general external exposome and the development or progression of chronic kidney disease: A systematic review and meta-analyses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124509. [PMID: 38968981 DOI: 10.1016/j.envpol.2024.124509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 06/07/2024] [Accepted: 07/03/2024] [Indexed: 07/07/2024]
Abstract
The impact of environmental risk factors on chronic kidney disease (CKD) remains unclear. This systematic review aims to provide an overview of the literature on the association between the general external exposome and CKD development or progression. We searched MEDLINE and EMBASE for case-control or cohort studies, that investigated the association of the general external exposome with a change in eGFR or albuminuria, diagnosis or progression of CKD, or CKD-related mortality. The risk of bias of included studies was assessed using the Newcastle-Ottawa Scale. Summary effect estimates were calculated using random-effects meta-analyses. Most of the 66 included studies focused on air pollution (n = 33), e.g. particulate matter (PM) and nitric oxides (NOx), and heavy metals (n = 21) e.g. lead and cadmium. Few studies investigated chemicals (n = 7) or built environmental factors (n = 5). No articles on other environment factors such as noise, food supply, or urbanization were found. PM2.5 exposure was associated with an increased CKD and end-stage kidney disease incidence, but not with CKD-related mortality. There was mixed evidence regarding the association of NO2 and PM10 on CKD incidence. Exposure to heavy metals might be associated with an increased risk of adverse kidney outcomes, however, evidence was inconsistent. Studies on effects of chemicals or built environment on kidney outcomes were inconclusive. In conclusion, prolonged exposure to PM2.5 is associated with an increased risk of CKD incidence and progression to kidney failure. Current studies predominantly investigate the exposure to air pollution and heavy metals, whereas chemicals and the built environment remains understudied. Substantial heterogeneity and mixed evidence were found across studies. Therefore, long-term high-quality studies are needed to elucidate the impact of exposure to chemicals or other (built) environmental factors and CKD.
Collapse
Affiliation(s)
- Kate H Liang
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Julia M T Colombijn
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, the Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marc Ghannoum
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, the Netherlands; National Poison Information Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Erik J Timmermans
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Robin W M Vernooij
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, the Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
9
|
Chen S, Liu D, Huang L, Guo C, Gao X, Xu Z, Yang Z, Chen Y, Li M, Yang J. Global associations between long-term exposure to PM 2.5 constituents and health: A systematic review and meta-analysis of cohort studies. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134715. [PMID: 38838524 DOI: 10.1016/j.jhazmat.2024.134715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Abstract
Existing studies on the most impactful component remain controversial, hindering the optimization of future air quality standards that concerns particle composition. We aimed to summarize the health risk associated with PM2.5 components and identify those components with the greatest health risk. We performed a meta-analysis to quantify the combined health effects of PM2.5 components, and used the meta-smoothing to produce the pooled concentration-response (C-R) curves. Out of 8954 initial articles, 80 cohort studies met the inclusion criteria, including a total of 198.08 million population. The pooled C-R curves demonstrated approximately J-shaped association between total mortality and exposure to BC, and NO3-, but U-shaped and inverted U-shaped relationship withSO42- and OC, respectively. In addition, this study found that exposure to various elements, including BC,SO42-NO3-, NH4+, Zn, Ni, and Si, were significantly associated with an increased risk of total mortality, with Ni presenting the largest estimate. And exposure to NO3-, Zn, and Si was positively associated with an increased risk of respiratory mortality, while exposure to BC, SO42-, and NO3- showed a positive association with risk of cardiovascular mortality. For health outcome of morbidity, BC was notably associated with a higher incidence of asthma, type 2 diabetes and stroke. Subgroup analysis revealed a higher susceptibility to PM2.5 components in Asia compared to Europe and North America, and females showed a higher vulnerability. Given the significant health effects of PM2.5 components, governments are advised to introduce them in regional monitoring and air quality control guidelines. ENVIRONMENTAL IMPLICATION: PM2.5 is a complex mixture of chemical components from various sources, and each component has unique physicochemical properties and uncertain toxicity, posing significant threat to public health. This study systematically reviewed cohort studies on the association between long-term exposure to 13 PM2.5 components and the risk of morbidity and mortality. And we applied the meta-smoothing approach to establish the pooled concentration-response associations between PM2.5 components and mortality globally. Our findings will provide strong support for PM2.5 components monitoring and the improvement of air quality-related regulations. This will aid in helping to enhance health intervention strategies and mitigating public exposure to detrimental particulate matter.
Collapse
Affiliation(s)
- Sujuan Chen
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, China; School of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Di Liu
- School of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Lin Huang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Cui Guo
- Department of Urban Planning and Design, Faculty of Architecture, the University of Hong Kong, Hong Kong SAR
| | - Xiaoke Gao
- School of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Zhiwei Xu
- School of Medicine and Dentistry, Griffith University, Gold Coast, Queensland, Australia
| | - Zhou Yang
- State Key Laboratory of Organ Failure Research, Department of Biostatistics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yu Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Mengmeng Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jun Yang
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, China; School of Public Health, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
10
|
Zhang J, Lim YH, So R, Mortensen LH, Napolitano GM, Cole-Hunter T, Tuffier S, Bergmann M, Maric M, Taghavi Shahri SM, Brandt J, Ketzel M, Loft S, Andersen ZJ. Long-Term Exposure to Air Pollution and Risk of Acute Lower Respiratory Infections in the Danish Nurse Cohort. Ann Am Thorac Soc 2024; 21:1129-1138. [PMID: 38513223 DOI: 10.1513/annalsats.202401-074oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/21/2024] [Indexed: 03/23/2024] Open
Abstract
Rationale: Air pollution is a major risk factor for chronic cardiorespiratory diseases, affecting the immune and respiratory systems' functionality, but epidemiological evidence in respiratory infections remains sparse. Objectives: We aimed to assess the association of long-term exposure to ambient air pollution with the risk of developing new and recurrent acute lower respiratory infections (ALRIs), characterized by persistently severe symptoms necessitating hospital contact, and identify the potential susceptible populations by socioeconomic status, smoking, physical activity status, overweight, and comorbidity with chronic lung disease. Methods: We followed 23,912 female nurses from the Danish Nurse Cohort (age >44 yr) from baseline (1993 or 1999) until 2018 for incident and recurrent ALRIs defined by hospital contact (inpatient, outpatient, and emergency room) data from the National Patient Register. Residential annual mean concentrations of fine particulate matter, nitrogen dioxide (NO2), and black carbon were modeled using the Danish Eulerian Hemispheric Model/Urban Background Model/Air Geographic Information System. We used marginal Cox models with time-varying exposures to assess the association of 3-year running mean air pollution level with incident and recurrent ALRIs and examined effect modification by age, socioeconomic status, smoking, physical activity, body mass index, and comorbidity with asthma or chronic obstructive pulmonary disease (COPD). Results: During a 21.3-year mean follow-up, 4,746 ALRIs were observed, of which 2,553 were incident. We observed strong positive associations of all three pollutants with incident ALRIs, with hazard ratios and 95% confidence intervals of 1.19 (1.08-1.31) per 2.5 μg/m3 for fine particulate matter, 1.17 (1.11-1.24) per 8.0 μg/m3 for NO2, and 1.09 (1.05-1.12) per 0.3 μg/m3 for black carbon, and slightly stronger associations with recurrent ALRIs. Associations were strongest in patients with COPD and nurses with low physical activity. Conclusions: Long-term exposure to air pollution at low levels was associated with risks of new and recurrent ALRIs, with patients with COPD and physically inactive subjects most vulnerable.
Collapse
Affiliation(s)
| | | | - Rina So
- Section of Environmental Health and
- Department of Epidemiology and Public Health, University College London, London, United Kingdom
| | - Laust H Mortensen
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
- Denmark Statistic, Copenhagen, Denmark
| | | | | | | | | | | | | | - Jørgen Brandt
- Department of Environmental Science and
- iClimate, Interdisciplinary Centre for Climate Change, Aarhus University, Roskilde, Denmark; and
| | - Matthias Ketzel
- Department of Environmental Science and
- Global Centre for Clean Air Research, University of Surrey, Guildford, United Kingdom
| | | | | |
Collapse
|
11
|
Chen F, Zhang W, Mfarrej MFB, Saleem MH, Khan KA, Ma J, Raposo A, Han H. Breathing in danger: Understanding the multifaceted impact of air pollution on health impacts. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116532. [PMID: 38850696 DOI: 10.1016/j.ecoenv.2024.116532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/25/2024] [Accepted: 05/29/2024] [Indexed: 06/10/2024]
Abstract
Air pollution, a pervasive environmental threat that spans urban and rural landscapes alike, poses significant risks to human health, exacerbating respiratory conditions, triggering cardiovascular problems, and contributing to a myriad of other health complications across diverse populations worldwide. This article delves into the multifarious impacts of air pollution, utilizing cutting-edge research methodologies and big data analytics to offer a comprehensive overview. It highlights the emergence of new pollutants, their sources, and characteristics, thereby broadening our understanding of contemporary air quality challenges. The detrimental health effects of air pollution are examined thoroughly, emphasizing both short-term and long-term impacts. Particularly vulnerable populations are identified, underscoring the need for targeted health risk assessments and interventions. The article presents an in-depth analysis of the global disease burden attributable to air pollution, offering a comparative perspective that illuminates the varying impacts across different regions. Furthermore, it addresses the economic ramifications of air pollution, quantifying health and economic losses, and discusses the implications for public policy and health care systems. Innovative air pollution intervention measures are explored, including case studies demonstrating their effectiveness. The paper also brings to light recent discoveries and insights in the field, setting the stage for future research directions. It calls for international cooperation in tackling air pollution and underscores the crucial role of public awareness and education in mitigating its impacts. This comprehensive exploration serves not only as a scientific discourse but also as a clarion call for action against the invisible but insidious threat of air pollution, making it a vital read for researchers, policymakers, and the general public.
Collapse
Affiliation(s)
- Fu Chen
- School of Public Administration, Hohai University, Nanjing 211100, China.
| | - Wanyue Zhang
- School of Public Administration, Hohai University, Nanjing 211100, China
| | - Manar Fawzi Bani Mfarrej
- Department of Environmental Sciences and Sustainability, College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates
| | - Muhammad Hamzah Saleem
- Office of Academic Research, Office of VP for Research & Graduate Studies, Qatar University, Doha 2713, Qatar
| | - Khalid Ali Khan
- Applied College, Center of Bee Research and its Products, Unit of Bee Research and Honey Production, and Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Jing Ma
- School of Public Administration, Hohai University, Nanjing 211100, China
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, Lisboa 1749-024, Portugal
| | - Heesup Han
- College of Hospitality and Tourism Management, Sejong University, 98 Gunja-Dong, Gwanjin-Gu, Seoul 143-747, South Korea.
| |
Collapse
|
12
|
Wei X, Ho KF, Yu T, Lin C, Chang LY, Chen D, Tam T, Huang B, Lau AKH, Lao XQ. The joint effect of long-term exposure to multiple air pollutants on non-accidental and cause-specific mortality: A longitudinal cohort study. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134507. [PMID: 38718510 DOI: 10.1016/j.jhazmat.2024.134507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/20/2024] [Accepted: 04/30/2024] [Indexed: 05/30/2024]
Abstract
The long-term joint impacts of fine particulate matter (PM2.5), nitrogen dioxide (NO2), and ozone (O3) on mortality are inconclusive. To bridge this research gap, we included 283,568 adults from the Taiwan MJ cohort between 2005 and 2016 and linked with the mortality data until 31 May 2019. Participants' annual average exposures to PM2.5, NO2, and O3 were estimated using satellite-based spatial-temporal models. We applied elastic net-regularised Cox models to construct a weighted environmental risk score (WERS) for the joint effects of three pollutants on non-accidental, cardiovascular, and cancer mortality and evaluated the contribution of each pollutant. The three pollutants jointly raised non-accidental mortality risk with a WERS hazard ratio (HR) of 1.186 (95% CI: 1.118-1.259) per standard deviation increase in each pollutant and weights of 72.8%, 15.2%, and 12.0% for PM2.5, NO2, and O3, respectively. The WERS increased cardiovascular death risk [HR: 1.248 (1.042-1.496)], with PM2.5 as the first contributor and O3 as the second. The WERS also elevated the cancer death risk [HR: 1.173 (1.083-1.270)], where PM2.5 played the dominant role and NO2 ranked second. Coordinated control of these three pollutants can optimise the health benefits of air quality improvements.
