1
|
Zhu N, Qian Y, Song L, Yu Q, Sheng H, Li Y, Zhu X. Regulating Leaf Photosynthesis and Soil Microorganisms through Controlled-Release Nitrogen Fertilizer Can Effectively Alleviate the Stress of Elevated Ambient Ozone on Winter Wheat. Int J Mol Sci 2024; 25:9381. [PMID: 39273328 PMCID: PMC11394819 DOI: 10.3390/ijms25179381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
The mitigation mechanisms of a kind of controlled-release nitrogen fertilizer (sulfur-coated controlled-release nitrogen fertilizer, SCNF) in response to O3 stress on a winter wheat (Triticum aestivum L.) variety (Nongmai-88) were studied in crop physiology and soil biology through the ozone-free-air controlled enrichment (O3-FACE) simulation platform and soil microbial metagenomics. The results showed that SCNF could not delay the O3-induced leaf senescence of winter wheat but could enhance the leaf size and photosynthetic function of flag leaves, increase the accumulation of nutrient elements, and lay the foundation for yield by regulating the release rate of nitrogen (N). By regulating the soil environment, SCNF could maintain the diversity and stability of soil bacterial and archaeal communities, but there was no obvious interaction with the soil fungal community. By alleviating the inhibition effects of O3 on N-cycling-related genes (ko00910) of soil microorganisms, SCNF improved the activities of related enzymes and might have great potential in improving soil N retention. The results demonstrated the ability of SCNF to improve leaf photosynthetic function and increase crop yield under O3-polluted conditions in the farmland ecosystem, which may become an effective nitrogen fertilizer management measure to cope with the elevated ambient O3 and achieve sustainable production.
Collapse
Affiliation(s)
- Nanyan Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
- College of JunCao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Jiangsu Key Laboratory of Crop Genomics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, College of Agricultural, Yangzhou University, Yangzhou 225000, China
| | - Yinsen Qian
- Jiangsu Key Laboratory of Crop Genomics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, College of Agricultural, Yangzhou University, Yangzhou 225000, China
| | - Lingqi Song
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Qiaoqiao Yu
- Jiangsu Key Laboratory of Crop Genomics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, College of Agricultural, Yangzhou University, Yangzhou 225000, China
| | - Haijun Sheng
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Ying Li
- Jiangsu Key Laboratory of Crop Genomics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, College of Agricultural, Yangzhou University, Yangzhou 225000, China
- Department of Biology, Hong Kong Baptist University, Hong Kong 999077, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Xinkai Zhu
- Jiangsu Key Laboratory of Crop Genomics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, College of Agricultural, Yangzhou University, Yangzhou 225000, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
2
|
Hoshika Y, Agathokleous E, Moura BB, Paoletti E. Ozone risk assessment with free-air controlled exposure (FACE) experiments: A critical revisit. ENVIRONMENTAL RESEARCH 2024; 255:119215. [PMID: 38782333 DOI: 10.1016/j.envres.2024.119215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/03/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024]
Abstract
Since risk assessments of tropospheric ozone (O3) are crucial for agricultural and forestry sectors, there is a growing body for realistic assessments by a stomatal flux-based approach in Free-Air Controlled Exposure (FACE) facilities. Ozone risks are normally described as relative risks (RRs), which are calculated by assuming the biomass or yield at zero O3 dose as "reference". However, the estimation of the reference biomass or yield is challenging due to a lack of O3-clean-air treatment at the FACEs and the extrapolation without data in a low O3 range increases the bias for estimating the reference values. Here, we reviewed a current methodology for the risk assessment at FACEs and presented a simple and effective way ("modified Paoletti's approach") of defining RRs just using biomass or yield data with a range of expected impacts under the FACE conditions hypothesizing three possible scenarios based on prediction limits using 95% credible intervals (CI) (1. Best fit using the intercept as reference, 2. Optimistic scenario using a lower CI and 3. Worst scenario using an upper CI). As a result, O3-sensitive species show a relatively narrow effect range (optimistic vs. worst scenario) whereas a wide range of response may be possibly taken in resistant species. Showing a possible effect range allows for a comprehensive understanding of the potential risks and its uncertainties related to a species sensitivity to O3. As a supporting approach, we also recommend to use scientifically relevant tools (i.e., ethylenediurea treatments; mechanistic plant models) for strengthening the obtained results for the RRs against O3. Interestingly, the moderately sensitive or resistant species showed non-linear rather than linear dose-response relationships, suggesting a need for the flexible functional form for the risk assessment to properly describe the complex plant response such as hormesis, which depends on their plasticity to O3 stress.
Collapse
Affiliation(s)
- Yasutomo Hoshika
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Madonna del Piano, I-50019, Sesto Fiorentino, Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy.
| | - Evgenios Agathokleous
- School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology (NUIST), Ningliu Rd. 219, Nanjing, Jiangsu, 210044, China
| | - Barbara Baesso Moura
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Madonna del Piano, I-50019, Sesto Fiorentino, Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| | - Elena Paoletti
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Madonna del Piano, I-50019, Sesto Fiorentino, Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| |
Collapse
|
3
|
Jamil HMA, Gatasheh MK, Ahmad R, Ibrahim KE, Khan SA, Irshad U, Shahzad M, Abbasi AM. Ectomycorrhiza and ethylenediurea reduced the impact of high nitrogen and ozone stresses and increased the growth of Cedrus deodara. Heliyon 2024; 10:e28635. [PMID: 38586366 PMCID: PMC10998246 DOI: 10.1016/j.heliyon.2024.e28635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/16/2024] [Accepted: 03/21/2024] [Indexed: 04/09/2024] Open
Abstract
Cedrus deodara is the central conifer plant affected by ozone and nitrogen pollutants among forest species worldwide. The growth of C. deodara depends upon the ectomycorrhizal (ECM) association, which is usually disturbed by these factors. This study aims to understand how these factors affect plants at physiological and biochemical levels. Three fungal strain consortiums were inoculated with two-year-old C. deodara seedlings. The stresses of 100 kg N h-1and 100 ppb O3 were applied for six months to study their impact on chlorophyll and antioxidant enzymes (SOD, CAT, and APX). The results showed that C2 (Consortium of Cedrus deodara) positively impacted the growth of selected plant species. The high photosynthesis rate was determined by enhanced chlorophyll content, and C2-treated plants showed high chlorophyll content. Relatively, chlorophyll a and b contents increased significantly in the seedlings treated with Ethylenediurea (EDU) alone and with ozone stress. In addition, a significant difference was observed between EDU and O3-treated plants (14% EDU400-O3 and 23% EDU600-O3) and the control. Overall, antioxidant activities were higher in the treated samples than in the control. The order of SOD activity was C2 (448 U/gFW) and lowest (354.7 U/gFW) in control. APX also showed higher activity in treated plants in C1 ≥ C2 ≥ C3+O3, whereas CAT activity was the highest in C2 treatments. Ozone and nitrogen-stressed plants showed higher activities than EDU-treated plants compared to non-treated ones. Our findings highlight the importance of understanding the signaling effects of numerous precursors. Moreover, an extended investigation of seedlings developing into trees must be conducted to verify the potential of ectomycorrhizal strains associated with C. deodara and comprehend EDU's role as a direct molecular scavenger of reactive toxicants.
Collapse
Affiliation(s)
- Hafiz Muhammad Ansab Jamil
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
| | - Mansour K. Gatasheh
- Department of Biochemistry, College of Science, King Saud University, P.O. Box. 2455, Riyadh, 11451, Saudi Arabia
| | - Rafiq Ahmad
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
| | - Khalid Elfaki Ibrahim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Sabaz Ali Khan
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
| | - Usman Irshad
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
| | - Muhammad Shahzad
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
| | - Arshad Mehmood Abbasi
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
- University of Gastronomic Sciences of Pollenzo, Piazza V. Emanuele II, I-12042, Bra/Pollenzo, Italy
| |
Collapse
|
4
|
Shang B, Tian T, Shen D, Du E, Agathokleous E, Feng Z. Can ethylenediurea (EDU) alter the effects of ozone on the source-sink regulation of nitrogen uptake and remobilization during grain filling period in rice? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:171030. [PMID: 38367724 DOI: 10.1016/j.scitotenv.2024.171030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/24/2024] [Accepted: 02/14/2024] [Indexed: 02/19/2024]
Abstract
Increased surface ozone (O3) pollution seriously threatens crop production, and ethylenediurea (EDU) can alleviate crop yield reduction caused by O3. However, the reason for the decrease in grain nitrogen (N) accumulation caused by O3 and whether EDU serves as N fertilizer remain unclear. An experiment was conducted to investigate the impacts of factorial combinations of O3 enrichment (ambient air plus 60 ppb) and EDU (foliage spray with 450 ppm solutions) on N concentration, accumulation and remobilization in hybrid rice seedlings. Compared to ambient condition, elevated O3 significantly inhibited the N accumulation in vegetative organs during anthesis and grain N accumulation during the maturity stage. Elevated O3 significantly decreased the total N accumulation during anthesis and maturity stages, with a greater impact at the latter stage. The decrease in grain N accumulation caused by O3 was attributed to a decrease in N remobilization of vegetative organs during the grain filling period as well as to a decrease in post-anthesis N uptake. However, there was no significant change in the proportion of N remobilization and N uptake in grain N accumulation. The inhibitory effect of O3 on N remobilization in the upper canopy leaves was greater than that in the lower canopy leaves. In addition, elevated O3 increased the N accumulation of panicles at the anthesis stage, mainly by resulting in earlier heading of rice. EDU only increased N accumulation at the maturity stage, which was mainly attributed to an increase in rice biomass by EDU. EDU had no significant effect on N concentration, N remobilization process, and N harvest index. The findings are helpful to better understand the utilization of N fertilizer by rice under O3 pollution, and can also provide a theoretical basis for sustainable nutrient management to alleviate the negative impact of O3 on crop yield and quality.
Collapse
Affiliation(s)
- Bo Shang
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China; Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China
| | - Tongtong Tian
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China; Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China
| | - Dongyun Shen
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China; Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China
| | - Enzai Du
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China; School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Evgenios Agathokleous
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China; Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China
| | - Zhaozhong Feng
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China; Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China.
| |
Collapse
|
5
|
Kannaujia R, Prasad V, Pandey V. Ozone-induced oxidative stress alleviation by biogenic silver nanoparticles and ethylenediurea in mung bean (Vigna radiata L.) under high ambient ozone. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:26997-27013. [PMID: 38503953 DOI: 10.1007/s11356-024-32917-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/09/2024] [Indexed: 03/21/2024]
Abstract
Ground-level ozone (O3) is the most phytotoxic secondary air pollutant in the atmosphere, severely affecting crop yields worldwide. The role of nanoparticles (NP) in the alleviation of ozone-induced yield losses in crops is not known. Therefore, in the present study, we investigated the effects of biogenicB-AgNPs on the mitigation of ozone-induced phytotoxicity in mung bean and compared its results with ethylenediurea (EDU) for the first time. Two mung bean cultivars (Vigna radiata L., Cv. SML-668 and PDM-139) were foliar sprayed with weekly applications of B-AgNPs (0 = control, 10 and 25 ppm) and EDU (0 = control, 200 and 300 ppm) until maturation phase. Morphological, physiological, enzymatic, and non-enzymatic antioxidant data were collected 30 and 60 days after germination (DAG). The mean O3 and AOT40 values (8 h day-1) during the cultivation period were approximately 52 ppb and 4.4 ppm.h, respectively. More biomass was accumulated at the vegetative phase due to the impact of B-AgNPs and EDU, and more photosynthates were transported to the reproductive phase, increasing yield. We observed that the 10 ppm B-AgNPs treatment had a more noticeable impact on yield parameters and lower Ag accumulation in seeds for both cultivars. Specifically, SML-668 cultivar treated with 10 ppm B-AgNPs (SN1) showed greater increases in seed weight plant-1 (124.97%), hundred seed weight (33.45%), and harvest index (37.53%) in comparison to control. Our findings suggest that B-AgNPs can enhance growth, biomass, yield, and seed quality, and can improve mung bean ozone tolerance. Therefore, B-AgNPs may be a promising protectant for mung bean.
Collapse
Affiliation(s)
- Rekha Kannaujia
- Plant Ecology and Climate Change Science, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, U.P, India
- Molecular Plant Virology Lab, Department of Botany, University of Lucknow, Lucknow, 226007, U.P, India
| | - Vivek Prasad
- Molecular Plant Virology Lab, Department of Botany, University of Lucknow, Lucknow, 226007, U.P, India
| | - Vivek Pandey
- Plant Ecology and Climate Change Science, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, U.P, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
6
|
Vougeleka V, Risoli S, Saitanis C, Agathokleous E, Ntatsi G, Lorenzini G, Nali C, Pellegrini E, Pisuttu C. Exogenous application of melatonin protects bean and tobacco plants against ozone damage by improving antioxidant enzyme activities, enhancing photosynthetic performance, and preventing membrane damage. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123180. [PMID: 38142812 DOI: 10.1016/j.envpol.2023.123180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/11/2023] [Accepted: 12/14/2023] [Indexed: 12/26/2023]
Abstract
Ozone (O3) pollution is harmful to plants and ecosystems. Several chemicals have been evaluated to protect plants against O3 deleterious effects. However, they are not adequately efficient and/or the environmental safety of their application is questioned. Hence, new chemicals that provide sufficient protection while being safer for environmental application are needed. This study investigates the response of two O3-sensitive plant species (Phaseolus vulgaris L. cv. Pinto and Nicotiana tabacum L. cv. Bel-W3) leaf-sprayed with deionized water (W, control), ethylenediurea (EDU, 1 mM) or melatonin at lower (1 mM) or higher (3 mM) concentrations (Mel_L and Mel_H, respectively), and then exposed to a square wave of 200 ppb O3, lasting 1 day (5 h day-1) for bean and 2 days (8 h day-1) for tobacco. In both species, the photosynthetic activity of O3-exposed plants was about halved. O3-induced membrane damage was also confirmed by increased malondialdehyde (MDA) byproducts compared to control (W). In EDU- and Mel-treated bean plants, the photosynthetic performance was not influenced by O3, leading to reduction of the incidence and severity of O3 visible injury. In bean plants, Mel_L mitigated the detrimental effect of O3 by boosting antioxidant enzyme activities or osmoprotectants (e.g. abscisic acid, proline, and glutathione transferase). In Mel_L-sprayed tobacco plants, O3 negatively influenced the photosynthetic activity. Conversely, Mel_H ameliorated the O3-induced oxidative stress by preserving the photosynthetic performance, preventing membrane damage, and reducing the visible injuries extent. Although EDU performed better, melatonin protected plants against O3 phytotoxicity, suggesting its potential application as a bio-safer and eco-friendlier phytoprotectant against O3. It is worth noting that the content of melatonin in EDU-treated plants remained unchanged, indicating that the protectant mode of action of EDU is not Mel-related.
