1
|
Hanvoravongchai J, Laochindawat M, Kimura Y, Mise N, Ichihara S. Clinical, histological, molecular, and toxicokinetic renal outcomes of per-/polyfluoroalkyl substances (PFAS) exposure: Systematic review and meta-analysis. CHEMOSPHERE 2024; 368:143745. [PMID: 39542374 DOI: 10.1016/j.chemosphere.2024.143745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals present in the environment that can negatively affect health. Kidney is the major target organ of PFAS exposure, yet the renal impact of PFAS is not completely understood. Here we review the effects of PFAS exposure on kidney health to identify gaps in our understanding and mark potential avenues for future research. METHODS PubMed and SCOPUS databases were searched for studies that examined the association between PFAS exposure and kidney-related outcomes. We included all epidemiological, animal, and cell studies and categorized outcomes into four categories: clinical, histological, molecular and toxicokinetic. RESULTS We identified 169 studies, including 51 on clinical outcomes, 28 on histological changes, 42 on molecular mechanisms, and 68 on toxicokinetics. Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) exposure were associated with kidney dysfunction, chronic kidney diseases, and increased risk of kidney cancer. Various histological changes were reported, especially in tubular epithelial cells, and the etiology of PFAS-induced kidney injury included various molecular mechanisms. Although PFOA and PFOS are not considered genotoxic, they exhibit several characteristics of carcinogens. Toxicokinetics of PFOA and PFOS differed significantly between species, with renal elimination influenced by various factors such as sex, age, and structure of the compound. CONCLUSION Evidence suggests that PFAS, especially PFOA and PFOS, negatively affects kidney health, though gaps in our understanding of such effects call for further research.
Collapse
Affiliation(s)
- Jidapa Hanvoravongchai
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Shimotsuke, Japan
| | - Methasit Laochindawat
- Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yusuke Kimura
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Shimotsuke, Japan
| | - Nathan Mise
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Shimotsuke, Japan
| | - Sahoko Ichihara
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Shimotsuke, Japan.
| |
Collapse
|
2
|
Wen Y, Juhasz A, Cui X. Regulating the absorption and excretion of perfluorooctane sulfonate and its alternatives through influencing enterohepatic circulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173161. [PMID: 38735313 DOI: 10.1016/j.scitotenv.2024.173161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Enterohepatic circulation has been reported to play a significant role in the bioaccumulation of PFASs. In this study, the tissue distribution and excretion of PFOS and its alternatives, namely 6:2 and 8:2 fluorotelomer sulfonic acid (FTSA) was investigated using a mouse assay with a focus on role of enterohepatic circulation. Liver was the primarily accumulating organ for PFOS and 8:2 FTSA (33.4 % and 25.8 % of total doses absorbed after 14 days), whereas 65 % of 6:2 FTSA was excreted via urine within 24 h. Peak levels of 8:2 FTSA and PFOS were found in the gallbladder, implying the important role of enterohepatic circulation in PFASs reabsorption. The role of enterohepatic circulation was further evaluated through co-exposure of 8:2 FTSA and PFOS with medicines (namely metformin (MET) and ursodeoxycholic acid (UDCA)). MET reduced accumulation of 8:2 FTSA and PFOS in the liver by 68.6 % and 65.8 %, through down-regulation of bile acid transporter (Asbt) and enhancement of fecal excretion. Conversely, UDCA raised their concentrations by 21.9 % and 34.6 % compared to that exposed solely to PFASs. A strong positive correlation was identified between PFASs serum levels and Asbt expression. This study illuminated PFAS bioaccumulation mechanisms and suggested potential strategies to mitigate the exposure risks.
Collapse
Affiliation(s)
- Yong Wen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Albert Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Xinyi Cui
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
3
|
Shi T, Li D, Li D, Sun J, Xie P, Wang T, Li R, Li Z, Zou Z, Ren X. Individual and joint associations of per- and polyfluoroalkyl substances (PFAS) with gallstone disease in adults: A cross-sectional study. CHEMOSPHERE 2024; 358:142168. [PMID: 38685323 DOI: 10.1016/j.chemosphere.2024.142168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/28/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Disturbances in the enterohepatic circulation are important biological mechanisms for causing gallstones and also have important effects on the metabolism of Per- and polyfluoroalkyl substances (PFAS). Moreover, PFAS is associated with sex hormone disorder which is another important cause of gallstones. However, it remains unclear whether PFAS is associated with gallstones. In this study, we used logistic regression, restricted cubic spline (RCS), quantile g-computation (qg-comp), Bayesian kernel machine regression (BKMR), and subgroup analysis to assess the individual and joint associations of PFAS with gallstones and effect modifiers. We observed that the individual associations of perfluorodecanoic acid (PFDeA) (OR: 0.600, 95% CI: 0.444 to 0.811), perfluoroundecanoic acid (PFUA) (OR: 0.630, 95% CI: 0.453 to 0.877), n-perfluorooctane sulfonic acid (n-PFOS) (OR: 0.719, 95% CI: 0.571 to 0.906), and perfluoromethylheptane sulfonic acid isomers (Sm-PFOS) (OR: 0.768, 95% CI: 0.602 to 0.981) with gallstones were linearly negative. Qg-comp showed that the PFAS mixture (OR: 0.777, 95% CI: 0.514 to 1.175) was negatively associated with gallstones, but the difference was not statistically significant, and PFDeA had the highest negative association. Moreover, smoking modified the association of perfluorononanoic acid (PFNA) with gallstones. BKMR showed that PFDeA, PFNA, and PFUA had the highest groupPIP (groupPIP = 0.93); PFDeA (condPIP = 0.82), n-perfluorooctanoic acid (n-PFOA) (condPIP = 0.68), and n-PFOS (condPIP = 0.56) also had high condPIPs. Compared with the median level, the joint association of the PFAS mixture with gallstones showed a negative trend; when the PFAS mixture level was at the 70th percentile or higher, they were negatively associated with gallstones. Meanwhile, when other PFAS were fixed at the 25th, 50th, and 75th percentiles, PFDeA had negative associations with gallstones. Our evidence emphasizes that PFAS is negatively associated with gallstones, and more studies are needed in the future to definite the associations of PFAS with gallstones and explore the underlying biological mechanisms.
Collapse
Affiliation(s)
- Tianshan Shi
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Di Li
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Donghua Li
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Jin Sun
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, China
| | - Peng Xie
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Tingrong Wang
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Rui Li
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Zhenjuan Li
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Zixuan Zou
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaowei Ren
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China; Institute for Health Statistics and Intelligent Analysis, School of Public Health, Lanzhou University, Lanzhou, Gansu, China.
| |
Collapse
|
4
|
Poiani SB, Dobeš P, Kunc M, Pereira MC, Bueno OC, Hyršl P. The Influence of Selected Insecticides on the Oxidative Response of Atta sexdens (Myrmicinae, Attini) Workers. NEOTROPICAL ENTOMOLOGY 2023; 52:1088-1099. [PMID: 37656416 PMCID: PMC10695876 DOI: 10.1007/s13744-023-01077-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023]
Abstract
Reactive oxygen species (ROS) are generated as products of normal cellular metabolic activities; however, the use of pesticides to control leafcutter ants leads to unbalanced ROS production. We evaluated the effects of two insecticides (fipronil, sulfluramid) and metallic insecticide complex (magnesium complex [Mg(hesp)2(phen)] (1)) on the superoxide dismutase (SOD), glutathione (GSH) and the overall antioxidant capacity using two different methodologies: total radical-trapping potential (TRAP) and oxygen radical absorbance capacity (ORAC). Media workers of Atta sexdens (C. Linnaeus) were exposed to the insecticides for 24 h, 48 h, 72 h and 96 h before their fat bodies were dissected for analysis. The results showed that although the sulfluramid may cause the production of ROS, its slow action in the organism does not lead to oxidative stress. There is a rise in oxidative stress in workers of leafcutter ants treated with fipronil because SOD significantly increased when compared to the control group. On the other hand, Mg1-complex suppressed both GSH and SOD, indicating that the immune system may be affected by Mg1-complex, which has a delayed activity ideal for its use in chemical pest control. Both TRAP and ORAC evaluated total antioxidant capacities; however, ORAC proved to be a more sensitive method. In conclusion, the Mg1-complex is a new compound that should be further investigated as a potential replacement for fipronil and sulfluramid in pest control.
Collapse
Affiliation(s)
- Silvana Beani Poiani
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Institute of Biosciences, Center for the Study of Social Insects, Sao Paulo State University UNESP, Sao Paulo, Brazil
| | - Pavel Dobeš
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Martin Kunc
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Mayara Cristina Pereira
- Institute of Biosciences, Center for the Study of Social Insects, Sao Paulo State University UNESP, Sao Paulo, Brazil
| | - Odair Correa Bueno
- Institute of Biosciences, Center for the Study of Social Insects, Sao Paulo State University UNESP, Sao Paulo, Brazil
| | - Pavel Hyršl
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
5
|
Romero-Murillo P, Gallego JL, Leignel V. Marine Pollution and Advances in Biomonitoring in Cartagena Bay in the Colombian Caribbean. TOXICS 2023; 11:631. [PMID: 37505596 PMCID: PMC10385514 DOI: 10.3390/toxics11070631] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/13/2023] [Accepted: 07/16/2023] [Indexed: 07/29/2023]
Abstract
Coastal zones sustain extensive biodiversity, support key processes for ocean dynamics, and influence the balance of the global environment. They also provide resources and services to communities, determine their culture, and are the basis for their economic growth. Cartagena Bay in the Colombian Caribbean is the place of the establishment of one of the country's main cities, which has a great historical and tourist attraction, and it is also the location of the main commercial port and a great variety of industries. Historically, it has been affected by several environmental impacts and intense pollution. This situation has gained the attention of different researchers, so herein is presented a literature review with a systematic approach using RStudio's bibliometrix on the presence of pollutants and the impact on biodiversity in recent decades, providing a critical analysis of the state of Cartagena Bay and its future needs to ensure its recovery and conservation. In addition, the socioeconomic dynamics related to the environmental state of Cartagena Bay are presented from the framework drivers, pressures, status, impacts, and responses (DPSIR). The update and critical understanding of the sources, fate, and effects of pollution are important not only for the knowledge of the status of this singular ecosystem but also to encourage future research and entrench evidence to support decision makers' actions. This review highlights that several pollutants that have been detected exceeding sediment quality guidelines, like As, Cd, Hg, and PAH, are also reported to bioaccumulate and cause damage throughout the trophic levels of the coastal environment. In addition, the potential use of sentinel species and biomarkers for their monitoring is discussed. Finally, the factors that cause pollution and threaten the state of the bay continue to exert pressure and impact; thus, there is a call for the further monitoring of this ecosystem and the strengthening of policies and regulations.
