1
|
Muambo KE, Im H, Macha FJ, Oh JE. Reproductive toxicity and molecular responses induced by telmisartan in Daphnia magna at environmentally relevant concentrations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124525. [PMID: 39004206 DOI: 10.1016/j.envpol.2024.124525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
With aging population increasing globally, the use of pharmaceutically active compounds is rising. The cardiovascular drug telmisartan has been widely detected in various environmental compartments, including biota, surface waters, and sewage treatment plant effluents at concentrations ranging from ng/L to μg/L levels. This study evaluated the effects of telmisartan on the microcrustacean Daphnia magna at a wide range of concentrations (0.35, 0.70, 1.40, 500, and 1000 μg/L) and revealed significant ecotoxicological implications of this drug, even at environmentally relevant concentration. Acute exposure to telmisartan (1.40, 500, and 1000 μg/L) resulted in a notable decrease in heart rate, while chronic exposure accelerated the time to the first brood by 3 days and reduced neonate body size. Molecular investigations revealed marked downregulation of vitellogenin genes (Vtg1 and Vtg2). Non-monotonic dose responses were observed for gene expression, early-stage body length, and the total number of offspring produced, while the heart rate and time to the first brood showed clear concentration-dependent responses. These findings highlight the potential risks, notably to reproductive capacity, associated with exposure to telmisartan in environmentally relevant concentration, suggesting the need for further studies on the potential long-term ecological consequences.
Collapse
Affiliation(s)
- Kimberly Etombi Muambo
- Department of Civil and Environmental Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyungjoon Im
- Institute for Environment and Energy, Pusan National University, Busan, 46241, Republic of Korea
| | - Fulgence Jacob Macha
- Biocolloids and Surfaces Laboratory, Department of Chemical Engineering, McGill University, Montreal, Canada
| | - Jeong-Eun Oh
- Department of Civil and Environmental Engineering, Pusan National University, Busan, 46241, Republic of Korea; Institute for Environment and Energy, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
2
|
Rowan E, Leung A, Grintzalis K. A Novel Method for the Assessment of Feeding Rate as a Phenotypic Endpoint for the Impact of Pollutants in Daphnids. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2211-2221. [PMID: 39056977 DOI: 10.1002/etc.5960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/03/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
Traditional approaches for monitoring aquatic pollution primarily rely on chemical analysis and the detection of pollutants in the aqueous environments. However, these methods lack realism and mechanistic insight and, thus, are increasingly supported by effect-based methods, which offer sensitive endpoints. In this context, daphnids, a freshwater species used extensively in molecular ecotoxicology, offer fast and noninvasive approaches to assess the impact of pollutants. Among the phenotypic endpoints used, feeding rate is a highly sensitive approach because it provides evidence of physiological alterations even in sublethal concentrations. However, there has been no standardized method for measuring feeding rate in daphnids, and several approaches follow different protocols. There is a diversity among tests employing large volumes, extensive incubation times, and high animal densities, which in turn utilize measurements of algae via fluorescence, radiolabeling, or counting ingested cells. These tests are challenging and laborious and sometimes require cumbersome instrumentation. In the present study, we optimized the conditions of a miniaturized fast, sensitive, and high-throughput assay to assess the feeding rate based on the ingestion of fluorescent microparticles. The protocol was optimized in neonates in relation to the concentration of microplastic and the number of animals to increase reproducibility. Daphnids, following exposures to nonlethal concentrations, were incubated with microplastics; and, as filter feeders, they ingest microparticles. The new approach revealed differences in the physiology of daphnids in concentrations below the toxicity limits for a range of pollutants of different modes of action, thus proving feeding to be a more sensitive and noninvasive endpoint in pollution assessment. Environ Toxicol Chem 2024;43:2211-2221. © 2024 The Author(s). Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Emma Rowan
- School of Biotechnology, Dublin City University, Dublin, Republic of Ireland
| | - Anne Leung
- School of Biotechnology, Dublin City University, Dublin, Republic of Ireland
| | | |
Collapse
|
3
|
Nie W, Che Q, Chen D, Cao H, Deng Y. Comparative Study for Propranolol Adsorption on the Biochars from Different Agricultural Solid Wastes. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2793. [PMID: 38930162 PMCID: PMC11204899 DOI: 10.3390/ma17122793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
Currently, large amounts of agricultural solid wastes have caused serious environmental problems. Agricultural solid waste is made into biochar by pyrolysis, which is an effective means of its disposal. As the prepared biochar has a good adsorption capacity, it is often used to treat pollutants in water, such as heavy metals and pharmaceuticals. PRO is an emerging contaminant in the environment today. However, there are limited studies on the interaction between biochars with PRO. Thus, in this study, we investigate the adsorption of PRO onto the biochars derived from three different feedstocks. The order of adsorption capacity was corn stalk biochar (CS, 10.97 mg/g) > apple wood biochar (AW, 10.09 mg/g) > rice husk biochar (RH, 8.78 mg/g). When 2 < pH < 9, the adsorption capacity of all the biochars increased as the pH increased, while the adsorption decreased when pH > 9, 10 and 10.33 for AW, CS and RH, respectively. The adsorption of PRO on biochars was reduced with increasing Na+ and Ca2+ concentrations from 0 to 200 mg·L-1. The effects of pH and coexisting ions illustrated that there exist electrostatic interaction and cation exchange in the process. In addition, when HA concentration was less than 20 mg/L, it promoted the adsorption of PRO on the biochars; however, when the concentration was more than 20 mg/L, its promoting effect was weakened and gradually changed into an inhibitory effect. The adsorption isotherm data of PRO by biochars were best fitted with the Freundlich model, indicating that the adsorption process is heterogeneous adsorption. The adsorption kinetics were fitted well with the pseudo-second-order model. All the results can provide new information into the adsorption behavior of PRO and the biochars in the aquatic environment and a theoretical basis for the large-scale application of biochar from agricultural solid wastes.
Collapse
Affiliation(s)
- Wenjie Nie
- College of Geology and Environment, Xi’an University of Science and Technology, 58 Yanta Road, Xi’an 710054, China; (W.N.); (Q.C.); (D.C.); (H.C.)
- Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi’an 710054, China
| | - Qianqian Che
- College of Geology and Environment, Xi’an University of Science and Technology, 58 Yanta Road, Xi’an 710054, China; (W.N.); (Q.C.); (D.C.); (H.C.)
| | - Danni Chen
- College of Geology and Environment, Xi’an University of Science and Technology, 58 Yanta Road, Xi’an 710054, China; (W.N.); (Q.C.); (D.C.); (H.C.)
| | - Hongyu Cao
- College of Geology and Environment, Xi’an University of Science and Technology, 58 Yanta Road, Xi’an 710054, China; (W.N.); (Q.C.); (D.C.); (H.C.)
| | - Yuehua Deng
- College of Geology and Environment, Xi’an University of Science and Technology, 58 Yanta Road, Xi’an 710054, China; (W.N.); (Q.C.); (D.C.); (H.C.)
- Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi’an 710054, China
| |
Collapse
|
4
|
Arreguin-Rebolledo U, Páez-Osuna F, Betancourt-Lozano M, Rico-Martínez R. Multi-and transgenerational synergistic effects of glyphosate and chlorpyrifos at environmentally relevant concentrations in the estuarine rotifer Proales similis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120708. [PMID: 36410595 DOI: 10.1016/j.envpol.2022.120708] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/03/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
We evaluated the multi-and transgenerational effects of single and combined environmentally relevant concentrations of glyphosate (GLY) and chlorpyrifos (CPF) in the estuarine rotifer Proales similis. The acute and chronic toxicities of GLY and CPF were determined as individual compounds and as a mixture. Rotifers were exposed to environmental concentrations of GLY (1, 10, 100, and 1000 μg/L) and CPF (0.1, 1, 5, and 10 μg/L). The main findings were as follows: (i) the LC50 values were 33.91 mg/L (GLY) and 280 μg/L (CPF); (ii) the toxic unit (TU50) of the mixture was 0.30, corresponding to 10.17 mg/L GLY and 83 μg/L CPF; (iii) the multigenerational study indicated that the tested concentrations of GLY and CPF, both single and combined, significantly and consistently decreased the growth rates of P. similis from the F0 to F6 generations; (iv) in most cases, GLY and CPF mixtures induced a strong synergistic effect; and (v) transgenerational effects were detected in the F4 generation, especially GLY and CPF in higher equitoxic proportions. These effects seem to dissipate in F5. Across multigeneration, a slight recovery could indicate population resilience to pollution. Our findings suggest that a mixture of GLY and CPF at environmental concentrations is likely to occur under real field conditions, increasing the risk to marine and estuarine invertebrates such as rotifers.
Collapse
Affiliation(s)
- Uriel Arreguin-Rebolledo
- Centro de Ciencias Básicas, Departamento de Química, Universidad Autónoma de Aguascalientes, Avenida Universidad 940, C.P. 20100, Aguascalientes, Ags, Mexico
| | - Federico Páez-Osuna
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de Mexico, Unidad Académica, Mazatlán, Mexico
| | | | - Roberto Rico-Martínez
- Centro de Ciencias Básicas, Departamento de Química, Universidad Autónoma de Aguascalientes, Avenida Universidad 940, C.P. 20100, Aguascalientes, Ags, Mexico.
| |
Collapse
|
5
|
Appraising efficacy of existing and advanced technologies for the remediation of beta-blockers from wastewater: A review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:25427-25451. [PMID: 35094282 DOI: 10.1007/s11356-021-18287-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/19/2021] [Indexed: 02/08/2023]
Abstract
The discharge of emerging pollutants, such as beta-blockers (BB), has been recognized as one of the major threats to the environment due to the ecotoxicity associated with these emerging pollutants. The BB are prescribed to treat high blood pressure and cardiovascular diseases; however, even at lower concentration, these pollutants can pose eco-toxic impacts towards aquatic organisms. Additionally, owing to their recalcitrant nature, BB are not effectively removed through conventional technologies, such as activated sludge process, trickling filter and moving bed bioreactor; thus, it is essential to understand the degradation mechanism of BB in established as well as embryonic technologies, like adsorption, electro-oxidation, Fenton process, ultraviolet-based advance oxidation process, ozonation, membrane systems, wetlands and algal treatment. In this regard, this review articulates the recalcitrant nature of BB and their associated removal technologies. Moreover, the major advantages and limitations of these BB removal technologies along with the recent advancements with regard to the application of innovative materials and strategies have also been elucidated. Therefore, the present review intends to aid the researchers in improving the BB removal efficiency of these technologies, thus alleviating the problem of the release of BB into the environment.
Collapse
|
6
|
Michalaki A, McGivern AR, Poschet G, Büttner M, Altenburger R, Grintzalis K. The Effects of Single and Combined Stressors on Daphnids-Enzyme Markers of Physiology and Metabolomics Validate the Impact of Pollution. TOXICS 2022; 10:toxics10100604. [PMID: 36287884 PMCID: PMC9609890 DOI: 10.3390/toxics10100604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 05/14/2023]
Abstract
The continuous global increase in population and consumption of resources due to human activities has had a significant impact on the environment. Therefore, assessment of environmental exposure to toxic chemicals as well as their impact on biological systems is of significant importance. Freshwater systems are currently under threat and monitored; however, current methods for pollution assessment can neither provide mechanistic insight nor predict adverse effects from complex pollution. Using daphnids as a bioindicator, we assessed the impact in acute exposures of eight individual chemicals and specifically two metals, four pharmaceuticals, a pesticide and a stimulant, and their composite mixture combining phenotypic, biochemical and metabolic markers of physiology. Toxicity levels were in the same order of magnitude and significantly enhanced in the composite mixture. Results from individual chemicals showed distinct biochemical responses for key enzyme activities such as phosphatases, lipase, peptidase, β-galactosidase and glutathione-S-transferase. Following this, a more realistic mixture scenario was assessed with the aforementioned enzyme markers and a metabolomic approach. A clear dose-dependent effect for the composite mixture was validated with enzyme markers of physiology, and the metabolomic analysis verified the effects observed, thus providing a sensitive metrics in metabolite perturbations. Our study highlights that sensitive enzyme markers can be used in advance on the design of metabolic and holistic assays to guide the selection of chemicals and the trajectory of the study, while providing mechanistic insight. In the future this could prove to become a useful tool for understanding and predicting freshwater pollution.
Collapse
Affiliation(s)
- Anna Michalaki
- School of Biotechnology, Dublin City University, D09 Y5NO Dublin, Ireland
| | | | - Gernot Poschet
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany
| | - Michael Büttner
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany
| | - Rolf Altenburger
- Department of Bioanalytical Ecotoxicology, Helmholtz-Centre for Environmental Research—UFZ, 04318 Leipzig, Germany
| | | |
Collapse
|
7
|
Zare EN, Fallah Z, Le VT, Doan VD, Mudhoo A, Joo SW, Vasseghian Y, Tajbakhsh M, Moradi O, Sillanpää M, Varma RS. Remediation of pharmaceuticals from contaminated water by molecularly imprinted polymers: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2022; 20:2629-2664. [PMID: 35431714 PMCID: PMC8999999 DOI: 10.1007/s10311-022-01439-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/15/2022] [Indexed: 05/03/2023]
Abstract
The release of pharmaceuticals into the environment induces adverse effects on the metabolism of humans and other living species, calling for advanced remediation methods. Conventional removal methods are often non-selective and cause secondary contamination. These issues may be partly solved by the use of recently-developped adsorbents such as molecularly imprinted polymers. Here we review the synthesis and application of molecularly imprinted polymers for removing pharmaceuticals in water. Molecularly imprinted polymers are synthesized via several multiple-step polymerization methods. Molecularly imprinted polymers are potent adsorbents at the laboratory scale, yet their efficiency is limited by template leakage and polymer quality. Adsorption performance of multi-templated molecularly imprinted polymers depends on the design of wastewater treatment plants, pharmaceutical consumption patterns and the population serviced by these wastewater treatment plants.