Collapse
Affiliation(s)
- Xianglin Wei
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Kin Fai Ho
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Tsung Yu
- Department of Public Health, College of Medicine, National Cheng Kung University, Taiwan
| | - Changqing Lin
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region of China
| | - Ly-Yun Chang
- Institute of Sociology, Academia Sinica, Taipei, Taiwan
| | - Dezhong Chen
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Tony Tam
- Department of Sociology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Bo Huang
- Department of Geography, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Alexis K H Lau
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region of China; Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region of China
| | - Xiang Qian Lao
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administrative Region of China.
| |
Collapse
|
13
|
Kadelbach P, Weinmayr G, Chen J, Jaensch A, Rodopoulou S, Strak M, de Hoogh K, Andersen ZJ, Bellander T, Brandt J, Cesaroni G, Fecht D, Forastiere F, Gulliver J, Hertel O, Hoffmann B, Hvidtfeldt UA, Katsouyanni K, Ketzel M, Leander K, Ljungman P, Magnusson PKE, Pershagen G, Rizzuto D, Samoli E, Severi G, Stafoggia M, Tjønneland A, Vermeulen R, Peters A, Wolf K, Raaschou-Nielsen O, Brunekreef B, Hoek G, Zitt E, Nagel G. Long-term exposure to air pollution and chronic kidney disease-associated mortality-Results from the pooled cohort of the European multicentre ELAPSE-study. ENVIRONMENTAL RESEARCH 2024; 252:118942. [PMID: 38649012 DOI: 10.1016/j.envres.2024.118942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 04/25/2024]
Abstract
Despite the known link between air pollution and cause-specific mortality, its relation to chronic kidney disease (CKD)-associated mortality is understudied. Therefore, we investigated the association between long-term exposure to air pollution and CKD-related mortality in a large multicentre population-based European cohort. Cohort data were linked to local mortality registry data. CKD-death was defined as ICD10 codes N18-N19 or corresponding ICD9 codes. Mean annual exposure at participant's home address was determined with fine spatial resolution exposure models for nitrogen dioxide (NO2), black carbon (BC), ozone (O3), particulate matter ≤2.5 μm (PM2.5) and several elemental constituents of PM2.5. Cox regression models were adjusted for age, sex, cohort, calendar year of recruitment, smoking status, marital status, employment status and neighbourhood mean income. Over a mean follow-up time of 20.4 years, 313 of 289,564 persons died from CKD. Associations were positive for PM2.5 (hazard ratio (HR) with 95% confidence interval (CI) of 1.31 (1.03-1.66) per 5 μg/m3, BC (1.26 (1.03-1.53) per 0.5 × 10- 5/m), NO2 (1.13 (0.93-1.38) per 10 μg/m3) and inverse for O3 (0.71 (0.54-0.93) per 10 μg/m3). Results were robust to further covariate adjustment. Exclusion of the largest sub-cohort contributing 226 cases, led to null associations. Among the elemental constituents, Cu, Fe, K, Ni, S and Zn, representing different sources including traffic, biomass and oil burning and secondary pollutants, were associated with CKD-related mortality. In conclusion, our results suggest an association between air pollution from different sources and CKD-related mortality.
Collapse
Affiliation(s)
- Pauline Kadelbach
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany.
| | - Gudrun Weinmayr
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany.
| | - Jie Chen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Andrea Jaensch
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Sophia Rodopoulou
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maciej Strak
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands; National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Zorana J Andersen
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Tom Bellander
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Jørgen Brandt
- Department of Environmental Science, Aarhus University, Roskilde, Denmark; iClimate-interdisciplinary Centre for Climate Change, Aarhus University, Roskilde, Denmark
| | - Giulia Cesaroni
- Department of Epidemiology, Lazio Region Health Service/ASL Roma 1, Rome, Italy
| | - Daniela Fecht
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
| | - Francesco Forastiere
- Department of Epidemiology, Lazio Region Health Service/ASL Roma 1, Rome, Italy; Environmental Research Group, School of Public Health, Faculty of Medicine, Imperial College, London, United Kingdom
| | - John Gulliver
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom; Centre for Environmental Health and Sustainability & School of Geography, Geology and the Environment, University of Leicester, Leicester, United Kingdom
| | - Ole Hertel
- Faculty of Technical Sciences, Aarhus University, Roskilde, Denmark
| | - Barbara Hoffmann
- Institute for Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | - Klea Katsouyanni
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece; MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
| | - Matthias Ketzel
- Department of Environmental Science, Aarhus University, Roskilde, Denmark; Global Centre for Clean Air Research (GCARE), University of Surrey, Guildford, GU2 7XH, United Kingdom
| | - Karin Leander
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Petter Ljungman
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, SE-171 77, Sweden; Department of Cardiology, Danderyd University Hospital, 182 88, Stockholm, Sweden
| | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Debora Rizzuto
- Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden; Stockholm Gerontology Research Center, Stockholm, Sweden
| | - Evangelia Samoli
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Gianluca Severi
- University Paris-Saclay, UVSQ, Inserm, Gustave Roussy, "Exposome and Heredity" team, CESP UMR1018, 94805, Villejuif, France
| | - Massimo Stafoggia
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, SE-171 77, Sweden; Department of Epidemiology, Lazio Region Health Service/ASL Roma 1, Rome, Italy
| | - Anne Tjønneland
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark; The Danish Cancer Institute, Copenhagen, Denmark
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Kathrin Wolf
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Ole Raaschou-Nielsen
- Department of Environmental Science, Aarhus University, Roskilde, Denmark; The Danish Cancer Institute, Copenhagen, Denmark
| | - Bert Brunekreef
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Emanuel Zitt
- Agency for Preventive and Social Medicine (aks), Bregenz, Austria; Department of Internal Medicine 3, LKH Feldkirch, Feldkirch, Austria; Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria
| | - Gabriele Nagel
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany; Agency for Preventive and Social Medicine (aks), Bregenz, Austria
| |
Collapse
|
14
|
Cheng Z, Qin K, Zhang Y, Yu Z, Li B, Jiang C, Xu J. Air pollution and cancer daily mortality in Hangzhou, China: an ecological research. BMJ Open 2024; 14:e084804. [PMID: 38858146 PMCID: PMC11168133 DOI: 10.1136/bmjopen-2024-084804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/14/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Long-term exposure to air pollution has been linked to cancer incidence. However, the evidence is limited regarding the effect of short-term exposure to air pollution on cancer mortality. OBJECTIVES This study aimed to investigate associations between short-term exposure to air pollutants (sulfur dioxide (SO2), nitrogen dioxide (NO2), particulate matter with an aerodynamic diameter <10 mm (PM10) and PM2.5) and cancer daily mortality. METHODS This study used air quality, meteorological and daily cancer death data from 2014 to 2019 in Hangzhou, China. Generalised additive models (GAM) with quasi-Poisson regression were used to analyse the associations between air pollutants and cancer mortality with adjustment for confounding factors including time trends, day of week, temperature and humidity. Then, we conducted stratified analyses by sex, age, season and education. In addition, stratified analyses of age, season and education were performed within each sex to determine whether sex difference was modified by such factors. RESULTS After adjusting for potential confounders, the GAM results indicated a statistically significant relationship between increased cancer mortality and elevated air pollution concentrations, but only in the female population. For every 10 μg/m3 rise in pollutant concentration, the increased risk of cancer death in females was 6.82% (95% CI 3.63% to 10.10%) for SO2 on lag 03, and 2.02% (95% CI 1.12% to 2.93%) for NO2 on lag 01 and 0.89% (95% CI 0.46% to 1.33%) for PM10 on lag 03 and 1.29% (95% CI 0.64% to 1.95%) for PM2.5 on lag 03. However, no statistically significant association was found among males. Moreover, the differences in effect sizes between males and females were more pronounced during the cold season, among the elderly and among subjects with low levels of education. CONCLUSIONS Increased cancer mortality was only observed in females with rising concentrations of air pollutants. Further research is required to confirm this sex difference. Advocate for the reduction of air pollutant emissions to protect vulnerable groups.
Collapse
Affiliation(s)
- Zongxue Cheng
- Department of Chronic and Non-Communicable Disease, Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Kang Qin
- Department of Chronic and Non-Communicable Disease, Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Yan Zhang
- Department of Chronic and Non-Communicable Disease, Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Zhecong Yu
- Department of Chronic and Non-Communicable Disease, Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Biao Li
- Department of Chronic and Non-Communicable Disease, Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Caixia Jiang
- Department of Chronic and Non-Communicable Disease, Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Jue Xu
- Department of Chronic and Non-Communicable Disease, Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| |
Collapse
|
15
|
Karimi B, Samadi S. Long-term exposure to air pollution on cardio-respiratory, and lung cancer mortality: a systematic review and meta-analysis. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2024; 22:75-95. [PMID: 38887768 PMCID: PMC11180069 DOI: 10.1007/s40201-024-00900-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 04/02/2024] [Indexed: 06/20/2024]
Abstract
Air pollution is a major cause of specific deaths worldwide. This review article aimed to investigate the results of cohort studies for air pollution connected with the all-cause, cardio-respiratory, and lung cancer mortality risk by performing a meta-analysis. Relevant cohort studies were searched in electronic databases (PubMed/Medline, Web of Science, and Scopus). We used a random effect model to estimate the pooled relative risks (RRs) and their 95% CIs (confidence intervals) of mortality. The risk of bias for each included study was also assessed by Office of Health Assessment and Translation (OHAT) checklists. We applied statistical tests for heterogeneity and sensitivity analyses. The registration code of this study in PROSPERO was CRD42023422945. A total of 88 cohort studies were eligible and included in the final analysis. The pooled relative risk (RR) per 10 μg/m3 increase of fine particulate matter (PM2.5) was 1.080 (95% CI 1.068-1.092) for all-cause mortality, 1.058 (95% CI 1.055-1.062) for cardiovascular mortality, 1.066 (95%CI 1.034-1.097) for respiratory mortality and 1.118 (95% CI 1.076-1.159) for lung cancer mortality. We observed positive increased associations between exposure to PM2.5, PM10, black carbon (BC), and nitrogen dioxide (NO2) with all-cause, cardiovascular and respiratory diseases, and lung cancer mortality, but the associations were not significant for nitrogen oxides (NOx), sulfur dioxide (SO2) and ozone (O3). The risk of mortality for males and the elderly was higher compared to females and younger age. The pooled effect estimates derived from cohort studies provide substantial evidence of adverse air pollution associations with all-cause, cardiovascular, respiratory, and lung cancer mortality. Supplementary Information The online version contains supplementary material available at 10.1007/s40201-024-00900-6.
Collapse
Affiliation(s)
- Behrooz Karimi
- Department of Environmental Health Engineering, School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Sadegh Samadi
- Department of Occupational Health and safety, School of Health, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
16
|
Nobile F, Dimakopoulou K, Åström C, Coloma F, Dadvand P, de Bont J, de Hoogh K, Ibi D, Katsouyanni K, Ljungman P, Melén E, Nieuwenhuijsen M, Pickford R, Sommar JN, Tonne C, Vermeulen RCH, Vienneau D, Vlaanderen JJ, Wolf K, Samoli E, Stafoggia M. External exposome and all-cause mortality in European cohorts: the EXPANSE project. FRONTIERS IN EPIDEMIOLOGY 2024; 4:1327218. [PMID: 38863881 PMCID: PMC11165119 DOI: 10.3389/fepid.2024.1327218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 05/13/2024] [Indexed: 06/13/2024]
Abstract
Background Many studies reported associations between long-term exposure to environmental factors and mortality; however, little is known on the combined effects of these factors and health. We aimed to evaluate the association between external exposome and all-cause mortality in large administrative and traditional adult cohorts in Europe. Methods Data from six administrative cohorts (Catalonia, Greece, Rome, Sweden, Switzerland and the Netherlands, totaling 27,913,545 subjects) and three traditional adult cohorts (CEANS-Sweden, EPIC-NL-the Netherlands, KORA-Germany, totaling 57,653 participants) were included. Multiple exposures were assigned at the residential addresses, and were divided into three a priori defined domains: (1) air pollution [fine particulate matter (PM2.5), nitrogen dioxide (NO₂), black carbon (BC) and warm-season Ozone (warm-O3)]; (2) land/built environment (Normalized Difference Vegetation Index-NDVI, impervious surfaces, and distance to water); (3) air temperature (cold- and warm-season mean and standard deviation). Each domain was synthesized through Principal Component Analysis (PCA), with the aim of explaining at least 80% of its variability. Cox proportional-hazards regression models were applied and the total risk of the external exposome was estimated through the Cumulative Risk Index (CRI). The estimates were adjusted for individual- and area-level covariates. Results More than 205 million person-years at risk and more than 3.2 million deaths were analyzed. In single-component models, IQR increases of the first principal component of the air pollution domain were associated with higher mortality [HRs ranging from 1.011 (95% CI: 1.005-1.018) for the Rome cohort to 1.076 (1.071-1.081) for the Swedish cohort]. In contrast, lower levels of the first principal component of the land/built environment domain, pointing to reduced vegetation and higher percentage of impervious surfaces, were associated with higher risks. Finally, the CRI of external exposome increased mortality for almost all cohorts. The associations found in the traditional adult cohorts were generally consistent with the results from the administrative ones, albeit without reaching statistical significance. Discussion Various components of the external exposome, analyzed individually or in combination, were associated with increased mortality across European cohorts. This sets the stage for future research on the connections between various exposure patterns and human health, aiding in the planning of healthier cities.