Collapse
Affiliation(s)
- Patricia Romero-Murillo
- Escuela de Biología Marina, Grupo de Investigación GIBEAM, Universidad del Sinú Seccional Cartagena, Av. El Bosque Trans, 54 N° 30-453 Santillana, Cartagena de Indias 130014, Colombia
| | - Jorge L Gallego
- Grupo de Investigaciones y Mediciones Ambientales GEMA, Facultad de Ingenierías, Universidad de Medellín, Carrera 87 N° 30-65, Medellín 050026, Colombia
| | - Vincent Leignel
- Laboratoire BIOSSE, Le Mans Université, Avenue O Messiaen, 72000 Le Mans, France
| |
Collapse
|
6
|
Khan B, Burgess RM, Cantwell MG. Occurrence and Bioaccumulation Patterns of Per- and Polyfluoroalkyl Substances (PFAS) in the Marine Environment. ACS ES&T WATER 2023; 3:1243-1259. [PMID: 37261084 PMCID: PMC10228145 DOI: 10.1021/acsestwater.2c00296] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a group of synthetic compounds used in commercial applications, household products, and industrial processes. The concern around the environmental persistence, bioaccumulation and toxicity of this vast contaminant class continues to rise. We conducted a review of the scientific literature to compare patterns of PFAS bioaccumulation in marine organisms and identify compounds of potential concern. PFAS occurrence data in seawater, sediments, and several marine taxa was analyzed from studies published between the years 2000 and 2020. Taxonomic and tissue-specific differences indicated elevated levels in protein-rich tissues and in air-breathing organisms compared to those that respire in water. Long-chain perfluoroalkyl carboxylic acids, particularly perfluoroundecanoic acid, were detected at high concentrations across several taxa and across temporal studies indicating their persistence and bioaccumulative potential. Perfluorooctanesulfonic acid was elevated in various tissue types across taxa. Precursors and replacement PFAS were detected in several marine organisms. Identification of these trends across habitats and taxa can be applied towards biomonitoring efforts, determination of high-risk taxa, and criteria development. This review also highlights challenges related to PFAS biomonitoring including (i) effects of environmental and biological variables, (ii) evaluation of protein binding sites and affinities, and (iii) biotransformation of precursors.
Collapse
Affiliation(s)
- Bushra Khan
- ORISE Research Participant at the US Environmental Protection Agency, ORD-CEMM, Atlantic Coastal Environmental Sciences Division, 27 Tarzwell Drive, Narragansett, RI 02882, USA
| | - Robert M. Burgess
- US Environmental Protection Agency, ORD-CEMM, Atlantic Coastal Environmental Sciences Division, 27 Tarzwell Drive, Narragansett, RI 02882, USA
| | - Mark G. Cantwell
- US Environmental Protection Agency, ORD-CEMM, Atlantic Coastal Environmental Sciences Division, 27 Tarzwell Drive, Narragansett, RI 02882, USA
| |
Collapse
|
7
|
Sun J, Xing L, Chu J. Global ocean contamination of per- and polyfluoroalkyl substances: A review of seabird exposure. CHEMOSPHERE 2023; 330:138721. [PMID: 37080473 DOI: 10.1016/j.chemosphere.2023.138721] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have been extensively produced and used as surfactants and repellents for decades. To date, the global contamination pattern of PFAS in marine biota has seldomly been reviewed. Seabirds are ideal biomonitoring tools to study environmental contaminants and their effects. Here, we compiled and synthesized reported PFAS concentrations in various seabird species to reflect spatiotemporal patterns and exposure risks of major PFAS on a global ocean scale. Perfluorooctane sulfonic acid (PFOS) was the most studied PFAS in seabirds, which showed the highest level in eggs of common guillemots (U. aalge) from the Baltic Sea, followed by great cormorants (P. carbo) from the North Sea and double-crested cormorants (P.auritus) from the San Francisco Bay, whereas the lowest were those reported for Antarctic seabirds. The temporal pattern showed an overall higher level of PFOS in the late 1990s and early 2000s, consistent with the phase-out of perfluorooctane sulfonyl fluoride-based products. Maximum liver PFOS concentrations in several species such as cormorants and fulmars from Europe and North America exceeded the estimated toxicity reference values. Systematic evaluations using representative species and long time-series are necessary to understand contamination patterns in seabirds in South America, Africa, and Asia where information is lacking. In addition, limited research has been conducted on the identification and toxic effects of novel substitutes such as fluorotelomers and ether PFAS (F-53B, Gen-X etc.) in seabirds. Further research, including multi-omics analysis, is needed to comprehensively characterize the exposure and toxicological profiles of PFAS in seabirds and other wildlife.
Collapse
Affiliation(s)
- Jiachen Sun
- College of Marine Life Sciences, Ocean University of China, CN-266003, Qingdao, China.
| | - Lingling Xing
- College of Marine Life Sciences, Ocean University of China, CN-266003, Qingdao, China
| | - Jiansong Chu
- College of Marine Life Sciences, Ocean University of China, CN-266003, Qingdao, China.
| |
Collapse
|
8
|
Rojas-Hucks S, Rodriguez-Jorquera IA, Nimpstch J, Bahamonde P, Benavides JA, Chiang G, Pulgar J, Galbán-Malagón CJ. South American National Contributions to Knowledge of the Effects of Endocrine Disrupting Chemicals in Wild Animals: Current and Future Directions. TOXICS 2022; 10:toxics10120735. [PMID: 36548568 PMCID: PMC9781241 DOI: 10.3390/toxics10120735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 05/28/2023]
Abstract
Human pressure due to industrial and agricultural development has resulted in a biodiversity crisis. Environmental pollution is one of its drivers, including contamination of wildlife by chemicals emitted into the air, soil, and water. Chemicals released into the environment, even at low concentrations, may pose a negative effect on organisms. These chemicals might modify the synthesis, metabolism, and mode of action of hormones. This can lead to failures in reproduction, growth, and development of organisms potentially impacting their fitness. In this review, we focused on assessing the current knowledge on concentrations and possible effects of endocrine disruptor chemicals (metals, persistent organic pollutants, and others) in studies performed in South America, with findings at reproductive and thyroid levels. Our literature search revealed that most studies have focused on measuring the concentrations of compounds that act as endocrine disruptors in animals at the systemic level. However, few studies have evaluated the effects at a reproductive level, while information at thyroid disorders is scarce. Most studies have been conducted in fish by researchers from Brazil, Argentina, Chile, and Colombia. Comparison of results across studies is difficult due to the lack of standardization of units in the reported data. Future studies should prioritize research on emergent contaminants, evaluate effects on native species and the use of current available methods such as the OMICs. Additionally, there is a primary focus on organisms related to aquatic environments, and those inhabiting terrestrial environments are scarce or nonexistent. Finally, we highlight a lack of funding at a national level in the reviewed topic that may influence the observed low scientific productivity in several countries, which is often negatively associated with their percentage of protected areas.
Collapse
Affiliation(s)
- Sylvia Rojas-Hucks
- Departamento de Ecología y Biodiversidad, Facultad Ciencias de la Vida, Universidad Andres Bello, República 440, Santiago 8370134, Chile
| | | | - Jorge Nimpstch
- Facultad de Ciencias, Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Paulina Bahamonde
- Laboratory of Aquatic Environmental Research, Centro de Estudios Avanzados—HUB Ambiental UPLA, Universidad de Playa Ancha, Valparaíso 2360004, Chile
- Millennium Nucleus of Austral Invasive Salmonids (INVASAL), Concepción 4070386, Chile
- Cape Horn International Center (CHIC), Universidad de Magallanes, Punta Arenas 6210427, Chile
| | - Julio A. Benavides
- Doctorado en Medicina de la Conservación, Facultad Ciencias de la Vida, Universidad Andres Bello, República 440, Santiago 8370134, Chile
- Centro de Investigación para la Sustentabilidad, Facultad Ciencias de la Vida, Universidad Andres Bello, República 440, Santiago 8370134, Chile
- MIVEGEC, IRD, CNRS, Université de Montpellier, 34090 Montpellier, France
| | - Gustavo Chiang
- Departamento de Ecología y Biodiversidad, Facultad Ciencias de la Vida, Universidad Andres Bello, República 440, Santiago 8370134, Chile
- Centro de Investigación para la Sustentabilidad, Facultad Ciencias de la Vida, Universidad Andres Bello, República 440, Santiago 8370134, Chile
| | - José Pulgar
- Departamento de Ecología y Biodiversidad, Facultad Ciencias de la Vida, Universidad Andres Bello, República 440, Santiago 8370134, Chile
| | - Cristóbal J. Galbán-Malagón
- GEMA, Center for Genomics, Ecology & Environment, Universidad Mayor, Camino la Pirámide 5750, Huechuraba, Santiago 8580000, Chile
- Institute of Environment, Florida International University, University Park, Miami, FL 33199, USA
| |
Collapse
|
9
|
He X, Jiang J, Zhang XX. Environmental exposure to low-dose perfluorohexanesulfonate promotes obesity and non-alcoholic fatty liver disease in mice fed a high-fat diet. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:49279-49290. [PMID: 35217953 DOI: 10.1007/s11356-022-19369-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
Perfluorohexanesulfonate (PFHxS) is one of the most prevalent perfluoroalkyls. It is widely distributed in both abiotic and biotic environments because of its prevalence and bioaccumulative properties. Exposure to PFHxS has been associated with the higher serum liver functions associated with steatosis in obese people. This study explores the impact of chronic exposure to low-dose PFHxS on predisposition to non-alcoholic fatty liver disease (NAFLD) as well as on metabolic functions in diet-induced obese mice. Results showed that 12-week exposure to PFHxS at a dose of 450 μg/L through drinking water significantly promoted obesity and metabolic syndrome in male C57 mice fed a high-fat diet. The PFHxS exposure markedly aggravated hepatic symptoms resembling NAFLD and caused systematic metabolic disorders as well as gut dysbiosis in the obese mice. Key genes of hepatic lipid metabolism, inflammation, and fibrosis were strongly altered, while gut microflora that have been associated with obesity and pathogenesis of NAFLD, including the Bacteroides/Firmicutes ratio, Desulfovibrio, Mucispirillum, and Akkermansia, were significantly affected by the PFHxS exposure. The findings of this study suggest that environmental PFHxS exposure is a tangible risk factor for metabolic diseases such as NAFLD, especially among obese individuals.
Collapse
Affiliation(s)
- Xiwei He
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| | - Jinhong Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
10
|
Cao H, Zhou Z, Hu Z, Wei C, Li J, Wang L, Liu G, Zhang J, Wang Y, Wang T, Liang Y. Effect of Enterohepatic Circulation on the Accumulation of Per- and Polyfluoroalkyl Substances: Evidence from Experimental and Computational Studies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3214-3224. [PMID: 35138827 DOI: 10.1021/acs.est.1c07176] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The pharmacokinetic characteristics of per- and polyfluoroalkyl substances (PFAS) affect their distribution and bioaccumulation in biological systems. The enterohepatic circulation leads to reabsorption of certain chemicals from bile back into blood and the liver and thus influences their elimination, yet its influence on PFAS bioaccumulation remains unclear. We explored the role of enterohepatic circulation in PFAS bioaccumulation by examining tissue distribution of various PFAS in wild fish and a rat model. Computational models were used to determine the reabsorbed fractions of PFAS by calculating binding affinities of PFAS for key transporter proteins of enterohepatic circulation. The results indicated that higher concentrations were observed in blood, the liver, and bile compared to other tissues for some PFAS in fish. Furthermore, exposure to a PFAS mixture on the rat model showed that the reabsorption phenomenon appeared during 8-12 h for most long-chain PFAS. Molecular docking calculations suggest that PFAS can bind to key transporter proteins via electrostatic and hydrophobic interactions. Further regression analysis adds support to the hypothesis that binding affinity of the apical sodium-dependent bile acid transporter is the most important variable to predict the human half-lives of PFAS. This study demonstrated the critical role of enterohepatic circulation in reabsorption, distribution, and accumulation of PFAS.