Collapse
Affiliation(s)
- Vasiliki Vougeleka
- Laboratory of Ecology and Environmental Sciences, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| | - Samuele Risoli
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, Pisa, 56124, Italy; University School for Advanced Studies IUSS Pavia, Palazzo del Broletto, Piazza della Vittoria 15, 27100, Pavia, Italy
| | - Costas Saitanis
- Laboratory of Ecology and Environmental Sciences, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| | - Evgenios Agathokleous
- School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing, 210044, China.
| | - Georgia Ntatsi
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| | - Giacomo Lorenzini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, Pisa, 56124, Italy; CIRSEC, Centre for Climatic Change Impact, University of Pisa, Via del Borghetto 80, Pisa, 56124, Italy
| | - Cristina Nali
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, Pisa, 56124, Italy; CIRSEC, Centre for Climatic Change Impact, University of Pisa, Via del Borghetto 80, Pisa, 56124, Italy
| | - Elisa Pellegrini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, Pisa, 56124, Italy; CIRSEC, Centre for Climatic Change Impact, University of Pisa, Via del Borghetto 80, Pisa, 56124, Italy
| | - Claudia Pisuttu
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, Pisa, 56124, Italy
| |
Collapse
|
7
|
Frei M, Ashrafuzzaman M, Piepho HP, Herzog E, Begum SN, Islam MM. Evidence for tropospheric ozone effects on rice production in Bangladesh. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168560. [PMID: 37979852 DOI: 10.1016/j.scitotenv.2023.168560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/20/2023]
Abstract
Although Bangladesh is known to be burdened with elevated tropospheric ozone levels, little is known about its effects on food security. We conducted field experiments in four highly polluted rice growing environments of Bangladesh in three cropping seasons (2020-2022), in which we grew 20 different rice varieties with or without application of the ozone protectant ethylene diurea (EDU). The average daytime ozone concentrations at the study sites during the rice growing seasons ranged from 53 ppb to 84 ppb, with the lowest concentrations occurring in the year 2020. EDU increased rice grain yields significantly by an average of 10.4 % across all seasons and locations, indicating that plants were stressed under ambient ozone concentrations. EDU was effective in distinguishing ozone-tolerant from ozone-sensitive varieties, in which yield increased by up to 21 %. Likewise, the EDU treatment positively affected vegetation indices representing chlorophyll (NDVI), the chorophyll:carotenoid ratio (Lic2), and pigments of the xanthophyll cycle (PRI). Stomatal conductance was increased significantly by an average of around 10 % among all varieties when plants were treated with EDU. In all physiological traits, significant genotype by treatment interactions occurred, indicating that different varieties varied in their responses to ozone stress. Our study demonstrates that rice production in Bangladesh is severely affected by tropospheric ozone, and calls for the breeding of tolerant rice varieties as well as mitigation measures to reduce air pollution.
Collapse
Affiliation(s)
- Michael Frei
- Department of Agronomy and Crop Physiology, Justus-Liebig-University, Giessen, Germany.
| | - Md Ashrafuzzaman
- Department of Genetic Engineering & Biotechnology (GEB), School of Life Sciences, Shahjalal University of Science and Technology (SUST), Sylhet, Bangladesh
| | - Hans-Peter Piepho
- Biostatistics Unit, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| | - Eva Herzog
- Department of Biometry and Population Genetics, Justus-Liebig-University, Giessen, Germany
| | - Shamsun Nahar Begum
- Plant Breeding Division, Bangladesh Institute of Nuclear Agriculture (BINA), Mymensingh, Bangladesh
| | - Mirza Mofazzal Islam
- Plant Breeding Division, Bangladesh Institute of Nuclear Agriculture (BINA), Mymensingh, Bangladesh
| |
Collapse
|
8
|
Nowroz F, Hasanuzzaman M, Siddika A, Parvin K, Caparros PG, Nahar K, Prasad PV. Elevated tropospheric ozone and crop production: potential negative effects and plant defense mechanisms. FRONTIERS IN PLANT SCIENCE 2024; 14:1244515. [PMID: 38264020 PMCID: PMC10803661 DOI: 10.3389/fpls.2023.1244515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/15/2023] [Indexed: 01/25/2024]
Abstract
Ozone (O3) levels on Earth are increasing because of anthropogenic activities and natural processes. Ozone enters plants through the leaves, leading to the overgeneration of reactive oxygen species (ROS) in the mesophyll and guard cell walls. ROS can damage chloroplast ultrastructure and block photosynthetic electron transport. Ozone can lead to stomatal closure and alter stomatal conductance, thereby hindering carbon dioxide (CO2) fixation. Ozone-induced leaf chlorosis is common. All of these factors lead to a reduction in photosynthesis under O3 stress. Long-term exposure to high concentrations of O3 disrupts plant physiological processes, including water and nutrient uptake, respiration, and translocation of assimilates and metabolites. As a result, plant growth and reproductive performance are negatively affected. Thus, reduction in crop yield and deterioration of crop quality are the greatest effects of O3 stress on plants. Increased rates of hydrogen peroxide accumulation, lipid peroxidation, and ion leakage are the common indicators of oxidative damage in plants exposed to O3 stress. Ozone disrupts the antioxidant defense system of plants by disturbing enzymatic activity and non-enzymatic antioxidant content. Improving photosynthetic pathways, various physiological processes, antioxidant defense, and phytohormone regulation, which can be achieved through various approaches, have been reported as vital strategies for improving O3 stress tolerance in plants. In plants, O3 stress can be mitigated in several ways. However, improvements in crop management practices, CO2 fertilization, using chemical elicitors, nutrient management, and the selection of tolerant crop varieties have been documented to mitigate O3 stress in different plant species. In this review, the responses of O3-exposed plants are summarized, and different mitigation strategies to decrease O3 stress-induced damage and crop losses are discussed. Further research should be conducted to determine methods to mitigate crop loss, enhance plant antioxidant defenses, modify physiological characteristics, and apply protectants.
Collapse
Affiliation(s)
- Farzana Nowroz
- Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Mirza Hasanuzzaman
- Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Ayesha Siddika
- Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Khursheda Parvin
- Department of Horticulture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Pedro Garcia Caparros
- Agronomy Department of Superior School Engineering, University of Almería, Almería, Spain
| | - Kamrun Nahar
- Department of Agricultural Botany, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - P.V. Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
9
|
Ramya A, Dhevagi P, Poornima R, Avudainayagam S, Watanabe M, Agathokleous E. Effect of ozone stress on crop productivity: A threat to food security. ENVIRONMENTAL RESEARCH 2023; 236:116816. [PMID: 37543123 DOI: 10.1016/j.envres.2023.116816] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023]
Abstract
Tropospheric ozone (O3), the most important phytotoxic air pollutant, can deteriorate crop quality and productivity. Notably, satellite and ground-level observations-based multimodel simulations demonstrate that the present and future predicted O3 exposures could threaten food security. Hence, the present study aims at reviewing the phytotoxicity caused by O3 pollution, which threatens the food security. The present review encompasses three major aspects; wherein the past and prevailing O3 concentrations in various regions were compiled at first, followed by discussing the physiological, biochemical and yield responses of economically important crop species, and considering the potential of O3 protectants to alleviate O3-induced phytotoxicity. Finally, the empirical data reported in the literature were quantitatively analysed to show that O3 causes detrimental effect on physiological traits, photosynthetic pigments, growth and yield attributes. The review on prevailing O3 concentrations over various regions, where economically important crop are grown, and their negative impact would support policy makers to implement air pollution regulations and the scientific community to develop countermeasures against O3 phytotoxicity for maintaining food security.
Collapse
Affiliation(s)
- Ambikapathi Ramya
- Department of Environmental Sciences, Tamil Nadu Agricultural University, Tamil Nadu, 641003, India
| | - Periyasamy Dhevagi
- Department of Environmental Sciences, Tamil Nadu Agricultural University, Tamil Nadu, 641003, India.
| | - Ramesh Poornima
- Department of Environmental Sciences, Tamil Nadu Agricultural University, Tamil Nadu, 641003, India
| | - S Avudainayagam
- Department of Environmental Sciences, Tamil Nadu Agricultural University, Tamil Nadu, 641003, India
| | - Makoto Watanabe
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Evgenios Agathokleous
- Department of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| |
Collapse
|
10
|
Agathokleous E, Kitao M, Hoshika Y, Haworth M, Tang Y, Koike T. Ethylenediurea protects against ozone phytotoxicity not by adding nitrogen or controlling stomata in a stomata-unresponsive hybrid poplar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162672. [PMID: 36894106 DOI: 10.1016/j.scitotenv.2023.162672] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Ozone (O3) pollution is a persistent environmental issue worldwide, which causes widespread damage to vegetation, deteriorating plant health and reducing plant productivity. Ethylenediurea (EDU) is a synthetic chemical that has been widely applied in scientific studies as a protectant against O3 phytotoxicities. Despite four decades of active research, the exact mechanisms to explain its mode of action remain unclear. Here, we aimed to reveal whether EDU's phytoprotective property is due to its control over stomatal regulation and/or its action as a nitrogen (N) fertilizer, utilizing stomatal-unresponsive plants of a hybrid poplar (Populus koreana × trichocarpa cv. Peace) grown in a free-air O3-concenctration enrichment (FACE) facility. Plants were treated with water (WAT), EDU (400 mg L-1), or EDU's constitutive amount of N every nine days, and exposed to ambient (AOZ) or elevated (EOZ) O3 during a growing season (June-September). EOZ led to extensive foliar injuries (but protected against rust disease), lower photosynthetic rate (A), impaired dynamics of responses of A to changes in light intensity, and smaller total plant leaf area. EDU protected against common phytotoxicities caused by EOZ without inducing stomatal closure, since stomatal conductance (gs) was generally unresponsive to the experimental treatments. EDU also modulated the dynamic response of A to light fluctuations under O3 stress. N addition acted as a fertilizer but did not satisfactorily protect plants against O3 phytotoxicities. The results suggest that EDU protects against O3 phytotoxicity not by adding N or controlling stomata, which provides a new insight into our understanding of the mode of action of EDU as a protectant against O3 phytotoxicity.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Research Center for Global Changes and Ecosystem Carbon Sequestration & Mitigation, School of Applied Meteorology, Nanjing University of Information Science and Technology (NUIST), Nanjing 210044, Jiangsu, China; Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Hokkaido, Japan; Hokkaido Research Center, Forestry and Forest Products Research Institute (FFPRI), Sapporo 062-8516, Japan.
| | - Mitsutoshi Kitao
- Hokkaido Research Center, Forestry and Forest Products Research Institute (FFPRI), Sapporo 062-8516, Japan
| | - Yasutomo Hoshika
- IRET-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy
| | - Matthew Haworth
- National Research Council of Italy, Institute of Sustainable Plant Protection (CNR-IPSP), Via Madonna del Piano 10, 50019 Sesto Fiorentino, FI, Italy
| | - Yanhong Tang
- Department of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Takayoshi Koike
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Hokkaido, Japan
| |
Collapse
|
11
|
Wang Q, Wang D, Agathokleous E, Cheng C, Shang B, Feng Z. Soil Microbial Community Involved in Nitrogen Cycling in Rice Fields Treated with Antiozonant under Ambient Ozone. Appl Environ Microbiol 2023; 89:e0018023. [PMID: 37022183 PMCID: PMC10132097 DOI: 10.1128/aem.00180-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/04/2023] [Indexed: 04/07/2023] Open
Abstract
Ethylenediurea (EDU) can effectively mitigate the crop yield loss caused by ozone (O3), a major, phytotoxic air pollutant. However, the relevant mechanisms are poorly understood, and the effect of EDU on soil ecosystems has not been comprehensively examined. In this study, a hybrid rice variety (Shenyou 63) was cultivated under ambient O3 and sprayed with 450 ppm EDU or water every 10 days. Real time quantitative polymerase chain reaction (RT-qPCR) showed that EDU had no significant effect on the microbial abundance in either rhizospheric or bulk soils. By applying both metagenomic sequencing and the direct assembly of nitrogen (N)-cycling genes, EDU was found to decrease the abundance of functional genes related to nitrification and denitrification processes. Moreover, EDU increased the abundance of genes involved in N-fixing. Although the abundance of some functional genes did not change significantly, nonmetric multidimensional scaling (NMDS) and a principal coordinates analysis (PCoA) suggested that the microbial community structure involved in N cycling was altered by EDU. The relative abundances of nifH-and norB-harboring microbial genera in the rhizosphere responded differently to EDU, suggesting the existence of functional redundancy, which may play a key role in sustaining microbially mediated N-cycling under ambient O3. IMPORTANCE Ethylenediurea (EDU) is hitherto the most efficient phytoprotectant agent against O3 stress. However, the underlying biological mechanisms of its mode of action are not clear, and the effects of EDU on the environment are still unknown, limiting its large-scale application in agriculture. Due to its sensitivity to environmental changes, the microbial community can be used as an indicator to assess the environmental impacts of agricultural practices on soil quality. This study aimed to unravel the effects of EDU spray on the abundance, community structure, and ecological functions of microbial communities in the rhizosphere of rice plants. Our study provides a deep insight into the impact of EDU spray on microbial-mediated N cycling and the structure of N-cycling microbial communities. Our findings help to elucidate the mode of action of EDU in alleviating O3 stress in crops from the perspective of regulating the structure and function of the rhizospheric soil microbial community.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
| | - Dan Wang
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
| | - Evgenios Agathokleous
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
| | - Cheng Cheng
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
| | - Bo Shang
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
| | - Zhaozhong Feng
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
| |
Collapse
|
12
|
Gupta A, Yadav DS, Agrawal SB, Agrawal M. Sensitivity of agricultural crops to tropospheric ozone: a review of Indian researches. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:894. [PMID: 36242703 DOI: 10.1007/s10661-022-10526-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/20/2022] [Indexed: 06/16/2023]
Abstract
Tropospheric ozone (O3) is a long-range transboundary secondary air pollutant, causing significant damage to agricultural crops worldwide. There are substantial spatial variations in O3 concentration in different areas of India due to seasonal and geographical variations. The Indo-Gangetic Plain (IGP) region is one of the most crop productive and air-polluted regions in India. The concentration of tropospheric O3 over the IGP is increasing by 6-7.2% per decade. The annual trend of increase is 0.4 ± 0.25% year-1 over the Northeastern IGP. High O3 concentrations were reported during the summer, while they were at their minimum during the monsoon months. To explore future potential impacts of O3 on major crop plants, the responses of different crops grown under ambient and elevated O3 concentrations were compared. The studies clearly showed that O3 is an important stress factor, negatively affecting the yield of crops. In this review, we have discussed yield losses in agricultural crops due to rising O3 pollution and variations in O3 sensitivity among cultivars and species. The use of ethylene diurea (EDU) as a research tool in assessing the losses in yield under ambient and elevated O3 levels also discussed. Besides, an overview of interactive effects of O3 and nitrogen on crop productivity has been included. Several recommendations are made for future research and policy development on rising concentration of O3 in India.