Collapse
Affiliation(s)
- Federica Nobile
- Department of Epidemiology, Lazio Region Health Service/ASL Roma 1, Rome, Italy
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Konstantina Dimakopoulou
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christofer Åström
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Fabián Coloma
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
| | - Payam Dadvand
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Jeroen de Bont
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kees de Hoogh
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Dorina Ibi
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, Netherlands
| | - Klea Katsouyanni
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
| | - Petter Ljungman
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Cardiology, Danderyd Hospital, Stockholm, Sweden
| | - Erik Melén
- Department of Clinical Sciences and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
- Sachś Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Mark Nieuwenhuijsen
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Regina Pickford
- Institute of Epidemiology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
| | - Johan Nilsson Sommar
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Cathryn Tonne
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Roel C. H. Vermeulen
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, Netherlands
| | - Danielle Vienneau
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Jelle J. Vlaanderen
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, Netherlands
| | - Kathrin Wolf
- Institute of Epidemiology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
| | - Evangelia Samoli
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Massimo Stafoggia
- Department of Epidemiology, Lazio Region Health Service/ASL Roma 1, Rome, Italy
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
17
|
Delgado-Ortiz L, Çakmakcı Karakaya S, Williams PJ, Pacheco Da Silva E, Cornu Hewitt B, Dumas O, Meteran H. ERS International Congress 2023: highlights from the Epidemiology and Environment Assembly. ERJ Open Res 2024; 10:00134-2024. [PMID: 38746860 PMCID: PMC11089384 DOI: 10.1183/23120541.00134-2024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 01/06/2025] Open
Abstract
In this article, early career members of the Epidemiology and Environment Assembly of the European Respiratory Society (ERS) summarise a selection of four poster and oral sessions from the ERS 2023 Congress. The topics covered the following areas: micro- and macro-environments and respiratory health, occupational upper and lower airway diseases, selected tobacco and nicotine research, and multimorbidity in people with lung diseases. The topics and studies covered in this review illustrate the broad range of the multifaceted research taking place within Assembly 6, from the identification of indoor and outdoor environmental risk factors for the development and worsening of respiratory diseases to the concerningly increasing use of nicotine products and their health consequences beyond respiratory health and comorbidity in respiratory diseases.
Collapse
Affiliation(s)
- Laura Delgado-Ortiz
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Madrid, Spain
| | - Selin Çakmakcı Karakaya
- Department of Public Health, Subdivision of Work and Occupational Diseases, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Parris J. Williams
- National Heart and Lung Institute, Imperial College London, London, UK
- Royal Brompton and Harefield Hospitals, London, UK
| | - Emilie Pacheco Da Silva
- Université Paris-Saclay, UVSQ, Univ. Paris-Sud, Inserm, Équipe d’Épidémiologie Respiratoire, Intégrative, CESP, Villejuif, France
| | - Beatrice Cornu Hewitt
- Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Orianne Dumas
- Université Paris-Saclay, UVSQ, Univ. Paris-Sud, Inserm, Équipe d’Épidémiologie Respiratoire, Intégrative, CESP, Villejuif, France
| | - Howraman Meteran
- Department of Internal Medicine, Respiratory Medicine Section, Copenhagen University Hospital – Amager and Hvidovre, Hvidovre, Denmark
- Department of Public Health, Environment, Occupation and Health, Aarhus University, Aarhus, Denmark
- Department of Respiratory Medicine, Zealand University Hospital – Roskilde/Næstved, Næstved, Denmark
| |
Collapse
|
18
|
Khraishah H, Chen Z, Rajagopalan S. Understanding the Cardiovascular and Metabolic Health Effects of Air Pollution in the Context of Cumulative Exposomic Impacts. Circ Res 2024; 134:1083-1097. [PMID: 38662860 PMCID: PMC11253082 DOI: 10.1161/circresaha.124.323673] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Poor air quality accounts for more than 9 million deaths a year globally according to recent estimates. A large portion of these deaths are attributable to cardiovascular causes, with evidence indicating that air pollution may also play an important role in the genesis of key cardiometabolic risk factors. Air pollution is not experienced in isolation but is part of a complex system, influenced by a host of other external environmental exposures, and interacting with intrinsic biologic factors and susceptibility to ultimately determine cardiovascular and metabolic outcomes. Given that the same fossil fuel emission sources that cause climate change also result in air pollution, there is a need for robust approaches that can not only limit climate change but also eliminate air pollution health effects, with an emphasis of protecting the most susceptible but also targeting interventions at the most vulnerable populations. In this review, we summarize the current state of epidemiologic and mechanistic evidence underpinning the association of air pollution with cardiometabolic disease and how complex interactions with other exposures and individual characteristics may modify these associations. We identify gaps in the current literature and suggest emerging approaches for policy makers to holistically approach cardiometabolic health risk and impact assessment.
Collapse
Affiliation(s)
- Haitham Khraishah
- Division of Cardiovascular Medicine, University of Maryland Medical Center, Baltimore (H.K.)
| | - Zhuo Chen
- Harrington Heart and Vascular Institute, University Hospitals, Cleveland, OH (Z.C., S.R.)
- Case Western Reserve University School of Medicine, Cleveland, OH (Z.C., S.R.)
| | - Sanjay Rajagopalan
- Harrington Heart and Vascular Institute, University Hospitals, Cleveland, OH (Z.C., S.R.)
- Case Western Reserve University School of Medicine, Cleveland, OH (Z.C., S.R.)
| |
Collapse
|
19
|
Yang L, Ge Y, Lyu L, Tan J, Hao L, Wang X, Yin H, Wang J. Enhancing vehicular emissions monitoring: A GA-GRU-based soft sensors approach for HDDVs. ENVIRONMENTAL RESEARCH 2024; 247:118190. [PMID: 38237754 DOI: 10.1016/j.envres.2024.118190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/02/2024] [Accepted: 01/10/2024] [Indexed: 02/01/2024]
Abstract
Vehicle emissions have a serious impact on urban air quality and public health, so environmental authorities around the world have introduced increasingly stringent emission regulations to reduce vehicle exhaust emissions. Nowadays, PEMS (Portable Emission Measurement System) is the most widely used method to measure on-road NOx (Nitrogen Oxides) and PN (Particle Number) emissions from HDDVs (Heavy-Duty Diesel Vehicles). However, the use of PEMS requires a lot of workforce and resources, making it both costly and time-consuming. This study proposes a neural network based on a combination of GA (Genetic Algorithm) and GRU (Gated Recurrent Unit), which uses CC (Pearson Correlation Coefficient) to determine and simplify OBD (On-board Diagnosis) data. The GA-GRU model is trained under three real driving conditions of HDDVs, divided by vehicle driving parameters, and then embedded as a soft sensor in the OBD system to monitor real-time emissions of NOx and PN within the OBD system. This research addresses the existing research gap in the development of soft sensors specifically designed for NOx and PN emission monitoring. In this study, it is demonstrated that the described soft sensor has excellent R2 values and outperforms other conventional models. This research highlights the ability of the proposed soft sensor to eliminate outliers accurately and promptly while consistently tracking predictions throughout the vehicle's lifetime. This method is a groundbreaking update to the vehicle's OBD system, permanently adding monitoring data to the vehicle's OBD, thus fundamentally improving the vehicle's self-monitoring capabilities.
Collapse
Affiliation(s)
- Luoshu Yang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yunshan Ge
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Liqun Lyu
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Jianwei Tan
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Lijun Hao
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Xin Wang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Hang Yin
- State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Junfang Wang
- State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
20
|
Korchevskiy AA, Hill WC, Hull M, Korchevskiy A. Using particle dimensionality-based modeling to estimate lung carcinogenicity of 3D printer emissions. J Appl Toxicol 2024; 44:564-581. [PMID: 37950573 DOI: 10.1002/jat.4561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023]
Abstract
The use of 3D printing technologies by industry and consumers is expanding. However, the approaches to assess the risk of lung carcinogenesis from the emissions of 3D printers have not yet been developed. The objective of the study was to demonstrate a methodology for modeling lung cancer risk related to specific exposure levels as derived from an experimental study of 3D printer emissions for various types of filaments (ABS, PLA, and PETG). The emissions of 15 filaments were assessed at varying extrusion temperatures for a total of 23 conditions in a Class 1,000 cleanroom following procedures described by ANSI/CAN/UL 2904. Three approaches were utilized for cancer risk estimation: (a) calculation based on PM2.5 and PM10 concentrations, (b) a proximity assessment based on the pulmonary deposition fraction, and (c) modeling based on the mass-weighted aerodynamic diameter of particles. The combined distribution of emitted particles had the mass median aerodynamic diameter (MMAD) of 0.35 μm, GSD 2.25. The average concentration of PM2.5 was 25.21 μg/m3 . The spline-based function of aerodynamic diameter allowed us to reconstruct the carcinogenic potential of seven types of fine and ultrafine particles (crystalline silica, fine TiO2 , ultrafine TiO2 , ambient PM2.5 and PM10, diesel particulates, and carbon nanotubes) with a correlation of 0.999, P < 0.00001. The central tendency estimation of lung cancer risk for 3D printer emissions was found at the level of 14.74 cases per 10,000 workers in a typical exposure scenario (average cumulative exposure of 0.3 mg/m3 - years), with the lowest risks for PLA filaments, and the highest for PETG type.
Collapse
Affiliation(s)
| | - W Cary Hill
- ITA International, LLC, Blacksburg, Virginia, USA
| | - Matthew Hull
- Virginia Tech, Institute for Critical Technology and Applied Science, Blacksburg, Virginia, USA
| | | |
Collapse
|
21
|
Xu S, Ma L, Wu T, Tian Y, Wu L. Assessment of cellular senescence potential of PM2.5 using 3D human lung fibroblast spheroids in vitro model. Toxicol Res (Camb) 2024; 13:tfae037. [PMID: 38500513 PMCID: PMC10944558 DOI: 10.1093/toxres/tfae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/30/2024] [Accepted: 02/26/2024] [Indexed: 03/20/2024] Open
Abstract
Background Epidemiological studies demonstrate that particulate matter 2.5 (PM2.5) exposure closely related to chronic respiratory diseases. Cellular senescence plays an important role in many diseases. However, it is not fully clear whether PM2.5 exposure could induce cellular senescence in the human lung. In this study, we generated a three-dimensional (3D) spheroid model using isolated primary human lung fibroblasts (HLFs) to investigate the effects of PM2.5 on cellular senescence at the 3D level. Methods 3D spheroids were exposed to 25-100 μg/ml of PM2.5 in order to evaluate the impact on cellular senescence. SA-β-galactosidase activity, cell proliferation, and the expression of key genes and proteins were detected. Results Exposure of the HLF spheroids to PM2.5 yielded a more sensitive cytotoxicity than 2D HLF cell culture. Importantly, PM2.5 exposure induced the rapid progression of cellular senescence in 3D HLF spheroids, with a dramatically increased SA-β-Gal activity. In exploiting the mechanism underlying the effect of PM2.5 on senescence, we found a significant increase of DNA damage, upregulation of p21 protein levels, and suppression of cell proliferation in PM2.5-treated HLF spheroids. Moreover, PM2.5 exposure created a significant inflammatory response, which may be at least partially associated with the activation of TGF-β1/Smad3 axis and HMGB1 pathway. Conclusions Our results indicate that PM2.5 could induce DNA damage, inflammation, and cellular senescence in 3D HLF spheroids, which may provide a new evidence for PM2.5 toxicity based on a 3D model which has been shown to be more in vivo-like in their phenotype and physiology than 2D cultures.