Collapse
Affiliation(s)
- Huiming Cao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Zhen Zhou
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University, Wuhan 430056, China
| | - Zhe Hu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Cuiyun Wei
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Li
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Ling Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Guangliang Liu
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Jie Zhang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Thanh Wang
- MTM Research Centre, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| |
Collapse
|
11
|
Cao Y, Ng C. Absorption, distribution, and toxicity of per- and polyfluoroalkyl substances (PFAS) in the brain: a review. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:1623-1640. [PMID: 34533150 DOI: 10.1039/d1em00228g] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of synthetic chemicals colloquially known as "forever chemicals" because of their high persistence. PFAS have been detected in the blood, liver, kidney, heart, muscle and brain of various species. Although brain is not a dominant tissue for PFAS accumulation compared to blood and liver, adverse effects of PFAS on brain functions have been identified. Here, we review studies related to the absorption, accumulation, distribution and toxicity of PFAS in the brain. We summarize evidence on two potential mechanisms of PFAS entering the brain: initiating blood-brain barrier (BBB) disassembly through disrupting tight junctions and relying on transporters located at the BBB. PFAS with diverse structures and properties enter and accumulate in the brain with varying efficiencies. Compared to long-chain PFAS, short-chain PFAS may not cross cerebral barriers effectively. According to biomonitoring studies and PFAS exposure experiments, PFAS can accumulate in the brain of humans and wildlife species. With respect to the distribution of PFAS in specific brain regions, the brain stem, hippocampus, hypothalamus, pons/medulla and thalamus are dominant for PFAS accumulation. The accumulation and distribution of PFAS in the brain may lead to toxic effects in the central nervous system (CNS), including PFAS-induced behavioral and cognitive disorders. The specific mechanisms underlying such PFAS-induced neurotoxicity remain to be explored, but two major potential mechanisms based on current understanding are PFAS effects on calcium homeostasis and neurotransmitter alterations in neurons. Based on the information available about PFAS uptake, accumulation, distribution and impacts on the brain, PFAS have the potential to enter and accumulate in the brain at varying levels. The balance of existing studies shows there is some indication of risk in animals, while the human evidence is mixed and warrants further scrutiny.
Collapse
Affiliation(s)
- Yuexin Cao
- Department of Civil & Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Carla Ng
- Department of Civil & Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA.
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
12
|
Taylor S, Terkildsen M, Stevenson G, de Araujo J, Yu C, Yates A, McIntosh RR, Gray R. Per and polyfluoroalkyl substances (PFAS) at high concentrations in neonatal Australian pinnipeds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147446. [PMID: 33971603 DOI: 10.1016/j.scitotenv.2021.147446] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Per and polyfluorinated substances (PFAS) exposure was investigated in Australian pinnipeds. Concentrations of 16 PFAS were measured in the livers of Australian sea lion (Neophoca cinerea), Australian fur seal (Arctocephalus pusillus doriferus) and a long-nosed Fur Seal (Arctocephalus forsteri) pup sampled between 2017 and 2020 from colonies in South Australia and Victoria. Findings reported in this study are the first documented PFAS concentrations in Australian pinnipeds. Median and observed range of values in ng/g wet weight were highest for perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and perfluorononanoic acid (PFNA) in the liver of N. cinerea (PFOS = 7.14, 1.00-16.9; PFOA = 2.73, 0.32-11.2; PFNA = 2.96, 0.61-8.22; n = 28), A. forsteri (PFOS = 15.98, PFOA = 2.02, PFNA = 7.86; n = 1) and A. p. doriferus (PFOS = 27.4, 10.5-2119; PFOA = 0.98, 0.32-52.2; PFNA = 2.50, 0.91-44.2; n = 20). PFAS concentrations in A. p. doriferus pups were significantly greater (p < 0.05) than in N. cinerea pups for all PFAS except PFOA and were of similar magnitude to those reported in northern hemisphere marine animals. These results demonstrate exposure differences in both magnitude and PFAS profiles for N. cinerea in South Australia and A. p. doriferus in Victoria. This study reports detectable PFAS concentrations in Australian pinniped pups indicating the importance of maternal transfer of these toxicants. As N. cinerea are endangered and recent declines in pup production has been reported for A. p. doriferus at the colony sampled, investigation of potential health impacts of these toxicants on Australian pinnipeds is recommended.
Collapse
Affiliation(s)
- Shannon Taylor
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, NSW 2006, Australia.
| | | | - Gavin Stevenson
- Australian Ultra-Trace Laboratory, National Measurement Institute, North Ryde, NSW 2113, Australia.
| | - Jesuina de Araujo
- Australian Ultra-Trace Laboratory, National Measurement Institute, North Ryde, NSW 2113, Australia
| | - Chunhai Yu
- Australian Ultra-Trace Laboratory, National Measurement Institute, North Ryde, NSW 2113, Australia
| | - Alan Yates
- Australian Ultra-Trace Laboratory, National Measurement Institute, North Ryde, NSW 2113, Australia.
| | - Rebecca R McIntosh
- Conservation Department, Phillip Island Nature Parks, PO Box 97, Cowes, Victoria 3922, Australia.
| | - Rachael Gray
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, NSW 2006, Australia.
| |
Collapse
|
13
|
A rapid method for the detection and quantification of legacy and emerging per- and polyfluoroalkyl substances (PFAS) in bird feathers using UPLC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1172:122653. [DOI: 10.1016/j.jchromb.2021.122653] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/11/2021] [Accepted: 03/08/2021] [Indexed: 11/19/2022]
|
14
|
Miranda DA, Benskin JP, Awad R, Lepoint G, Leonel J, Hatje V. Bioaccumulation of Per- and polyfluoroalkyl substances (PFASs) in a tropical estuarine food web. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142146. [PMID: 33254889 DOI: 10.1016/j.scitotenv.2020.142146] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/30/2020] [Accepted: 08/31/2020] [Indexed: 05/20/2023]
Abstract
The biomagnification of per- and polyfluoroalkyl substances (PFASs) was investigated in a tropical mangrove food web from an estuary in Bahia, Brazil. Samples of 44 organisms (21 taxa), along with biofilm, leaves, sediment and suspended particulate matter were analyzed. Sum (∑) PFAS concentrations in biota samples were dominated by perfluorooctane sulfonate (PFOS, 93% detection frequency in tissues; 0.05 to 1.97 ng g-1 ww whole-body (wb)), followed by perfluorotridecanoate (PFTrDA, 57%; 0.01 to 0.28 ng g-1 ww wb). PFOS precursors such as perfluorooctane sulfonamide (FOSA, 54%; 0.01 to 0.32 ng g-1 ww wb) and N-ethyl perfluorooctane sulfonamide (EtFOSA; 30%; 0.01 to 0.21 ng g-1 ww wb) were also detected. PFAS accumulation profiles revealed different routes of exposure among bivalve, crustacean and fish groups. Statistics for left-censored data were used in order to minimize bias on trophic magnification factors (TMFs) calculations. TMFs >1 were observed for PFOS (linear + branched isomers), EtFOSA (linear + branched isomers), and perfluorononanoate (PFNA), and in all cases, dissimilar accumulation patterns were observed among different trophic positions. The apparent biodilution of some long-chain PFCAs through the food chain (TMF < 1) may be due to exposure from multiple PFAS sources. This is the first study investigating bioaccumulation of PFASs in a tropical food web and provides new insight on the behavior of this ubiquitous class of contaminants.
Collapse
Affiliation(s)
- Daniele A Miranda
- Centro Interdisciplinar de Energia e Ambiente (CIEnAm) and Inst. de Química, Universidade Federal da Bahia, 41170-115 Salvador, BA, Brazil; Department of Environmental Science, Stockholm University, Stockholm, Sweden.
| | - Jonathan P Benskin
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Raed Awad
- Department of Environmental Science, Stockholm University, Stockholm, Sweden; Swedish Environmental Research Institute (IVL), Stockholm, Sweden
| | - Gilles Lepoint
- Freshwater and Oceanic sciences Unit of reSearch (FOCUS - Oceanology), University of Liege, 4000 Liege, Belgium
| | - Juliana Leonel
- Departamento de Oceanografia, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Vanessa Hatje
- Centro Interdisciplinar de Energia e Ambiente (CIEnAm) and Inst. de Química, Universidade Federal da Bahia, 41170-115 Salvador, BA, Brazil
| |
Collapse
|
15
|
Bertel-Sevilla A, Alzate JF, Olivero-Verbel J. De novo assembly and characterization of the liver transcriptome of Mugil incilis (lisa) using next generation sequencing. Sci Rep 2020; 10:13957. [PMID: 32811897 PMCID: PMC7435268 DOI: 10.1038/s41598-020-70902-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 07/24/2020] [Indexed: 11/08/2022] Open
Abstract
Mugil incilis (lisa) is an important commercial fish species in many countries, living along the coasts of the western Atlantic Ocean. It has been used as a model organism for environmental monitoring and ecotoxicological investigations. Nevertheless, available genomic and transcriptomic information for this organism is extremely deficient. The aim of this study was to characterize M. incilis hepatic transcriptome using Illumina paired-end sequencing. A total of 32,082,124 RNA-Seq read pairs were generated utilizing the HiSeq platform and subsequently cleaned and assembled into 93,912 contigs (N50 = 2,019 bp). The analysis of species distribution revealed that M. incilis contigs had the highest number of hits to Stegastes partitus (13.4%). Using a sequence similarity search against the public databases GO and KEGG, a total of 7,301 and 16,967 contigs were annotated, respectively. KEGG database showed genes related to environmental information, metabolism and organismal system pathways were highly annotated. Complete or partial coding DNA sequences for several candidate genes associated with stress responses/detoxification of xenobiotics, as well as housekeeping genes, were employed to design primers that were successfully tested and validated by RT-qPCR. This study presents the first transcriptome resources for Mugil incilis and provides basic information for the development of genomic tools, such as the identification of RNA markers, useful to analyze environmental impacts on this fish Caribbean species.
Collapse
Affiliation(s)
- Angela Bertel-Sevilla
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, 130015, Cartagena, Colombia
| | - Juan F Alzate
- Centro Nacional de Secuenciación Genómica-CNSG, Sede de Investigación Universitaria-SIU, Universidad de Antioquia, Medellín, Colombia
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, 130015, Cartagena, Colombia.
| |
Collapse
|
16
|
Caballero-Gallardo K, Alcala-Orozco M, Barraza-Quiroz D, De la Rosa J, Olivero-Verbel J. Environmental risks associated with trace elements in sediments from Cartagena Bay, an industrialized site at the Caribbean. CHEMOSPHERE 2020; 242:125173. [PMID: 31698215 DOI: 10.1016/j.chemosphere.2019.125173] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 10/18/2019] [Accepted: 10/20/2019] [Indexed: 05/21/2023]
Abstract
Cartagena Bay (CB) is an industrialized site in the Caribbean. The aim of this study was to evaluate contamination patterns by trace elements in sediments from CB. Sediment samples from twelve sites in CB, and three at the Grand Marsh of Santa Marta (GMSM), a reference site, were collected during dry and rainy seasons. Forty-four trace elements were evaluated employing ICP-MS, and mercury (Hg) was measured using a Hg analyzer. Most contaminated sites corresponded to stations related to repair and maintenance of ships, with high concentrations of Cr, Cu, As and Cd; as well as in areas where cargo transshipment centers and cruise ship terminals operate, which showed elevated levels of Ba. Stations receiving inputs from petrochemical and fertilizer plants displayed high content of Pb. At the station where an extinct chlor-alkali plant was located, a high total Hg level was found, highlighting its persistence. At least 70% of the samples presented Cr, Cu, and As concentrations that were ≥ Threshold Effect Level, < Probable Effect Level, ≥ Effects Range Low and < Effects Range Medium, suggesting adverse biological effects could occur occasionally. Potential Ecological risk values revealed that only Hg and Cd may generate deleterious effects to the aquatic life. However, with few exceptions, sediment samples from CB can be considered as moderately to heavily contaminated, as shown by the Igeo. In short, the principles of ecosystem-based management should be implemented along Cartagena Bay to guarantee safe levels of trace elements in sediments and a better quality of this estuary.