Collapse
Affiliation(s)
| | - Zari Fallah
- Faculty of Chemistry, University of Mazandaran, 47416-95447 Babolsar, Iran
| | - Van Thuan Le
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, 55000 Vietnam
- The Faculty of Natural Sciences, Duy Tan University, 03 Quang Trung, Da Nang, 55000 Vietnam
| | - Van-Dat Doan
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, 12 Nguyen Van Bao, Ho Chi Minh, 70000 Vietnam
| | - Ackmez Mudhoo
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit, 80837 Mauritius
| | - Sang-Woo Joo
- Department of Chemistry, Soongsil University, Seoul, 06978 South Korea
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978 South Korea
| | - Mahmood Tajbakhsh
- Faculty of Chemistry, University of Mazandaran, 47416-95447 Babolsar, Iran
| | - Omid Moradi
- Department of Chemistry, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028 South Africa
| | - Rajender S. Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|
8
|
Zhang K, Zhao Y, Fent K. Cardiovascular drugs and lipid regulating agents in surface waters at global scale: Occurrence, ecotoxicity and risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 729:138770. [PMID: 32361434 DOI: 10.1016/j.scitotenv.2020.138770] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
Cardiovascular drugs and lipid regulating agents have emerged as major groups of environmental contaminants over the past decades. However, knowledge about their occurrence in freshwaters and their ecotoxicity is still limited. Here, we critically summarize the presence of 82 cardiovascular drugs and lipid regulating agents at a global-scale and represent their effects on aquatic organisms. Only about 71% of these pharmaceuticals in use have been analyzed for their residues in aquatic ecosystems and only about 24% for their effects. When detected in surface waters, they occurred at concentrations of dozens to hundreds of ng/L. In wastewaters, they reached up to several μg/L. Effects of cardiovascular drugs and lipid regulating agents have been extensively studied in fish and a few in invertebrates, such as Daphnia magna and mussels. These pharmaceuticals affect cardiac physiology, lipid metabolism, growth and reproduction. Besides, effects on spermatogenesis and neurobehavior are observed. Environmental risks are associated with beta-blockers propranolol, metoprolol, and lipid lowering agents bezafibrate and atorvastatin, where adverse effects (biochemical and transcriptional) occurred partially at surface water concentrations. In some cases, reproductive effects occurred at environmentally relevant concentrations. This review summarizes the state of the art on the occurrence of cardiovascular drugs and lipid regulating agents at a global-scale and highlights their risks to fish. Further research is needed to include more subtle changes on heart function and to explore non-investigated drugs. Their occurrence in freshwaters and impact on a diverse array of aquatic organisms are particularly needed to fully assess their environmental hazards and risks.
Collapse
Affiliation(s)
- Kun Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yanbin Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Karl Fent
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Hofackerstrasse 30, CH-4132 Muttenz, Switzerland
| |
Collapse
|
9
|
Jeong TY, Simpson MJ. Time-dependent biomolecular responses and bioaccumulation of perfluorooctane sulfonate (PFOS) in Daphnia magna. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 35:100701. [PMID: 32505104 DOI: 10.1016/j.cbd.2020.100701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/13/2020] [Accepted: 05/20/2020] [Indexed: 12/24/2022]
Abstract
Perfluorooctane sulfonate (PFOS) is a persistent pollutant which is potentially harmful and bioaccumulative to aquatic organisms. To evaluate the regulatory alteration of select metabolites with PFOS exposure at early and typical acute exposure periods in an aquatic indicator species Daphnia magna, the hourly abundance of the twenty-three metabolites was investigated over 24 h. To evaluate the bioaccumulation potential of PFOS at a sub-lethal concentration in D. magna, the daily accumulation into D. magna for 16 days was also evaluated. Twenty-three targeted metabolites were quantified over 1 to 4 h and 21 to 24 h of PFOS exposure using liquid chromatography tandem mass spectrometry (LC-MS/MS). Daphnid to water PFOS concentration ratios were monitored separately over different days and life stages at 0 to 76 h and 2 to 16 days of PFOS exposure. The observed metabolite abundance and bioaccumulation in the exposed groups was compared between sampling times. The results reveal that sub-lethal PFOS exposure at 2 mg/L and 20 mg/L alters regulation of arginine, tyrosine and adenosine monophosphate which are directly and indirectly related to energy status. The temporal metabolic responses observed for the early exposure period (4 h), but not for the typical acute exposure period (24 h), suggest the dysregulation potency of PFOS on metabolite regulation of D. magna and the importance of early time-course monitoring approaches. Sixteen days of bioaccumulation monitoring showed that PFOS is more bioaccumulative in younger D. magna. The observation of time-dependent bioaccumulation of PFOS in D. magna requires further studies to define its precise mechanism. Interestingly, the bioaccumulation potential of PFOS was found to be consistent between 72 h and 16 day exposure periods. No difference on the body burden to water concentration ratio during about one third of the life span time (16 days), compared to the 72 h exposure, suggests that the prolonged exposure did not increase the bioaccumulation of PFOS in D. magna. This study demonstrates that the Daphnia metabolites are rapidly responding to sub-lethal PFOS exposure and provides information on life stage and time-dependent bioaccumulation potential of PFOS. As such, metabolite regulation is a sensitive indicator to sub-lethal PFOS exposure and can be informative when combined with other measures of toxicity.
Collapse
Affiliation(s)
- Tae-Yong Jeong
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C1A4, Canada
| | - Myrna J Simpson
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C1A4, Canada.
| |
Collapse
|
10
|
Bownik A. Physiological endpoints in daphnid acute toxicity tests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 700:134400. [PMID: 31689654 DOI: 10.1016/j.scitotenv.2019.134400] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/16/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
Daphnids are freshwater crustaceans used in toxicity tests. Although lethality and immobilisation are the most commonly used endpoints in those tests, more sensitive parameters are required for determination of sublethal acute effects of toxicants. The use of various physiological endpoints in daphnids is considered as a low-cost and simple alternative that meets the 3R's rule (Replacement, Reduction, Refinement) criteria. However, currently there is no review-based evaluation of their applicability in toxicity testing. This paper presents the results on the most commonly determined physiological parameters of Daphnia in ecotoxicological studies and human drug testing, such as feeding activity, thoracic limb movement, heart rate, cardiac area, respiratory activity, compound eye, mandible movements and post-abdominal claw contractions. Furthermore, their applicability as promising endpoints in the assessment of water quality or drug testing is discussed.
Collapse
Affiliation(s)
- Adam Bownik
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262 Lublin, Poland.
| |
Collapse
|
11
|
Di Lorenzo T, Di Cicco M, Di Censo D, Galante A, Boscaro F, Messana G, Paola Galassi DM. Environmental risk assessment of propranolol in the groundwater bodies of Europe. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113189. [PMID: 31542673 DOI: 10.1016/j.envpol.2019.113189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/05/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
A growing concern for contamination due to pharmaceutical compounds in groundwater is expanding globally. The β-blocker propranolol is a β-adrenoceptors antagonist commonly detected in European groundwater bodies. The effect of propranolol on stygobiotic species (obligate groundwater dweller species) is compelling in the framework of environmental risk assessment (ERA) of groundwater ecosystems. In fact, in Europe, ERA procedures for pharmaceuticals in groundwater are based on data obtained with surrogate surface water species. The use of surrogates has aroused some concern in the scientific arena since the first ERA guideline for groundwater was issued. We performed an ecotoxicological and a behavioural experiment with the stygobiotic crustacean species Diacyclops belgicus (Copepopda) to estimate a realistic value of the Predicted No Effect Concentration (PNEC) of propranolol for groundwater ecosystems and we compared this value with the PNEC estimated based on EU ERA procedures. The results of this study showed that i) presently, propranolol does not pose a risk to groundwater bodies in Europe at the concentrations shown in this study and ii) the PNEC of propranolol estimated through the EU ERA procedures is very conservative and allows to adequately protect these delicate ecosystems and their dwelling fauna. The methodological approach and the results of this study represent a first contribution to the improvement of ERA of groundwater ecosystems.