Collapse
Affiliation(s)
- Shengmin Xu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiulong Road, Jingkai District, Hefei, Anhui 230601, China
| | - Lin Ma
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiulong Road, Jingkai District, Hefei, Anhui 230601, China
| | - Tao Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Shushan District, Hefei, Anhui 230031, China
| | - Yushan Tian
- Key Laboratory of Tobacco Biological Effects, China National Tobacco Quality Supervision and Test Center, 6 Cuizhu Street, New & High-tech Industry Development District, Zhengzhou, Henan 450001, China
| | - Lijun Wu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiulong Road, Jingkai District, Hefei, Anhui 230601, China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Shushan District, Hefei, Anhui 230031, China
| |
Collapse
|
22
|
Chen X, Qi L, Li S, Duan X. Long-term NO 2 exposure and mortality: A comprehensive meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122971. [PMID: 37984474 DOI: 10.1016/j.envpol.2023.122971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 10/11/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
In response to the World Health Organization's (WHO) revised annual mean nitrogen dioxide (NO2) standard from 40 μg/m3 to 10 μg/m3, reflecting the growing evidence linking long-term exposure to ambient NO2 and excess mortality, we conducted a comprehensive meta-analysis incorporating 11 new studies published since the WHO analysis. Our investigation involved a systematic search of three major databases (PubMed, Web of Science, and Scopus) for articles published until July 1, 2022. We employed random effects models to calculate summarized risk ratios (RR) along with 95% confidence intervals (CIs) for overall and subgroup analyses. Sensitivity analyses were conducted to assess result robustness, and publication bias was evaluated using funnel plots and Egger's linear regression. Out of 2799 identified articles, 56 were included in our meta-analysis. The findings indicate a heightened risk of all-cause, cardiovascular, and respiratory mortality associated with long-term exposure to ambient NO2, with pooled RR values of 1.03 (95% CI: 1.02, 1.05), 1.07 (95% CI: 1.04, 1.10), and 1.03 (95% CI: 1.02, 1.05) per 10 μg/m3 increase, respectively. Substantial heterogeneity (I2 = 84%-96%) among studies was observed. Subgroup analysis revealed significantly elevated RR values in Asia and Oceania (p-value <0.05). The aggregated values for all-cause and cardiovascular mortality were slightly larger than those reported in previous studies. Our study emphasizes the imperative to develop more patient cohorts and conduct age-refined analyses to explore the impact of existing chronic diseases on these associations. Further, additional cohorts in Asia and Oceania are essential to fortify evidence in these regions. Lastly, we recommend using fused multi-source data with higher spatiotemporal resolution for individual exposure representation to minimize heterogeneity among studies in future research.
Collapse
Affiliation(s)
- Xiaoshi Chen
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, Beijing, 100083, China
| | - Ling Qi
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, Beijing, 100083, China
| | - Sai Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, Beijing, 100083, China
| | - Xiaoli Duan
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, Beijing, 100083, China.
| |
Collapse
|
23
|
Peng M, Zhang F, Yuan Y, Yang Z, Wang K, Wang Y, Tang Z, Zhang Y. Long-term ozone exposure and all-cause mortality: Cohort evidence in China and global heterogeneity by region. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115843. [PMID: 38141337 DOI: 10.1016/j.ecoenv.2023.115843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/05/2023] [Accepted: 12/14/2023] [Indexed: 12/25/2023]
Abstract
BACKGROUND Cohort evidence linking long-term ozone (O3) exposure to mortality remained largely mixed worldwide and was extensively deficient in densely-populated Asia. This study aimed to assess the long-term effects of O3 exposure on all-cause mortality among Chinese adults, as well as to examine potential regional heterogeneity across the globe. METHODS A national dynamic cohort of 42153 adults aged 16+ years were recruited from 25 provinces across Chinese mainland and followed up during 2010-2018. Annual warm-season (April-September) O3 and year-round co-pollutants (i.e., nitrogen dioxide [NO2] and fine particulate matter [PM2.5]) were simulated through validated spatial-temporal prediction models and were assigned to each enrollee in each calendar year. Cox proportional hazards models with time-varying exposures were employed to assess the O3-mortality association. Concentration-response (C-R) curves were fitted by natural cubic spline function to investigate the potential nonlinear association. Both single-pollutant model and co-pollutant models additionally adjusting for PM2.5 and/or NO2 were employed to examine the robustness of the estimated association. The random-effect meta-analysis was adopted to pool effect estimates from the current and prior population-based cohorts (n = 29), and pooled C-R curves were fitted through the meta-smoothing approach by regions. RESULTS The study population comprised of 42153 participants who contributed 258921.5 person-years at risk (median 6.4 years), of whom 2382 death events occurred during study period. Participants were exposed to an annual average of 51.4 ppb (range: 22.7-74.4 ppb) of warm-season O3 concentration. In the single-pollutant model, a significantly increased hazard ratio (HR) of 1.098 (95% confidence interval [CI]: 1.023-1.179) was associated with a 10-ppb rise in O3 exposure. Associations remained robust to additional adjustments of co-pollutants, with HRs of 1.099 (95% CI: 1.023-1.180) in bi-pollutant model (+PM2.5) and 1.093 (95% CI: 1.018-1.174) in tri-pollutant model (+PM2.5+NO2), respectively. A J-shaped C-R relationship was identified among Chinese general population, suggesting significant excess mortality risk at high ozone exposure only. The combined C-R curves from Asia (n = 4) and North America (n = 17) demonstrated an overall increased risk of all-cause mortality with O3 exposure, with pooled HRs of 1.124 (95% CI: 0.966-1.307) and 1.023 (95% CI: 1.007-1.039) per 10-ppb rise, respectively. Conversely, an opposite association was observed in Europe (n = 8, HR: 0.914 [95% CI: 0.860-0.972]), suggesting significant heterogeneity across regions (P < 0.01). CONCLUSIONS This study provided national evidence that high O3 exposure may curtail long-term survival of Chinese general population. Great between-region heterogeneity of pooled O3-mortality was identified across North America, Europe, and Asia.
Collapse
Affiliation(s)
- Minjin Peng
- Department of Outpatient, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Faxue Zhang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430072, China
| | - Yang Yuan
- Institute of Social Development and Health Management, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Zhiming Yang
- School of Economics and Management, University of Science and Technology Beijing, Beijing 100083, China
| | - Kai Wang
- Institute of Social Development and Health Management, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yaqi Wang
- Institute of Social Development and Health Management, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Ziqing Tang
- Institute of Social Development and Health Management, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yunquan Zhang
- Institute of Social Development and Health Management, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
24
|
Zafra-Pérez A, Boente C, García-Díaz M, Gómez-Galán JA, de la Campa AS, de la Rosa JD. Aerial monitoring of atmospheric particulate matter produced by open-pit mining using low-cost airborne sensors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166743. [PMID: 37659558 DOI: 10.1016/j.scitotenv.2023.166743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/09/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Mining is an economic activity that entails the production and displacement of significant amounts of atmospheric particulate matter (PM) during operations involving intense earthcrushing or earthmoving. As high concentrations of PM may have adverse effects on human health, it is necessary to monitor and control the fugitive emissions of this pollutant. This paper presents an innovative methodology for the online monitoring of PM10 concentrations in air using a low-cost sensor (LCS, <300 USD) onboard an unmanned aerial vehicle. After comprehensive calibration, the LCS was horizontally flown over seven different areas of the large Riotinto copper mine (Huelva, Spain) at different heights to study the PM10 distribution at different longitudes and altitudes. The flights covered areas of zero activity, intense mining, drilling, ore loading, waste discharge, open stockpiling, and mineral processing. In the zero-activity area, the resuspension of PM10 was very low, with a weak wind speed (3.6 m/s). In the intense-mining area, unhealthy concentrations of PM10 (>51 μgPM10/m3) could be released, and the PM10 can reach surrounding populations through long-distance transport driven by several processes being performed simultaneously. Strong dilution was also observed at high altitudes (> 50 m). Mean concentrations were found to be 22-89 μgPM10/m3, with peaks ranging from 86 to 284 μgPM10/m3. This study demonstrates the potential applicability of airborne LCSs in the high-resolution online monitoring of PM in mining, thus supporting environmental managers during decision-making against fugitive emissions in a cost-effective manner.
Collapse
Affiliation(s)
- Adrián Zafra-Pérez
- CIQSO-Center for Research in Sustainable Chemistry, Associate Unit CSIC-University of Huelva "Atmospheric Pollution", Campus El Carmen s/n, 21007 Huelva, Spain
| | - Carlos Boente
- Departamento de Ingeniería Geológica y Minera, E.T.S.I. Minas y Energía de Madrid, Universidad Politécnica de Madrid, C/ Ríos Rosas 21, Madrid, 28003, Spain.
| | - Manuel García-Díaz
- Department of Fluid Mechanics, University of Oviedo, C/Wifredo Ricart, Gijón 33204, Spain
| | - Juan Antonio Gómez-Galán
- Department of Electronic Engineering, Computers and Automation, University of Huelva, Huelva 21007, Spain
| | - Ana Sánchez de la Campa
- CIQSO-Center for Research in Sustainable Chemistry, Associate Unit CSIC-University of Huelva "Atmospheric Pollution", Campus El Carmen s/n, 21007 Huelva, Spain; Department of Earth Sciences, Faculty of Experimental Sciences, University of Huelva, Huelva 21007, Spain
| | - Jesús D de la Rosa
- CIQSO-Center for Research in Sustainable Chemistry, Associate Unit CSIC-University of Huelva "Atmospheric Pollution", Campus El Carmen s/n, 21007 Huelva, Spain; Department of Earth Sciences, Faculty of Experimental Sciences, University of Huelva, Huelva 21007, Spain
| |
Collapse
|
25
|
Li W, Tian A, Shi Y, Chen B, Ji R, Ge J, Su X, Pu B, Lei L, Ma R, Wang Q, Ban J, Song L, Xu W, Zhang Y, He W, Yang H, Li X, Li T, Li J. Associations of long-term fine particulate matter exposure with all-cause and cause-specific mortality: results from the ChinaHEART project. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2023; 41:100908. [PMID: 37767374 PMCID: PMC10520991 DOI: 10.1016/j.lanwpc.2023.100908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/14/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
Background The chronic effects of fine particulate matter (PM2.5) at high concentrations remains uncertain. We aimed to examine the relationship of long-term PM2.5 exposure with all-cause and the top three causes of death (cardiovascular disease [CVD], cancer, and respiratory disease), and to analyze their concentration-response functions over a wide range of concentrations. Methods We enrolled community residents aged 35-75 years from 2014 to 2017 from all 31 provinces of the Chinese Mainland, and followed them up until 2021. We used a long-term estimation dataset for both PM2.5 and O3 concentrations with a high spatiotemporal resolution to assess the individual exposure, and used Cox proportional hazards models to estimate the associations between PM2.5 and mortalities. Findings We included 1,910,923 participants, whose mean age was 55.6 ± 9.8 years and 59.4% were female. A 10 μg/m3 increment in PM2.5 exposure was associated with increased risk for all-cause death (hazard ratio 1.02 [95% confidence interval 1.012-1.028]), CVD death (1.024 [1.011-1.037]), cancer death (1.037 [1.023-1.052]), and respiratory disease death (1.083 [1.049-1.117]), respectively. Long-term PM2.5 exposure nonlinearly related with all-cause, CVD, and cancer mortalities, while linearly related with respiratory disease mortality. Interpretation The overall effects of long-term PM2.5 exposure on mortality in the high concentration settings are weaker than previous reports from settings of PM2.5 concentrations < 35 μg/m³. The distinct concentration-response relationships of CVD, cancer, and respiratory disease mortalities could facilitate targeted public health efforts to prevent death caused by air pollution. Funding The Chinese Academy of Medical Sciences Innovation Fund for Medical Science, the National High Level Hospital Clinical Research Funding, the Ministry of Finance of China and National Health Commission of China, the 111 Project from the Ministry of Education of China.