Collapse
Affiliation(s)
- Akanksha Gupta
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Durgesh Singh Yadav
- Department of Botany, Government Raza P.G. College, Rampur, U.P. 244901, India
| | - Shashi Bhushan Agrawal
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Madhoolika Agrawal
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
13
|
Zhang G, Risalat H, Kobayashi K, Cao R, Hu Q, Pan X, Hu Y, Shang B, Wu H, Zhang Z, Feng Z. Ethylenediurea reduces grain chalkiness in hybrid rice cultivars under ambient levels of surface ozone in China. FRONTIERS IN PLANT SCIENCE 2022; 13:983576. [PMID: 36119594 PMCID: PMC9479492 DOI: 10.3389/fpls.2022.983576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
High concentration of tropospheric ozone (O3) causes crop yield losses, which could be reduced by foliar application of ethylenediurea (EDU). Rice grain appearance is a major quality trait that determines the milling quality, white rice productivity and the market value. Grain chalkiness is one of the common defects that deteriorate the grain appearance in rice due to its negative effects on palatability and milling yield. Whether EDU could reduce grain chalkiness in rice which was usually increased by high concentration of O3 is not clarified. We report the grain chalkiness in 19 rice cultivars (CVs) of three types: indica (6 CVs), japonica (5 CVs) and hybrids (8 CVs), observed in an EDU application experiment in the field in China. The ambient O3 level as expressed by accumulated hourly O3 concentration over the threshold of 40 ppb (AOT40) for 80 days until maturity reached 12.8 ppm h at a near-by monitoring station. Fraction of the chalky grains (FCG) in the hybrid cultivars was 8% lower in EDU than that in the control treatments, whereas no significant effect of EDU on FCG was found in japonica or indica cultivars. The reduction of FCG due to EDU treatment in hybrid cultivars was attributed to the significant reduction of milky white grains followed by that of white belly grains. Thus, the application of EDU could ameliorate the decline of grain appearance quality in hybrid rice by decreasing the FCG and enhancing the fraction of perfect grains (FPG). Moreover, there were significant interactions between the EDU application and rice cultivars, indicating varietal difference in the protection of grain appearance quality by EDU. These results suggest the need for further studies on the mechanisms of the effects of EDU on grain chalkiness.
Collapse
Affiliation(s)
- Guoyou Zhang
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
| | - Hamdulla Risalat
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, China
| | | | - Rong Cao
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, China
| | - Qinan Hu
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, China
| | - Xiaoya Pan
- Chang Wang School of Honors, Nanjing University of Information Science and Technology, Nanjing, China
| | - Yaxin Hu
- Chang Wang School of Honors, Nanjing University of Information Science and Technology, Nanjing, China
| | - Bo Shang
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, China
| | - Hengchao Wu
- College of Wetland, Southwest Forestry University, Kunming, China
| | - Zujian Zhang
- Agricultural College, Yangzhou University, Yangzhou, China
| | - Zhaozhong Feng
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, China
| |
Collapse
|
14
|
Agathokleous S, Saitanis CJ, Savvides C, Sicard P, Agathokleous E, De Marco A. Spatiotemporal variations of ozone exposure and its risks to vegetation and human health in Cyprus: an analysis across a gradient of altitudes. JOURNAL OF FORESTRY RESEARCH 2022; 34:579-594. [PMID: 36033836 PMCID: PMC9391650 DOI: 10.1007/s11676-022-01520-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/06/2022] [Indexed: 05/05/2023]
Abstract
Ground-level ozone (O3) affects vegetation and threatens environmental health when levels exceed critical values, above which adverse effects are expected. Cyprus is expected to be a hotspot for O3 concentrations due to its unique position in the eastern Mediterranean, receiving air masses from Europe, African, and Asian continents, and experiencing a warm Mediterranean climate. In Cyprus, the spatiotemporal features of O3 are poorly understood and the potential risks for forest health have not been explored. We evaluated O3 and nitrogen oxides (NO and NO2) at four regional background stations at different altitudes over 2014-2016. O3 risks to vegetation and human health were estimated by calculating accumulated O3 exposure over a threshold of 40 nmol mol-1 (AOT40) and cumulative exposure to mixing ratios above 35 nmol mol-1 (SOMO35) indices. The data reveal that mean O3 concentrations follow a seasonal pattern, with higher levels in spring (51.8 nmol mol-1) and summer (53.2 nmol mol-1) and lower levels in autumn (46.9 nmol mol-1) and winter (43.3 nmol mol-1). The highest mean O3 exposure (59.5 nmol mol-1) in summer occurred at the high elevation station Mt. Troodos (1819 m a.s.l.). Increasing (decreasing) altitudinal gradients were found for O3 (NOx), driven by summer-winter differences. The diurnal patterns of O3 showed little variation. Only at the lowest altitude O3 displayed a typical O3 diurnal pattern, with hourly differences smaller than 15 nmol mol-1. Accumulated O3 exposures at all stations and in all years exceeded the European Union's limits for the protection of vegetation, with average values of 3-month (limit: 3000 nmol mol-1 h) and 6-month (limit: 5000 nmol mol-1 h) AOT40 for crops and forests of 16,564 and 31,836 nmol mol-1 h, respectively. O3 exposures were considerably high for human health, with an average SOMO35 value of 7270 nmol mol-1 days across stations and years. The results indicate that O3 is a major environmental and public health issue in Cyprus, and policies must be adopted to mitigate O3 precursor emissions at local and regional scales.
Collapse
Affiliation(s)
- Stefanos Agathokleous
- The Cyprus Institute, Nicosia, Cyprus
- University of the Aegean, Mytilene, Lesvos Greece
| | | | - Chrysanthos Savvides
- Department of Labour Inspection, Ministry of Labour and Social Insurance, Nicosia, Cyprus
| | | | - Evgenios Agathokleous
- School of Applied Meteorology, Nanjing University of Information Science and Technology (NUIST), Nanjing, 210044 People’s Republic of China
| | - Alessandra De Marco
- National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| |
Collapse
|
15
|
Singh AK, Mitra S, Kar G. Assessing the impact of current tropospheric ozone on yield loss and antioxidant defense of six cultivars of rice using ethylenediurea in the lower Gangetic Plains of India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:40146-40156. [PMID: 35119638 DOI: 10.1007/s11356-022-18938-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Climate change influences the current tropospheric ozone (O3) budget due to industrialization and urbanization processes. In recent years, the impact of elevated O3 on crop development and yield loss has emerged as one of the most important environmental issues, particularly in rural and suburban areas of the lower Indo-Gangetic Plains of India. The impact of the current tropospheric ozone (O3) on the crop yield, photosynthetic yield, and enzymatic antioxidants of six rice (Oryza sativa L.) cultivars (IR 36, MTU 1010, GB 3, Khitish, IET 4786, and Ganga Kaveri) was investigated with and without the application of ethylenediurea (EDU). The results revealed that O3 stress significantly affected crop yield, photosynthetic yield, and antioxidant enzymes. The findings showed that O3 toxicity induces oxidative stress biomarkers, i.e., malondialdehyde (MDA) content, and was manifested by increasing the enzymatic antioxidants, i.e., superoxidase dismutase (SOD) and catalase (CAT) in four rice cultivars (IR 36, GB 3, IET 4786, and Ganga Kaveri). At the same time, the results also illustrated that the rice cultivars MTU 1010 and Khitish are more tolerant to O3 stress as they had less oxidative damage, greater photosynthetic SPAD value, SOD and CAT activities, and lower MDA activity. The results also elucidated that the application of EDU decreased O3 toxicity in sensitive cultivars of rice by increasing antioxidant defense systems. The current O3 level is likely to show an additional increase in the near future, and the use of tolerant genotypes of rice may reduce the negative impacts of O3 on rice production.
Collapse
Affiliation(s)
- Arvind Kumar Singh
- Crop Production Division, ICAR-Central Research Institute for Jute and Allied Fibres, Nilganj, Barrackpore, Kolkata, 700121, West Bengal, India.
| | - Sabyasachi Mitra
- ICAR-Central Research Institute for Jute and Allied Fibres, Nilganj, Barrackpore, Kolkata, 700121, West Bengal, India
| | - Gouranga Kar
- ICAR-Central Research Institute for Jute and Allied Fibres, Nilganj, Barrackpore, Kolkata, 700121, West Bengal, India
| |
Collapse
|
16
|
Shang B, Fu R, Agathokleous E, Dai L, Zhang G, Wu R, Feng Z. Ethylenediurea offers moderate protection against ozone-induced rice yield loss under high ozone pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151341. [PMID: 34728207 DOI: 10.1016/j.scitotenv.2021.151341] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/19/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Tropospheric ozone (O3) is the main phytotoxic air pollutant threatening food security, while ethylenediurea (EDU) can effectively mitigate O3-induced crop yield loss. EDU's mode of action, however, remains unclear, and the underlying physiological mechanisms of mitigating O3-induced crop yield loss are poorly understood. We cultivated hybrid rice seedlings under two O3 treatments (NF, nonfiltered ambient air; and NF60, ambient air plus 60 ppb O3) and sprayed foliage with 0 or 450 ppm EDU every ten days and determine photosynthesis-related traits, biomass indicators, and yield components. We found that EDU significantly increased the leaf nitrogen (N) allocation to photosynthesis (NP) and the grain N accumulation, while the grain N accumulation was positively correlated with NP and root biomass. EDU significantly increased the rice yield mainly by increasing the individual grain weight rather than the number of panicles and grains. While EDU protected from yield loss, the degree of protection was only 31% under NF60 treatment, thus EDU was unable to offer complete protection under high O3 pollution. These results will be conducive to a better understanding of the EDU protection mechanism and better application of EDU under high O3 pollution in the future.
Collapse
Affiliation(s)
- Bo Shang
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China
| | - Rao Fu
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China
| | - Evgenios Agathokleous
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China
| | - Lulu Dai
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China; Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Guoyou Zhang
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China
| | - Rongjun Wu
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China
| | - Zhaozhong Feng
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China.
| |
Collapse
|
17
|
Feng Z, Xu Y, Kobayashi K, Dai L, Zhang T, Agathokleous E, Calatayud V, Paoletti E, Mukherjee A, Agrawal M, Park RJ, Oak YJ, Yue X. Ozone pollution threatens the production of major staple crops in East Asia. NATURE FOOD 2022; 3:47-56. [PMID: 37118490 DOI: 10.1038/s43016-021-00422-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 10/27/2021] [Indexed: 04/30/2023]
Abstract
East Asia is a hotspot of surface ozone (O3) pollution, which hinders crop growth and reduces yields. Here, we assess the relative yield loss in rice, wheat and maize due to O3 by combining O3 elevation experiments across Asia and air monitoring at about 3,000 locations in China, Japan and Korea. China shows the highest relative yield loss at 33%, 23% and 9% for wheat, rice and maize, respectively. The relative yield loss is much greater in hybrid than inbred rice, being close to that for wheat. Total O3-induced annual loss of crop production is estimated at US$63 billion. The large impact of O3 on crop production urges us to take mitigation action for O3 emission control and adaptive agronomic measures against the rising surface O3 levels across East Asia.
Collapse
Affiliation(s)
- Zhaozhong Feng
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China.
| | - Yansen Xu
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China
| | - Kazuhiko Kobayashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
| | - Lulu Dai
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China
- Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Tianyi Zhang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
| | - Evgenios Agathokleous
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China
| | | | - Elena Paoletti
- Institute of Research on Terrestrial Ecosystems, National Research Council, Sesto Fiorentino, Italy
| | - Arideep Mukherjee
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Madhoolika Agrawal
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Rokjin J Park
- School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea
| | - Yujin J Oak
- School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea
| | - Xu Yue
- School of Environmental Science & Engineering, Nanjing University of Information Science & Technology, Nanjing, China.
| |
Collapse
|
18
|
Kannaujia R, Singh P, Prasad V, Pandey V. Evaluating impacts of biogenic silver nanoparticles and ethylenediurea on wheat (Triticum aestivum L.) against ozone-induced damages. ENVIRONMENTAL RESEARCH 2022; 203:111857. [PMID: 34400164 DOI: 10.1016/j.envres.2021.111857] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 05/11/2023]
Abstract
Tropospheric ozone (O3) is a phytotoxic pollutant that leads to a reduction in crop yield. Nanotechnology offers promising solutions to stem such yield losses against abiotic stresses. Silver nanoparticles are major nanomaterials used in consumer products however, their impact on crops under abiotic stress is limited. In this study, we evaluated the anti-ozonant efficacy of biogenic silver nanoparticles (B-AgNPs) and compared them with a model anti-ozonant ethylenediurea (EDU) against ozone phyto-toxicity. Growth, physiology, antioxidant defense, and yield parameters in two wheat cultivars (HD-2967 & DBW-17), treated with B-AgNPs (25 mg/L and 50 mg/L) and EDU (150 mg/L and 300 mg/L), were studied at both vegetative and reproductive stages. During the experimental period, the average ambient ozone concentration and accumulated dose of ozone over a threshold of 40 ppb (AOT40) (8 h day-1) were found to be 60 ppb and 6 ppm h, respectively, which were sufficient to cause ozone-induced phyto-toxicity in wheat. Growth and yield for B-AgNPs as well as EDU-treated plants were significantly higher in both the tested cultivars over control ones. However, 25 mg/L B-AgNPs treatment showed a more pronounced effect in terms of yield attributes and its lower accumulation in grains for both cultivars. DBW-17 cultivar responded better with B-AgNPs and EDU treatments as compared to HD-2967. Meanwhile, foliar exposure of B-AgNPs (dose; 25 mg/L) significantly enhanced grain weight plant-1, thousand-grain weight, and harvest index by 54.22 %, 29.46 %, and 14.21 %, respectively in DBW-17, when compared to control. B-AgNPs could enhance ozone tolerance in wheat by increasing biochemical and physiological responses. It is concluded that B-AgNPs at optimum concentrations were as effective as EDU, hence could be a promising ozone protectant for wheat.