Collapse
Affiliation(s)
- Tiziana Di Lorenzo
- Research Institute on Terrestrial Ecosystems (IRET-CNR), Via Madonna del Piano 10, 50019, Sesto Fiorentino, Florence, Italy.
| | - Mattia Di Cicco
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio 1, Coppito, 67100, 10 L'Aquila, Italy
| | - Davide Di Censo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio 1, Coppito, 67100, 10 L'Aquila, Italy
| | - Angelo Galante
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio 1, Coppito, 67100, 10 L'Aquila, Italy; Institute for superconductors, oxides and other innovative materials and devices, National Research Council (CNR-SPIN), Via Vetoio 1, 67100 L'Aquila, Italy; Istituto Nazionale di Fisica Nucleare (INFN), Laboratori Nazionali del Gran Sasso, Assergi, 67100, L'Aquila, Italy
| | - Francesca Boscaro
- Mass Spectrometry Center, University of Florence, Via U. Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Giuseppe Messana
- Research Institute on Terrestrial Ecosystems (IRET-CNR), Via Madonna del Piano 10, 50019, Sesto Fiorentino, Florence, Italy
| | - Diana Maria Paola Galassi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio 1, Coppito, 67100, 10 L'Aquila, Italy
| |
Collapse
|
12
|
Jeong TY, Simpson MJ. Daphnia magna metabolic profiling as a promising water quality parameter for the biological early warning system. WATER RESEARCH 2019; 166:115033. [PMID: 31505309 DOI: 10.1016/j.watres.2019.115033] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/21/2019] [Accepted: 08/29/2019] [Indexed: 05/27/2023]
Abstract
The inclusion of omics data into water quality monitoring programs is being considered to help alleviate the growing threat to water resources and ecosystem services. Despite the increasing need, the biological early warning system (BEWS), the widely used real-time water quality monitoring system, does not currently incorporate omics information, despite that metabolomics is a highly sensitive indicator of organism health and stress. We examined Daphnia magna metabolomics, which is the analysis of small molecules in living D. magna, as a potential water quality parameter for incorporation in the BEWS. The concentrations of 24 metabolites were measured with changes in water quality and variation of metabolite abundances was compared within and between conditions. Age-dependent monitoring revealed that matured individuals older than 8 days are appropriate model organisms for monitoring based on their low metabolomic variation as compared to younger daphnids. Hourly monitoring of metabolic variability and regulation under ambient and starved conditions demonstrated the rapid and sensitive detection of nutritional changes. Moreover, the metabolomic dysregulation due to exposure to the pollutant propranolol was also observed. By integrating all the observations, we found that the D. magna metabolome is a sensitive and useful parameter for detecting water quality changes and how these alter the function of keystone organisms. As such, this metabolomics-based framework is applicable to BEWS and highlights the beneficial advantages of integrating biomolecular and apical endpoint observations for enhanced performance in biomonitoring programs.
Collapse
Affiliation(s)
- Tae-Yong Jeong
- Department of Physical and Environmental Science, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C1A4, Canada.
| | - Myrna J Simpson
- Department of Physical and Environmental Science, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C1A4, Canada.
| |
Collapse
|
13
|
Characterization of neurotransmitter profiles in Daphnia magna juveniles exposed to environmental concentrations of antidepressants and anxiolytic and antihypertensive drugs using liquid chromatography–tandem mass spectrometry. Anal Bioanal Chem 2019; 411:5867-5876. [DOI: 10.1007/s00216-019-01968-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/20/2019] [Accepted: 06/07/2019] [Indexed: 12/11/2022]
|
14
|
White D, Lapworth DJ, Civil W, Williams P. Tracking changes in the occurrence and source of pharmaceuticals within the River Thames, UK; from source to sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 249:257-266. [PMID: 30897465 DOI: 10.1016/j.envpol.2019.03.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 05/03/2023]
Abstract
There is a growing interest in the occurrence and sources of pharmaceutical substances in the environment. This paper reports the first detailed transect of pharmaceutical occurrence along the River Thames, UK, from source to sea, undertaken during a period of high flow in 2016. In 37 samples a total of 41 pharmaceuticals and 2 lifestyle compounds (cocaine and sucralose) were detected. Total concentration of pharmaceuticals ranged from 0.0012 μg/l to 10.24 μg/l with a median of 2.6 μg/l. Sucralose concentrations varied from <0.01 to 5.9 μg/l with a median concentration of 1.93 μg/l and was detected in every sample except the groundwater-dominated sources of the Thames. Antimicrobials, including those on the surface water watch list (erythromycin, clarithromycin and azithromycin) were detected in every site downstream of the Thames source. Diclofenac, recently on the surface water watch list, was detected in 97% of Thames samples and above the proposed EQS of 0.1 μg/l in 12 samples. Distinct increases in concentration and number of pharmaceuticals were found downstream of the Oxford, Mogdon and Hogsmill wastewater treatment works (WWTW) but were more subdued downstream of the Crossness and Beckton WWTW due to the tidal nature of the Thames and combined sewer outflows. Sucralose was found to be an excellent tracer of wastewaters (treated and untreated) and can be used as a proxy for many pharmaceuticals. Paracetamol and ibuprofen were tracers of untreated wastewater inputs to the Thames due to their high biodegradation within WWTWs.
Collapse
Affiliation(s)
- Debbie White
- British Geological Survey, Maclean Building, Crowmarsh Gifford, Wallingford, OX10 8BB, Oxfordshire, UK.
