1
|
Gao M, Guo H, Han J, Liu J, Hou Y, Wang Z, Yang Z, Wang Q. Bromoform exposure is associated with non-melanoma skin cancer: evidence from NHANES 2011-2020. Front Public Health 2023; 11:1191881. [PMID: 37927885 PMCID: PMC10624123 DOI: 10.3389/fpubh.2023.1191881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
Background Non-melanoma skin cancer (NMSC) is a prevalent skin malignancy. It has been indicated in many studies that trihalomethanes (THMs) exposure has a strong association with tumors but has not been associated with NMSC. Our investigation aims to explore the association between THMs exposure and NMSC. Methods Cross-sectional data from the 2011 to 2020 National Health and Nutrition Examination Survey (NHANES) was collected. Poisson regression and subgroup analyses were performed to evaluate the association between individual THMs components and NMSC. Fitted smoothing curves and generalized additive models were also used. Results This study involved 5,715 individuals, 98 (1.7%) of whom self-reported NMSC. After adjusting for covariates, Poisson regression showed that higher blood TBM levels were associated with an increased likelihood of NMSC (OR = 1.03; 95% CI: 1.01-1.05, p = 0.002). However, the correlation between the blood levels of TCM, DBCM, and BDCM and the likelihood of NMSC was not statistically significant (all p > 0.05). Subgroup analysis and interaction tests showed no significant differences between blood TBM concentration and the likelihood of NMSC, indicating that age, gender, and race were significantly independent of this positive association (all p < 0.05). Conclusions Our results implied that among adults older than 65 years old in the U.S., elevated blood TBM concentrations were positively associated with NMSC. More prospective investigations are required to validate this relationship with the early prevention of NMSC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qiying Wang
- Department of Plastic Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Wei C, Chen Y, Yang Y, Ni D, Huang Y, Wang M, Yang X, Chen Z. Assessing volatile organic compounds exposure and prostate-specific antigen: National Health and Nutrition Examination Survey, 2001-2010. Front Public Health 2022; 10:957069. [PMID: 35968491 PMCID: PMC9372286 DOI: 10.3389/fpubh.2022.957069] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Background Volatile organic compounds (VOCs) are a large group of chemicals widely used in people's daily routines. Increasing evidence revealed the VOCs' accumulating toxicity. However, the VOCs toxicity in male prostate has not been reported previously. Thus, we comprehensively evaluated the association between VOCs and prostate-specific antigen (PSA). Methods A total of 2016 subjects were included in our study from the National Health and Nutrition Examination Survey with VOCs, PSA, and other variables among U.S. average population. We constructed XGBoost Algorithm Model, Regression Model, and Generalized linear Model (GAM) to analyze the potential association. Stratified analysis was used to identify high-risk populations. Results XGBoost Algorithm model identified blood chloroform as the most critical variable in the PSA concentration. Regression analysis suggested that blood chloroform was a positive association with PSA, which showed that environmental chloroform exposure is an independent risk factor that may cause prostate gland changes [β, (95% CI), P = 0.007, (0.003, 0.011), 0.00019]. GAM observed the linear relationship between blood chloroform and PSA concentration. Meanwhile, blood chloroform linear correlated with water chloroform in the lower dose range, indicating that the absorption of water may be the primary origin of chloroform. Stratified associations analysis identified the high-risk group on the chloroform exposures. Conclusion This study revealed that blood chloroform was positively and independently associated with total PSA level, suggesting that long-term environmental chloroform exposure may cause changes in the prostate gland.