Collapse
Affiliation(s)
- Rekha Kannaujia
- Plant Ecology and Climate Change Science, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, UP, India; Molecular Plant Virology Lab, Department of Botany, University of Lucknow, Lucknow, 226007, UP, India
| | - Pratiksha Singh
- Plant Ecology and Climate Change Science, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, UP, India
| | - Vivek Prasad
- Molecular Plant Virology Lab, Department of Botany, University of Lucknow, Lucknow, 226007, UP, India
| | - Vivek Pandey
- Plant Ecology and Climate Change Science, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, UP, India.
| |
Collapse
|
19
|
Yin R, Hao Z, Zhou X, Wu H, Feng Z, Yuan X, Chen B. Ozone does not diminish the beneficial effects of arbuscular mycorrhizas on Medicago sativa L. in a low phosphorus soil. MYCORRHIZA 2022; 32:33-43. [PMID: 34981189 DOI: 10.1007/s00572-021-01059-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/20/2021] [Indexed: 05/12/2023]
Abstract
Enriched surface ozone (O3) can impose harmful effects on plants. Conversely, arbuscular mycorrhizal (AM) symbiosis can enhance plant tolerance to various environmental stresses and facilitate plant growth. The interaction of AM fungi and O3 on plant performance, however, seldom has been investigated. In this study, alfalfa (Medicago sativa L.) was used as a test plant to study the effects of O3 and AM symbiosis on plant physiology and growth under two O3 levels (ambient air and elevated O3 with 60 nmol·mol-1 O3 enrichment) and three AM inoculation treatments (inoculation with exogenous or indigenous AM fungi and non-inoculation control). The results showed that elevated O3 decreased plant net photosynthetic rate and biomass, and increased malondialdehyde concentration, while AM inoculation (with both exogenous and indigenous AM fungi) could promote plant nutrient acquisition and growth irrespective of O3 levels. The positive effects of AM symbiosis on plant nutrient acquisition and antioxidant enzyme (superoxide dismutase and peroxidase) activities were most likely offset by increased stomatal conductance and O3 intake. As a result, AM inoculation and O3 generally showed no significant interactions on plant performance: although elevated O3 did not diminish the beneficial effects of AM symbiosis on alfalfa plants, AM symbiosis also did not alleviate the harmful effects of O3 on plants.
Collapse
Affiliation(s)
- Rongbin Yin
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, No. 18, Shuangqing Road, Beijing, 100085, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Zhipeng Hao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, No. 18, Shuangqing Road, Beijing, 100085, People's Republic of China
| | - Xiang Zhou
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, No. 18, Shuangqing Road, Beijing, 100085, People's Republic of China
- China University of Geosciences, Beijing, 100191, People's Republic of China
| | - Hui Wu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, No. 18, Shuangqing Road, Beijing, 100085, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Zhaozhong Feng
- Institute of Ecology, Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, People's Republic of China
| | - Xiangyang Yuan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, No. 18, Shuangqing Road, Beijing, 100085, People's Republic of China
| | - Baodong Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, No. 18, Shuangqing Road, Beijing, 100085, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
20
|
Perring MP, Bullock JM, Alison J, Holder AJ, Hayes F. O
ut of sight,
O
ut of mind – but not
O
ut of scope. The need to consider ozone in restoration science, policy and practice. Restor Ecol 2021. [DOI: 10.1111/rec.13622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michael P. Perring
- UKCEH (UK Centre for Ecology & Hydrology), Environment Centre Wales Deiniol Road Bangor Gwynedd LL57 2UW UNITED KINGDOM
- Forest & Nature Lab, Campus Gontrode, Ghent University, Geraardsbergsesteenweg 267 9090 Melle‐Gontrode BELGIUM
- Ecosystem Restoration and Intervention Ecology (ERIE) Research Group, School of Biological Sciences, The University of Western Australia, 35, Stirling Highway Crawley WA 6009 AUSTRALIA
| | - James M. Bullock
- UKCEH (UK Centre for Ecology & Hydrology), Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford Oxfordshire OX10 8BB UNITED KINGDOM
| | - Jamie Alison
- UKCEH (UK Centre for Ecology & Hydrology), Environment Centre Wales Deiniol Road Bangor Gwynedd LL57 2UW UNITED KINGDOM
| | - Amanda J. Holder
- UKCEH (UK Centre for Ecology & Hydrology), Environment Centre Wales Deiniol Road Bangor Gwynedd LL57 2UW UNITED KINGDOM
| | - Felicity Hayes
- UKCEH (UK Centre for Ecology & Hydrology), Environment Centre Wales Deiniol Road Bangor Gwynedd LL57 2UW UNITED KINGDOM
| |
Collapse
|
21
|
Zhang G, Kobayashi K, Wu H, Shang B, Wu R, Zhang Z, Feng Z. Ethylenediurea (EDU) protects inbred but not hybrid cultivars of rice from yield losses due to surface ozone. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:68946-68956. [PMID: 34286427 DOI: 10.1007/s11356-021-15032-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
The rising concentration of ground-level ozone (O3) reduces crop yield via increased oxidative stress. Application of ethylenediurea (EDU) protects plants from O3 and could thereby serve as a means to estimate the crop yield losses due to ambient O3 (AO3). However, no study but a few exceptions has ever compared the yield loss estimates from EDU application with those from O3 elevation experiments. Here, we estimated yield loss to AO3 in rice cultivars across the 3 types, indica, japonica, and hybrid, by an EDU application in the field, and compared the yield losses with those estimated with dose-response relationships based on O3 elevation experiments. Relative yield loss (RYL) in the EDU application was estimated at 16% across the rice types on an assumption of a 100% efficiency for protection of crop yield by EDU. This estimate of RYL was close to the 15% RYL estimated from the O3 elevation experiments when a common sensitivity to O3 is assumed across the cultivars. The rice yield loss due to AO3 was thus consistent between the two approaches supporting the idea of EDU application for the yield loss estimation. When only hybrids are focused, however, the RYL from EDU application (16%) was much lower than the 34% RYL from the O3 elevation experiments, which indicates only a 37% yield protection by EDU in the hybrid rice. The incomplete protection by EDU and its genetic variability indicates the need to quantify the efficiency of protection from AO3-induced yield loss as estimated with O3 manipulating experiments.
Collapse
Affiliation(s)
- Guoyou Zhang
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | | | - Hengchao Wu
- College of Wetland, Southwest Forestry University, Kunming, 650224, China
| | - Bo Shang
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Rongjun Wu
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Zujian Zhang
- Agricultural College, Yangzhou University, Yangzhou, 225009, China
| | - Zhaozhong Feng
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| |
Collapse
|
22
|
Chaudhary IJ, Rathore D. Assessment of ozone toxicity on cotton (Gossypium hirsutum L.) cultivars: Its defensive system and intraspecific sensitivity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:912-927. [PMID: 34246106 DOI: 10.1016/j.plaphy.2021.06.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Anthropogenic activities help the ozone formation at the troposphere which causes toxic effects on plants and humans. Ozone is a highly reactive gas that enters in plants through stomata and initiates the overproduction of ROS which causes oxidative stress in plants that lead to the destruction of membranal lipids, proteins, impaired the production of sugars and other metabolites and ultimately damage the cell. Presented study was conducted to assess the ozone toxicity on the biomass accumulation of cotton (Gossypium hirsutum L.) cultivars and the role of antioxidative activity in intraspecific sensitivity among the tested cultivars. Results showed that the ozone exposed plants have higher accumulation of H2O2 and MDA correspond to the EDU supplementation which increase the membrane permeability and adversely influence the protein, starch, and biomass accumulation and allocation of the experimental cotton cultivars. On the basis of biomass reduction, cotton cultivar ADC1 is the most sensitive cultivar, while cultivars G. Cot.21 > GADC-2 and G. Cot.13 is moderately sensitive and cultivar V-797 is the least sensitive to ozone stress. Activated defense mechanism such as enhanced activity of antioxidative compounds and enzymes detoxify the ROS by scavenging H2O2 and protects plants against damage. However, activation of defence is variable among the cultivars and corresponded to the biomass loss. Study concluded that the ozone sensitivity among the cotton cultivars depends on the scavenging of ROS. Further, study recommended cultivar ADC-1 as an assessment tool for ozone and cultivar V-797 for cultivation at ozone prone areas to minimize the agricultural loss.
Collapse
Affiliation(s)
- Indra Jeet Chaudhary
- School of Environment and Sustainable Development, Central University of Gujarat-Gandhinagar, Gujarat, India
| | - Dheeraj Rathore
- School of Environment and Sustainable Development, Central University of Gujarat-Gandhinagar, Gujarat, India.
| |
Collapse
|
23
|
Gupta SK, Sharma M, Maurya VK, Deeba F, Pandey V. Effects of ethylenediurea (EDU) on apoplast and chloroplast proteome in two wheat varieties under high ambient ozone: an approach to investigate EDU's mode of action. PROTOPLASMA 2021; 258:1009-1028. [PMID: 33641010 DOI: 10.1007/s00709-021-01617-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
Rising tropospheric ozone (O3) is a serious threat to plants and animals in the present climate change scenario. High tropospheric O3 has the capability to disrupt cellular organelles leading to impaired photosynthesis and significant yield reduction. Apoplast and chloroplast are two important cellular components in a plant system. Their proteomic response with ethylenediurea (EDU) treatment under tropospheric O3 has not been explored till date. EDU (an organic compound) protects plants exclusively against harmful O3 effects through activation of antioxidant defense mechanism. The present study investigated the mode of action of EDU (hereafter MAE) by identifying proteins involved in apoplast and chloroplast pathways. Two wheat varieties viz. Kundan and PBW 343 (hereafter K and P respectively) and three EDU treatments (0= control, 200, and 300 ppm) have been used for the study. In apoplast isolates, proteins such as superoxide dismutase (SOD), amino methyltransferase, catalase, and Germin-like protein have shown active role by maintaining antioxidant defense system under EDU treatment. Differential expression of these proteins leads to enhanced antioxidative defense mechanisms inside and outside the cell. Chloroplast proteins such as Rubisco, Ferredoxin NADP- reductase (FNR), fructose,1-6 bis phosphatase (FBPase), ATP synthase, vacuolar proton ATPase, and chaperonin have regulated their abundance to minimize ozone stress under EDU treatment. After analyzing apoplast and chloroplast protein abundance, we have drawn a schematic representation of the MAE working mechanism. The present study showed that plants can be capable of O3 tolerance, which could be improved by optimizing the apoplast ROS pool under EDU treatment.
Collapse
Affiliation(s)
- Sunil K Gupta
- Plant Ecology and Climate Change Science Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666 303, Yunnan, China
| | - Marisha Sharma
- Plant Ecology and Climate Change Science Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India
| | - Vivek K Maurya
- Plant Ecology and Climate Change Science Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India
| | - Farah Deeba
- Plant Ecology and Climate Change Science Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India
- Biotechnology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226 015, India
| | - Vivek Pandey
- Plant Ecology and Climate Change Science Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India.
| |
Collapse
|
24
|
Pelo SP, Adebo OA, Green E. Chemotaxonomic profiling of fungal endophytes of Solanum mauritianum (alien weed) using gas chromatography high resolution time-of-flight mass spectrometry (GC-HRTOF-MS). Metabolomics 2021; 17:43. [PMID: 33877446 PMCID: PMC8057964 DOI: 10.1007/s11306-021-01790-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/24/2021] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Since ancient times medicinal plants have been used as medicine in many parts of the world to promote human health and longevity. In recent years many novel secondary metabolites of plants have been isolated and reported to provide lead compounds for new drug discoveries. Solanum mauritianum Scopoli is native to South America. It is reported to be used by native South Americans during famine as a vegetable and as medicine to cure various diseases. In South Africa the plant is viewed as weed and is facing eradication, however, this plant is a valuable subject for research into its potential pharmaceutical and chemical uses. This study elucidated the metabolic profile of fungal endophytes that have promising bioactive secondary metabolites against pathogenic microorganisms, including mycobacterium species. MATERIAL AND METHODS Fungal endophytes from a weed Solanum mauritianum Scop. were used to synthesize secondary metabolites. Gas chromatograph high-resolution time-of-flight mass spectrometry (GC-HRTOF-MS) was used to analyse volatile compounds to prove that potentially fungal endophytes could be extracted from this weed. Extracts obtained with ethyl acetate were screened for phytochemicals and analyzed using a gas chromatograph high-resolution time-of-flight mass spectrometry system. Principal component analysis was used to compare the gas chromatograph high-resolution time-of-flight mass spectrometry data for differences/similarities in their clustering. Phytochemical screening was conducted on the crude extracts of fungal endophytes obtained from different parts of Solanum mauritianum Scopoli (leaves, ripe fruit, unripe fruit and stems). RESULTS Phytochemical screening indicated the presents of alkaloids, flavonoids, glycosides, phenols, quinones and saponins. Quinones were not present in the crude extracts of Fusarium sp. A total of 991 compounds were observed in the fungal endophytes, and Cladosporium sp. (23.8%) had the highest number of compounds, compared to Paracamarosporium leucadendri (1.7%) and Talaromyces sp. (1.5%). Some volatile compounds such as eicosane, 2-pentadecanone, 2-methyloctacosane, hexacosane and tridecanoic acid methyl ester with antibacterial activity were also observed. CONCLUSION Compositional variations between the plant and fungal endophyte phytochemicals were observed. The results of this study indicate that fungal endophytes from Solanum mauritianum Scop. contain compounds that can be exploited for numerous pharmaceutical and medicinal applications.