| | - Dan J Lapworth
- British Geological Survey, Maclean Building, Crowmarsh Gifford, Wallingford, OX10 8BB, Oxfordshire, UK
| | - Wayne Civil
- Environment Agency, National Laboratory Service (NLS), Starcross, Devon, EX6 8FD, UK
| | - Peter Williams
- British Geological Survey, Maclean Building, Crowmarsh Gifford, Wallingford, OX10 8BB, Oxfordshire, UK
| |
Collapse
|
15
|
Di Lorenzo T, Castaño-Sánchez A, Di Marzio WD, García-Doncel P, Nozal Martínez L, Galassi DMP, Iepure S. The role of freshwater copepods in the environmental risk assessment of caffeine and propranolol mixtures in the surface water bodies of Spain. CHEMOSPHERE 2019; 220:227-236. [PMID: 30583214 DOI: 10.1016/j.chemosphere.2018.12.117] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/21/2018] [Accepted: 12/16/2018] [Indexed: 05/20/2023]
Abstract
In this study we aimed at assessing: (i) the environmental risk posed by mixtures of caffeine and propranolol to the freshwater ecosystems of Spain; (ii) the sensitivity of freshwater copepod species to the two compounds; (iii) if the toxicity of caffeine and propranolol to freshwater copepods contributes to the environmental risk posed by the two compounds in the freshwater bodies of Spain. The environmental risk was computed as the ratio of MECs (i.e. the measured environmental concentrations) to PNECs (i.e. the respective predicted no-effect concentrations). The effects of caffeine and propranolol on the freshwater cyclopoid Diacyclops crassicaudis crassicaudis were tested both individually and in binary mixtures. Propranolol posed an environmental risk in some but not in all the surface water ecosystems of Spain investigated in this study, while caffeine posed an environmental risk to all the investigated freshwater bodies, both as single compound and in the mixture with propranolol. Propranolol was the most toxic compound to D. crassicaudis crassicaudis, while caffeine was non-toxic to this species. The CA model predicted the toxicity of the propranolol and caffeine mixture for this species. D. crassicaudis crassicaudis was much less sensitive than several other aquatic species to both compounds. The sensitivity of D. crassicaudis crassicaudis does not increase the environmental risk posed by the two compounds in the freshwater bodies of Spain, however, further testing is recommended since the effect of toxicants on freshwater copepods can be more pronounced under multiple stressors and temperature increasing due to climate change.
Collapse
Affiliation(s)
- Tiziana Di Lorenzo
- Research Institute on Terrestrial Ecosystems (IRET-CNR), Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Florence, Italy.
| | - Andrea Castaño-Sánchez
- IMDEA Water Institute, Calle Punto Com 2, Edificio ZYE 2, Parque Científico Tecnológico de la Universidad de Alcalá, 28805, Alcalá de Henares, Spain
| | - Walter Darío Di Marzio
- Programa de Investigación en Ecotoxicología, Departamento de Ciencias Básicas, Universidad Nacional de Luján - Comisión Nacional de Investigaciones Científicas y Técnicas CONICET, Argentina
| | - Patricia García-Doncel
- IMDEA Water Institute, Calle Punto Com 2, Edificio ZYE 2, Parque Científico Tecnológico de la Universidad de Alcalá, 28805, Alcalá de Henares, Spain
| | - Leonor Nozal Martínez
- IMDEA Water Institute, Calle Punto Com 2, Edificio ZYE 2, Parque Científico Tecnológico de la Universidad de Alcalá, 28805, Alcalá de Henares, Spain
| | - Diana Maria Paola Galassi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio 1, Coppito, 67100, L'Aquila, Italy
| | - Sanda Iepure
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, José Beltrán Martínez, 2, 46980, Paterna, Valencia, Spain; University of Gdańsk, Faculty of Biology, Department of Genetics and Biosystematics, Wita Stwosza 59, 80-308, Gdańsk, Poland
| |
Collapse
|
16
|
Nielsen ME, Roslev P. Behavioral responses and starvation survival of Daphnia magna exposed to fluoxetine and propranolol. CHEMOSPHERE 2018; 211:978-985. [PMID: 30119029 DOI: 10.1016/j.chemosphere.2018.08.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/31/2018] [Accepted: 08/07/2018] [Indexed: 06/08/2023]
Abstract
Fluoxetine and propranolol are neuroactive human pharmaceuticals that occur frequently as pollutants in surface waters. The potential effects of these pharmaceuticals on aquatic organisms have raised concern but many adverse effects are not well characterized for a broad range of concentrations and endpoints. In this study, 6 biological parameters in the freshwater Cladoceran Daphnia magna were compared for their responses to fluoxetine or propranolol exposure: mobility (dichotomous response), active swimming time, swimming distance, swimming velocity, swimming acceleration speed, and survival in the absence of food (starvation-survival). Changes in swimming behavior was quantified by video tracking followed by image analyses at six exposure concentrations between 100 ng/L and 10 mg/L. Active swimming time and swimming distance were the most responsive parameters among the behavioral traits. Sublethal exposure concentrations resulted in nonmonotonic responses and behavior profiling suggested that fluoxetine and propranolol stimulated swimming activity at 1-10 μg/L whereas lower (0.1-1 μg/L) and higher exposure concentrations (>100 μg/L) inhibited swimming activity. The ability to survive in the absence of food when exposed to fluoxetine or propranolol resulted in EC50 and EC10 values that were lower than for swimming behavior (EC50 of 0.79-0.99 mg/L; EC10 of 1.4-2.9 μg/L). Starvation-survival appeared to be a potentially simple and sensitive endpoint for adverse effects in D. magna at intermediate exposure concentrations. Nonmonotonic behavioral responses at low exposure concentrations and decreased ability to survive starvation should be considered in assessment of adverse effects of pharmaceuticals to freshwater invertebrates.
Collapse
Affiliation(s)
- Majken Elley Nielsen
- Section of Biology and Environmental Science, Aalborg University, Aalborg, Denmark
| | - Peter Roslev
- Section of Biology and Environmental Science, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
17
|
Athanasio CG, Sommer U, Viant MR, Chipman JK, Mirbahai L. Use of 5-azacytidine in a proof-of-concept study to evaluate the impact of pre-natal and post-natal exposures, as well as within generation persistent DNA methylation changes in Daphnia. ECOTOXICOLOGY (LONDON, ENGLAND) 2018; 27:556-568. [PMID: 29623456 PMCID: PMC6010494 DOI: 10.1007/s10646-018-1927-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/14/2018] [Indexed: 05/28/2023]
Abstract
Short-term exposures at critical stages of development can lead to delayed adverse effects long after the initial stressor has been removed, a concept referred to as developmental origin of adult disease. This indicates that organisms' phenotypes may epigenetically reflect their past exposure history as well as reflecting chemicals currently present in their environment. This concept has significant implications for environmental monitoring. However, there is as yet little or no implementation of epigenetics in environmental risk assessment. In a proof-of-principle study we exposed Daphnia magna to 5-azacytidine, a known DNA de-methylating agent. Exposures covered combinations of prenatal and postnatal exposures as well as different exposure durations and recovery stages. Growth, the transcription of genes and levels of metabolites involved in regulating DNA methylation, and methylation levels of several genes were measured. Our data shows that prenatal exposures caused significant changes in the methylome of target genes, indicating that prenatal stages of Daphnia are also susceptible to same level of change as post-natal stages of Daphnia. While the combination of pre- and postnatal exposures caused the most extreme reduction in DNA methylation compared to the control group. Furthermore, some of the changes in the methylation patterns were persistent even after the initial stressor was removed. Our results suggest that epigenetic biomarkers have the potential to be used as indicators of past chemical exposure history of organisms and provide strong support for implementing changes to the current regimes for chemical risk assessment to mimic realistic environmental scenarios.