Collapse
Affiliation(s)
- Karina Caballero-Gallardo
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, 130015, Colombia
| | - Maria Alcala-Orozco
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, 130015, Colombia
| | - Diana Barraza-Quiroz
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, 130015, Colombia
| | - Jesus De la Rosa
- Associate Unit CSIC - University of Huelva ''Atmospheric Pollution'', Center for Research in Sustainable Chemistry (CIQSO), University of Huelva, E21071, Huelva, Spain
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, 130015, Colombia.
| |
Collapse
|
17
|
Acosta-Coley I, Duran-Izquierdo M, Rodriguez-Cavallo E, Mercado-Camargo J, Mendez-Cuadro D, Olivero-Verbel J. Quantification of microplastics along the Caribbean Coastline of Colombia: Pollution profile and biological effects on Caenorhabditis elegans. MARINE POLLUTION BULLETIN 2019; 146:574-583. [PMID: 31426195 DOI: 10.1016/j.marpolbul.2019.06.084] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/30/2019] [Accepted: 06/30/2019] [Indexed: 06/10/2023]
Abstract
The Caribbean Coast of Colombia has a flourishing plastic industry with weak and insufficient waste management policies and practices, leading to plastic pollution along its touristic beaches. In this work, primary and secondary microplastics (MPs) were surveyed at four different locations along the Colombian Caribbean Coast. Primary microplastics, specifically white new plastic pellets, represented the largest amount of MPs found, with densities decreasing in the order Cartagena > Coveñas > Puerto Colombia > Riohacha. This distribution was connected to the vicinity of MPs sources, marine currents and wind direction. The presence of secondary MPs was associated with urban centers and proximity to river mouths. The FTIR characterization showed polyethylene as the predominant resin type, with different degrees of surface oxidation. Aqueous extracts from sampled MPs were tested on Caenorhabditis elegans. Secondary MPs elicited greater toxicological responses than pellets, especially those from Cartagena Bay, suggesting MPs act as carriers for biologically-active pollutants.
Collapse
Affiliation(s)
- Isabel Acosta-Coley
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130014, Colombia; Analytical Chemistry and Biomedicine Group, School of Sciences, San Pablo Campus, University of Cartagena, Cartagena, Colombia
| | - Margareth Duran-Izquierdo
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130014, Colombia
| | - Erika Rodriguez-Cavallo
- Analytical Chemistry and Biomedicine Group, School of Sciences, San Pablo Campus, University of Cartagena, Cartagena, Colombia
| | - Jairo Mercado-Camargo
- Research Group on Drug Chemistry, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130014, Colombia
| | - Dario Mendez-Cuadro
- Analytical Chemistry and Biomedicine Group, School of Sciences, San Pablo Campus, University of Cartagena, Cartagena, Colombia
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130014, Colombia.
| |
Collapse
|
18
|
Honda M, Muta A, Shimazaki A, Akasaka T, Yoshikuni M, Shimasaki Y, Oshima Y. High concentrations of perfluorooctane sulfonate in mucus of tiger puffer fish Takifugu rubripes: a laboratory exposure study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:1551-1558. [PMID: 29098580 DOI: 10.1007/s11356-017-0537-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/19/2017] [Indexed: 06/07/2023]
Abstract
Distribution of perfluorooctane sulfonate (PFOS) was investigated in tissues (plasma, blood clot, mucus, skin, liver, muscle, and gonad) of tiger puffer fish Takifugu rubripes. A single dose of PFOS was intraperitoneally injected at 0.1 mg/kg body weight with samples taken over a 14-day period. The highest concentration of PFOS was found in the plasma, 861 ng/mL at 14 days, followed by the mucus, liver, blood clot, gonads, muscles, and skin of fish. A gradual upward trend in PFOS concentration was observed in the mucus and liver whereas there was no change in the plasma, blood clot, gonad, muscle, and skin after the initial increase in PFOS concentrations following injection. No significant trend for estimated total PFOS content in whole body was observed during the experimental period. Relatively high concentrations of PFOS (690 ng/g ww after 14 days) were detected in body surface mucus that continuously oozes from the skin. These results may suggest that mucus is one of the elimination pathways of PFOS in tiger puffer fish.
Collapse
Affiliation(s)
- Masato Honda
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka, Fukuoka, 812-8581, Japan
| | - Akemi Muta
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka, Fukuoka, 812-8581, Japan
| | - Akinari Shimazaki
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka, Fukuoka, 812-8581, Japan
| | - Taiki Akasaka
- Center for Advanced Instrumental and Educational Supports, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka, Fukuoka, 812-8581, Japan
| | - Michiyasu Yoshikuni
- Fishery Research Laboratory, Faculty of Agriculture, Kyushu University, Tsuyazaki 4-46-24, Fukutsu, Fukuoka, 811-3304, Japan
| | - Yohei Shimasaki
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka, Fukuoka, 812-8581, Japan
| | - Yuji Oshima
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka, Fukuoka, 812-8581, Japan.
| |
Collapse
|
19
|
Munoz G, Budzinski H, Babut M, Drouineau H, Lauzent M, Menach KL, Lobry J, Selleslagh J, Simonnet-Laprade C, Labadie P. Evidence for the Trophic Transfer of Perfluoroalkylated Substances in a Temperate Macrotidal Estuary. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:8450-8459. [PMID: 28679050 DOI: 10.1021/acs.est.7b02399] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The present survey examines the trophodynamics of a suite of 19 perfluoroalkyl substances (PFASs) in a temperate macrotidal estuary (Gironde, SW France). Across the 147 biota samples (18 taxa) collected, perfluorooctane sulfonate (PFOS), perfluorooctane sulfonamide (FOSA), and C8-C14 perfluoroalkyl carboxylates (PFCAs) were the most-recurrent analytes. ΣPFASs ranged between 0.66-45 ng per g of wet weight of the whole body. Benthic organisms had relatively high ΣPFASs compared to demersal organisms and displayed specific composition profiles with higher relative abundances of C8 and C9 PFCAs. Trophic magnification factors (TMFs) were determined through the use of linear mixed effect models including censored data, thereby considering data below detection limits as well as the interspecific variability of δ15N and PFAS levels (random effects). TMFs were almost consistently >1 in the benthic food web as well as when considering all data pooled together, providing evidence for the biomagnification of several PFASs in estuarine environments. In addition, in contrast with previous observations, TMFs determined in the estuarine benthic web were found to significantly decrease with increasing chain length for C8-C14 PFCAs and C6-C8 perfluoroalkyl sulfonates. This suggests that PFAS chemical structure might not be necessarily predictive of TMFs, which are also influenced by the trophic web characteristics.
Collapse
Affiliation(s)
- Gabriel Munoz
- Université de Bordeaux, EPOC, UMR 5805 , F-33400 Talence, France
| | | | - Marc Babut
- IRSTEA, UR MALY , F-69616 Villeurbanne, France
| | | | - Mathilde Lauzent
- Université de Bordeaux, EPOC, UMR 5805 , F-33400 Talence, France
| | | | | | | | | | | |
Collapse
|
20
|
Llorca M, Farré M, Eljarrat E, Díaz-Cruz S, Rodríguez-Mozaz S, Wunderlin D, Barcelo D. Review of emerging contaminants in aquatic biota from Latin America: 2002-2016. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:1716-1727. [PMID: 27666732 DOI: 10.1002/etc.3626] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 08/24/2016] [Accepted: 09/20/2016] [Indexed: 06/06/2023]
Abstract
Although it is known that emerging contaminants are widespread all over the globe, there is a gap of information about their distribution in some geographical areas, such as Latin America. The present bibliographic work reviews the available literature about the presence of organic emerging contaminants in Latin American freshwater and marine biota between 2002 and 2016 and includes 23 works from Argentina, Brazil, Chile, Colombia, Mexico, and Nicaragua. In particular, the present review provides an overview of the occurrence of continuously present contaminants such as pharmaceuticals, personal care products, and pyrethroid insecticides, as well as the new groups of persistent organic pollutants, the halogenated flame retardants and the perfluoroalkyl substances. A wide overview is provided, considering not only occurrence data but also effects and potential transfer through the food chain. Environ Toxicol Chem 2017;36:1716-1727. © 2016 SETAC.
Collapse
Affiliation(s)
- Marta Llorca
- Water and Soil Quality Research Group, Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Spain
| | - Marinella Farré
- Water and Soil Quality Research Group, Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Spain
| | - Ethel Eljarrat
- Water and Soil Quality Research Group, Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Spain
| | - Sílvia Díaz-Cruz
- Water and Soil Quality Research Group, Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Spain
| | - Sara Rodríguez-Mozaz
- Catalan Institute for Water Research, Scientific and Technological Park of the University of Girona, Girona, Spain
| | - Daniel Wunderlin
- Organic Chemistry Department, Córdoba Institute for Food Science and Technology, CONICET and Instituto de Ciencia y Tecnología de Alimentos Córdoba, Córdoba, Argentina
| | - Damià Barcelo
- Water and Soil Quality Research Group, Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Spain
- Catalan Institute for Water Research, Scientific and Technological Park of the University of Girona, Girona, Spain
| |
Collapse
|
21
|
Gillett AK, Ploeg R, Flint M, Mills PC. Postmortem examination of Australian sea snakes ( Hydrophiinae): Anatomy and common pathologic conditions. J Vet Diagn Invest 2017; 29:593-611. [PMID: 28545324 DOI: 10.1177/1040638717710056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
There is limited published information about disease in wild sea snakes and no standardized guideline for postmortem examination of sea snakes. Identifying causes of morbidity and mortality of marine vertebrate species has been pivotal to understanding disease factors implicated in stranding events and assisting with the formulation of conservation plans. Additionally, postmortem findings can provide valuable information on life history traits and the ecology of these reclusive species. Sick, moribund, or dead sea snakes are intermittently washed ashore along Australian and international beaches and provide an opportunity to examine a subset of the population and identify causes of population decline. We present an illustrated description of sea snake anatomy and describe a systematic approach to postmortem examination of sea snakes. We describe common pathologic conditions identified from clinical and postmortem examinations of stranded Australian sea snakes from southeast Queensland. Notable pathologic conditions include traumatic injury, inflammatory conditions, parasitic infections, and neoplasia.