Collapse
Affiliation(s)
- Sharon Pauline Pelo
- Department of Biotechnology and Food-Technology, Faculty of Science, University of Johannesburg, P. O. Box 17011, Doornfontein, Johannesburg, 2028 South Africa
| | - Oluwafemi Ayodeji Adebo
- Department of Biotechnology and Food-Technology, Faculty of Science, University of Johannesburg, P. O. Box 17011, Doornfontein, Johannesburg, 2028 South Africa
| | - Ezekiel Green
- Department of Biotechnology and Food-Technology, Faculty of Science, University of Johannesburg, P. O. Box 17011, Doornfontein, Johannesburg, 2028 South Africa
| |
Collapse
|
25
|
Saitanis CJ, Agathokleous E. Exogenous application of chemicals for protecting plants against ambient ozone pollution: What should come next? CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH 2021; 19:100215. [PMID: 33073070 PMCID: PMC7553877 DOI: 10.1016/j.coesh.2020.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Elevated ground-level ozone (O3) pollution can adversely affect plants and inhibit plant growth and productivity, threatening food security and ecological health. It is therefore essential to develop measures to protect plants against O3-induced adverse effects. Here we summarize the current status of phytoprotection against O3-induced adverse effects and consider recent scientific and engineering advances, to provide a novel perspective for maximizing plant health while reducing environmental/ecological risks in an O3-polluted world. We suggest that nanoscience and nanotechnology can provide a new dimension in the protection of plants against O3-induced adverse effects, and recommend that new studies are based upon a green chemistry perspective.
Collapse
Affiliation(s)
- Costas J Saitanis
- Agricultural University of Athens, Lab of Ecology and Environmental Sciences, 75 Iera Odos Str., TK 11855, Athens, Greece
| | - Evgenios Agathokleous
- Key Laboratory of Agrometeorology of Jiangsu Province, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| |
Collapse
|
26
|
Agathokleous E, Kitao M, Wang X, Mao Q, Harayama H, Manning WJ, Koike T. Ethylenediurea (EDU) effects on Japanese larch: an one growing season experiment with simulated regenerating communities and a four growing season application to individual saplings. JOURNAL OF FORESTRY RESEARCH 2021; 32:2047-2057. [PMID: 33013142 PMCID: PMC7525765 DOI: 10.1007/s11676-020-01223-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/07/2020] [Indexed: 05/06/2023]
Abstract
Japanese larch (Larix kaempferi (Lamb.) Carr.) and its hybrid are economically important coniferous trees widely grown in the Northern Hemisphere. Ground-level ozone (O3) concentrations have increased since the pre-industrial era, and research projects showed that Japanese larch is susceptible to elevated O3 exposures. Therefore, methodologies are needed to (1) protect Japanese larch against O3 damage and (2) conduct biomonitoring of O3 in Japanese larch forests and, thus, monitor O3 risks to Japanese larch. For the first time, this study evaluates whether the synthetic chemical ethylenediurea (EDU) can protect Japanese larch against O3 damage, in two independent experiments. In the first experiment, seedling communities, simulating natural regeneration, were treated with EDU (0, 100, 200, and 400 mg L-1) and exposed to either ambient or elevated O3 in a growing season. In the second experiment, individually-grown saplings were treated with EDU (0, 200 and 400 mg L-1) and exposed to ambient O3 in two growing seasons and to elevated O3 in the succeeding two growing seasons. The two experiments revealed that EDU concentrations of 200-400 mg L-1 could protect Japanese larch seedling communities and individual saplings against O3-induced inhibition of growth and productivity. However, EDU concentrations ≤ 200 mg L-1 did offer only partial protection when seedling communities were coping with higher level of O3-induced stress, and only 400 mg EDU L-1 fully protected communities under higher stress. Therefore, we conclude that among the concentrations tested the concentration offering maximum protection to Japanese larch plants under high competition and O3-induced stress is that of 400 mg EDU L-1. The results of this study can provide a valuable resource of information for applied forestry in an O3-polluted world.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Key Laboratory of Agrometeorology of Jiangsu Province, Institute of Applied Ecology, Nanjing University of Information Science and Technology (NUIST), Nanjing, 210044 People’s Republic of China
- Division of Environment and Resources Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
- Hokkaido Research Center, Forestry and Forest Products Research Institute (FFPRI), Sapporo, 062-8516 Japan
| | - Mitsutoshi Kitao
- Hokkaido Research Center, Forestry and Forest Products Research Institute (FFPRI), Sapporo, 062-8516 Japan
| | - Xiaona Wang
- Division of Environment and Resources Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
- College of Landscape Architecture and Tourism, Hebei Agricultural University, No. 2596 Lekai South Street, Lianchi District, Baoding, 071000 People’s Republic of China
| | - Qiaozhi Mao
- Division of Environment and Resources Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
- College of Resources and Environment, Southwest University, Chongqing, 400700 People’s Republic of China
| | - Hisanori Harayama
- Ecophysiology Laboratory, Department of Plant Ecology, Forestry and Forest Products Research Institute (FFPRI), Matsunosato-1, Tsukuba, 305-8687 Japan
| | - William J. Manning
- Department of Plant, Soil and Insect Sciences, University of Massachusetts, 80 Campus Center Way, Amherst, MA 01003 USA
| | - Takayoshi Koike
- Division of Environment and Resources Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
- Shenzhen Graduate School of Environment and Energy, Peking University, Shenzhen, 518055 People’s Republic of China
- Research Center for Eco-Environmental Science, Chinese Academy of Science, Beijing, 100085 People’s Republic of China
| |
Collapse
|
27
|
Gupta SK, Sharma M, Majumder B, Maurya VK, Deeba F, Zhang JL, Pandey V. Effects of ethylenediurea (EDU) on regulatory proteins in two maize (Zea mays L.) varieties under high tropospheric ozone phytotoxicity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:675-688. [PMID: 32738705 DOI: 10.1016/j.plaphy.2020.05.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/14/2020] [Accepted: 05/27/2020] [Indexed: 05/22/2023]
Abstract
Rising tropospheric ozone is a major threat to the crops in the present climate change scenario. To investigate the EDU induced changes in proteins, two varieties of maize, the SHM3031 and the PEHM5, (hereafter S and P respectively) were treated with three EDU applications (0= control, 50 and 200 ppm) (hereafter 0= A, 1 and 2 respectively) (SA, S1, S2, PA, P1, P2 cultivar X treatments). Data on the morpho-physiology, enzymatic activity, and protein expression (for the first time) were collected at the vegetative (V, 45 DAG) and flowering (F, 75 DAG) developmental stages. The tropospheric ozone was around 53 ppb enough to cause phytotoxic effects. Protective effects of EDU were recorded in morpho-physiologically and biochemically. SOD, CAT and APX together with GR performed better under EDU protection in SHM3031 variety than PEHM5. The protein expression patterns in SHM3031 at the vegetative stage (28% proteins were increased, 7% were decreased), and at the flowering stage (17% increased, 8% decreased) were found. In PEHM5, a 14% increase and an 18% decrease (vegetative stage) whereas a 16% increase and a 20% decrease (flowering stage) were recorded in protein expression. Some protein functional categories, for instance, photosynthesis, carbon metabolism, energy metabolism, and defense were influenced by EDU. Rubisco expression was increased in SHM3031 whereas differentially expressed in PEHM5. Germin like protein, APX, SOD, and harpin binding proteins have enhanced defense regulatory mechanisms under EDU treatment during prevailing high tropospheric O3. The present study showed EDU protective roles in C4 plants as proven in C3.
Collapse
Affiliation(s)
- Sunil K Gupta
- Plant Ecology and Climate Change Science Div., CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India; CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666 303, China.
| | - Marisha Sharma
- Plant Ecology and Climate Change Science Div., CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India
| | - Baisakhi Majumder
- Plant Ecology and Climate Change Science Div., CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India
| | - Vivek K Maurya
- Plant Ecology and Climate Change Science Div., CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India
| | - Farah Deeba
- Plant Ecology and Climate Change Science Div., CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India
| | - Jiao-Lin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666 303, China
| | - Vivek Pandey
- Plant Ecology and Climate Change Science Div., CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India.
| |
Collapse
|
28
|
Maurya VK, Gupta SK, Sharma M, Majumder B, Deeba F, Pandey N, Pandey V. Growth, physiological and proteomic responses in field grown wheat varieties exposed to elevated CO 2 under high ambient ozone. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:1437-1461. [PMID: 32647460 PMCID: PMC7326879 DOI: 10.1007/s12298-020-00828-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/09/2020] [Accepted: 05/08/2020] [Indexed: 05/25/2023]
Abstract
The present study investigated growth, biochemical, physiological, yield and proteomic changes in 3 wheat varieties exposed to elevated CO2 (515 ppm) in a background of high ambient ozone in field. Ethylenediurea (EDU) was used as antiozonant. Average ozone concentration was 59 ppb and was sufficient enough to exert phytotoxic effects. Elevated carbon dioxide (eCO2) and EDU application individually or in combination negated the adverse effects of ozone by modulating antioxidants and antioxidative enzymes. Differential leaf proteomics revealed that at vegetative stage major changes in protein abundance were due to EDU treatment (47, 52 and 41 proteins in PBW-343, LOK1 and HD-2967, respectively). Combined treatment of eCO2 and EDU was more responsible for changes in 37 proteins during flowering stage of PBW-343 and LOK1. Functional categorization revealed more than 60% differentially abundant protein collectively belonging to carbon metabolism, protein synthesis assembly and degradation and photosynthesis. At both the growth stages, LOK1 was more responsive to eCO2 and combined treatment (eCO2 + EDU). HD-2967 was more positively responsive to EDU and combined treatment. eCO2 in combination of EDU protected these varieties against high ambient O3.
Collapse
Affiliation(s)
- Vivek K. Maurya
- Plant Ecology and Climate Change Science Division, CSIR-National Botanical Research Institute, Lucknow, 226001 India
- Department of Botany, University of Lucknow, Lucknow, 226001 India
| | - Sunil K. Gupta
- Plant Ecology and Climate Change Science Division, CSIR-National Botanical Research Institute, Lucknow, 226001 India
| | - Marisha Sharma
- Plant Ecology and Climate Change Science Division, CSIR-National Botanical Research Institute, Lucknow, 226001 India
| | - Baisakhi Majumder
- Plant Ecology and Climate Change Science Division, CSIR-National Botanical Research Institute, Lucknow, 226001 India
| | - Farah Deeba
- Plant Ecology and Climate Change Science Division, CSIR-National Botanical Research Institute, Lucknow, 226001 India
- Biotechnology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015 India
| | - Nalini Pandey
- Department of Botany, University of Lucknow, Lucknow, 226001 India
| | - Vivek Pandey
- Plant Ecology and Climate Change Science Division, CSIR-National Botanical Research Institute, Lucknow, 226001 India
| |
Collapse
|
29
|
Xu S, He X, Burkey K, Chen W, Li P, Li Y, Li B, Wang Y. Ethylenediurea (EDU) pretreatment alleviated the adverse effects of elevated O 3 on Populus alba "Berolinensis" in an urban area. J Environ Sci (China) 2019; 84:42-50. [PMID: 31284915 DOI: 10.1016/j.jes.2019.04.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 05/03/2023]
Abstract
Ethylenediurea (EDU) has been used as a chemical protectant against ozone (O3). However, its protective effect and physiological mechanisms are still uncertain. The present study aimed to investigate the changes of foliar visible injury, physiological characteristics and emission rates of volatile organic compounds (VOCs) in one-year-old Populus alba "Berolinensis" saplings pretreated with EDU and exposed to elevated O3 (EO, 120 μg/m3). The results showed that foliar visible injury symptoms under EO were significantly alleviated in plants with EDU application (p < 0.05). Under EO, net photosynthetic rate, the maximum photochemical efficiency of PSII and the photochemical efficiency of PSII of plants pretreated with 300 and 600 mg/L EDU were similar to unexposed controls and significantly higher compared to EO-stressed plants without EDU pretreatment, respectively. Malondialdehyde content was highest in EO without EDU and decreased significantly by 14.9% and 21.3% with 300 and 600 mg/L EDU pretreatment, respectively. EDU pretreatment alone increased superoxide dismutase activity by 10-fold in unexposed plants with further increases of 88.4% and 37.5% in EO plants pretreated with 300 and 600 mg/L EDU pretreatment, respectively (p < 0.05). Abscisic acid content declined under EO relative to unexposed controls with the effect partially reversed by EDU pretreatments. Similarly, VOCs emission rate declined under EO relative to unexposed plants with a recovery of emission rate observed with 300 and 600 mg/L EDU pretreatment. These findings provided significant evidence that EDU exerted a beneficial effect and protection on the tested plants against O3 stress.
Collapse
Affiliation(s)
- Sheng Xu
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Xingyuan He
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Kent Burkey
- Plant Science Research Unit, USDA-ARS, Raleigh, NC 27616, USA
| | - Wei Chen
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Pin Li
- Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yan Li
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Bo Li
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Yijing Wang
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
30
|
Fatima A, Singh AA, Mukherjee A, Dolker T, Agrawal M, Agrawal SB. Assessment of Ozone Sensitivity in Three Wheat Cultivars Using Ethylenediurea. PLANTS (BASEL, SWITZERLAND) 2019; 8:E80. [PMID: 30934911 PMCID: PMC6524027 DOI: 10.3390/plants8040080] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/23/2019] [Accepted: 03/26/2019] [Indexed: 12/04/2022]
Abstract
Three wheat (Triticum aestivum L.) cultivars [HD 2987 (ozone (O₃) sensitive), PBW 502 (intermediately sensitive) and Kharchiya 65 (O₃ tolerant)] with known sensitivity to O₃ were re-evaluated using ethylenediurea (EDU; 400 ppm) to ascertain the use of EDU in determiningO₃ sensitivity under highly O₃-polluted tropical environments. EDU treatment helped in improving the growth, biomass, photosynthetic pigments and the antioxidative defense system of all the wheat cultivars. Under EDU treatment, PBW 502 retained more biomass, while HD 2987 showed better performance and ultimately the greatest increment in yield. Cultivar Kharchiya 65 also showed a positive response to EDU as manifested with an increase in pigment contents, total biomass and enzymatic antioxidants; however, this increment was comparatively lower compared to the other two cultivars. The results indicated that EDU did not have many physiological effects on cultivars but helped in counteracting O₃ primarily by scavenging reactive oxygen species and enhancing the antioxidative defense system where superoxide dismutase emerged as the major responsive biochemical parameter against ambient O₃. The observed results clearly indicated that differential O₃ sensitivity in three wheat cultivars established by the previous study is in accordance with the present study using EDU as a sensitivity tool, which is an easy and efficient technology in comparison to chamber and Free-Air Carbon dioxide Enrichment (FACE) experiments although its mechanistic understanding needs to be further validated.