Collapse
Affiliation(s)
| | - Ulf Sommer
- NERC Biomolecular Analysis Facility-Metabolomics Node (NBAF-B), School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Mark R Viant
- NERC Biomolecular Analysis Facility-Metabolomics Node (NBAF-B), School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - James Kevin Chipman
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Leda Mirbahai
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
18
|
Castro BB, Freches AR, Rodrigues M, Nunes B, Antunes SC. Transgenerational Effects of Toxicants: An Extension of the Daphnia 21-day Chronic Assay? ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2018; 74:616-626. [PMID: 29368034 DOI: 10.1007/s00244-018-0507-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/16/2018] [Indexed: 06/07/2023]
Abstract
The assessment of transgenerational effects should be incorporated in standard chronic toxicity protocols for the sake of a realistic extrapolation of contaminant effects to the population level. We propose a simple add-on to the standard 21-day chronic Daphnia magna assay, allowing the assessment of the reproductive performance of the offspring (F1 generation) born from the first clutch of the parental (F0) generation. The extended generational assay was performed simultaneously with the standard reproduction assay. With this design, we evaluated the lethal, reproductive, and transgenerational effects of four widespread and extensively used substances: a biocide/anti-fouling (copper sulphate), an industrial oxidizing agent (potassium dichromate), a pharmaceutical (paracetamol), and a quaternary ammonium compound (benzalkonium chloride). Benzalkonium chloride was the most toxic in terms of lethality, whereas paracetamol, copper sulphate, and potassium dichromate caused deleterious effects in the reproductive performance of exposed D. magna. Adverse effects in the fitness of the daughter (F1) generation were observed in the case of maternal exposure to paracetamol and copper sulphate, although they were not very pronounced. These findings highlight the usefulness of our approach and reinforce the view-shared by other authors-of the need for a generalised formal assessment of the transgenerational effects of pollutants.
Collapse
Affiliation(s)
- B B Castro
- Departamento de Biologia, CBMA (Centro de Biologia Molecular e Ambiental), Universidade do Minho, Campus de Gualtar, Braga, Portugal
| | - A R Freches
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - M Rodrigues
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - B Nunes
- Departamento de Biologia, CESAM (Centro de Estudos do Ambiente e do Mar), Universidade de Aveiro, Aveiro, Portugal
| | - S C Antunes
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal.
- CIIMAR (Centro Interdisciplinar de Investigação Marinha e Ambiental), Universidade do Porto, Porto, Portugal.
| |
Collapse
|
19
|
Venâncio C, Ribeiro R, Soares AMVM, Lopes I. Multigenerational effects of salinity in six clonal lineages of Daphnia longispina. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 619-620:194-202. [PMID: 29149743 DOI: 10.1016/j.scitotenv.2017.11.094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 06/07/2023]
Abstract
Sea level rise, as a consequence of climate changes, is already causing seawater intrusion in some freshwater coastal ecosystems worldwide. The increase in salinity at these freshwater coastal ecosystems may occur gradually (through groundwater) or abruptly (through extreme weather events). Moreover, many of them are also being altered and threatened by anthropogenic activities. Accordingly, the present study aimed at assessing the multigenerational lethal and sublethal effects caused by increased salinity in six clonal lineages of the freshwater cladoceran Daphnia longispina differing in their sensitivity to lethal levels of copper. Three specific objectives were delineated: i) to compare the lethal and sublethal toxicity of sodium chloride (NaCl) and natural seawater (SW); ii) to evaluate possible multigenerational effects after exposure to low levels of salinity, and iii) to evaluate if an association exists between tolerance to lethal and sublethal levels of salinity and tolerance to metals. Overall, NaCl was found to elicit sublethal effects at lower or similar concentrations than SW, suggesting its use as a protective surrogate of SW in early phases of ecological risk assessment schemes. Multigenerational exposure to conductivities of 0.73±0.015mScm-1 led to dissimilar responses by the six clonal lineages. Significant associations were found neither between lethal and sublethal endpoints nor between salinity and metals, possibly indicating the absence of common mechanisms responsible to confer metal tolerance and salt stress. However, some clonal lineages presented an inverse sensitivity to lethal levels of NaCl and of copper. These results suggest that natural populations of D. longispina, by exhibiting clonal lineages with differential tolerance to increased salinity, may cope with long-term exposure to small increases of this stressor. However, over time those populations may face the occurrence of genetic erosion due to the loss of the most sensitive genotypes before or after a multigenerational exposure.
Collapse
Affiliation(s)
- C Venâncio
- Department of Biology & CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| | - R Ribeiro
- CFE - Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - A M V M Soares
- Department of Biology & CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - I Lopes
- Department of Biology & CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
20
|
Jeong TY, Yoon D, Kim S, Kim HY, Kim SD. Mode of action characterization for adverse effect of propranolol in Daphnia magna based on behavior and physiology monitoring and metabolite profiling. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 233:99-108. [PMID: 29059631 DOI: 10.1016/j.envpol.2017.10.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/04/2017] [Accepted: 10/08/2017] [Indexed: 05/17/2023]
Abstract
Studies are underway to gather information about the mode of action (MOA) of emerging pollutants that could guide practical environmental decision making. Previously, we showed that propranolol, an active pharmaceutical ingredient, had adverse effects on Daphnia magna that were similar to its pharmaceutical action. In order to characterize the mode of action of propranolol in D. magna, which is suspected to be organ-specific pharmaceutical action or baseline toxicity, we performed time-series monitoring of behavior along with heart rate measurements and nuclear magnetic resonance (NMR) based metabolite profiling. Principle component analysis (PCA) and hierarchical clustering were used to categorize the mode of action of propranolol among 5 chemicals with different modes of action. The findings showed that the mode of action of propranolol in D. magna is organ-specific and vastly different from those of narcotics, even though metabolite regulation is similar between narcotic and non-narcotic candidates. The method applied in this study seems applicable to rapid characterization of the MOA of other cardiovascular pharmaceutical ingredients.
Collapse
Affiliation(s)
- Tae-Yong Jeong
- Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Dahye Yoon
- Department of Chemistry, Pusan National University, 2 Busandaehak-ro, 63 Beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Suhkmann Kim
- Department of Chemistry, Pusan National University, 2 Busandaehak-ro, 63 Beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Hyun Young Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Jeonbuk 580-185, Republic of Korea
| | - Sang Don Kim
- Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| |
Collapse
|
21
|
Lari E, Mohaddes E, Pyle GG. Effects of oil sands process-affected water on the respiratory and circulatory system of Daphnia magna Straus, 1820. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 605-606:824-829. [PMID: 28683426 DOI: 10.1016/j.scitotenv.2017.06.207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/24/2017] [Accepted: 06/24/2017] [Indexed: 06/07/2023]
Abstract
Millions of cubic meters of oil sands process-affected water (OSPW), the major by-product of oil sand surface mining, is currently stored in tailings ponds. The present study investigated the effects of OSPW on the respiratory and circulatory system of Daphnia magna Straus 1820. The effect of OSPW on the activity (i.e. total movement and active time) of D. magna was also studied, as it has been shown to interact with the respiratory and circulatory system. Daphniids were exposed to both 1 and 10% OSPW for acute (1-day) and chronic (10-day) exposure periods. At the end of the exposures, daphniid oxygen (O2) consumption, heart rate, hemoglobin (Hb) content and activity were investigated. In response to chronic exposure to 10% OSPW, O2 consumption of D. magna increased, while the hemoglobin content and activity were reduced in both 1 and 10% OSPW. None of the OSPW treatments changed the heart rate of the test organisms. The results of the present study suggest that in response to increasing metabolic rate caused by OSPW exposure, D. magna conserve their energy by reducing their activity and probably by recycling macromolecules (i.e. hemoglobin).