Collapse
Affiliation(s)
- Chengcheng Wei
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yumao Chen
- Department of Urology, Ezhou Central Hospital, Ezhou, China
| | - Yu Yang
- Department of Pathologist and Laboratory Medicine, Staff Pathologist, Deaconess Hospital, Evansville, IN, United States
| | - Dong Ni
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Huang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Miao Wang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiong Yang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaohui Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Sun Y, Chen C, Mustieles V, Wang L, Zhang Y, Wang YX, Messerlian C. Association of Blood Trihalomethane Concentrations with Risk of All-Cause and Cause-Specific Mortality in U.S. Adults: A Prospective Cohort Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9043-9051. [PMID: 34152769 DOI: 10.1021/acs.est.1c00862] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Water chlorination can lead to the formation of disinfection byproducts, including trihalomethanes (THMs). However, few epidemiologic studies have explored associations between THM exposure and mortality. This study included 6720 adults aged ≥40 years from the National Health and Nutrition Examination Survey 1999-2012 who had blood THM concentrations quantified. A higher risk of all-cause mortality was found across increasing quartile concentrations of blood chloroform (TCM) and total THMs (TTHMs; sum of all four THMs) (both p for trend = 0.02). Adults in the highest quartile of TCM and TTHM concentrations had hazard ratios (HRs) of 1.35 (95% confidence intervals: 1.05-1.74) and 1.37 (1.05-1.79), respectively, for all-cause mortality, compared with adults in the lowest quartile. When cause-specific mortality was evaluated, a positive relationship was found between blood bromodichloromethane (BDCM), dibromochloromethane (DBCM), bromoform (TBM), total brominated THMs (Br-THMs; sum of BDCM, DBCM, and TBM), and TTHM concentrations and risk of cancer death and between blood TCM and TTHMs and risk of other cause (noncancer/nonheart disease) mortality. Our findings suggest that higher exposure to Br-THMs was associated with increased cancer mortality risk, whereas TCM was associated with a greater risk of noncancer/nonheart disease mortality.
Collapse
Affiliation(s)
- Yang Sun
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Chen Chen
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Vicente Mustieles
- University of Granada, Center for Biomedical Research (CIBM), 18010 Granada, Spain
- Instituto de Investigación Biosanitaria Ibs GRANADA, 18012 Granada, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Liang Wang
- Department of Public Health, Robbins College of Health and Human Sciences, Baylor University, Waco, Texas 76706, United States
| | - Yu Zhang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Yi-Xin Wang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Carmen Messerlian
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| |
Collapse
|
4
|
Chen YJ, Duan P, Meng TQ, Chen HG, Chavarro JE, Xiong CL, Pan A, Wang YX, Lu WQ, Messerlian C. Associations of blood trihalomethanes with semen quality among 1199 healthy Chinese men screened as potential sperm donors. ENVIRONMENT INTERNATIONAL 2020; 134:105335. [PMID: 31783240 DOI: 10.1016/j.envint.2019.105335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 11/15/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Trihalomethanes (THMs) have demonstrated adverse effects on male reproductive systems in experimental animals, but human evidence has been inconsistent. Prior researches have been limited by small sample sizes and inadequate exposure assessment. OBJECTIVES To investigate the association between blood THMs and repeated measurements of semen quality parameters among 1199 healthy men screened as potential sperm donors. METHODS We recruited healthy men presenting to the Hubei Province Human Sperm Bank from April to December 2017. At study entry, each participant provided a spot blood sample which was used to quantify blood concentrations of four THMs: chloroform (TCM), bromodichloromethane (BDCM), dibromochloromethane (DBCM) and bromoform (TBM). The summary measures of exposure for brominated THMs (Br-THMs; molar sum of BDCM, DBCM and TBM) and total THMs (TTHMs; molar sum of TCM and Br-THMs) were also calculated. We used multivariable linear regression models to estimate the cross-sectional associations of tertiles of blood THM concentrations with semen quality parameters measured at study entry, and mixed-effect models to estimate the longitudinal associations accounting for repeated measures of semen quality, adjusting for relevant confounding factors. RESULTS In the cross-sectional analysis, several inverse dose-response relationships were observed across tertiles of blood TCM concentrations and sperm count, total motility and progressive motility, and between blood DBCM, and Br-THMs, and TTHMs and sperm count and concentration. The inverse associations of blood TCM, DBCM, Br-THMs and TTHMs with sperm count were confirmed in the longitudinal, repeated measure analysis. CONCLUSION Our results suggest that exposure to THMs from drinking water may be related to decreased semen quality in young healthy men.