Collapse
Affiliation(s)
- Amber K Gillett
- Vet-MARTI, School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia (Gillett, Flint, Mills).,Australia Zoo Wildlife Hospital, Beerwah, Queensland, Australia (Gillett).,IDEXX Laboratories, East Brisbane, Queensland, Australia (Ploeg).,School of Forest Resources and Conservation, The Florida Aquarium's Center for Conservation, University of Florida, Apollo Beach, FL (Flint)
| | - Richard Ploeg
- Vet-MARTI, School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia (Gillett, Flint, Mills).,Australia Zoo Wildlife Hospital, Beerwah, Queensland, Australia (Gillett).,IDEXX Laboratories, East Brisbane, Queensland, Australia (Ploeg).,School of Forest Resources and Conservation, The Florida Aquarium's Center for Conservation, University of Florida, Apollo Beach, FL (Flint)
| | - Mark Flint
- Vet-MARTI, School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia (Gillett, Flint, Mills).,Australia Zoo Wildlife Hospital, Beerwah, Queensland, Australia (Gillett).,IDEXX Laboratories, East Brisbane, Queensland, Australia (Ploeg).,School of Forest Resources and Conservation, The Florida Aquarium's Center for Conservation, University of Florida, Apollo Beach, FL (Flint)
| | - Paul C Mills
- Vet-MARTI, School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia (Gillett, Flint, Mills).,Australia Zoo Wildlife Hospital, Beerwah, Queensland, Australia (Gillett).,IDEXX Laboratories, East Brisbane, Queensland, Australia (Ploeg).,School of Forest Resources and Conservation, The Florida Aquarium's Center for Conservation, University of Florida, Apollo Beach, FL (Flint)
| |
Collapse
|
22
|
de Souza RB, de Souza CP, Bueno OC, Fontanetti CS. Genotoxicity evaluation of two metallic-insecticides using Allium cepa and Tradescantia pallida: A new alternative against leaf-cutting ants. CHEMOSPHERE 2017; 168:1093-1099. [PMID: 27816288 DOI: 10.1016/j.chemosphere.2016.10.098] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/23/2016] [Accepted: 10/24/2016] [Indexed: 06/06/2023]
Abstract
In order to combat leaf-cutting ants, the pesticide sulfluramid used to be the most widely utilized active ingredient. However, its use was banned in 2009 by the Stockholm Convention, although some countries were allowed to continue using it. As an effective alternative to its replacement, researchers developed a metallic-insecticide system, which is a natural product linked to metal complexes. Thus, the aim of this study was to evaluate the ability of these new metallic-insecticides in change the genetic material of non-target organisms. The tests were performed utilizing chromosomal aberrations and micronucleus tests in the Allium cepa test system and the Trad-MCN test in Tradescantia pallida. To better understand the results, one of the components of the formula, 5-methyl-phenanthroline, was also analyzed according to the same parameters. To A. cepa, the results showed that one of the metallic insecticides induced cytotoxicity and genotoxicity at different concentrations, while the other metallic-insecticide showed chromosomal instability only at the highest concentration. The analysis of 5-methyl-phenanthroline revealed that it can be related with the positive results, since genotoxic effects were induced. In the Trad-MCN test, none of the metallic-insecticides showed genotoxic activity, although one of them induced more micronucleus formation.
Collapse
Affiliation(s)
- Raphael Bastão de Souza
- UNESP - Univ Estadual Paulista, Institute of Biosciences, Department of Biology, Rio Claro, São Paulo, Brazil
| | - Cleiton Pereira de Souza
- UNESP - Univ Estadual Paulista, Institute of Biosciences, Department of Biology, Rio Claro, São Paulo, Brazil
| | - Odair Correa Bueno
- UNESP - Univ Estadual Paulista, Institute of Biosciences, Department of Biology, Rio Claro, São Paulo, Brazil
| | - Carmem Silvia Fontanetti
- UNESP - Univ Estadual Paulista, Institute of Biosciences, Department of Biology, Rio Claro, São Paulo, Brazil.
| |
Collapse
|
23
|
Bost PC, Strynar MJ, Reiner JL, Zweigenbaum JA, Secoura PL, Lindstrom AB, Dye JA. U.S. domestic cats as sentinels for perfluoroalkyl substances: Possible linkages with housing, obesity, and disease. ENVIRONMENTAL RESEARCH 2016; 151:145-153. [PMID: 27479711 DOI: 10.1016/j.envres.2016.07.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 07/14/2016] [Accepted: 07/18/2016] [Indexed: 06/06/2023]
Abstract
UNLABELLED Perfluoroalkyl substances (PFAS), such as perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), are persistent, globally distributed, anthropogenic compounds. The primary source(s) for human exposure are not well understood although within home exposure is likely important since many consumer products have been treated with different PFAS, and people spend much of their lives indoors. Herein, domestic cats were used as sentinels to investigate potential exposure and health linkages. PFAS in serum samples of 72 pet and feral cats, including 11 healthy and 61 with one or more primary disease diagnoses, were quantitated using high-resolution time-of-flight mass spectroscopy. All but one sample had detectable PFAS, with PFOS and perfluorohexane sulfonate (PFHxS) ranging from <LOQ to 121 and <LOQ to 235ng/mL, respectively. PFAS prevalence and geometric means in cats were very similar to contemporary NHANES reports of human sera in the U. S. POPULATION The highest PFAS serum concentrations detected were in indoor cats due to disproportionately elevated PFHxS levels. Ranked by quartile, contingency testing indicated that total PFAS levels were positively associated with living indoors and with higher body weight and body condition scores. Individual PFAS quartile rankings suggested positive associations with respiratory effusion, thyroid, liver, and possibly chronic kidney disease. Domestic cats appear to be useful sentinels for assessing primary PFAS exposure routes, especially indoor sources of relevance to children. Additional case-control studies in pet cats are warranted to better define the potential health associations observed herein. A "One Health" approach assessing humans, pets, and their common environment may improve our understanding of chronic low-level, largely indoor, PFAS exposure and effects in humans and animals alike.
Collapse
Affiliation(s)
- Phillip C Bost
- Student Contractor to the U.S. Environmental Protection Agency, United States
| | - Mark J Strynar
- U.S. Environmental Protection Agency, National Exposure Research Laboratory, Exposure Methods and Measurement Division, Research Triangle Park, NC 27711, United States
| | - Jessica L Reiner
- National Institute of Standards and Technology, Hollings Marine Laboratory, Charleston, SC 29412, United States
| | | | - Patricia L Secoura
- North Carolina State University, Veterinary Teaching Hospital, Raleigh, NC 27606, United States
| | - Andrew B Lindstrom
- U.S. Environmental Protection Agency, National Exposure Research Laboratory, Exposure Methods and Measurement Division, Research Triangle Park, NC 27711, United States
| | - Janice A Dye
- U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Environmental Public Health Division, Research Triangle Park, NC 27711, United States.
| |
Collapse
|
24
|
Góngora E, Cadena CD, Dussán J. Toxic metals and associated sporulated bacteria on Andean hummingbird feathers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:22968-22979. [PMID: 27581044 DOI: 10.1007/s11356-016-7506-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/22/2016] [Indexed: 06/06/2023]
Abstract
Human activities in the Sabana de Bogotá, Colombia, release toxic metals such as lead (Pb) and chromium (Cr) into the environment polluting the air, water, and soil. Because birds are in contact with these pollutants and their sources, they may serve as bioindicator organisms. We evaluated the use of hummingbird feathers obtained from individuals captured in three sites of the Sabana de Bogotá as bioindicators of toxic metal pollution using spectrophotometric and spectroscopic methods based on single-feather samples. We also characterized the bacterial microbiota associated with hummingbird feathers by molecular identification using the 16S rRNA with a special focus on sporulated bacteria. Finally, we described the interactions which naturally occur among the feathers, their associated bacteria, and pollutants. We found differences in Pb and Cr concentrations between sampling sites, which ranged from 2.11 to 4.69 ppm and 0.38 to 3.00 ppm, respectively. This may reflect the impact of the activities held in those sites which release pollutants to the environment. Bacterial assemblages mainly consisted of sporulated bacilli in the Bacillaceae family (65.7 % of the identified morphotypes). We conclude that the feathers of wild tropical birds, including hummingbirds, can be used as lead and chromium bioindicators and that bacteria growing on feathers may in fact interact with these two toxic metals.
Collapse
Affiliation(s)
- Esteban Góngora
- Centro de Investigaciones Microbiológicas (CIMIC), Departamento de Ciencias Biológicas, Universidad de los Andes, Carrera 1 No. 18 A - 10, J-206, Bogotá, Colombia
| | - Carlos Daniel Cadena
- Laboratorio de Biología Evolutiva de Vertebrados, Departamento de Ciencias Biológicas, Universidad de los Andes, Carrera 1 No. 18 A - 10, A-309, Bogotá, Colombia
| | - Jenny Dussán
- Centro de Investigaciones Microbiológicas (CIMIC), Departamento de Ciencias Biológicas, Universidad de los Andes, Carrera 1 No. 18 A - 10, J-206, Bogotá, Colombia.
| |
Collapse
|
25
|
Christie I, Reiner JL, Bowden JA, Botha H, Cantu TM, Govender D, Guillette MP, Lowers RH, Luus-Powell WJ, Pienaar D, Smit WJ, Guillette LJ. Perfluorinated alkyl acids in the plasma of South African crocodiles (Crocodylus niloticus). CHEMOSPHERE 2016; 154:72-78. [PMID: 27038902 PMCID: PMC4921786 DOI: 10.1016/j.chemosphere.2016.03.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/15/2016] [Accepted: 03/16/2016] [Indexed: 05/03/2023]
Abstract
Perfluorinated alkyl acids (PFAAs) are environmental contaminants that have been used in many products for over 50 years. Interest and concern has grown since 2000 on the widespread presence of PFAAs, when it was discovered that PFAAs were present in wildlife samples around the northern hemisphere. Since then, several studies have reported PFAAs in wildlife from many locations, including the remote regions of Antarctica and the Arctic. Although there are a multitude of studies, few have reported PFAA concentrations in reptiles and wildlife in the Southern Hemisphere. This study investigated the presence of PFAAs in the plasma of Nile crocodiles (Crocodylus niloticus) from South Africa. Crocodiles were captured from five sites in and around the Kruger National Park, South Africa, and plasma samples examined for PFAAs. Perfluorooctane sulfonate (PFOS) was the most frequent PFAA detected; with median values of 13.5 ng/g wet mass in crocodiles. In addition to PFOS, long chain perfluorinated carboxylic acids were also detected. Correlations between total length and PFAA load were investigated, as were differences in PFAA accumulation between sexes. No correlations were seen between crocodile size, nor were there sex-related differences. Spatial differences were examined and significant differences were observed in samples collected from the different sites (p < 0.05). Flag Boshielo Dam had the highest PFOS measurements, with a median concentration of 50.3 ng/g wet mass, when compared to the other sites (median concentrations at other sites below 14.0 ng/g wet mass). This suggests a point source of PFOS in this area.