Collapse
Affiliation(s)
- Ebrahim Lari
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada.
| | - Effat Mohaddes
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Greg G Pyle
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
22
|
Varano V, Fabbri E, Pasteris A. Assessing the environmental hazard of individual and combined pharmaceuticals: acute and chronic toxicity of fluoxetine and propranolol in the crustacean Daphnia magna. ECOTOXICOLOGY (LONDON, ENGLAND) 2017; 26:711-728. [PMID: 28451857 DOI: 10.1007/s10646-017-1803-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/05/2017] [Indexed: 06/07/2023]
Abstract
Pharmaceuticals are widespread emerging contaminants and, like all pollutants, are present in combination with others in the ecosystems. The aim of the present work was to evaluate the toxic response of the crustacean Daphnia magna exposed to individual and combined pharmaceuticals. Fluoxetine, a selective serotonin re-uptake inhibitor widely prescribed as antidepressant, and propranolol, a non-selective β-adrenergic receptor-blocking agent used to treat hypertension, were tested. Several experimental trials of an acute immobilization test and a chronic reproduction test were performed. Single chemicals were first tested separately. Toxicity of binary mixtures was then assessed using a fixed ratio experimental design. Five concentrations and 5 percentages of each substance in the mixture (0, 25, 50, 75, and 100%) were tested. The MIXTOX model was applied to analyze the experimental results. This tool is a stepwise statistical procedure that evaluates if and how observed data deviate from a reference model, either concentration addition (CA) or independent action (IA), and provides significance testing for synergism, antagonism, or more complex interactions. Acute EC50 values ranged from 6.4 to 7.8 mg/L for propranolol and from 6.4 to 9.1 mg/L for fluoxetine. Chronic EC50 values ranged from 0.59 to 1.00 mg/L for propranolol and from 0.23 to 0.24 mg/L for fluoxetine. Results showed a significant antagonism between chemicals in both the acute and the chronic mixture tests when CA was adopted as the reference model, while absence of interactive effects when IA was used.
Collapse
Affiliation(s)
- Valentina Varano
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, via Sant'Alberto 163,, Ravenna, 48123, Italy
| | - Elena Fabbri
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, via Sant'Alberto 163,, Ravenna, 48123, Italy
| | - Andrea Pasteris
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, via Sant'Alberto 163,, Ravenna, 48123, Italy.
| |
Collapse
|
23
|
Galdiero E, Falanga A, Siciliano A, Maselli V, Guida M, Carotenuto R, Tussellino M, Lombardi L, Benvenuto G, Galdiero S. Daphnia magna and Xenopus laevis as in vivo models to probe toxicity and uptake of quantum dots functionalized with gH625. Int J Nanomedicine 2017; 12:2717-2731. [PMID: 28435254 PMCID: PMC5388222 DOI: 10.2147/ijn.s127226] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The use of quantum dots (QDs) for nanomedicine is hampered by their potential toxicologic effects and difficulties with delivery into the cell interior. We accomplished an in vivo study exploiting Daphnia magna and Xenopus laevis to evaluate both toxicity and uptake of QDs coated with the membranotropic peptide gH625 derived from the glycoprotein H of herpes simplex virus and widely used for drug delivery studies. We evaluated and compared the effects of QDs and gH625-QDs on the survival, uptake, induction of several responsive pathways and genotoxicity in D. magna, and we found that QDs coating plays a key role. Moreover, studies on X. laevis embryos allowed to better understand their cell/tissue localization and delivery efficacy. X. laevis embryos raised in Frog Embryo Teratogenesis Assay-Xenopus containing QDs or gH625-QDs showed that both nanoparticles localized in the gills, lung and intestine, but they showed different distributions, indicating that the uptake of gH625-QDs was enhanced; the functionalized QDs had a significantly lower toxic effect on embryos’ survival and phenotypes. We observed that D. magna and X. laevis are useful in vivo models for toxicity and drug delivery studies.
Collapse
Affiliation(s)
| | - Annarita Falanga
- Department of Pharmacy and CiRPEB, University of Naples Federico II
| | | | | | | | | | | | - Lucia Lombardi
- Department of Experimental Medicine, Second University of Naples
| | | | | |
Collapse
|
24
|
Barata C, Campos B, Rivetti C, LeBlanc GA, Eytcheson S, McKnight S, Tobor-Kaplon M, de Vries Buitenweg S, Choi S, Choi J, Sarapultseva EI, Coutellec MA, Coke M, Pandard P, Chaumot A, Quéau H, Delorme N, Geffard O, Martínez-Jerónimo F, Watanabe H, Tatarazako N, Lopes I, Pestana JLT, Soares AMVM, Pereira CM, De Schamphelaere K. Validation of a two-generational reproduction test in Daphnia magna: An interlaboratory exercise. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 579:1073-1083. [PMID: 27908627 PMCID: PMC5488698 DOI: 10.1016/j.scitotenv.2016.11.066] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/10/2016] [Accepted: 11/11/2016] [Indexed: 06/01/2023]
Abstract
Effects observed within one generation disregard potential detrimental effects that may appear across generations. Previously we have developed a two generation Daphnia magna reproduction test using the OECD TG 211 protocol with a few amendments, including initiating the second generation with third brood neonates produced from first generation individuals. Here we showed the results of an inter-laboratory calibration exercise among 12 partners that aimed to test the robustness and consistency of a two generation Daphnia magna reproduction test. Pyperonyl butoxide (PBO) was used as a test compound. Following experiments, PBO residues were determined by TQD-LC/MS/MS. Chemical analysis denoted minor deviations of measured PBO concentrations in freshly prepared and old test solutions and between real and nominal concentrations in all labs. Other test conditions (water, food, D. magna clone, type of test vessel) varied across partners as allowed in the OECD test guidelines. Cumulative fecundity and intrinsic population growth rates (r) were used to estimate "No observed effect concentrations "NOEC using the solvent control as the control treatment. EC10 and EC-50 values were obtained regression analyses. Eleven of the twelve labs succeeded in meeting the OECD criteria of producing >60 offspring per female in control treatments during 21days in each of the two consecutive generations. Analysis of variance partitioning of cumulative fecundity indicated a relatively good performance of most labs with most of the variance accounted for by PBO (56.4%) and PBO by interlaboratory interactions (20.2%), with multigenerational effects within and across PBO concentrations explaining about 6% of the variance. EC50 values for reproduction and population growth rates were on average 16.6 and 20.8% lower among second generation individuals, respectively. In summary these results suggest that the proposed assay is reproducible but cumulative toxicity in the second generation cannot reliably be detected with this assay.