Collapse
Affiliation(s)
- Adeeb Fatima
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| | - Aditya Abha Singh
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
- Department of Plant Molecular Biology, University of Delhi, South Campus, Delhi 110021, India.
| | - Arideep Mukherjee
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| | - Tsetan Dolker
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| | - Madhoolika Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| | - Shashi Bhushan Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
31
|
High Variation in Resource Allocation Strategies among 11 Indian Wheat (Triticum aestivum) Cultivars Growing in High Ozone Environment. CLIMATE 2019. [DOI: 10.3390/cli7020023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Eleven local cultivars of wheat (Triticum aestivum) were chosen to study the effect of ambient ozone (O3) concentration in the Indo-Gangetic Plains (IGP) of India at two high-ozone experimental sites by using 300 ppm of Ethylenediurea (EDU) as a chemical protectant against O3. The O3 level was more than double the critical threshold reported for wheat grain production (AOT40 8.66 ppm h). EDU-grown plants had higher grain yield, biomass, stomatal conductance and photosynthesis, less lipid peroxidation, changes in superoxide dismutase and catalase activities, changes in content of oxidized and reduced glutathione compared to non-EDU plants, thus indicating the severity of O3 induced productivity loss. Based on the yield at two different growing sites, the cultivars could be addressed in four response groups: (a) generally well-adapted cultivars (above-average yield); (b) poorly-adapted (below-average yield); (c) adapted to low-yield environment (below-average yield); and (d) sensitive cultivars (adapted to high-yield environment). EDU responses were dependent on the cultivar, the developmental phase (vegetative, flowering and harvest) and the experimental site.
Collapse
|
32
|
Rathore D, Chaudhary IJ. Ozone risk assessment of castor (Ricinus communis L.) cultivars using open top chamber and ethylenediurea (EDU). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 244:257-269. [PMID: 30342366 DOI: 10.1016/j.envpol.2018.10.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/05/2018] [Accepted: 10/05/2018] [Indexed: 06/08/2023]
Abstract
Castor bean (Ricinus communis L.) an important non-edible oilseed crop, is a prominent feed stock towards the generation of renewable materials for industrial production which has multiple applications ranging from cosmetics to biofuels industry. India accounts for 76% of the total world production of castor oil seed. However, major concern for developing countries like India where expanding economy led to rapid increases in gases like NOx, CO and VOCs photochemically form ozone. Ozone is strong oxidant that damages agriculture, ecosystems, and materials with considerable reduction in crop yields and crop quality. One way to reduce ozone induced loss is to focus on the adapting crops to ozone exposure by selecting cultivars with demonstrated ozone resistance. An experiment was conducted for ozone risk assessment of castor cultivars to select cultivar with demonstrated resistance against ozone pollution. This study comprise an open top chamber experiment with three treatments viz. (i) control (ambient ozone concentration), (ii) enhanced ozone (average 75 ppb for 4 h daily throughout the growing season), and (iii) EDU application. Results suggested that the ozone pollution substantially affected growth and physiology of castor cultivars. Crop biomass and yield was also negatively influenced by ozone pollution. Developed defence provided strength to withstand against ozone pollution to the experimental crop cultivars. However, developed defence is cultivar specific and positively correlated with the resistance against ozone pollution. Study concluded that the damage to ozone is directly dependent on the antioxidative potential of plant species. However, ozone adaptability is based on the genetic makeup of the cultivar and yield related loss to ozone can be minimizing by selecting ozone tolerant variety as seen in cultivar Nidhi-999.
Collapse
Affiliation(s)
- Dheeraj Rathore
- School of Environment and Sustainable Development, Central University of Gujarat-Gandhinagar, Gujarat, India.
| | - Indra Jeet Chaudhary
- School of Environment and Sustainable Development, Central University of Gujarat-Gandhinagar, Gujarat, India
| |
Collapse
|
33
|
Ashrafuzzaman M, Haque Z, Ali B, Mathew B, Yu P, Hochholdinger F, de Abreu Neto JB, McGillen MR, Ensikat HJ, Manning WJ, Frei M. Ethylenediurea (EDU) mitigates the negative effects of ozone in rice: Insights into its mode of action. PLANT, CELL & ENVIRONMENT 2018; 41:2882-2898. [PMID: 30107647 DOI: 10.1111/pce.13423] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/06/2018] [Indexed: 05/08/2023]
Abstract
Monitoring of ozone damage to crops plays an increasingly important role for the food security of many developing countries. Ethylenediurea (EDU) could be a tool to assess ozone damage to vegetation on field scale, but its physiological mode of action remains unclear. This study investigated mechanisms underlying the ozone-protection effect of EDU in controlled chamber experiments. Ozone sensitive and tolerant rice genotypes were exposed to ozone (108 ppb, 7 hr day-1 ) and control conditions. EDU alleviated ozone effects on plant morphology, foliar symptoms, lipid peroxidation, and photosynthetic parameters in sensitive genotypes. Transcriptome profiling by RNA sequencing revealed that thousands of genes responded to ozone in a sensitive variety, but almost none responded to EDU. Significant interactions between ozone and EDU application occurred mostly in ozone responsive genes, in which up-regulation was mitigated by EDU application. Further experiments documented ozone degrading properties of EDU, as well as EDU deposits on leaf surfaces possibly related to surface protection. EDU application did not mitigate the reaction of plants to other abiotic stresses, including iron toxicity, zinc deficiency, and salinity. This study provided evidence that EDU is a surface protectant that specifically mitigates ozone stress without interfering directly with the plants' stress response systems.
Collapse
Affiliation(s)
- Md Ashrafuzzaman
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Zahidul Haque
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| | - Basharat Ali
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| | - Boby Mathew
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| | - Peng Yu
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| | - Frank Hochholdinger
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| | | | | | - Hans-Jürgen Ensikat
- Nees Institute for Biodiversity of Plants, University of Bonn, Bonn, Germany
| | - William J Manning
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts
| | - Michael Frei
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| |
Collapse
|
34
|
Mills G, Sharps K, Simpson D, Pleijel H, Frei M, Burkey K, Emberson L, Uddling J, Broberg M, Feng Z, Kobayashi K, Agrawal M. Closing the global ozone yield gap: Quantification and cobenefits for multistress tolerance. GLOBAL CHANGE BIOLOGY 2018; 24:4869-4893. [PMID: 30084165 DOI: 10.1111/gcb.14381] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/16/2018] [Accepted: 06/18/2018] [Indexed: 05/22/2023]
Abstract
Increasing both crop productivity and the tolerance of crops to abiotic and biotic stresses is a major challenge for global food security in our rapidly changing climate. For the first time, we show how the spatial variation and severity of tropospheric ozone effects on yield compare with effects of other stresses on a global scale, and discuss mitigating actions against the negative effects of ozone. We show that the sensitivity to ozone declines in the order soybean > wheat > maize > rice, with genotypic variation in response being most pronounced for soybean and rice. Based on stomatal uptake, we estimate that ozone (mean of 2010-2012) reduces global yield annually by 12.4%, 7.1%, 4.4% and 6.1% for soybean, wheat, rice and maize, respectively (the "ozone yield gaps"), adding up to 227 Tg of lost yield. Our modelling shows that the highest ozone-induced production losses for soybean are in North and South America whilst for wheat they are in India and China, for rice in parts of India, Bangladesh, China and Indonesia, and for maize in China and the United States. Crucially, we also show that the same areas are often also at risk of high losses from pests and diseases, heat stress and to a lesser extent aridity and nutrient stress. In a solution-focussed analysis of these results, we provide a crop ideotype with tolerance of multiple stresses (including ozone) and describe how ozone effects could be included in crop breeding programmes. We also discuss altered crop management approaches that could be applied to reduce ozone impacts in the shorter term. Given the severity of ozone effects on staple food crops in areas of the world that are also challenged by other stresses, we recommend increased attention to the benefits that could be gained from addressing the ozone yield gap.
Collapse
Affiliation(s)
- Gina Mills
- Centre for Ecology and Hydrology, Bangor, UK
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | | | - David Simpson
- EMEP MSC-W, Norwegian Meteorological Institute, Oslo, Norway
- Department of Space, Earth & Environment, Chalmers University of Technology, Gothenburg, Sweden
| | - Håkan Pleijel
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Michael Frei
- Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | | | - Lisa Emberson
- Environment Department, Stockholm Environment Institute at York, University of York, York, UK
| | - Johan Uddling
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Malin Broberg
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Zhaozhong Feng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Kazuhiko Kobayashi
- Department of Global Agricultural Sciences, The University of Tokyo, Tokyo, Japan
| | - Madhoolika Agrawal
- Department of Botany, Institute of Science, Banaras Hindu University, Uttar Pradesh, India
| |
Collapse
|
35
|
Feng Z, Jiang L, Calatayud V, Dai L, Paoletti E. Intraspecific variation in sensitivity of winter wheat (Triticum aestivum L.) to ambient ozone in northern China as assessed by ethylenediurea (EDU). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:29208-29218. [PMID: 30117025 DOI: 10.1007/s11356-018-2782-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
Wheat is a major staple food and its sensitivity to the gas pollutant ozone (O3) depends on the cultivar. However, few chamber-less studies assessed current ambient O3 effects on a large number of wheat cultivars. In this study, we used ethylenediurea (EDU), an O3 protectant whose protection mechanisms are still unclear, to test photosynthetic pigments, gas exchange, antioxidants, and yield of 15 cultivars exposed to 17.4 ppm h AOT40 (accumulated O3 over an hourly concentration threshold of 40 ppb) over the growing season at Beijing suburb, China. EDU significantly increased light-saturated photosynthesis rate (Asat), photosynthetic pigments (i.e., chlorophyll and carotenoid), and total antioxidant capacity, while reduced malondialdehyde and reduced ascorbate contents. In comparison with EDU-treated plants (control), plants treated with water (no protection from ambient O3) significantly decreased yield, weight of 1000 grains, and harvest index by 20.3%, 15.1%, and 14.2%, respectively, across all cultivars. There was a significant interaction between EDU and cultivars in all tested variables with exception of Asat, chlorophyll, and carotenoid. The cultivar-specific sensitivity to O3 was ranked from highly sensitive (> 25% change) to less sensitive (< 10% change) by comparing the difference of the average grain yield of plants applied with and without EDU. Neither stomatal conductance nor antioxidant capacity contributed to the different response of the cultivars to EDU, suggesting that another mechanism contributes to the large variation in response to O3 among cultivars. Generally, the results indicate that present O3 concentration is threatening wheat production in Northern China, highlighting the urgent need for policy-making actions to protect this critical staple food.
Collapse
Affiliation(s)
- Zhaozhong Feng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, Italy.
| | - Lijun Jiang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Vicent Calatayud
- Fundación CEAM, c/Charles R. Darwin 14, Parque Tecnológico, 46980, Paterna, Valencia, Spain
| | - Lulu Dai
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Elena Paoletti
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China
- National Research Council, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| |
Collapse
|
36
|
Agathokleous E, Kitao M, Qingnan C, Saitanis CJ, Paoletti E, Manning WJ, Watanabe T, Koike T. Effects of ozone (O 3) and ethylenediurea (EDU) on the ecological stoichiometry of a willow grown in a free-air exposure system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 238:663-676. [PMID: 29621726 DOI: 10.1016/j.envpol.2018.03.061] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/17/2018] [Accepted: 03/17/2018] [Indexed: 06/08/2023]
Abstract
Ground-level ozone (O3) concentrations have been elevating in the last century. While there has been a notable progress in understanding O3 effects on vegetation, O3 effects on ecological stoichiometry remain unclear, especially early in the oxidative stress. Ethyelenediurea (EDU) is a chemical compound widely applied in research projects as protectant of plants against O3 injury, however its mode of action remains unclear. To investigate O3 and EDU effects early in the stress, we sprayed willow (Salix sachalinensis) plants with 0, 200 or 400 mg EDU L-1, and exposed them to either low ambient O3 (AOZ) or elevated O3 (EOZ) levels during the daytime, for about one month, in a free air O3 controlled exposure (FACE); EDU treatment was repeated every nine days. We collected samples for analyses from basal, top, and shed leaves, before leaves develop visible O3 symptoms. We found that O3 altered the ecological stoichiometry, including impacts in nutrient resorption efficiency, early in the stress. The relation between P content and Fe content seemed to have a critical role in maintaining homeostasis in an effort to prevent O3-induced damage. Photosynthetic pigments and P content appeared to play an important role in EDU mode of action. This study provides novel insights on the stress biology which are of ecological and toxicological importance.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Hokkaido Research Center, Forestry and Forest Products Research Institute (FFPRI), Forest Research and Management Organization, 7 Hitsujigaoka, Sapporo, Hokkaido, 062-8516, Japan; Research Faculty of Agriculture, Hokkaido University, Kita ku Kita 9 Nishi 9, Sapporo, Hokkaido, 060-8589, Japan.
| | - Mitsutoshi Kitao
- Hokkaido Research Center, Forestry and Forest Products Research Institute (FFPRI), Forest Research and Management Organization, 7 Hitsujigaoka, Sapporo, Hokkaido, 062-8516, Japan
| | - Chu Qingnan
- Research Faculty of Agriculture, Hokkaido University, Kita ku Kita 9 Nishi 9, Sapporo, Hokkaido, 060-8589, Japan; Institue of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China
| | - Costas J Saitanis
- Lab of Ecology and Environmental Science, Agricultural University of Athens, Iera Odos 75, Athens, 11855, Greece
| | - Elena Paoletti
- Institute of Sustainable Plant Protection, National Council of Research, Via Madonna del Piano 10, Sesto Fiorentino, Florence, 50019, Italy
| | - William J Manning
- Department of Plant, Soil and Insect Sciences, University of Massachusetts, Amherst, MA, USA
| | - Toshihiro Watanabe
- Research Faculty of Agriculture, Hokkaido University, Kita ku Kita 9 Nishi 9, Sapporo, Hokkaido, 060-8589, Japan
| | - Takayoshi Koike
- Research Faculty of Agriculture, Hokkaido University, Kita ku Kita 9 Nishi 9, Sapporo, Hokkaido, 060-8589, Japan
| |
Collapse
|
37
|
Chen YJ, Wen MX, Sui JX, Yan YQ, Yuan W, Hong L, Zhang L. Ameliorating Effects of Leaf Water Extract of Three Aromatic Plant Species on Ozone-Polluted Snap Bean (Phaseolus vulgaris L. 'Jiangjunyoudou'). BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2018; 100:849-855. [PMID: 29572555 DOI: 10.1007/s00128-018-2331-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/21/2018] [Indexed: 06/08/2023]
Abstract
Ozone (O3) is one of the major pollutants in near-surface air. In order to protect sensitive plants from O3 pollution, many kinds of protectants including synthetic ones, were assessed in previous studies. Although they have certain protective effects, some of them are not environment-friendly. In the present study, leaf water extracts of aromatic plants [Plectranthus hadiensis var. tomentosus (PHT), Pelargonium hortorum (PHB), Tagetes patula (TP)] were compared for mitigating the damages caused by O3 (150 ppb for 3 days, 8 h day-1) on snap bean (Phaseolus vulgaris 'Jiangjunyoudou'). Our results showed that O3 fumigation impaired plasma membrane, decreased chlorophyll content, increased contents of malondialdehyde and superoxide anion, inhibited photosynthesis, and caused visible injury. Leaf water extracts of PHT, PHB or TP ameliorated the negative effects of O3. Among them, extract of PHT showed the greatest potential to alleviate the O3-caused injury, followed by PHB and TP.