Collapse
Affiliation(s)
- Ian Christie
- Grice Marine Laboratory, College of Charleston, 205 Fort Johnson Road, Charleston, SC, USA
| | - Jessica L Reiner
- National Institute of Standards and Technology, Chemical Sciences Division, Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC, USA.
| | - John A Bowden
- National Institute of Standards and Technology, Chemical Sciences Division, Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC, USA
| | - Hannes Botha
- Scientific Services, Mpumalanga Tourism and Parks Agency, Nelspruit, 1200, South Africa; Department of Biodiversity, University of Limpopo, Sovenga, 0727, South Africa
| | - Theresa M Cantu
- Medical University of South Carolina, Department of Obstetrics and Gynecology, 221 Fort Johnson Road, Charleston, SC, USA
| | - Danny Govender
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, 0110, South Africa; Scientific Services, South African National Parks, Skukuza, 1350, South Africa
| | - Matthew P Guillette
- Medical University of South Carolina, Department of Obstetrics and Gynecology, 221 Fort Johnson Road, Charleston, SC, USA
| | - Russell H Lowers
- InoMedic Health Applications (IHA), Ecological Program, Kennedy Space Center, IHA 300, FL 32899, USA
| | | | - Danie Pienaar
- Scientific Services, South African National Parks, Skukuza, 1350, South Africa
| | - Willem J Smit
- Department of Biodiversity, University of Limpopo, Sovenga, 0727, South Africa
| | - Louis J Guillette
- Medical University of South Carolina, Department of Obstetrics and Gynecology, 221 Fort Johnson Road, Charleston, SC, USA
| |
Collapse
|
26
|
Reiner JL, Blaine AC, Higgins CP, Huset C, Jenkins TM, Kwadijk CJAF, Lange CC, Muir DCG, Reagen WK, Rich C, Small JM, Strynar MJ, Washington JW, Yoo H, Keller JM. Polyfluorinated substances in abiotic standard reference materials. Anal Bioanal Chem 2016; 407:2975-83. [PMID: 26005739 DOI: 10.1007/s00216-013-7330-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The National Institute of Standards and Technology (NIST) has a wide range of Standard Reference Materials (SRMs) which have values assigned for legacy organic pollutants and toxic elements. Existing SRMs serve as homogenous materials that can be used for method development, method validation, and measurement for contaminants that are now of concern. NIST and multiple groups have been measuring the mass fraction of a group of emerging contaminants, polyfluorinated substances (PFASs), in a variety of SRMs. Here we report levels determined in an interlaboratory comparison of up to 23 PFASs determined in five SRMs: sediment (SRMs 1941b and 1944), house dust (SRM 2585), soil (SRM 2586), and sludge (SRM 2781). Measurements presented show an array of PFASs, with perfluorooctane sulfonate being the most frequently detected. SRMs 1941b, 1944, and 2586 had relatively low concentrations of most PFASs measured while 23 PFASs were at detectable levels in SRM 2585 and most of the PFASs measured were at detectable levels in SRM 2781. The measurements made in this study were used to add values to the Certificates of Analysis for SRMs 2585 and 2781.
Collapse
Affiliation(s)
- Jessica L Reiner
- Chemical Sciences Division, National Institute of Standards and Technology, 100 Bureau Dr., Mail Stop 8392, Gaithersburg, MD 20899-8392, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Jaramillo-Colorado BE, Arroyo-Salgado B, Ruiz-Garcés LC. Organochlorine pesticides and parasites in Mugil incilis collected in Cartagena Bay, Colombia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:17475-85. [PMID: 26160124 DOI: 10.1007/s11356-015-4986-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/30/2015] [Indexed: 05/12/2023]
Abstract
Nematode parasites of the Anisakides family are often found in people living in countries where fish is consumed raw or partially cooked. This research shows the histological changes in the liver and spleen of Mugil incilis, collected in Cartagena Bay. These changes are associated with pollution by organochlorine pesticides and their possible influence on the parasite. Organochlorine compounds were extracted using the headspace-solid-phase microextraction (HS-SPME) technique. Residual amounts in the muscle of M. incilis such as β-HCH, γ-HCH, heptachlor, aldrin, endosulfan, 4,4'-DDE, and dieldrin, among others, were identified by gas chromatography connected to an electron capture detector, indicating that the fauna of Cartagena Bay are exposed to these pollutants. Histological analysis was carried out on liver and spleen samples of M. incilis which were fixed, processed, and embedded in paraffin. The presence of melano-macrophages, granulomes, and trematodes in the liver was the most important changes observed. Larval prevalence for the Anisakis spp. was determined to be 1.6%; for Pseudoterranova spp., 25.3%, and for Contracaecum spp., 57.8%. Other parasites such as acanthocephalans were also reported for a total of 15.3%. Nevertheless, no significant correlation between parasites and organochlorines was found. This study is the first to correlate the presence of organochlorine compounds and histological damage in the liver and spleen of M. incilis, with the presence of parasites in fish from Cartagena Bay (Colombia).
Collapse
Affiliation(s)
- Beatriz E Jaramillo-Colorado
- Agrochemical Research Group, Chemistry Program, Department of Exact and Natural Sciences, University of Cartagena, San Pablo Campus, Cartagena, Colombia.
| | - Bárbara Arroyo-Salgado
- Group GIMUC, School of Medicine, University of Cartagena, Zaragocilla Campus, Cartagena, Colombia
| | - Luis Carlos Ruiz-Garcés
- Agrochemical Research Group, Chemistry Program, Department of Exact and Natural Sciences, University of Cartagena, San Pablo Campus, Cartagena, Colombia
- Aquaculture Program, Department of Veterinary Medicine, University of Córdoba, Montería, Colombia
| |
Collapse
|
28
|
He X, Dai K, Li A, Chen H. Occurrence and assessment of perfluorinated compounds in fish from the Danjiangkou reservoir and Hanjiang river in China. Food Chem 2014; 174:180-7. [PMID: 25529668 DOI: 10.1016/j.foodchem.2014.11.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 10/18/2014] [Accepted: 11/03/2014] [Indexed: 01/07/2023]
Abstract
Residues of eight perfluorinated compounds (PFCs) were investigated in 15 fish samples from the Danjiangkou reservoir and Hanjiang river (Xiangyang and Zhongxiang sections). The total concentrations of PFCs in fish muscles ranged from 2.01 to 43.8 ng g(-)(1) dry weight. The mean concentration of total PFCs from related muscles showed the following trend in various regions: Zhongxiang section < Xiangyang section < Danjiangkou reservoir. Perfluorooctane sulphonate (PFOS) was the dominant PFC in the fish liver samples from the Danjiangkou reservoir. The calculated hazard ratio (HR) of PFCs, for all fish muscle samples, was less than 1.0, and could be classified at safe levels for the general population. However, yellow croaker fish from the Danjiangkou reservoir and Hanjiang river-Xiangyang section had HRs of 0.2, indicating that frequent consumption of this contaminated fish may pose an unacceptable risk to human health.
Collapse
Affiliation(s)
- Xiaomin He
- College of Science, Huazhong Agricultural University, Wuhan 430070, China; Hubei Environmental Monitoring Central Station, Wuhan 430072, China
| | - Ke Dai
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Aimin Li
- Hubei Environmental Monitoring Central Station, Wuhan 430072, China
| | - Hao Chen
- College of Science, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
29
|
Renzi M, Guerranti C, Giovani A, Perra G, Focardi SE. Perfluorinated compounds: levels, trophic web enrichments and human dietary intakes in transitional water ecosystems. MARINE POLLUTION BULLETIN 2013; 76:146-57. [PMID: 24095201 DOI: 10.1016/j.marpolbul.2013.09.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 09/02/2013] [Accepted: 09/08/2013] [Indexed: 05/25/2023]
Abstract
The results of a study on levels of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), analyzed in terms of HPLC-ESI-MS in water, sediment, macrophyte, bivalve, crustacean and fish samples, are reported here. The aim of the research is to define, for the first time, PFOA/S levels in a heavily human-stressed transitional water ecosystem (Orbetello lagoon, Italy) and evaluate trophic web enrichments and human dietary intakes. The results obtained show that: (i) levels significantly higher than those reported in the literature were found in mussels, clams and crabs; (ii) the river is a significant pollution source; (iii) although absolute levels are relatively low, macroalgae proliferation contributes to redistribute pollutants from river-affected areas throughout the entire lagoon basin; (iv) to the best of our current knowledge, water-filtering species considered in this study are the most exposed to PFOA/S pollution; (v) human daily dietary intakes of PFOA/S through Slow Food-endorsed product consumption are below maximum tolerable levels suggested by the EFSA.
Collapse
Affiliation(s)
- Monia Renzi
- Department of Biological and Environmental Sciences and Technologies, University of the Salento, SP Lecce-Monteroni, 73100 Lecce, Italy.
| | | | | | | | | |
Collapse
|
30
|
Hrádková P, Poustka J, Pulkrabová J, Hlousková V, Kocourek V, Llorca M, Farré M, Barceló D, Hajslová J. A fast and simple procedure for determination of perfluoroalkyl substances in food and feed: a method verification by an interlaboratory study. Anal Bioanal Chem 2013; 405:7817-27. [DOI: 10.1007/s00216-013-6962-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/29/2013] [Accepted: 04/02/2013] [Indexed: 10/26/2022]
|
31
|
Olivero-Verbel J, Agudelo-Frias D, Caballero-Gallardo K. Morphometric parameters and total mercury in eggs of snowy egret (Egretta thula) from Cartagena Bay and Totumo Marsh, north of Colombia. MARINE POLLUTION BULLETIN 2013; 69:105-9. [PMID: 23422066 DOI: 10.1016/j.marpolbul.2013.01.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 01/11/2013] [Accepted: 01/16/2013] [Indexed: 05/21/2023]
Abstract
Eggs from egrets (Egretta thula) were collected from Cartagena Bay and Totumo Marsh, two sites at the north of Colombia with different pollution background, and measured their morphometric parameters as well as total mercury (T-Hg) and calcium levels in eggshell. Statistically significant differences were observed for egg weight and size between the two sampling locations. T-Hg and calcium concentrations in eggshell were greater in eggs from Cartagena Bay, the industrial site, compared to Totumo Marsh, a non-industrial location. The opposite was observed for eggshell thickness (3.6% less in the bay). Pearson correlation analysis showed eggshell T-Hg negatively correlated with eggshell weight in eggs from the marsh (R=-0.795, P<0.006), but not from the bay (R=0.387, P=0.269), probably suggesting greater susceptibility to Hg in birds from the non-polluted site. In short, results suggest eggs from E. thula at Cartagena Bay have greater T-Hg concentrations and less eggshell thickness than those from Totumo Marsh.