Collapse
Affiliation(s)
- Carlos Barata
- Department of Environmental chemistry, Institute of Environmental Assessment and Water Research (IDAEA, CSIC), Jordi Girona 18, 08017, Barcelona, Spain.
| | - Bruno Campos
- Department of Environmental chemistry, Institute of Environmental Assessment and Water Research (IDAEA, CSIC), Jordi Girona 18, 08017, Barcelona, Spain
| | - Claudia Rivetti
- Department of Environmental chemistry, Institute of Environmental Assessment and Water Research (IDAEA, CSIC), Jordi Girona 18, 08017, Barcelona, Spain
| | - Gerald A LeBlanc
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Box 7633, Raleigh NC 27695-7633, 850 Main Campus Drive, Raleigh, NC 27606, USA
| | - Stephanie Eytcheson
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Box 7633, Raleigh NC 27695-7633, 850 Main Campus Drive, Raleigh, NC 27606, USA
| | - Stephanie McKnight
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Box 7633, Raleigh NC 27695-7633, 850 Main Campus Drive, Raleigh, NC 27606, USA
| | - Marysia Tobor-Kaplon
- Charles River Laboratories Den Bosch B.V., Dept. of Discovery and Environmental Sciences, Hambakenwetering 7, 5231, DD's-Hertogenbosch, Netherlands
| | - Selinda de Vries Buitenweg
- Charles River Laboratories Den Bosch B.V., Dept. of Discovery and Environmental Sciences, Hambakenwetering 7, 5231, DD's-Hertogenbosch, Netherlands
| | - Suhyon Choi
- Environmental Systems Toxicology Lab., School of Environmental Engineering, University of Seoul, 163, Seoulsiripdae-ro, Dondaemun-gu, Seoul, 02504, Republic of Korea
| | - Jinhee Choi
- Environmental Systems Toxicology Lab., School of Environmental Engineering, University of Seoul, 163, Seoulsiripdae-ro, Dondaemun-gu, Seoul, 02504, Republic of Korea
| | - Elena I Sarapultseva
- National Research Nuclear University "MEPhI", Kashirskoe Highway, 31, Moscow 115409, Russian Federation
| | | | - Maïra Coke
- U3E, Unité d'Ecologie et d'Ecotoxicologie Aquatique, INRA, 35042 Rennes, France
| | - Pascal Pandard
- INERIS, Direction des Risques Chroniques, Unité EXES, Parc technologique ALATA, BP, 2, 60 550 Verneuil en Halatte, France
| | - Arnaud Chaumot
- IRSTEA, UR MALY, Laboratoire d'écotoxicologie, F-69616 Villeurbanne, France
| | - Hervé Quéau
- IRSTEA, UR MALY, Laboratoire d'écotoxicologie, F-69616 Villeurbanne, France
| | - Nicolas Delorme
- IRSTEA, UR MALY, Laboratoire d'écotoxicologie, F-69616 Villeurbanne, France
| | - Olivier Geffard
- IRSTEA, UR MALY, Laboratoire d'écotoxicologie, F-69616 Villeurbanne, France
| | - Fernando Martínez-Jerónimo
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Lab. de Hidrobiología Experimental, Prol. Carpio esq. Plan de Ayala S/N, Col. Santo Tomas, México, D. F. 11340, Mexico
| | - Haruna Watanabe
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Norihisa Tatarazako
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Isabel Lopes
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - João L T Pestana
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Amadeu M V M Soares
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Cecilia Manuela Pereira
- Ghent University (UGent), Laboratory of Environmental Toxicology (GhEnToxLab), Coupure Links 653, B9000 Gent, Belgium
| | - Karel De Schamphelaere
- Ghent University (UGent), Laboratory of Environmental Toxicology (GhEnToxLab), Coupure Links 653, B9000 Gent, Belgium
| |
Collapse
|
25
|
Jeong TY, Kim TH, Kim SD. Bioaccumulation and biotransformation of the beta-blocker propranolol in multigenerational exposure to Daphnia magna. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 216:811-818. [PMID: 27373739 DOI: 10.1016/j.envpol.2016.06.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/23/2016] [Accepted: 06/21/2016] [Indexed: 05/27/2023]
Abstract
Multigenerational bioaccumulation and biotransformation activity and short-term kinetics (e.g., uptake and depuration) of propranolol in Daphnia magna were investigated at environmental concentration. The body burden and the major metabolite, desisopropyl propranolol (DIP), of propranolol were quantified using LC-MS/MS at the end of each generation after exposure for 11 generations. The accumulation of propranolol in D. magna at an environmental concentration of 0.2 μg/L was not much different between the parent (F0) and the eleventh filial (F10) generation. However, at 28 μg/L, its accumulation was 1.6 times higher-up to 18.9 μg/g-in the F10 generation relative to the F0. In contrast to propranolol, DIP intensity gradually increased from F0 to F10 at 0.2 μg/L, reflecting an increase in detoxification load and biotransformation performance; no increasing trend was observed at 28 μg/L. The bioaccumulation factor (BAF) showed higher values with a lower concentration and longer period of exposure. The average values of the BAF for 21 days of long-term exposure in successive 11 generations were 440.4 ± 119.7 and 1026.5 ± 208.6 L/kg for 28 μg/L and 0.2 μg/L, respectively. These are comparable to the BAF of 192 for the short-term 72-h exposure at 28 μg/L in the parent generation. It is also recommended that future studies for pharmaceutical ingredients be conducted on drug-drug interaction and structural characteristics on the prediction of biotransformation activity and bioaccumulation rate.
Collapse
Affiliation(s)
- Tae-Yong Jeong
- Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology, 1 Oryong dong, Buk-gu, Gwangju, 500-712, South Korea
| | - Tae-Hun Kim
- Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology, 1 Oryong dong, Buk-gu, Gwangju, 500-712, South Korea; Research Division for Industry and Environment, Korea Atomic Energy Research Institute, Jeongeup, Jeonbuk, 580-185, South Korea
| | - Sang Don Kim
- Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology, 1 Oryong dong, Buk-gu, Gwangju, 500-712, South Korea.
| |
Collapse
|
26
|
Daughton CG. Pharmaceuticals and the Environment (PiE): Evolution and impact of the published literature revealed by bibliometric analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 562:391-426. [PMID: 27104492 DOI: 10.1016/j.scitotenv.2016.03.109] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/15/2016] [Accepted: 03/15/2016] [Indexed: 05/28/2023]
Abstract
The evolution and impact of the published literature surrounding the transdisciplinary, multifaceted topic of pharmaceuticals as contaminants in the environment is examined for the first time in an historical context. The preponderance of literature cited in this examination represents the earlier works. As an historical chronology, the focus is on the emergence of key, specific aspects of the overall topic (often termed PiE) in the published literature and on the most highly cited works. This examination is not a conventional, technical review of the literature; as such, little attention was devoted to the more recent literature. The many dimensions involved with PiE span over 70years of published literature. Some articles began to appear in published works in the 1940s and earlier, while others only began to receive attention in the 1990s and later. Decades of early research on what at the time seemed to be disconnected topics eventually coalesced in the mid-to-late 1990s around a number of interconnected concerns and issues that now comprise PiE. Major objectives are to provide a new perspective to the topic, to facilitate more efficient and effective review of the literature by others, and to recognize the more significant, seminal contributions to the advancement of PiE as a field of research. Some of the most highly cited articles in all of environmental science now involve PiE. As of April 2015, a core group of 385 PiE articles had each received at least 200 citations; one had received 5424 citations. But hundreds of additional articles also played important roles in the evolution and advancement of the field.
Collapse
Affiliation(s)
- Christian G Daughton
- Environmental Futures Analysis Branch, Systems Exposure Division, National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, 944 East Harmon Avenue, Las Vegas, NV 89119, USA.
| |
Collapse
|