Collapse
Affiliation(s)
- Y J Chen
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Changjiang Road 600, Harbin, 150030, China
| | - M X Wen
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Changjiang Road 600, Harbin, 150030, China
| | - J X Sui
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Changjiang Road 600, Harbin, 150030, China
| | - Y Q Yan
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Changjiang Road 600, Harbin, 150030, China
| | - W Yuan
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Changjiang Road 600, Harbin, 150030, China
| | - L Hong
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Changjiang Road 600, Harbin, 150030, China
| | - L Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Changjiang Road 600, Harbin, 150030, China.
| |
Collapse
|
38
|
Zhang L, Hoshika Y, Carrari E, Burkey KO, Paoletti E. Protecting the photosynthetic performance of snap bean under free air ozone exposure. J Environ Sci (China) 2018; 66:31-40. [PMID: 29628099 DOI: 10.1016/j.jes.2017.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/07/2017] [Accepted: 05/08/2017] [Indexed: 06/08/2023]
Abstract
Tropospheric ozone (O3) is a major air pollutant and causes serious injury to vegetation. To protect sensitive plants from O3 damage, several agrochemicals have been assessed, including cytokinin (e.g., kinetin, KIN) and ethylenediurea (EDU) with cytokinin-like activity. In higher plant, leaves are primarily injured by O3 and protective agrochemicals are often applied by leaf spraying. To our knowledge, the mitigating abilities of EDU and KIN have not been compared directly in a realistic setup. In the present research, impacts of elevated O3 (2× ambient O3, 24hr per day, for 8days) on an O3 sensitive line (S156) of snap bean (Phaseolus vulgaris), which is often used for biomonitoring O3 pollution, were studied in a free air controlled exposure system. The day before starting the O3 exposure, plants were sprayed with a solution of EDU (300ppm), KIN (1mmol/L) or distilled water, to compare their protective abilities. The results demonstrated that 2× ambient O3 inhibited net photosynthetic rate and stomatal conductance, increased the minimal fluorescence yield of the dark-adapted state, decreased the maximal quantum yield of PSII photochemistry, and led to visible injury. KIN and EDU alleviated the reduction of the photosynthetic performance, and visible injury under O3 fumigation. The plants sprayed with EDU showed greater ability to mitigate the O3 damage than those sprayed with KIN. Chlorophyll fluorescence imaging may have detected more precisely the differences in O3 response across the leaf than the conventional fluorometer.
Collapse
Affiliation(s)
- Lu Zhang
- College of Horticulture, Northeast Agricultural University, Harbin, China; Institute of Sustainable Plant Protection, National Research Council, Florence, Italy.
| | - Yasutomo Hoshika
- Institute of Sustainable Plant Protection, National Research Council, Florence, Italy
| | - Elisa Carrari
- Institute of Sustainable Plant Protection, National Research Council, Florence, Italy
| | - Kent O Burkey
- Plant Science Research Unit, USDA-ARS, Raleigh, NC, USA
| | - Elena Paoletti
- Institute of Sustainable Plant Protection, National Research Council, Florence, Italy
| |
Collapse
|
39
|
Gupta SK, Sharma M, Majumder B, Maurya VK, Lohani M, Deeba F, Pandey V. Impact of Ethylene diurea (EDU) on growth, yield and proteome of two winter wheat varieties under high ambient ozone phytotoxicity. CHEMOSPHERE 2018; 196:161-173. [PMID: 29304454 DOI: 10.1016/j.chemosphere.2017.12.150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 12/19/2017] [Accepted: 12/22/2017] [Indexed: 05/22/2023]
Abstract
The present study evaluated the impact of high ambient O3 on morphological, physiological and biochemical traits and leaf proteome in two high-yielding varieties of wheat using ethylene diurea (EDU) as foliar spray (200 and 300 ppm). Average ambient ozone concentration was 60 ppb which was more than sufficient to cause phytotoxic effects. EDU treatment resulted in less lipid peroxidation along with increased chlorophyll content, biomass and yield. EDU alleviated the negative effects of ozone by enhancing activities of antioxidants and antioxidative enzymes. Two dimensional electrophoresis (2DGE) analysis revealed massive changes in protein abundance in Kundan at vegetative stage (50% proteins were increased, 20% were decreased) and at flowering stage (25% increased, 18% decreased). In PBW 343 at both the developmental stages about 15% proteins were increased whereas 20% were decreased in abundance. Higher abundance of proteins related to carbon metabolism, defense and photorespiration conferred tolerance to EDU treated Kundan. In PBW343, EDU provided incomplete protection as evidenced by low abundance of many primary metabolism related proteins. Proteomic changes in response to EDU treatment in two varieties are discussed in relation to growth and yield.
Collapse
Affiliation(s)
- Sunil K Gupta
- Plant Ecology & Environmental Science, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-National Botanical Research Institute (CSIR-NBRI) Campus, Rana Pratap Marg, Lucknow 226001, India
| | - Marisha Sharma
- Plant Ecology & Environmental Science, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
| | - Baisakhi Majumder
- Plant Ecology & Environmental Science, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
| | - Vivek K Maurya
- Plant Ecology & Environmental Science, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
| | - Meenakshi Lohani
- Plant Ecology & Environmental Science, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
| | - Farah Deeba
- Plant Ecology & Environmental Science, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
| | - Vivek Pandey
- Plant Ecology & Environmental Science, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-National Botanical Research Institute (CSIR-NBRI) Campus, Rana Pratap Marg, Lucknow 226001, India.
| |
Collapse
|
40
|
Fagnano M, Maggio A. On the interactions among tropospheric ozone levels and typical environmental stresses challenging Mediterranean crops. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:8174-8180. [PMID: 29116534 DOI: 10.1007/s11356-017-0669-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/31/2017] [Indexed: 06/07/2023]
Abstract
The main environmental stresses of Italian croplands are discussed in relation to their interactions with ozone effects on crops. Water deficit and salinization are frequent in Mediterranean environments during spring-summer causing a decrease of soil water potential and water uptake by roots and consequently stomatal closure. These stresses also stimulate secondary metabolism and antioxidant accumulation, which also serves as a stress protection mechanism. High concentrations of tropospheric ozone are common all over Italy during the spring-summer season. Ozone injuries to vegetation are related to its penetration into plant tissues, mostly via stomatal uptake, rather than to tropospheric concentrations per se. In several crops, closure of stomata due to drought/salinization reduces ozone entering into leaf tissues and counteracts possible ozone damages. Furthermore, the stimulation of antioxidant synthesis as a response to environmental stresses can represent a further protection factor from ozone injuries for Mediterranean crops.The co-existence of stress-induced stomatal closure and high ozone levels during spring-summer in Mediterranean environments implies that models that do not take into account physiological responses of crops to drought and salinity stress may overestimate ozone damages when stress responses overlap with seasonal ozone peaks. The shift from concentration-based to flux-based approaches has improved the accuracy of models to assess ozone effects on agricultural crops. It is, however, necessary to further refine the flux concept with respect to the plant abiotic stress defense capacity that can differ among genotypes, climatic conditions, and physiological states.
Collapse
Affiliation(s)
- Massimo Fagnano
- Department of Agricultural Sciences, University of Naples Federico II, Via Università, 100, 80055, Portici, Naples, Italy.
| | - Albino Maggio
- Department of Agricultural Sciences, University of Naples Federico II, Via Università, 100, 80055, Portici, Naples, Italy
| |
Collapse
|
41
|
Jiang L, Feng Z, Dai L, Shang B, Paoletti E. Large variability in ambient ozone sensitivity across 19 ethylenediurea-treated Chinese cultivars of soybean is driven by total ascorbate. J Environ Sci (China) 2018; 64:10-22. [PMID: 29478629 DOI: 10.1016/j.jes.2017.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/30/2017] [Accepted: 07/04/2017] [Indexed: 06/08/2023]
Abstract
The sensitivity of Chinese soybean cultivars to ambient ozone (O3) in the field is unknown, although soybean is a major staple food in China. Using ethylenediurea (EDU) as an O3 protectant, we tested the gas exchange, pigments, antioxidants and biomass of 19 cultivars exposed to 28ppm·hr AOT40 (accumulated O3 over an hourly concentration threshold of 40ppb) over the growing season at a field site in China. By comparing the average biomass with and without EDU, we estimated the cultivar-specific sensitivity to O3 and ranked the cultivars from very tolerant (<10% change) to highly sensitive (>45% change), which helps in choosing the best-suited cultivars for local cultivation. Higher lipid peroxidation and activity of the ascorbate peroxidase enzyme were major responses to O3 damage, which eventually translated into lower biomass production. The constitutional level of total ascorbate in the leaves was the most important parameter explaining O3 sensitivity among these cultivars. Surprisingly, the role of stomatal conductance was insignificant. These results will guide future breeding efforts towards more O3-tolerant cultivars in China, while strategies for implementing control measures of regional O3 pollution are being implemented. Overall, these results suggest that present ambient O3 pollution is a serious concern for soybean in China, which highlights the urgent need for policy-making actions to protect this critical staple food.
Collapse
Affiliation(s)
- Lijun Jiang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaozhong Feng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lulu Dai
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Shang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Elena Paoletti
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
42
|
Agathokleous E, Paoletti E, Manning WJ, Kitao M, Saitanis CJ, Koike T. High doses of ethylenediurea (EDU) as soil drenches did not increase leaf N content or cause phytotoxicity in willow grown in fertile soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:574-584. [PMID: 28923722 DOI: 10.1016/j.ecoenv.2017.09.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/23/2017] [Accepted: 09/09/2017] [Indexed: 06/07/2023]
Abstract
Ground-level ozone (O3) levels are nowadays elevated in wide regions of the Earth, causing significant effects on plants that finally lead to suppressed productivity and yield losses. Ethylenediurea (EDU) is a chemical compound which is widely used in research projects as phytoprotectant against O3 injury. The EDU mode of action remains still unclear, while there are indications that EDU may contribute to plants with nitrogen (N) when the soil is poor in N and the plants have relatively small leaf area. To reveal whether the N content of EDU acts as a fertilizer to plants when the soil is not poor in N and the plants have relatively large total plant leaf area, willow plants (Salix sachalinensis Fr. Schm) were exposed to low ambient O3 levels and treated ten times (9-day interval) with 200mL soil drench containing 0, 800 or 1600mg EDU L-1. Fertilizer was added to a nutrient-poor soil, and the plants had an average plant leaf area of 9.1m2 at the beginning of EDU treatments. Indications for EDU-induced hormesis in maximum electron transport rate (Jmax) and ratio of intercellular to ambient CO2 concentration (Ci:Ca) were observed at the end of the experiment. No other EDU-induced effects on leaf greenness and N content, maximum quantum yield of photosystem II (Fv/Fm), gas exchange, growth and matter production suggest that EDU did not act as N fertilizer and did not cause toxicity under these experimental conditions.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Silviculture & Forest Ecological Studies, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan; Hokkaido Research Center, Forestry and Forest Products Research Institute (FFPRI), Forest Research and Management Organization, 7 Hitsujigaoka, Sapporo, Hokkaido 062-8516, Japan.
| | - Elena Paoletti
- Institute of Sustainable Plant Protection, National Council of Research, Via Madonna del Piano 10, Sesto Fiorentino, Florence 50019, Italy.
| | - William J Manning
- Department of Plant, Soil and Insect Sciences, University of Massachusetts, Amherst, MA, USA.
| | - Mitsutoshi Kitao
- Hokkaido Research Center, Forestry and Forest Products Research Institute (FFPRI), Forest Research and Management Organization, 7 Hitsujigaoka, Sapporo, Hokkaido 062-8516, Japan.
| | - Costas J Saitanis
- Lab of Ecology and Environmental Science, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece.
| | - Takayoshi Koike
- Silviculture & Forest Ecological Studies, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan.
| |
Collapse
|
43
|
Ashrafuzzaman M, Lubna FA, Holtkamp F, Manning WJ, Kraska T, Frei M. Diagnosing ozone stress and differential tolerance in rice (Oryza sativa L.) with ethylenediurea (EDU). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 230:339-350. [PMID: 28668595 DOI: 10.1016/j.envpol.2017.06.055] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/12/2017] [Accepted: 06/17/2017] [Indexed: 05/22/2023]
Abstract
Rising tropospheric ozone concentrations in Asia necessitate the breeding of adapted rice varieties to ensure food security. However, breeding requires field-based evaluation of ample plant material, which can be technically challenging or very costly when using ozone fumigation facilities. The chemical ethylenediurea (EDU) has been proposed for estimating the effects of ozone in large-scale field applications, but controlled experiments investigating constitutive effects on rice or its suitability to detect genotypic differences in ozone tolerance are missing. This study comprised a controlled open top chamber experiment with four treatments (i) control (average ozone concentration 16 ppb), (ii) control with EDU application, (iii) ozone stress (average 77 ppb for 7 h daily throughout the season), and (iv) ozone stress with EDU application. Three contrasting rice genotypes were tested, i.e. the tolerant line L81 and the sensitive Nipponbare and BR28. The ozone treatment had significant negative effects on plant growth (height and tillering), stomatal conductance, SPAD value, spectral reflectance indices such as the normalized difference vegetation index (NDVI), lipid peroxidation, as well as biomass and grain yields. These negative effects were more pronounced in the a priori sensitive varieties, especially the widely grown Bangladeshi variety BR28, which showed grain yield reductions by 37 percent. EDU application had almost no effects on plants in the absence of ozone, but partly mitigated ozone effects on foliar symptoms, lipid peroxidation, SPAD value, stomatal conductance, several spectral reflectance parameters, panicle number, grain yield, and spikelet sterility. EDU responses were more pronounced in sensitive genotypes than in the tolerant L81. In conclusion, EDU had no constitutive effects on rice and partly offset negative ozone effects, especially in sensitive varieties. It can thus be used to diagnose ozone damage in field grown rice and for distinguishing tolerant (less EDU-responsive) and sensitive (more EDU-responsive) genotypes.