Collapse
Affiliation(s)
- Ying-Jun Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Peng Duan
- Center for Reproductive Medicine, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, PR China
| | - Tian-Qing Meng
- Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Hubei Province Human Sperm Bank, Wuhan, Hubei, PR China
| | - Heng-Gui Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Jorge E Chavarro
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Cheng-Liang Xiong
- Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Hubei Province Human Sperm Bank, Wuhan, Hubei, PR China
| | - An Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Yi-Xin Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Wen-Qing Lu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Carmen Messerlian
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
5
|
Zhang X, Tian Y, Zhang X, Bai M, Zhang Z. Use of multiple regression models for predicting the formation of bromoform and dibromochloromethane during ballast water treatment based on an advanced oxidation process. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:113028. [PMID: 31421575 DOI: 10.1016/j.envpol.2019.113028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/29/2019] [Accepted: 08/04/2019] [Indexed: 06/10/2023]
Abstract
Disinfection byproducts (DBPs) generated by ballast water treatment have become a concern worldwide because of their potential threat to the marine environment. Predicting the relative DBP concentrations after disinfection could enable better control of DBP formation. However, there is no appropriate method of evaluating DBP formation in a full-scale ballast water treatment system (BWTS). In this study, multiple regression models were developed for predicting the dibromochloromethane (DBCM) and bromoform (TBM) concentrations produced by an emergency BWTS using field experimental data from ballast water treatments conducted at Dalian Port, China. Six combinations of independent variables [including several water parameters and/or the total residual oxidant (TRO) concentration] were evaluated to construct mathematical prediction formulas based on a polynomial linear model and logarithmic regression model. Further, statistical analyses were performed to verify and determine the appropriate mathematical models for DBCM and TBM formation, which were ultimately validated using additional field experimental data. The polynomial linear model with four variables (temperature, salinity, chlorophyll, and TRO) and the logarithmic regression model with seven variables (temperature, salinity, dissolved oxygen, pH, turbidity, chlorophyll, and TRO) exhibited good reproducibility and could be used to predict the DBCM and TBM concentrations, respectively. The validation results indicated that the developed models could accurately predict DBP concentrations, with no significant statistical difference from the measured values. The results of this work could provide a theoretical basis and data reference for ballast water treatment control in engineering applications of emergency BWTSs.
Collapse
Affiliation(s)
- Xiaoye Zhang
- Marine Engineering College, Dalian Maritime University, Dalian, 116026, China
| | - Yiping Tian
- Environmental Engineering Institute, School of Science, Dalian Maritime University, Dalian, 116026, China.
| | - Xiaofang Zhang
- Environmental Engineering Institute, School of Science, Dalian Maritime University, Dalian, 116026, China
| | - Mindong Bai
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361005, China
| | - Zhitao Zhang
- Marine Engineering College, Dalian Maritime University, Dalian, 116026, China; Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
6
|
Hussain S, Awad J, Sarkar B, Chow CW, Duan J, van Leeuwen J. Coagulation of dissolved organic matter in surface water by novel titanium (III) chloride: Mechanistic surface chemical and spectroscopic characterisation. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.12.038] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Xu J, Pu Y, Yang XJ, Wan P, Wang R, Song P, Fisher A. Rapid removal of chloroform, carbon tetrachloride and trichloroethylene in water by aluminum-iron alloy particles. ENVIRONMENTAL TECHNOLOGY 2018; 39:2882-2890. [PMID: 28820043 DOI: 10.1080/09593330.2017.1369577] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Water contamination with chlorinated hydrocarbons such as chloroform (CHCl3), carbon tetrachloride (CCl4) and trichloroethylene (TCE) is one of the major public health concerns. In this study, we explored the use of aluminum-iron alloys particles in millimeter scale for rapid removal of CHCl3, CCl4 and TCE from water. Three types of Al-Fe alloy particles containing 10, 20 and 58 wt% of Fe (termed as Al-Fe10, Al-Fe20 and Al-Fe58) were prepared and characterized by electrochemical polarization, X-ray diffraction and energy dispersive spectrometer. For concentrations of 30-180 μg/L CHCl3, CCl4 and TCE, a removal efficiency of 45-64% was achieved in a hydraulic contact time of less than 3 min through a column packed with 0.8-2 mm diameter of Al-Fe alloy particles. The concentration of Al and Fe ions released into water was less than 0.15 and 0.05 mg/L, respectively. Alloying Al with Fe enhances reactivity towards chlorinated hydrocarbons' degradation and the enhancement is likely the consequence of galvanic effects between different phases (Al, Fe and intermetallic Al-Fe compounds such as Al13Fe4, Fe3Al and FeAl2) and catalytic role of these intermetallic Al-Fe compounds. The results demonstrate that the use of Al-Fe alloy particles offers a viable and green option for chlorinated hydrocarbons' removal in water treatment.