Collapse
Affiliation(s)
- Wei Li
- National Clinical Research Center for Cardiovascular Diseases, NHC Key Laboratory of Clinical Research for Cardiovascular Medications, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, People’s Republic of China
| | - Aoxi Tian
- National Clinical Research Center for Cardiovascular Diseases, NHC Key Laboratory of Clinical Research for Cardiovascular Medications, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, People’s Republic of China
| | - Yu Shi
- National Clinical Research Center for Cardiovascular Diseases, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Guangdong Province, People’s Republic of China
| | - Bowang Chen
- National Clinical Research Center for Cardiovascular Diseases, NHC Key Laboratory of Clinical Research for Cardiovascular Medications, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, People’s Republic of China
| | - Runqing Ji
- National Clinical Research Center for Cardiovascular Diseases, NHC Key Laboratory of Clinical Research for Cardiovascular Medications, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, People’s Republic of China
| | - Jinzhuo Ge
- National Clinical Research Center for Cardiovascular Diseases, NHC Key Laboratory of Clinical Research for Cardiovascular Medications, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, People’s Republic of China
| | - Xiaoming Su
- National Clinical Research Center for Cardiovascular Diseases, NHC Key Laboratory of Clinical Research for Cardiovascular Medications, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, People’s Republic of China
| | - Boxuan Pu
- National Clinical Research Center for Cardiovascular Diseases, NHC Key Laboratory of Clinical Research for Cardiovascular Medications, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, People’s Republic of China
| | - Lubi Lei
- National Clinical Research Center for Cardiovascular Diseases, NHC Key Laboratory of Clinical Research for Cardiovascular Medications, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, People’s Republic of China
| | - Runmei Ma
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Qing Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Jie Ban
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Lijuan Song
- National Clinical Research Center for Cardiovascular Diseases, NHC Key Laboratory of Clinical Research for Cardiovascular Medications, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, People’s Republic of China
| | - Wei Xu
- National Clinical Research Center for Cardiovascular Diseases, NHC Key Laboratory of Clinical Research for Cardiovascular Medications, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, People’s Republic of China
| | - Yan Zhang
- National Clinical Research Center for Cardiovascular Diseases, NHC Key Laboratory of Clinical Research for Cardiovascular Medications, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, People’s Republic of China
| | - Wenyan He
- National Clinical Research Center for Cardiovascular Diseases, NHC Key Laboratory of Clinical Research for Cardiovascular Medications, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, People’s Republic of China
| | - Hao Yang
- National Clinical Research Center for Cardiovascular Diseases, NHC Key Laboratory of Clinical Research for Cardiovascular Medications, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, People’s Republic of China
| | - Xi Li
- National Clinical Research Center for Cardiovascular Diseases, NHC Key Laboratory of Clinical Research for Cardiovascular Medications, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, People’s Republic of China
- Central China Sub-center of the National Center for Cardiovascular Diseases, Zhengzhou, People’s Republic of China
| | - Tiantian Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Jing Li
- National Clinical Research Center for Cardiovascular Diseases, NHC Key Laboratory of Clinical Research for Cardiovascular Medications, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, People’s Republic of China
| |
Collapse
|
26
|
Chen J, Braun D, Christidis T, Cork M, Rodopoulou S, Samoli E, Stafoggia M, Wolf K, Wu X, Yuchi W, Andersen ZJ, Atkinson R, Bauwelinck M, de Hoogh K, Janssen NA, Katsouyanni K, Klompmaker JO, Kristoffersen DT, Lim YH, Oftedal B, Strak M, Vienneau D, Zhang J, Burnett RT, Hoek G, Dominici F, Brauer M, Brunekreef B. Long-Term Exposure to Low-Level PM2.5 and Mortality: Investigation of Heterogeneity by Harmonizing Analyses in Large Cohort Studies in Canada, United States, and Europe. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:127003. [PMID: 38039140 PMCID: PMC10691665 DOI: 10.1289/ehp12141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 08/10/2023] [Accepted: 11/09/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND Studies across the globe generally reported increased mortality risks associated with particulate matter with aerodynamic diameter ≤ 2.5 μ m (PM 2.5 ) exposure with large heterogeneity in the magnitude of reported associations and the shape of concentration-response functions (CRFs). We aimed to evaluate the impact of key study design factors (including confounders, applied exposure model, population age, and outcome definition) on PM 2.5 effect estimates by harmonizing analyses on three previously published large studies in Canada [Mortality-Air Pollution Associations in Low Exposure Environments (MAPLE), 1991-2016], the United States (Medicare, 2000-2016), and Europe [Effects of Low-Level Air Pollution: A Study in Europe (ELAPSE), 2000-2016] as much as possible. METHODS We harmonized the study populations to individuals 65 + years of age, applied the same satellite-derived PM 2.5 exposure estimates, and selected the same sets of potential confounders and the same outcome. We evaluated whether differences in previously published effect estimates across cohorts were reduced after harmonization among these factors. Additional analyses were conducted to assess the influence of key design features on estimated risks, including adjusted covariates and exposure assessment method. A combined CRF was assessed with meta-analysis based on the extended shape-constrained health impact function (eSCHIF). RESULTS More than 81 million participants were included, contributing 692 million person-years of follow-up. Hazard ratios and 95% confidence intervals (CIs) for all-cause mortality associated with a 5 - μ g / m 3 increase in PM 2.5 were 1.039 (1.032, 1.046) in MAPLE, 1.025 (1.021, 1.029) in Medicare, and 1.041 (1.014, 1.069) in ELAPSE. Applying a harmonized analytical approach marginally reduced difference in the observed associations across the three studies. Magnitude of the association was affected by the adjusted covariates, exposure assessment methodology, age of the population, and marginally by outcome definition. Shape of the CRFs differed across cohorts but generally showed associations down to the lowest observed PM 2.5 levels. A common CRF suggested a monotonically increased risk down to the lowest exposure level. https://doi.org/10.1289/EHP12141.
Collapse
Affiliation(s)
- Jie Chen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Danielle Braun
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Tanya Christidis
- Health Analysis Division, Statistics Canada, Ottawa, Ontario, Canada
| | - Michael Cork
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Sophia Rodopoulou
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodstrian University of Athens, Athens, Greece
| | - Evangelia Samoli
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodstrian University of Athens, Athens, Greece
| | - Massimo Stafoggia
- Department of Epidemiology, Lazio Region Health Service/ASL Roma 1, Rome, Italy
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kathrin Wolf
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Xiao Wu
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Weiran Yuchi
- School of Population and Public Health, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Zorana J. Andersen
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Richard Atkinson
- Population Health Research Institute, St George’s, University of London, London, UK
| | - Mariska Bauwelinck
- Interface Demography, Department of Sociology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Nicole A.H. Janssen
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Klea Katsouyanni
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodstrian University of Athens, Athens, Greece
- MRC Center for Environment and Health, Environmental Research Group, School of Public Health, Imperial College London, London, UK
| | - Jochem O. Klompmaker
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Doris Tove Kristoffersen
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Youn-Hee Lim
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Bente Oftedal
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Maciej Strak
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Danielle Vienneau
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Jiawei Zhang
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | | | - Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Francesca Dominici
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Michael Brauer
- School of Population and Public Health, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Bert Brunekreef
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
27
|
Sun HZ, Zhao J, Liu X, Qiu M, Shen H, Guillas S, Giorio C, Staniaszek Z, Yu P, Wan MW, Chim MM, van Daalen KR, Li Y, Liu Z, Xia M, Ke S, Zhao H, Wang H, He K, Liu H, Guo Y, Archibald AT. Antagonism between ambient ozone increase and urbanization-oriented population migration on Chinese cardiopulmonary mortality. Innovation (N Y) 2023; 4:100517. [PMID: 37822762 PMCID: PMC10562756 DOI: 10.1016/j.xinn.2023.100517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/17/2023] [Indexed: 10/13/2023] Open
Abstract
Ever-increasing ambient ozone (O3) pollution in China has been exacerbating cardiopulmonary premature deaths. However, the urban-rural exposure inequity has seldom been explored. Here, we assess population-scale O3 exposure and mortality burdens between 1990 and 2019 based on integrated pollution tracking and epidemiological evidence. We find Chinese population have been suffering from climbing O3 exposure by 4.3 ± 2.8 ppb per decade as a result of rapid urbanization and growing prosperity of socioeconomic activities. Rural residents are broadly exposed to 9.8 ± 4.1 ppb higher ambient O3 than the adjacent urban citizens, and thus urbanization-oriented migration compromises the exposure-associated mortality on total population. Cardiopulmonary excess premature deaths attributable to long-term O3 exposure, 373,500 (95% uncertainty interval [UI]: 240,600-510,900) in 2019, is underestimated in previous studies due to ignorance of cardiovascular causes. Future O3 pollution policy should focus more on rural population who are facing an aggravating threat of mortality risks to ameliorate environmental health injustice.
Collapse
Affiliation(s)
- Haitong Zhe Sun
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, UK
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Junchao Zhao
- State Key Joint Laboratory of ESPC, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiang Liu
- School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Minghao Qiu
- Department of Earth System Science, Stanford University, Stanford, CA 94305, USA
| | - Huizhong Shen
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Serge Guillas
- Department of Statistical Science, University College London, London WC1E 6BT, UK
- The Alan Turing Institute, London NW1 2DB, UK
| | - Chiara Giorio
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Zosia Staniaszek
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Pei Yu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Michelle W.L. Wan
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Man Mei Chim
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Kim Robin van Daalen
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
- Heart and Lung Research Institute, University of Cambridge, Cambridge CB2 0BD, UK
- Barcelona Supercomputing Center, Department of Earth Sciences, 08034 Barcelona, Spain
| | - Yilin Li
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Zhenze Liu
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Mingtao Xia
- Department of Mathematics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shengxian Ke
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Haifan Zhao
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK
| | - Haikun Wang
- School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Kebin He
- State Key Joint Laboratory of ESPC, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, School of Environment, Tsinghua University, Beijing 100084, China
| | - Huan Liu
- State Key Joint Laboratory of ESPC, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yuming Guo
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Alexander T. Archibald
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- National Centre for Atmospheric Science, Cambridge CB2 1EW, UK
| |
Collapse
|
28
|
Tran HM, Tsai FJ, Lee YL, Chang JH, Chang LT, Chang TY, Chung KF, Kuo HP, Lee KY, Chuang KJ, Chuang HC. The impact of air pollution on respiratory diseases in an era of climate change: A review of the current evidence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:166340. [PMID: 37591374 DOI: 10.1016/j.scitotenv.2023.166340] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/27/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
The impacts of climate change and air pollution on respiratory diseases present significant global health challenges. This review aims to investigate the effects of the interactions between these challenges focusing on respiratory diseases. Climate change is predicted to increase the frequency and intensity of extreme weather events amplifying air pollution levels and exacerbating respiratory diseases. Air pollution levels are projected to rise due to ongoing economic growth and population expansion in many areas worldwide, resulting in a greater burden of respiratory diseases. This is especially true among vulnerable populations like children, older adults, and those with pre-existing respiratory disorders. These challenges induce inflammation, create oxidative stress, and impair the immune system function of the lungs. Consequently, public health measures are required to mitigate the effects of climate change and air pollution on respiratory health. The review proposes that reducing greenhouse gas emissions contribute to slowing down climate change and lessening the severity of extreme weather events. Enhancing air quality through regulatory and technological innovations also helps reduce the morbidity of respiratory diseases. Moreover, policies and interventions aimed at improving healthcare access and social support can assist in decreasing the vulnerability of populations to the adverse health effects of air pollution and climate change. In conclusion, there is an urgent need for continuous research, establishment of policies, and public health efforts to tackle the complex and multi-dimensional challenges of climate change, air pollution, and respiratory health. Practical and comprehensive interventions can protect respiratory health and enhance public health outcomes for all.