Collapse
Affiliation(s)
- Md Ashrafuzzaman
- Institute of Crop Sciences and Resource Conservation (INRES) Plant Nutrition, University of Bonn, Bonn, Germany; Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Farzana Afrose Lubna
- Institute of Crop Sciences and Resource Conservation (INRES) Plant Nutrition, University of Bonn, Bonn, Germany
| | - Felix Holtkamp
- Institute of Crop Sciences and Resource Conservation (INRES) Plant Nutrition, University of Bonn, Bonn, Germany
| | | | - Thorsten Kraska
- Field Lab Campus Klein-Altendorf, University of Bonn, Rheinbach, Germany
| | - Michael Frei
- Institute of Crop Sciences and Resource Conservation (INRES) Plant Nutrition, University of Bonn, Bonn, Germany.
| |
Collapse
|
44
|
Effects of the Antiozonant Ethylenediurea (EDU) on Fraxinus ornus L.: The Role of Drought. FORESTS 2017. [DOI: 10.3390/f8090320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ethylenediurea (EDU) is a synthetic chemical known to protect plants from the phytotoxic effects of tropospheric ozone (O3). Although many studies have proposed the use of EDU for studying the O3 effects under field conditions, its mechanism of action is not fully understood, and it is unclear whether it exerts a specific antiozonant action, or if it may also interact with other oxidative stresses. The aim of this work was to evaluate the effect of EDU on forest species in a Mediterranean environment where, during summer, vegetation is exposed to multiple oxidative stresses, such as O3 and drought. The experiment was conducted on Fraxinus ornus L. (Manna ash) plants growing in six mesocosms, three maintained under full irrigation, while the other three were subjected to drought for 84 days. In each mesocosm, three plants were sprayed every 15 days with 450 ppm EDU. Gas exchange and chlorophyll “a” fluorescence measurements carried out through the experimental period highlighted that EDU did not affect stomatal conductance and had an ameliorative effect on the functionality of drought-stressed plants, thus suggesting that it may act as a generic antioxidant. The implications of these findings for the applicability of EDU in field studies are discussed.
Collapse
|
45
|
Agathokleous E. Perspectives for elucidating the ethylenediurea (EDU) mode of action for protection against O 3 phytotoxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 142:530-537. [PMID: 28478379 DOI: 10.1016/j.ecoenv.2017.04.057] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/22/2017] [Accepted: 04/28/2017] [Indexed: 05/22/2023]
Abstract
Ethylenediurea (EDU) has been widely studied for its effectiveness to protect plants against injuries caused by surface ozone (O3), however its mode of action remains unclear. So far, there is not a unified methodological approach and thus the methodology is quite arbitrary, thereby making it more difficult to generalize findings and understand the EDU mode of action. This review examines the question of whether potential N addition to plants by EDU is a fundamental underlying mechanism in protecting against O3 phytotoxicity. Yet, this review proposes an evidence-based hypothesis that EDU may protect plants against O3 deleterious effects upon generation of EDU-induced hormesis, i.e. by activating plant defense at low doses. This hypothesis challenges the future research directions. Revealing a hormesis-based EDU mode of action in protecting plants against O3 toxicity would have further implications to ecotoxicology and environmental safety. Furthermore, this review discusses the need for further studies on plant metabolism under EDU treatment through relevant experimental approach, and attempts to set the bases for approaching a unified methodology that will contribute in revealing the EDU mode of action. In this framework, focus is given to the main EDU application methods.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Hokkaido Research Center, Forestry and Forest Products Research Institute (FFPRI), National Research and Development Agency, 7 Hitsujigaoka, Sapporo, Hokkaido 062-8516, Japan; Research Faculty of Agriculture, School of Agriculture, Hokkaido University, Kita 9 Nishi 9, Sapporo, Hokkaido 060-8589, Japan.
| |
Collapse
|
46
|
Tiwari S. Ethylenediurea as a potential tool in evaluating ozone phytotoxicity: a review study on physiological, biochemical and morphological responses of plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:14019-14039. [PMID: 28409426 DOI: 10.1007/s11356-017-8859-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 03/17/2017] [Indexed: 05/22/2023]
Abstract
Present-day climate change scenario has intensified the problem of continuously increasing ground-level ozone (O3), which is responsible for causing deleterious effects on growth and development of plants. Studies involving use of ethylenediurea (EDU), a chemical with antiozonant properties, have given some promising results in evaluating O3 injury in plants. The use of EDU is especially advantageous in developing countries which face a more severe problem of ground-level O3, and technical O3-induced yield loss assessment techniques like open-top chambers cannot be used. Recent studies have detected a hormetic response of EDU on plants; i.e. treatment with higher EDU concentrations may or may not show any adverse effect on plants depending upon the experimental conditions. Although the mode of action of EDU is still debated, it is confirmed that EDU remains confined in the apoplastic regions. Certain studies indicate that EDU significantly affects the electron transport chain and has positive impact on the antioxidant defence machinery of the plants. However, the mechanism of protecting the yield of plants without significantly affecting photosynthesis is still questionable. This review discusses in details the probable mode of action of EDU on the basis of available data along with the impact of EDU on physiological, biochemical, growth and yield response of plants under O3 stress. Data regarding the effect of EDU on plant 'omics' is highly insufficient and can form an important aspect of future EDU research.
Collapse
Affiliation(s)
- Supriya Tiwari
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India.
| |
Collapse
|
47
|
Singh AA, Agrawal SB. Tropospheric ozone pollution in India: effects on crop yield and product quality. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:4367-4382. [PMID: 27943144 DOI: 10.1007/s11356-016-8178-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 11/28/2016] [Indexed: 06/06/2023]
Abstract
Ozone (O3) in troposphere is the most critical secondary air pollutant, and being phytotoxic causes substantial losses to agricultural productivity. Its increasing concentration in India particularly in Indo-Gangetic plains is an issue of major concern as it is posing a threat to agriculture. In view of the issue of rising surface level of O3 in India, the aim of this compilation is to present the past and the prevailing concentrations of O3 and its important precursor (oxides of nitrogen) over the Indian region. The resulting magnitude of reductions in crop productivity as well as alteration in the quality of the product attributable to tropospheric O3 has also been taken up. Studies in relation to yield measurements have been conducted predominantly in open top chambers (OTCs) and also assessed by using antiozonant ethylene diurea (EDU). There is a substantial spatial difference in O3 distribution at different places displaying variable O3 concentrations due to seasonal and geographical variations. This review further recognizes the major information lacuna and also highlights future perspectives to get the grips with rising trend of ground level O3 pollution and also to formulate the policies to check the emissions of O3 precursors in India.
Collapse
Affiliation(s)
- Aditya Abha Singh
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - S B Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
48
|
Paoletti E, Materassi A, Fasano G, Hoshika Y, Carriero G, Silaghi D, Badea O. A new-generation 3D ozone FACE (Free Air Controlled Exposure). THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 575:1407-1414. [PMID: 27717567 DOI: 10.1016/j.scitotenv.2016.09.217] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 06/06/2023]
Abstract
To artificially simulate the impacts of ground-level ozone (O3) on vegetation, ozone FACE (Free Air Controlled Exposure) systems are increasingly recommended. We describe here a new-generation, three-dimensional ozone FACE, with O3 diffusion through laser-generated micro-holes, pre-mixing of air and O3, O3 generator with integral oxygen generator, continuous (day/night) exposure and full replication. Based on three O3 levels and assumptions on the pre-industrial O3 levels, we describe principles to calculate relative yield/biomass and estimate impacts even at lower-than-ambient O3 levels. The case study is called FO3X, and is at present the only ozone FACE in Mediterranean climate and one of the very few ozone FACEs investigating more than one stressor at a time. The results presented here will give further impulse to the research on O3 impacts on vegetation all over the world.
Collapse
Affiliation(s)
- Elena Paoletti
- IPSP-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy.
| | | | | | - Yasutomo Hoshika
- IPSP-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | | | | | - Ovidiu Badea
- INCDS, B-dul Eroilor 128, Voluntari, Ilfov, Romania
| |
Collapse
|
49
|
Agathokleous E, Paoletti E, Saitanis CJ, Manning WJ, Sugai T, Koike T. Impacts of ethylenediurea (EDU) soil drench and foliar spray in Salix sachalinensis protection against O 3-induced injury. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 573:1053-1062. [PMID: 27607908 DOI: 10.1016/j.scitotenv.2016.08.183] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/27/2016] [Accepted: 08/27/2016] [Indexed: 05/22/2023]
Abstract
It is widely accepted that elevated levels of surface ozone (O3) negatively affect plants. Ethylenediurea (EDU) is a synthetic substance which effectively protects plants against O3-caused phytotoxicity. Among other questions, the one still open is: which EDU application method is more appropriate for treating fast-growing tree species. The main aims of this study were: (i) to test if chronic exposure of Salix sachalinensis plants to 200-400mgEDUL-1, the usually applied range for protection against O3 phytotoxicity, is beneficial to plants; (ii) to evaluate the effects of chronic exposure to elevated O3 on S. sachalinensis; (iii) to assess the efficacy of two methods (i.e. soil drench and foliar spray) of EDU application to plants; (iv) to investigate the appropriate concentration of EDU to protect against elevated O3-induced damage in S. sachalinensis; and (v) to compare the two methods of EDU application in terms of effectiveness and EDU consumption. Current-year cuttings grown in infertile soil free from organic matter were exposed either to low ambient O3 (AOZ, 10-h≈28.3nmolmol-1) or to elevated O3 (EOZ, 10-h≈65.8nmolmol-1) levels during daylight hours. Over the growing season, plants were treated every nine days with 200mL soil drench of 0, 200 or 400mgEDUL-1 or with foliar spray of 0, 200 or 400mgEDUL-1 (in two separate experiments). We found that EDU per se had no effects on plants exposed to AOZ. EOZ practically significantly injured S. sachalinensis plants, and the impact was indifferent between the experiments. EDU did not protect plants against EOZ impact when applied as soil drench but it did protect them when applied as 200-400mgL-1 foliar spray. We conclude that EDU may be more effective against O3 phytotoxicity to fast-growing species when applied as a spray than when applied as a drench. Keymessage: Soil-drenched EDU was ineffective in protecting willow plants against O3-induced injury, whereas foliar-sprayed EDU was effective even at the concentration of 200mgL-1.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Silviculture and Forest Ecological Studies, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan.
| | - Elena Paoletti
- National Council of Research, Via Madonna del Piano 10, Sesto Fiorentino, Florence 50019, Italy
| | - Costas J Saitanis
- Lab of Ecology and Environmental Science, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| | - William J Manning
- Department of Plant, Soil and Insect Sciences, University of Massachusetts, Amherst, MA, USA
| | - Tetsuto Sugai
- Silviculture and Forest Ecological Studies, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | - Takayoshi Koike
- Silviculture and Forest Ecological Studies, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| |
Collapse
|
50
|
Xin Y, Yuan X, Shang B, Manning WJ, Yang A, Wang Y, Feng Z. Moderate drought did not affect the effectiveness of ethylenediurea (EDU) in protecting Populus cathayana from ambient ozone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 569-570:1536-1544. [PMID: 27424114 DOI: 10.1016/j.scitotenv.2016.06.247] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/10/2016] [Accepted: 06/30/2016] [Indexed: 06/06/2023]
Abstract
A field study was conducted to evaluate the effects of ambient ozone (O3) on an O3-sensitive poplar (Populus cathayana) by using ethylenediurea (EDU) as a chemical protectant under two soil water treatments (well-watered (WW) and moderate drought (MD, 50-60% of WW in volumetric soil water content). EDU was applied as foliar spray at 0, 300, 450, and 600ppm. Photosynthetic parameters, pigment contents, leaf nitrogen, antioxidant capacity, growth, and biomass were measured. The 8h (9:00-17:00) average ambient O3 concentration was 71.7ppb, and AOT40 was 29.2ppmh during the experimental period (9 June to 21 September), which was high enough to cause plant injury. MD had significantly negative effects on P. cathayana, as indicated by reduced photosynthesis, growth, and biomass, and higher MDA contents. On the other hand, EDU significantly increased photosynthesis rate, chlorophyll a fluorescence, Vcmax and Jmax, photosynthetic pigments, total antioxidant capacity, tree growth and biomass accumulation, and reduced lipid peroxidation, but there was no significant interaction between EDU and drought for most parameters, indicating that EDU can efficiently protect Populus cathayana against ambient O3 and the protection was not affected by soil water contents when soil water reached moderate drought level. Among all doses, EDU at 450ppm provided maximum protection. Comparison of EDU-treated and non-treated P. cathayana could be used as a biomarker system in risk assessment of the effects of ambient O3 on forest health.
Collapse
Affiliation(s)
- Yue Xin
- State key laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China; University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China; Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture P. R. China, Beijing University of Agriculture, Beijing 102206, China; Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing, 100101, China
| | - Xiangyang Yuan
- State key laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China; University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
| | - Bo Shang
- State key laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China; University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
| | - William J Manning
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003-9320, USA
| | - Aizhen Yang
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture P. R. China, Beijing University of Agriculture, Beijing 102206, China
| | - Younian Wang
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture P. R. China, Beijing University of Agriculture, Beijing 102206, China.
| | - Zhaozhong Feng
- State key laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China; University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China; Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture P. R. China, Beijing University of Agriculture, Beijing 102206, China.
| |
Collapse
|