Collapse
Affiliation(s)
- Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, Faculty of Pharmaceutical Sciences, Campus of Zaragocilla, University of Cartagena, Cartagena, Colombia.
| | | | | |
Collapse
|
32
|
Greaves AK, Letcher RJ, Sonne C, Dietz R. Brain region distribution and patterns of bioaccumulative perfluoroalkyl carboxylates and sulfonates in east greenland polar bears (Ursus maritimus). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2013; 32:713-722. [PMID: 23280712 DOI: 10.1002/etc.2107] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 05/17/2012] [Accepted: 10/16/2012] [Indexed: 06/01/2023]
Abstract
The present study investigated the comparative accumulation of perfluoroalkyl acids (PFAAs) in eight brain regions of polar bears (Ursus maritimus, n = 19) collected in 2006 from Scoresby Sound, East Greenland. The PFAAs studied were perfluoroalkyl carboxylates (PFCAs, C(6) -C(15) chain lengths) and sulfonates (C(4) , C(6) , C(8) , and C(10) chain lengths) as well as selected precursors including perfluorooctane sulfonamide. On a wet-weight basis, blood-brain barrier transport of PFAAs occurred for all brain regions, although inner regions of the brain closer to incoming blood flow (pons/medulla, thalamus, and hypothalamus) contained consistently higher PFAA concentrations compared to outer brain regions (cerebellum, striatum, and frontal, occipital, and temporal cortices). For pons/medulla, thalamus, and hypothalamus, the most concentrated PFAAs were perfluorooctane sulfonate (PFOS), ranging from 47 to 58 ng/g wet weight, and perfluorotridecanoic acid, ranging from 43 to 49 ng/g wet weight. However, PFOS and the longer-chain PFCAs (C(10) -C(15) ) were significantly (p < 0.002) positively correlated with lipid content for all brain regions. Lipid-normalized PFOS and PFCA (C(10) -C(15) ) concentrations were not significantly (p > 0.05) different among brain regions. The burden of the sum of PFCAs, perfluoroalkyl sulfonates, and perfluorooctane sulfonamide in the brain (average mass, 392 g) was estimated to be 46 µg. The present study demonstrates that both PFCAs and perfluoroalkyl sulfonates cross the blood-brain barrier in polar bears and that wet-weight concentrations are brain region-specific.
Collapse
Affiliation(s)
- Alana K Greaves
- National Wildlife Research Centre and Department of Chemistry, Carleton University, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
33
|
Han Z, Liu Y, Wu D, Zhu Z, Lü C. Immunotoxicity and hepatotoxicity of PFOS and PFOA in tilapia (Oreochromis niloticus). ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11631-012-0593-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
34
|
Stahl T, Falk S, Failing K, Berger J, Georgii S, Brunn H. Perfluorooctanoic acid and perfluorooctane sulfonate in liver and muscle tissue from wild boar in Hesse, Germany. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2012; 62:696-703. [PMID: 22108952 DOI: 10.1007/s00244-011-9726-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 10/24/2011] [Indexed: 05/31/2023]
Abstract
Approximately 15,000 tons of wild boar meats (Sus scrofa) are consumed per year in Germany. Boar meat therefore plays a definite role in regard to human diet. Because they are omnivores and because of their high body fat quotient, wild boar may accumulate large concentrations of persistent organic compounds, such as halogenated hydrocarbons, and could thus possibly serve as bioindicators for persistent xenobiotics. In addition, consumption of wild boar meat and liver could lead to increased contaminant levels in humans. Between 2007 and 2009, we tested a total of 529 livers and 506 muscle tissue samples from wild boar for the presence of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). PFOA concentrations ≤45 μg/kg and PFOS concentrations ≤1,780 μg/kg were detected in the liver samples. PFOA concentrations ≤7.4 μg/kg and PFOS concentrations ≤28.6 μg/kg were detected in muscle tissue. Our results show that PFOS may be detected in considerably greater concentrations than PFOA in organs and tissues, which is in agreement with results from other published studies. The comparisons between both organs for the same substance, as well as the comparisons between the substances within an organ, showed clear and statistically significant differences at P < 0.0001. Assuming a tolerable daily intake value of PFOA (1.5 μg/kg bw/d) and PFOS (0.15 μg/kg bw/d) as recommended by the European Food Safety Authority, the results of model calculations based on the maximum concentrations of PFOA and PFOS found in wild boar indicate that there should be no PFC-related health danger resulting from moderate consumption of wild boar meat or liver.
Collapse
Affiliation(s)
- T Stahl
- Hessian State Laboratory, Wiesbaden, Germany.
| | | | | | | | | | | |
Collapse
|
35
|
Derivatization and liquid chromatography–UV–tandem mass spectrometric analysis of perfluorinated carboxylic acids. J Chromatogr A 2012; 1235:132-40. [DOI: 10.1016/j.chroma.2012.02.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Revised: 02/21/2012] [Accepted: 02/21/2012] [Indexed: 11/21/2022]
|
36
|
Llorca M, Farré M, Tavano MS, Alonso B, Koremblit G, Barceló D. Fate of a broad spectrum of perfluorinated compounds in soils and biota from Tierra del Fuego and Antarctica. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2012; 163:158-166. [PMID: 22325444 DOI: 10.1016/j.envpol.2011.10.027] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 10/08/2011] [Accepted: 10/26/2011] [Indexed: 05/31/2023]
Abstract
In this study, the presence of 18 perfluorinated compounds was investigated in biota and environmental samples from the Antarctica and Tierra de Fuego, which were collected during a sampling campaign carried out along February and March 2010. 61 samples were analysed including fish, superficial soils, guano, algae, dung and tissues of Papua penguin by liquid chromatography coupled to tandem mass spectrometry. The concentrations of PFCs were ranging from 0.10 to 240 ng/g for most of the samples except for penguin dung, which presented levels between 95 and 603 ng/g for perfluorooctane sulfonate, and guano samples from Ushuaia, with concentration levels of 1190-2480 ng/g of perfluorohexanoic acid. PFCs acids presented, in general, the highest levels of concentration and perfluorooctanesulfonate was the most frequently found compound. The present study provides a significant amount of results, which globally supports the previous studies, related to the transport, deposition, biodegradation and bioaccumulation patterns of PFCs.
Collapse
Affiliation(s)
- Marta Llorca
- Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
37
|
Neurotoxic effects of perfluoroalkylated compounds: mechanisms of action and environmental relevance. Arch Toxicol 2012; 86:1349-67. [DOI: 10.1007/s00204-012-0822-6] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 02/14/2012] [Indexed: 01/09/2023]
|
38
|
Gebbink WA, Letcher RJ. Comparative tissue and body compartment accumulation and maternal transfer to eggs of perfluoroalkyl sulfonates and carboxylates in Great Lakes herring gulls. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2012; 162:40-47. [PMID: 22243845 DOI: 10.1016/j.envpol.2011.10.011] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 10/03/2011] [Accepted: 10/12/2011] [Indexed: 05/31/2023]
Abstract
The comparative accumulation of C(4)-C(15) perfluorinated sulfonates (PFSAs) and carboxylates (PFCAs), and several precursors (e.g., perfluorooctane sulfonamide, N-methyl-FOSA, and fluorotelomer unsaturated acids and alcohols) was examined in tissues (liver, brain, muscle, and adipose), plasma/red blood cells (RBCs) and whole egg clutches (yolk and albumen) of female herring gulls collected in 2010 from Chantry Island, Lake Huron of the Laurentian Great Lakes. Highest mean ∑PFSA concentrations were in yolk, followed by adipose, liver, plasma, muscle, RBCs, and brain. Highest mean ∑PFCA concentrations were in yolk, followed by brain, plasma, liver, RBC, adipose and muscle. PFOS accounted for >88% of ∑PFSA in all samples; the liver, plasma/RBCs, muscle and adipose PFCA patterns were dominated by C(8)-C(11) PFCAs, whereas C(10)-C(15) PFCAs in brain and yolk. Among PFSAs and PFCAs there is tissue-specific accumulation, which could be due to a number of pharmacokinetic processes.
Collapse
Affiliation(s)
- Wouter A Gebbink
- Ecotoxicology and Wildlife Health Division, Science and Technology Branch, Environment Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON, Canada.
| | | |
Collapse
|
39
|
Houde M, De Silva AO, Muir DCG, Letcher RJ. Monitoring of perfluorinated compounds in aquatic biota: an updated review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:7962-73. [PMID: 21542574 DOI: 10.1021/es104326w] [Citation(s) in RCA: 601] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The goal of this article is to summarize new biological monitoring information on perfluorinated compounds (PFCs) in aquatic ecosystems (post-2005) as a followup to our critical review published in 2006. A wider range of geographical locations (e.g., South America, Russia, Antarctica) and habitats (e.g., high-mountain lakes, deep-ocean, and offshore waters) have been investigated in recent years enabling a better understanding of the global distribution of PFCs in aquatic organisms. High concentrations of PFCs continue to be detected in invertebrates, fish, reptiles, and marine mammals worldwide. Perfluorooctane sulfonate (PFOS) is still the predominant PFC detected (mean concentrations up to 1900 ng/g ww) in addition to important concentrations of long-chain perfluoroalkyl carboxylates (PFCAs; sum PFCAs up to 400 ng/g ww). More studies have evaluated the bioaccumulation and biomagnification of these compounds in both freshwater and marine food webs. Several reports have indicated a decrease in PFOS levels over time in contrast to PFCA concentrations that have tended to increase in tissues of aquatic organisms at many locations. The detection of precursor metabolites and isomers has become more frequently reported in environmental assessments yielding important information on the sources and distribution of these contaminants. The integration of environmental/ecological characteristics (e.g., latitude/longitude, salinity, and/or trophic status at sampling locations) and biological variables (e.g., age, gender, life cycle, migration, diet composition, growth rate, food chain length, metabolism, and elimination) are essential elements in order to adequately study the environmental fate and distribution of PFCs and should be more frequently considered in study design.
Collapse
Affiliation(s)
- Magali Houde
- Environment Canada , Centre Saint-Laurent, 105 McGill Street, Montréal, Québec, Canada, H2Y 2E7.
| | | | | | | |
Collapse
|
40
|
Picó Y, Farré M, Llorca M, Barceló D. Perfluorinated Compounds in Food: A Global Perspective. Crit Rev Food Sci Nutr 2011; 51:605-25. [DOI: 10.1080/10408391003721727] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
41
|
Perfluorooctane sulfonate triggers tight junction “opening” in brain endothelial cells via phosphatidylinositol 3-kinase. Biochem Biophys Res Commun 2011; 410:258-63. [DOI: 10.1016/j.bbrc.2011.05.128] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 05/24/2011] [Indexed: 01/13/2023]
|
42
|
Guruge KS, Yeung LWY, Li P, Taniyasu S, Yamashita N, Nakamura M. Fluorinated alkyl compounds including long chain carboxylic acids in wild bird livers from Japan. CHEMOSPHERE 2011; 83:379-84. [PMID: 21190717 DOI: 10.1016/j.chemosphere.2010.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 11/30/2010] [Accepted: 12/01/2010] [Indexed: 05/22/2023]
Abstract
A wide range of fluorinated alkyl compounds (FACs) has been reported in wildlife in various locations in the world. However, such information regarding Japanese wildlife is rarely found. In the present study, we investigated the occurrence of 21 FACs, including perfluorinated alkyl sulfonates (PFASs), perfluorinated carboxylates (PFCAs), and fluorotelomer acids, in the livers of 10 wild bird species from two regions in northern Japan. To avoid interferences, FACs were quantified by a recently developed method using acetonitrile and solid-phase extraction followed by an ion exchange HPLC column separation. Apart from perfluorooctane sulfonate (PFOS), which was found at the highest levels of all the compounds detected, several long chain perfluorinated carboxylates (PFCAs) from C8 to C16, particularly perfluorotetradecanoic acid (PFTeDA) and perfluorohexadecanoic acid (PFHxDA), were detected for the first time. Additionally, 7:3 FTCA, a fluorotelomer acid, was also detected in most swan livers from Miyagi prefecture and all the birds from Tochigi prefecture. However, none of the sulfonamides and unsaturated telomer acids were detected in any species. Swans seem to be the least exposed wild birds to FACs among the investigated birds, signifying that feeding habits may reflect FAC accumulation in wild birds. The highest total concentration of detected FACs was 405ngg(-1)wet wt., which was found in a Japanese sparrowhawk, indicating that the top predatory wild birds can accumulate several long chain carboxylic acids. However, the current FAC concentrations found in livers may suggest that these compounds alone would not cause a severe toxic effect in these species.