Collapse
Affiliation(s)
- Huan Minh Tran
- Ph.D. Program in Global Health and Health Security, College of Public Health, Taipei Medical University, Taipei, Taiwan; Faculty of Public Health, Da Nang University of Medical Technology and Pharmacy, Viet Nam
| | - Feng-Jen Tsai
- Ph.D. Program in Global Health and Health Security, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Yueh-Lun Lee
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jer-Hwa Chang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Li-Te Chang
- Department of Environmental Engineering and Science, Feng Chia University, Taichung, Taiwan
| | - Ta-Yuan Chang
- Department of Occupational Safety and Health, College of Public Health, China Medical University, Taichung, Taiwan
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Han-Pin Kuo
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kang-Yun Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Kai-Jen Chuang
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan; Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; National Heart and Lung Institute, Imperial College London, London, UK; Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
29
|
Nobile F, Forastiere A, Michelozzi P, Forastiere F, Stafoggia M. Long-term exposure to air pollution and incidence of mental disorders. A large longitudinal cohort study of adults within an urban area. ENVIRONMENT INTERNATIONAL 2023; 181:108302. [PMID: 37944432 DOI: 10.1016/j.envint.2023.108302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/02/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Recent epidemiological evidence suggests associations between air pollution exposure and major depressive disorders, but the literature is inconsistent for other mental illnesses. We investigated the associations of several air pollutants and road traffic noise with the incidence of different categories of mental disorders in a large population-based cohort. METHODS We enrolled 1,739,277 individuals 30 + years from the 2011 census in Rome, Italy, and followed them up until 2019. In detail, we analyzed 1,733,331 participants (mean age 56.43 +/- 15.85 years; 54.96 % female) with complete information on covariates of interest. We excluded subjects with prevalent mental disorders at baseline to evaluate the incidence (first hospitalization or co-pay exemption) of schizophrenia spectrum disorders, bipolar, anxiety, personality, or substance use disorders. In addition, we studied subjects with first prescriptions of antipsychotics, antidepressants, and mood stabilizers. Annual average concentrations of fine particulate matter (PM2.5), nitrogen dioxide (NO₂), Black Carbon (BC), ultrafine particles (UFP), and road traffic noise were assigned to baseline residential addresses. We applied Cox regression models adjusted for individual and area-level covariates. RESULTS Each interquartile range (1.13 µg/m3) increase in PM2.5 was associated with a hazard ratio (HR) of 1.070 (95 % confidence interval [CI]: 1.017, 1.127) for schizophrenia spectrum disorder, 1.135 (CI: 1.086, 1.186) for depression, 1.097 (CI: 1.030, 1.168) for anxiety disorders. Positive associations were also detected for BC and UFP, and with the three categories of drug prescriptions. Bipolar, personality, and substance use disorders did not show clear associations. The effects were highest in the age group 30-64 years, except for depression. CONCLUSIONS Long-term exposure to ambient air pollution, especially fine and ultrafine particles, was associated with increased risks of schizophrenia spectrum disorder, depression, and anxiety disorders. The association of the pollutants with the prescriptions of specific drugs increases the credibility of the results.
Collapse
Affiliation(s)
- Federica Nobile
- Department of Epidemiology, Lazio Region Health Service/ASL Rome 1, Rome, Italy.
| | | | - Paola Michelozzi
- Department of Epidemiology, Lazio Region Health Service/ASL Rome 1, Rome, Italy
| | - Francesco Forastiere
- Environmental Research Group, Imperial College, London, UK; National Research Council, IFT, Palermo, Italy
| | - Massimo Stafoggia
- Department of Epidemiology, Lazio Region Health Service/ASL Rome 1, Rome, Italy
| |
Collapse
|
30
|
Xu S, Marcon A, Bertelsen RJ, Benediktsdottir B, Brandt J, Engemann K, Frohn LM, Geels C, Gislason T, Heinrich J, Holm M, Janson C, Markevych I, Modig L, Orru H, Schlünssen V, Sigsgaard T, Johannessen A. Long-term exposure to low-level air pollution and greenness and mortality in Northern Europe. The Life-GAP project. ENVIRONMENT INTERNATIONAL 2023; 181:108257. [PMID: 37857189 DOI: 10.1016/j.envint.2023.108257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Air pollution has been linked to mortality, but there are few studies examining the association with different exposure time windows spanning across several decades. The evidence for the effects of green space and mortality is contradictory. OBJECTIVE We investigated all-cause mortality in relation to exposure to particulate matter (PM2.5 and PM10), black carbon (BC), nitrogen dioxide (NO2), ozone (O3) and greenness (normalized difference vegetation index - NDVI) across different exposure time windows. METHODS The exposure assessment was based on a combination of the Danish Eulerian Hemispheric Model and the Urban Background Model for the years 1990, 2000 and 2010. The analysis included a complete case dataset with 9,135 participants from the third Respiratory Health in Northern Europe study (RHINE III), aged 40-65 years in 2010, with mortality follow-up to 2021. We performed Cox proportional hazard models, adjusting for potential confounders. RESULTS Altogether, 327 (3.6 %) persons died in the period 2010-2021. Increased exposures in 1990 of PM2.5, PM10, BC and NO2 were associated with increased all-cause mortality hazard ratios of 1.40 (95 % CI1.04-1.87 per 5 μg/m3), 1.33 (95 % CI: 1.02-1.74 per 10 μg/m3), 1.16 (95 % CI: 0.98-1.38 per 0.4 μg/m3) and 1.17 (95 % CI: 0.92-1.50 per 10 μg/m3), respectively. No statistically significant associations were observed between air pollution and mortality in other time windows. O3 showed an inverse association with mortality, while no association was observed between greenness and mortality. Adjusting for NDVI increased the hazard ratios for PM2.5, PM10, BC and NO2 exposures in 1990. We did not find significant interactions between greenness and air pollution metrics. CONCLUSION Long term exposure to even low levels of air pollution is associated with mortality. Opening up for a long latency period, our findings indicate that air pollution exposures over time may be even more harmful than anticipated.
Collapse
Affiliation(s)
- Shanshan Xu
- Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.
| | - Alessandro Marcon
- Unit of Epidemiology and Medical Statistics, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | | | - Bryndis Benediktsdottir
- Department of Respiratory Medicine and Sleep, Landspitali - the National University Hospital of Iceland, Reykjavik, Iceland
| | - Jørgen Brandt
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Kristine Engemann
- Section for Ecoinformatics & Biodiversity, Department of Bioscience, Aarhus University, Aarhus C, Denmark
| | - Lise Marie Frohn
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Camilla Geels
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Thorarinn Gislason
- Department of Respiratory Medicine and Sleep, Landspitali - the National University Hospital of Iceland, Reykjavik, Iceland
| | - Joachim Heinrich
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany; Allergy and Lung Health Unit, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Mathias Holm
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Christer Janson
- Department of Medical Sciences: Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden
| | - Iana Markevych
- Institute of Psychology, Jagiellonian University, Krakow, Poland
| | - Lars Modig
- Department of Public Health and Clinical Medicine, Section of Sustainable Health, Umeå University, Sweden
| | - Hans Orru
- Department of Public Health, Institute of Family Medicine and Public Health, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Vivi Schlünssen
- Department of Public Health, Research Unit for Environment Occupation and Health, Danish Ramazzini Center, Aarhus University, Aarhus, Denmark
| | - Torben Sigsgaard
- Department of Public Health, Research Unit for Environment Occupation and Health, Danish Ramazzini Center, Aarhus University, Aarhus, Denmark
| | - Ane Johannessen
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| |
Collapse
|
31
|
Song W, Kwan MP. Air pollution perception bias: Mismatch between air pollution exposure and perception of air quality in real-time contexts. Health Place 2023; 84:103129. [PMID: 37856949 DOI: 10.1016/j.healthplace.2023.103129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023]
Abstract
Air pollution perception biases hinder the public's awareness of actual air quality. Past studies that examined the association and mismatch between actual and perceived air quality neglected individuals' dynamic exposure and their activity, travel, spatial, temporal, and social contexts. Using data collected with real-time air pollutant sensors and ecological momentary assessment (EMA), this study investigated the association and mismatch between momentary air pollution exposure and perceived air quality. It also examined how activity type, travel mode, spatial and temporal contexts, and social factors contribute to this disparity. The results show that exposure to air pollution is significantly higher in residential areas (1.777 μg/m3) and transportation land-use areas (2.863 μg/m3) compared to commercial areas. Exposure in the evening is 1.308 μg/m3 higher than in the afternoon. Working or studying activities are associated with 2.863 μg/m3 lower exposure, and individuals perceive air quality as good when working or studying and in residential areas. Conversely, individuals assess air quality as poor in railway travel contexts and being accompanied by friends. This study also reveals the nonstationary association between air pollution exposure and perceived air quality. The odds of underestimating air pollution are 1.8-2.7 times as high as that in residential areas and 2.1 to 2.6 times that in transportation land-use areas when compared to commercial areas. Implementing targeted mitigation measures in these contexts can enhance public awareness of air pollution.
Collapse
Affiliation(s)
- Wanying Song
- Institute of Space and Earth Information Science, Fok Ying Tung Remote Sensing Science Building, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China.
| | - Mei-Po Kwan
- Institute of Space and Earth Information Science, Fok Ying Tung Remote Sensing Science Building, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China; Department of Geography and Resource Management, Wong Foo Yuan Building, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China; Institute of Future Cities, Wong Foo Yuan Building, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China.
| |
Collapse
|
32
|
Park J, Kang C, Min J, Kim E, Song I, Jang H, Kwon D, Oh J, Moon J, Kim H, Lee W. Association of long-term exposure to air pollution with chronic sleep deprivation in South Korea: A community-level longitudinal study, 2008-2018. ENVIRONMENTAL RESEARCH 2023; 228:115812. [PMID: 37030407 DOI: 10.1016/j.envres.2023.115812] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/19/2023] [Accepted: 03/29/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND AND OBJECTIVE Although there are many findings about the effects of fine particulate matter (PM2.5) and sleep deprivation on health respectively, the association between PM2.5 and chronic sleep deprivation has rarely been investigated. Thus, we aimed to investigate this association using a nationwide survey in South Korea. METHOD We examined the association between long-term exposure to PM2.5 and chronic sleep deprivation using a national cross-sectional health survey covering the entire 226 districts in inland South Korea from 2008 to 2018, with a machine learning-based national air pollution prediction model with 1 km2 spatial resolution. RESULTS Chronic sleep deprivation was positively associated with PM2.5 in the total population (odds ratio (OR): 1.09, 95% confidence interval (CI): 1.05-1.13) and sub-population (low, middle, high population density areas with OR: 1.127, 1.09, and 1.059, respectively). The association was consistently observed in both sexes (males with OR: 1.09, females with OR: 1.09)) and was more pronounced in the elderly population (OR: 1.12) than in the middle-aged (OR: 1.07) and young (OR: 1.09) populations. CONCLUSIONS Our results are consistent with the hypothesis regarding the relationship between long-term PM2.5 exposure and chronic sleep deprivation, and the study provides quantitative evidence for public health interventions to improve air quality that can affect chronic sleep conditions.
Collapse
Affiliation(s)
- Jinah Park
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| | - Cinoo Kang
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| | - Jieun Min
- Department of Environmental Medicine, College of Medicine, Ewha Womans University, 25 Magokdong-ro 2-gil, Ganseo-gu, Seoul, 07804, Republic of Korea.
| | - Ejin Kim
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| | - Insung Song
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| | - Hyemin Jang
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| | - Dohoon Kwon
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| | - Jieun Oh
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| | - Jeongmin Moon
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| | - Ho Kim
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| | - Whanhee Lee
- Data Science, School of Biomedical Convergence Engineering, College of Information and Biomedical Engineering, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan-si, Gyeongsangnam-do, 50612, South Korea.
| |
Collapse
|
33
|
Zhang J, Lim YH, So R, Jørgensen JT, Mortensen LH, Napolitano GM, Cole-Hunter T, Loft S, Bhatt S, Hoek G, Brunekreef B, Westendorp R, Ketzel M, Brandt J, Lange T, Kølsen-Fisher T, Andersen ZJ. Long-term exposure to air pollution and risk of SARS-CoV-2 infection and COVID-19 hospitalisation or death: Danish nationwide cohort study. Eur Respir J 2023; 62:2300280. [PMID: 37343976 PMCID: PMC10288813 DOI: 10.1183/13993003.00280-2023] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/08/2023] [Indexed: 06/23/2023]
Abstract
BACKGROUND Early ecological studies have suggested links between air pollution and risk of coronavirus disease 2019 (COVID-19), but evidence from individual-level cohort studies is still sparse. We examined whether long-term exposure to air pollution is associated with risk of COVID-19 and who is most susceptible. METHODS We followed 3 721 810 Danish residents aged ≥30 years on 1 March 2020 in the National COVID-19 Surveillance System until the date of first positive test (incidence), COVID-19 hospitalisation or death until 26 April 2021. We estimated residential annual mean particulate matter with diameter ≤2.5 μm (PM2.5), nitrogen dioxide (NO2), black carbon (BC) and ozone (O3) in 2019 by the Danish DEHM/UBM model, and used Cox proportional hazards regression models to estimate the associations of air pollutants with COVID-19 outcomes, adjusting for age, sex, individual- and area-level socioeconomic status, and population density. RESULTS 138 742 individuals were infected, 11 270 were hospitalised and 2557 died from COVID-19 during 14 months. We detected associations of PM2.5 (per 0.53 μg·m-3) and NO2 (per 3.59 μg·m-3) with COVID-19 incidence (hazard ratio (HR) 1.10 (95% CI 1.05-1.14) and HR 1.18 (95% CI 1.14-1.23), respectively), hospitalisations (HR 1.09 (95% CI 1.01-1.17) and HR 1.19 (95% CI 1.12-1.27), respectively) and death (HR 1.23 (95% CI 1.04-1.44) and HR 1.18 (95% CI 1.03-1.34), respectively), which were strongest in the lowest socioeconomic groups and among patients with chronic respiratory, cardiometabolic and neurodegenerative diseases. We found positive associations with BC and negative associations with O3. CONCLUSION Long-term exposure to air pollution may contribute to increased risk of contracting severe acute respiratory syndrome coronavirus 2 infection as well as developing severe COVID-19 disease requiring hospitalisation or resulting in death.
Collapse
Affiliation(s)
- Jiawei Zhang
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Youn-Hee Lim
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Rina So
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Jeanette T Jørgensen
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Laust H Mortensen
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
- Statistics Denmark, Copenhagen, Denmark
| | - George M Napolitano
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Cole-Hunter
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Steffen Loft
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Samir Bhatt
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, London, UK
| | - Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Bert Brunekreef
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Rudi Westendorp
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Matthias Ketzel
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
- Global Centre for Clean Air Research (GCARE), University of Surrey, Guildford, UK
| | - Jørgen Brandt
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
- iCLIMATE, Interdisciplinary Centre for Climate Change, Aarhus University, Roskilde, Denmark
| | - Theis Lange
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Thea Kølsen-Fisher
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Research, Nordsjaellands Hospital, Hilleroed, Denmark
| | - Zorana Jovanovic Andersen
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
34
|
So R, Chen J, Stafoggia M, de Hoogh K, Katsouyanni K, Vienneau D, Samoli E, Rodopoulou S, Loft S, Lim YH, Westendorp RGJ, Amini H, Cole-Hunter T, Bergmann M, Shahri SMT, Zhang J, Maric M, Mortensen LH, Bauwelinck M, Klompmaker JO, Atkinson RW, Janssen NAH, Oftedal B, Renzi M, Forastiere F, Strak M, Brunekreef B, Hoek G, Andersen ZJ. Long-term exposure to elemental components of fine particulate matter and all-natural and cause-specific mortality in a Danish nationwide administrative cohort study. ENVIRONMENTAL RESEARCH 2023; 224:115552. [PMID: 36822536 DOI: 10.1016/j.envres.2023.115552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/08/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Fine particulate matter (PM2.5) is a well-recognized risk factor for premature death. However, evidence on which PM2.5 components are most relevant is unclear. METHODS We evaluated the associations between mortality and long-term exposure to eight PM2.5 elemental components [copper (Cu), iron (Fe), zinc (Zn), sulfur (S), nickel (Ni), vanadium (V), silicon (Si), and potassium (K)]. Studied outcomes included death from diabetes, chronic kidney disease (CKD), dementia, and psychiatric disorders as well as all-natural causes, cardiovascular disease (CVD), respiratory diseases (RD), and lung cancer. We followed all residents in Denmark (aged ≥30 years) from January 1, 2000 to December 31, 2017. We used European-wide land-use regression models at a 100 × 100 m scale to estimate the residential annual mean levels of exposure to PM2.5 components. The models were developed with supervised linear regression (SLR) and random forest (RF). The associations were evaluated by Cox proportional hazard models adjusting for individual- and area-level socioeconomic factors and total PM2.5 mass. RESULTS Of 3,081,244 individuals, we observed 803,373 death from natural causes during follow-up. We found significant positive associations between all-natural mortality with Si and K from both exposure modeling approaches (hazard ratios; 95% confidence intervals per interquartile range increase): SLR-Si (1.04; 1.03-1.05), RF-Si (1.01; 1.00-1.02), SLR-K (1.03; 1.02-1.04), and RF-K (1.06; 1.05-1.07). Strong associations of K and Si were detected with most causes of mortality except CKD and K, and diabetes and Si (the strongest associations for psychiatric disorders mortality). In addition, Fe was relevant for mortality from RD, lung cancer, CKD, and psychiatric disorders; Zn with mortality from CKD, RD, and lung cancer, and; Ni and V with lung cancer mortality. CONCLUSIONS We present novel results of the relevance of different PM2.5 components for different causes of death, with K and Si seeming to be most consistently associated with mortality in Denmark.
Collapse
Affiliation(s)
- Rina So
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark.
| | - Jie Chen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Massimo Stafoggia
- Department of Epidemiology, Lazio Region Health Service/ASL Roma 1, Rome, Italy; Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Klea Katsouyanni
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Environmental Research Group, School of Public Health, Imperial College London, London, UK
| | - Danielle Vienneau
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Evangelia Samoli
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Sophia Rodopoulou
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Steffen Loft
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Youn-Hee Lim
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Rudi G J Westendorp
- Section of Epidemiology, Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Heresh Amini
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Thomas Cole-Hunter
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Marie Bergmann
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | | | - Jiawei Zhang
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Matija Maric
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Laust H Mortensen
- Section of Epidemiology, Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Denmark Statistics, Copenhagen, Denmark
| | - Mariska Bauwelinck
- Interface Demography - Department of Sociology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jochem O Klompmaker
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands; Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Richard W Atkinson
- Population Health Research Institute, St George's University of London, London, UK
| | - Nicole A H Janssen
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Bente Oftedal
- Department of air quality and noise, Norwegian Institute of Public Health, Oslo, Norway
| | - Matteo Renzi
- Department of Epidemiology, Lazio Region Health Service/ASL Roma 1, Rome, Italy
| | - Francesco Forastiere
- Department of Epidemiology, Lazio Region Health Service/ASL Roma 1, Rome, Italy; Science Policy & Epidemiology Environmental Research Group King's College London, London, UK
| | - Maciek Strak
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands; National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Bert Brunekreef
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Zorana J Andersen
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
35
|
Zhu X, Liu B, Guo C, Li Z, Cheng M, Zhu X, Wei Y. Short and long-term association of exposure to ambient black carbon with all-cause and cause-specific mortality: A systematic review and meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121086. [PMID: 36649881 DOI: 10.1016/j.envpol.2023.121086] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
Black carbon (BC) is a product of incomplete or inefficient combustion and may be associated with a variety of adverse effects on human health. The objective of this study was to analyze the association between various mortalities and long-/short-term exposure to BC as an independent pollutant. In this systematic review, we searched 4 databases for original research in English up to 6th October 2022, that investigated population-wide mortality due to BC exposure. We pooled mortality estimates and expressed them as relative risk (RR) per 10 μg/m3 increase in BC. We used a random-effect model to derive the pooled RRs. Of the 3186 studies identified, 29 articles met the eligibility criteria, including 18 long-term exposure studies and 11 short-term exposure studies. In the major meta-analysis and sensitivity analysis, positive associations were found between BC and total mortality and cause-specific disease mortalities. Among them, the short-term effects of BC on total mortality, cardiovascular disease mortality, respiratory disease mortality, and the long-term effects of BC on total mortality, ischemic heart disease mortality, respiratory disease mortality and lung cancer mortality were found to be statistically significant. The heterogeneity of the meta-analysis results was much lower for short-term studies than for long-term. Few studies were at a high risk of bias in any domain. The certainty of the evidence for most of the exposure-outcome pairs was moderate. Our study showed a significantly positive association between short-/long-term BC exposure and various mortalities. We speculate that BC has a higher adverse health effect on the respiratory system than on the cardiovascular system. This is different from the effect of PM2.5. Therefore, more studies are needed to consider BC as a separate pollutant, and not just as a component of PM2.5.
Collapse
Affiliation(s)
- Xiaojing Zhu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Bingqian Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Chen Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zhigang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Miaomiao Cheng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiaoyan Zhu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yongjie Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Center for Global Health, School of Public Health, Nanjing Medical University, China.
| |
Collapse
|
36
|
Wilker EH, Osman M, Weisskopf MG. Ambient air pollution and clinical dementia: systematic review and meta-analysis. BMJ 2023; 381:e071620. [PMID: 37019461 PMCID: PMC10498344 DOI: 10.1136/bmj-2022-071620] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/28/2023] [Indexed: 04/07/2023]
Abstract
OBJECTIVE To investigate the role of air pollutants in risk of dementia, considering differences by study factors that could influence findings. DESIGN Systematic review and meta-analysis. DATA SOURCES EMBASE, PubMed, Web of Science, Psycinfo, and OVID Medline from database inception through July 2022. ELIGIBILITY CRITERIA FOR SELECTING STUDIES Studies that included adults (≥18 years), a longitudinal follow-up, considered US Environmental Protection Agency criteria air pollutants and proxies of traffic pollution, averaged exposure over a year or more, and reported associations between ambient pollutants and clinical dementia. Two authors independently extracted data using a predefined data extraction form and assessed risk of bias using the Risk of Bias In Non-randomised Studies of Exposures (ROBINS-E) tool. A meta-analysis with Knapp-Hartung standard errors was done when at least three studies for a given pollutant used comparable approaches. RESULTS 2080 records identified 51 studies for inclusion. Most studies were at high risk of bias, although in many cases bias was towards the null. 14 studies could be meta-analysed for particulate matter <2.5 µm in diameter (PM2.5). The overall hazard ratio per 2 μg/m3 PM2.5 was 1.04 (95% confidence interval 0.99 to 1.09). The hazard ratio among seven studies that used active case ascertainment was 1.42 (1.00 to 2.02) and among seven studies that used passive case ascertainment was 1.03 (0.98 to 1.07). The overall hazard ratio per 10 μg/m3 nitrogen dioxide was 1.02 ((0.98 to 1.06); nine studies) and per 10 μg/m3 nitrogen oxide was 1.05 ((0.98 to 1.13); five studies). Ozone had no clear association with dementia (hazard ratio per 5 μg/m3 was 1.00 (0.98 to 1.05); four studies). CONCLUSION PM2.5 might be a risk factor for dementia, as well as nitrogen dioxide and nitrogen oxide, although with more limited data. The meta-analysed hazard ratios are subject to limitations that require interpretation with caution. Outcome ascertainment approaches differ across studies and each exposure assessment approach likely is only a proxy for causally relevant exposure in relation to clinical dementia outcomes. Studies that evaluate critical periods of exposure and pollutants other than PM2.5, and studies that actively assess all participants for outcomes are needed. Nonetheless, our results can provide current best estimates for use in burden of disease and regulatory setting efforts. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42021277083.