Collapse
Affiliation(s)
- Keerthi S Guruge
- Safety Research Team, National Institute of Animal Health, National Agriculture and Food Research Organization, Kannondai 3-1-5, Tsukuba, Ibaraki 305-0856, Japan.
| | | | | | | | | | | |
Collapse
|
43
|
Xia W, Wan Y, Li YY, Zeng H, Lv Z, Li G, Wei Z, Xu SQ. PFOS prenatal exposure induce mitochondrial injury and gene expression change in hearts of weaned SD rats. Toxicology 2011; 282:23-9. [DOI: 10.1016/j.tox.2011.01.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Revised: 01/08/2011] [Accepted: 01/10/2011] [Indexed: 01/22/2023]
|
44
|
Zeng HC, Zhang L, Li YY, Wang YJ, Xia W, Lin Y, Wei J, Xu SQ. Inflammation-like glial response in rat brain induced by prenatal PFOS exposure. Neurotoxicology 2011; 32:130-9. [DOI: 10.1016/j.neuro.2010.10.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 09/17/2010] [Accepted: 10/05/2010] [Indexed: 11/25/2022]
|
45
|
Han J, Fang Z. Estrogenic effects, reproductive impairment and developmental toxicity in ovoviparous swordtail fish (Xiphophorus helleri) exposed to perfluorooctane sulfonate (PFOS). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2010; 99:281-290. [PMID: 20570370 DOI: 10.1016/j.aquatox.2010.05.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2010] [Revised: 05/05/2010] [Accepted: 05/12/2010] [Indexed: 05/29/2023]
Abstract
Due to the wide distribution and persistence of perfluorooctane sulfonate (PFOS), an increasing number of studies are focusing on the toxicological effects of PFOS exposure in mammalian and fish model species. The results of these studies (on estrogenic activity, development and reproduction, etc.), however, are largely inconsistent owing to differences in exposure conditions (exposure time, concentrations, species and test methods, etc.). Oviparous fish species such as zebrafish and common carp are commonly used in PFOS exposure experiments, but no information is available on ovoviparous fish species. Thus, this study adopted as its model the swordtail (Xiphophorus helleri), a small, hardy and easily raised ovoviparous fish species. Males with a xiphoid caudal fin were employed to investigate vitellogenin (VTG) mRNA expression under exposure to a range of PFOS concentrations (0, 0.1, 0.5 and 2.5mg/l PFOS) for three weeks, with one-week recovery in clean water. Females were used to investigate the reproductive toxicity of PFOS exposure, and were exposed to the same concentrations as the males for up to six weeks. Finally, juveniles (20-30 days old) were exposed to 0 and 0.1mg/l PFOS for 90 days to check for developmental impairment. VTG mRNA expression was significantly inhibited at one and two weeks, with up-regulation at three weeks, in all of the exposure groups, but was stimulated only in the 2.5mg/l group at four weeks. The hepatosomatic index (HSI) was elevated in the 2.5mg/l male group at three weeks and in the juvenile group. The gonadal somatic index (GSI) was elevated in the 0.5mg/l female group and in the female juveniles. The 14-day survival rates for offspring differed significantly among the groups. Harmful effects were observed on the growth of the juveniles, but not on the sex ratio or the secondary sex characteristics of the young males. Histopathological changes in the liver were detected in both the male and female groups with the highest exposure. The overall results indicate that differences in model species may influence test results. Juveniles possess excellent qualities for sublethal chemical assessments employing the HSI and GSI under long-term exposure conditions.
Collapse
Affiliation(s)
- Jian Han
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou 510631, China
| | | |
Collapse
|
46
|
Vassiliadou I, Costopoulou D, Ferderigou A, Leondiadis L. Levels of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) in blood samples from different groups of adults living in Greece. CHEMOSPHERE 2010; 80:1199-1206. [PMID: 20619872 DOI: 10.1016/j.chemosphere.2010.06.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 05/14/2010] [Accepted: 06/07/2010] [Indexed: 05/29/2023]
Abstract
The production of perfluorinated compounds which finds application in a wide variety of consumer products has led to their accumulation in the environment. This fact, in combination with their chemical properties of amphiphilicity and chemical stability is the cause of their occurrence in human tissues, which according to reports is widespread, not only in occupationally exposed workers, but also in the general population. In this study, we analyzed 182 blood samples from three different groups of adults living in Greece, in order to evaluate blood levels of two environmentally most common perfluorinated compounds, perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA). The samples examined were from a group of individuals living in Athens, a group of inhabitants of the semi-urban and rural area of Argolida, and a group of cancer patients from the St. Savas Anticancer Hospital in Athens. The latter group was chosen in order to examine the possible relation of PFOS and PFOA levels with cancer incidence in the general population. The analytical results showed the presence of PFOS and PFOA in all samples examined, at levels similar to those reported from other European countries. There was no significant difference between the three groups however there was a significant difference between the levels of men and women in all groups examined. No correlation was found between age and PFOS and PFOA levels. This is the first study of this kind to be conducted in samples from Greece.
Collapse
Affiliation(s)
- Irene Vassiliadou
- Mass Spectrometry and Dioxin Analysis Laboratory, IRRP, NCSR "Demokritos", Neapoleos 27, 15310 Athens, Greece
| | | | | | | |
Collapse
|
47
|
Wan YJ, Li YY, Xia W, Chen J, Lv ZQ, Zeng HC, Zhang L, Yang WJ, Chen T, Lin Y, Wei J, Xu SQ. Alterations in tumor biomarker GSTP gene methylation patterns induced by prenatal exposure to PFOS. Toxicology 2010; 274:57-64. [PMID: 20621739 DOI: 10.1016/j.tox.2010.05.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 05/19/2010] [Accepted: 05/19/2010] [Indexed: 01/25/2023]
Abstract
The adverse environmental exposure in early life may have adverse effects on animals through epigenetic aspects. The current study examined the possibility of early epigenetic alteration in PFOS-exposed rat liver. Pregnant Sprague-Dawley (SD) rats were exposed to perfluorooctane sulfonate (PFOS) at doses of 0.1, 0.6 and 2.0 mg/kg/d and 0.05% Tween 80 as control by gavage from gestation days 2 to 21. The dams were allowed to give birth and liver samples from weaned (postnatal day 21) offspring rats were analyzed for PFOS content, relative liver weight, global DNA methylation, methylation of LINE-1 regulatory region, tumor suppressor gene glutathione S-transferase pi (GSTP) and p16 promoter methylation level, as well as related genes expression level. In PFOS-exposed weaned rats, compared to the control, global DNA methylation and methylation of LINE-1 regulatory region decreased significantly only in the 2.0 mg/kg/d group. Up to 30% of critical CpG sites (+79, 81 and 84) in GSTP promoter region were methylated in the livers of PFOS-treated rats, while p16 promoter methylation was not affected. In addition, the up-regulated expression of GSTP was observed and this increase was associated with its main pathway of transcription regulation: Keap1-Nrf2/MafK. Thus, early-induced changes in critical cytosines within the GSTP gene promoter region may be a biomarker of hepatic PFOS burden, though their direct role in PFOS-induced hepatotoxicity, including its potential carcinogenic action, needs further research.
Collapse
Affiliation(s)
- Yan-jian Wan
- Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Meyer J, Jaspers VLB, Eens M, de Coen W. The relationship between perfluorinated chemical levels in the feathers and livers of birds from different trophic levels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2009; 407:5894-5900. [PMID: 19716165 DOI: 10.1016/j.scitotenv.2009.07.032] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 07/17/2009] [Accepted: 07/20/2009] [Indexed: 05/28/2023]
Abstract
Although feathers have been used successfully for monitoring heavy metals and organic pollutants, there are currently no data available on the use of feathers as indicators of perfluorinated chemical (PFC) exposure in birds. Also, no study has evaluated PFC levels in birds with different diets from different habitats. In the current study we investigated the PFC exposure of five different bird species from the same geographic region in Belgium, using both feathers and liver tissue. The highest mean liver perfluorooctane sulfonate (PFOS) levels were found in the Grey Heron (476 ng/g ww) followed by the Herring Gull (292 ng/g ww) and Eurasian Sparrowhawk (236 ng/g ww), whereas the Eurasian Magpie (17 ng/g ww) and the Eurasian Collared Dove (12 ng/g ww) had the lowest levels. The PFOS levels in the feathers showed a different pattern. The Grey Heron had the highest feather PFOS levels (247 ng/g dw), the Eurasian Sparrowhawk (102 ng/g dw) had the second highest feather PFOS levels, followed by the Herring Gull (79 ng/g dw) and the Eurasian Collared Dove (48 ng/g dw), and the lowest levels were found in the Eurasian Magpie (31 ng/g dw). Overall, there was a significant positive correlation (Pearson, R=0.622, p<0.01) between the feather and liver PFOS levels, indicating that feathers could be an alternative bioindicator for PFOS exposure in birds. However, caution should be taken as there was no significant correlation between the PFOS levels in the feathers and livers of the individual species. In general, birds from a higher trophic level had higher PFC levels in their tissues. This indicates that diet plays a role in PFC exposure in birds and confirms the bioaccumulation potential of PFC.
Collapse
Affiliation(s)
- Johan Meyer
- Ecophysiology, Biochemistry and Toxicology Research Unit, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| | | | | | | |
Collapse
|
49
|
Olivero-Verbel J, Caballero-Gallardo K, Torres-Fuentes N. Assessment of mercury in muscle of fish from Cartagena Bay, a tropical estuary at the north of Colombia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2009; 19:343-55. [PMID: 19626516 DOI: 10.1080/09603120902749090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Fish belonging to several trophic levels from Cartagena Bay, a tropical estuary, were collected and analyzed for total mercury (T-Hg) concentrations in muscle. T-Hg concentrations varied from 0.010-0.526 microg/g, and the overall average was 0.051 +/- 0.002 microg/g. Carnivorous species presented the highest T-Hg mean value (0.100 +/- 0.006 microg/g), followed by omnivorous (0.076 +/- 0.014 microg/g) and detritivorous (0.028 +/- 0.001 microg/g). The relationships between weight and T-Hg content were found for the carnivorous species Sciades herzbergi (r = 0.508, p < 0.001) and not for the detritivorous Mugil incilis (r = 0.086, p = 0.207). Although results suggest fish from the bay pose a low health threat for humans in terms of Hg exposure, vulnerable groups such as pregnant women, should avoid eating large size carnivorous species. Knowledge about species with low Hg content should be widespread within fishing communities, guaranteeing adequate nutrition by including fish in the diet and reducing the risk of Hg poisoning.
Collapse
Affiliation(s)
- Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, University of Cartagena, Cartagena, Colombia.
| | | | | |
Collapse
|
50
|
Llorca M, Farré M, Picó Y, Barceló D. Development and validation of a pressurized liquid extraction liquid chromatography–tandem mass spectrometry method for perfluorinated compounds determination in fish. J Chromatogr A 2009; 1216:7195-204. [DOI: 10.1016/j.chroma.2009.06.062] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 06/15/2009] [Accepted: 06/18/2009] [Indexed: 10/20/2022]
|