Collapse
Affiliation(s)
- Elissa H Wilker
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
- Department of Environmental Heath, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Marwa Osman
- Department of Environmental Heath, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Marc G Weisskopf
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
- Department of Environmental Heath, Harvard TH Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
37
|
Chen C, Li T, Sun Q, Shi W, He MZ, Wang J, Liu J, Zhang M, Jiang Q, Wang M, Shi X. Short-term exposure to ozone and cause-specific mortality risks and thresholds in China: Evidence from nationally representative data, 2013-2018. ENVIRONMENT INTERNATIONAL 2023; 171:107666. [PMID: 36470122 DOI: 10.1016/j.envint.2022.107666] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/18/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Ambient ozone pollution is steadily increasing and becoming a major environmental risk factor contributing to the global disease burden. Although the association between short-term ozone exposure and mortality has been widely studied, results are mostly reported on deaths from non-accidental or total cardiopulmonary disease rather than a spectrum of causes. In particular, a knowledge gap still exists for the potential thresholds in mortality risks. METHODS This nationwide time-series study in China included 323 counties totaling 230,266,168 residents. Daily maximum 8-hour average was calculated as the ozone exposure metric. A two-stage statistical approach was adopted to assess ozone effects on 21 cause-specific deaths for 2013-2018. The subset approach and threshold approach were utilized to explore potential thresholds, and stratification analysis was used to evaluate population susceptibility. RESULTS On average, the annual mean ozone concentration was 93.4 μg/m3 across 323 counties. A 10-μg/m3 increase in lag 0-1 day of ozone was associated with increases of 0.12 % in mortality risk from non-accidental disease, 0.11 % from circulatory disease, 0.09 % from respiratory disease, 0.29 % from urinary system disease, and 0.20 % from nervous system disease. There may be a "safe" threshold in the ozone-mortality association, which may be between 60 and 100 μg/m3, and vary by cause of death. Women and older adults (especially those over 75) are more affected by short-term ozone exposure. Populations in North China had a higher risk of ozone-related circulatory mortality, while populations in South China had a higher risk of ozone-related respiratory mortality. CONCLUSIONS National findings link short-term ozone exposure to premature death from circulatory, respiratory, neurological, and urinary diseases, and provide evidence for a potential "safe" threshold in the association of ozone and mortality. These findings have important implications for helping policymakers tighten the relevant air quality standards and developing early warning systems for public health protection in China.
Collapse
Affiliation(s)
- Chen Chen
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Tiantian Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Qinghua Sun
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Wanying Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Mike Z He
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Jiaonan Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Jing Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Mengxue Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Qizheng Jiang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Menghan Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China.
| |
Collapse
|
38
|
Lv S, Liu X, Li Z, Lu F, Guo M, Liu M, Wei J, Wu Z, Yu S, Li S, Li X, Gao W, Tao L, Wang W, Xin J, Guo X. Causal effect of PM 1 on morbidity of cause-specific respiratory diseases based on a negative control exposure. ENVIRONMENTAL RESEARCH 2023; 216:114746. [PMID: 36347395 DOI: 10.1016/j.envres.2022.114746] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/27/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Extensive studies have linked PM2.5 and PM10 with respiratory diseases (RD). However, few is known about causal association between PM1 and morbidity of RD. We aimed to assess the causal effects of PM1 on cause-specific RD. METHODS Hospital admission data were obtained for RD during 2014 and 2019 in Beijing, China. Negative control exposure and extreme gradient boosting with SHapley Additive exPlanation was used to explore the causality and contribution between PM1 and RD. Stratified analysis by gender, age, and season was conducted. RESULTS A total of 1,183,591 admissions for RD were recorded. Per interquartile range (28 μg/m3) uptick in concentration of PM1 corresponded to a 3.08% [95% confidence interval (CI): 1.66%-4.52%] increment in morbidity of total RD. And that was 4.47% (95% CI: 2.46%-6.52%) and 0.15% (95% CI: 1.44%-1.78%), for COPD and asthma, respectively. Significantly positive causal associations were observed for PM1 with total RD and COPD. Females and the elderly had higher effects on total RD, COPD, and asthma only in the warm months (Z = 3.03, P = 0.002; Z = 4.01, P < 0.001; Z = 3.92, P < 0.001; Z = 2.11, P = 0.035; Z = 2.44, P = 0.015). Contribution of PM1 ranked first, second and second for total RD, COPD, and asthma among air pollutants. CONCLUSION PM1 was causally associated with increased morbidity of total RD and COPD, but not causally associated with asthma. Females and the elderly were more vulnerable to PM1-associated effects on RD.
Collapse
Affiliation(s)
- Shiyun Lv
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, 100069, China
| | - Xiangtong Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, 100069, China
| | - Zhiwei Li
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, 100069, China
| | - Feng Lu
- Beijing Municipal Health Commission Information Center, Beijing, 100034, China
| | - Moning Guo
- Beijing Municipal Health Commission Information Center, Beijing, 100034, China
| | - Mengmeng Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, 100069, China; National Institute for Data Science in Health and Medicine, Capital Medical University, Beijing, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20740, USA
| | - Zhiyuan Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, 100069, China
| | - Siqi Yu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, 100069, China
| | - Shihong Li
- Department of Respiratory, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xia Li
- Department of Mathematics and Statistics, La Trobe University, Melbourne, 3086, Australia
| | - Wenkang Gao
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
| | - Lixin Tao
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, 100069, China
| | - Wei Wang
- School of Medical Sciences and Health, Edith Cowan University, WA6027, Perth, Australia
| | - Jinyuan Xin
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China.
| | - Xiuhua Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, 100069, China; National Institute for Data Science in Health and Medicine, Capital Medical University, Beijing, China.
| |
Collapse
|
39
|
Li S, Wang G, Geng Y, Wu W, Duan X. Lung function decline associated with individual short-term exposure to PM 1, PM 2.5 and PM 10 in patients with allergic rhinoconjunctivitis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158151. [PMID: 35988632 DOI: 10.1016/j.scitotenv.2022.158151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The susceptibility of allergic rhinoconjunctivitis (ARC) patients to air pollution has yet to be clarified. OBJECTIVES Based on a repeated measurement panel study, we explored the association of short-term PM exposure with lung function in ARC patients and to further identify the susceptible populations. METHODS Personal PM exposure, including PM1, PM2.5 and PM10, was monitored consecutively for three days before outcomes measurements. Lung function indices including forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1), peak expiratory flow (PEF), and forced expiratory flow at 25-75 % of the vital capacity (FEF25-75) were measured. Serum total immunoglobulin E (IgE), specific-allergen IgE, blood eosinophil and basophils, and the symptoms severe scores were tested in each visit. Linear mixed effect models were applied to estimate the association between PM exposure and lung function. Furthermore, stratified and overlapping grouped populations based on IgE levels were implemented to characterize the modification role and the modulating threshold of IgE at which the association turned significantly negative. RESULTS Short-term PM personal exposure was associated with a significant decrease in lung function in ARC patients, especially for small airway respiratory indexes. The highest estimates occurred in PM1, specifically a 10 μg/m3 increase reduced FEV1/FVC, PEF and FEF25-75 by 1.36 % (95 %CI: -2.29 to -0.43), 0.23 L/s (95 %CI: -0.42 to -0.03) and 0.18 L/s (95 %CI: -0.30 to -0.06), respectively. Notably, PM-induced decreases in lung function were stronger in patients with higher IgE levels (IgE ≥ 100 IU/mL), which were related to higher inflammatory cytokines and symptoms scores. Further, PM-associated lung function declines enhanced robustly and monotonically with increasing IgE concentration. Potential modulating thresholds of IgE occurred at 46.8-59.6 IU/mL for significant PM-lung function associations. CONCLUSION These novel findings estimated the short-term effects of PM on lung function in ARC patients, and the threshold values of IgE for the significant and robust associations.
Collapse
Affiliation(s)
- Sai Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Gang Wang
- Department of Otolaryngology-Head and Neck Surgery, PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China
| | - Yishuo Geng
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wei Wu
- Department of Otolaryngology-Head and Neck Surgery, PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China
| | - Xiaoli Duan
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
40
|
Byun G, Choi Y, Kim S, Lee JT. Long-term exposure to ambient ozone and mortality in a population-based cohort of South Korea: Considering for an alternative exposure time metric. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120300. [PMID: 36181930 DOI: 10.1016/j.envpol.2022.120300] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/20/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Studies on the health effects of long-term ozone exposure remain limited with mixed results. One potential source of this inconsistency is the difference in exposure time metrics. This study aimed to investigate the association between long-term exposure to ambient ozone and mortality in South Korea, using different exposure metrics. We also examined whether heterogeneity between previous studies was due to the different exposure metrics. The study population comprised 179,806 participants from the National Health Insurance Service-National Sample Cohort (2002-2015) residing in seven major cities in South Korea. Several ozone exposure metrics (year-round 24-h, year-round 8-h, warm-season 24-h, and warm-season 8-h) were calculated. Time-varying Cox proportional hazards models were used to estimate the association between ozone and all-cause and cause-specific mortalities. Random-effect meta-analysis and meta-regression analysis were performed to pool the effect estimates of previous studies and examine whether the exposure metric can explain the between-study heterogeneity. The hazard ratios (HRs) per 10 ppb increment in year-round 24-h ozone for all-cause (HR, 1.18; 95% CI, 1.07-1.29) and circulatory (HR, 1.52; 95% CI, 1.25-1.84) mortality were higher than those of the other metrics. Year-round 8-h ozone exhibited the largest association with respiratory mortality (HR, 1.43; 95% CI, 1.04-1.96). A meta-analysis of 29 previous studies and the present study showed the largest HR for all-cause mortality from studies using year-round 8-h exposure (HR, 1.014; 95% CI, 0.994-1.033). The exposure metric was significantly associated with effect estimates in the multivariable meta-regression model. In conclusion, in the population-based cohort in South Korea, we found positive associations between several long-term ozone exposure metrics and mortality. The different ozone exposure metrics exhibited heterogeneous effect estimates. A year-round 24-h average ozone metric also could be considered an alternative long-term standard for ozone.
Collapse
Affiliation(s)
- Garam Byun
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, Republic of Korea
| | - Yongsoo Choi
- Department of Public Health Science, Graduate School, Korea University, Seoul, Republic of Korea
| | - Sera Kim
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, Republic of Korea
| | - Jong-Tae Lee
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, Republic of Korea; School of Health Policy and Management, College of Health Science, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
41
|
Benefits of future clean air policies in Europe. Environ Epidemiol 2022; 6:e221. [PMID: 36249272 PMCID: PMC9556041 DOI: 10.1097/ee9.0000000000000221] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 11/25/2022] Open
|
42
|
Air Pollution and Human Health: Investigating the Moderating Effect of the Built Environment. REMOTE SENSING 2022. [DOI: 10.3390/rs14153703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Air pollution seriously threatens human health and even causes mortality. It is necessary to explore effective prevention methods to mitigate the adverse effect of air pollution. Shaping a reasonable built environment has the potential to benefit human health. In this context, this study quantified the built environment, air pollution, and mortality at 1 km × 1 km grid cells. The moderating effect model was used to explore how built environment factors affect the impact of air pollution on cause-specific mortality and the heterogeneity in different areas classified by building density and height. Consequently, we found that greenness played an important role in mitigating the effect of ozone (O3) and nitrogen dioxide (NO2) on mortality. Water area and diversity of land cover can reduce the effect of fine particulate matter (PM2.5) and NO2 on mortality. Additionally, gas stations, edge density (ED), perimeter-area fractal dimension (PAFRAC), and patch density (PD) can reduce the effect of NO2 on mortality. There is heterogeneity in the moderating effect of the built environment for different cause-specific mortality and areas classified by building density and height. This study can provide support for urban planners to mitigate the adverse effect of air pollution from the perspective of the built environment.
Collapse
|
43
|
Functional Kriging for Spatiotemporal Modeling of Nitrogen Dioxide in a Middle Eastern Megacity. ATMOSPHERE 2022. [DOI: 10.3390/atmos13071095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Long-term hour-specific air pollution exposure estimates have rarely been of interest in epidemiological research. However, this can be relevant for studies that aim to estimate the residential exposure for the hours that subjects mostly spend time there, or for those hours that they may work in another location. Here, we developed a model by spatially predicting the long-term diurnal curves of nitrogen dioxide (NO2) in Tehran, Iran, one of the most polluted and populated megacities in the Middle East. We used the statistical framework of functional data analysis (FDA) including ordinary kriging for functional data (OKFD) and functional analysis of variance (fANOVA) for modeling. The long-term NO2 diurnal curves had two distinct maxima and minima. The absolute minimum value of the city average was 40.6 ppb (around 4:00 p.m.) and the absolute maximum value was 52.0 ppb (around 10:00 p.m.). The OKFD showed the concentrations, the diurnal maximum/minimum values, and their corresponding occurring times varied across the city. The fANOVA highlighted that the effect of population density on the NO2 concentrations is not constant and depends on time within the diurnal period. The provided estimation of long-term hour-specific maps can inform future epidemiological studies to use the long-term mean for specific hour(s) of the day. Moreover, the demonstrated FDA framework can be used as a set of flexible statistical methods.
Collapse
|