Collapse
Affiliation(s)
- Jie Xu
- a Department of Environmental Science and Engineering , Beijing University of Chemical Technology , Beijing , People's Republic of China
| | - Yuan Pu
- a Department of Environmental Science and Engineering , Beijing University of Chemical Technology , Beijing , People's Republic of China
| | - Xiao Jin Yang
- a Department of Environmental Science and Engineering , Beijing University of Chemical Technology , Beijing , People's Republic of China
| | - Pingyu Wan
- b Department of Applied Chemistry , Beijing University of Chemical Technology , Beijing , People's Republic of China
| | - Rong Wang
- c School of Civil and Environmental Engineering , Nanyang Technological University , Singapore
| | - Peng Song
- d Department of Chemical Engineering and Biotechnology , University of Cambridge , Cambridge , UK
| | - Adrian Fisher
- d Department of Chemical Engineering and Biotechnology , University of Cambridge , Cambridge , UK
| |
Collapse
|
8
|
Fucic A, Guszak V, Mantovani A. Transplacental exposure to environmental carcinogens: Association with childhood cancer risks and the role of modulating factors. Reprod Toxicol 2017. [PMID: 28624605 DOI: 10.1016/j.reprotox.2017.06.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Biological responses to carcinogens from environmental exposure during adulthood are modulated over years or decades. Conversely, during transplacental exposure, the effects on the human foetus change within weeks, intertwining with developmental mechanisms: even short periods of transplacental exposure may be imprinted in the organism for a lifetime. The pathways leading to childhood and juvenile cancers, such as leukaemias, neuroblastoma/brain tumours, hepatoblastoma, and Willm's tumour involve prenatally-induced genomic, epigenomic and/or non-genomic effects caused by xenobiotics. Pregnant women most often live in complex environmental settings that cause transplacental exposure of the foetus to xenobiotic mixtures. Mother-child biomonitoring should integrate the analysis of chemicals/radiation present in the living and workplace environment with relevant risk modulators related to life style. The interdisciplinary approach for transplacental cancer risk assessment in high-pressure areas should be based on an integrated model for mother-child exposure estimation via profiling the exposure level by water quality analysis, usage of emission grids, and land use maps.
Collapse
Affiliation(s)
- A Fucic
- Institute for Medical Research and Occupational Health, Zagreb, Croatia.
| | - V Guszak
- University Clinical Centre "Zagreb", Zagreb, Croatia
| | | |
Collapse
|
9
|
Awad J, van Leeuwen J, Chow CWK, Smernik RJ, Anderson SJ, Cox JW. Seasonal variation in the nature of DOM in a river and drinking water reservoir of a closed catchment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 220:788-796. [PMID: 27823862 DOI: 10.1016/j.envpol.2016.10.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/12/2016] [Accepted: 10/18/2016] [Indexed: 06/06/2023]
Abstract
Dissolved organic matter (DOM) in surface waters used for drinking purposes can vary markedly in character depending on its source within catchments and the timing and intensity of rainfall events. Here we report the findings of a study on the character and concentration of DOM in waters collected during different seasons from Myponga River and Reservoir, South Australia. The character of DOM was assessed in terms of its treatability by enhanced coagulation and potential for disinfection by-product i.e. trihalomethane (THM) formation. During the wet seasons (winter and spring), water samples from the river had higher DOC concentrations (X¯: 21 mg/L) and DOM of higher average molecular weight (AMW: 1526 Da) than waters collected during the dry seasons (summer and autumn: DOC: 13 mg/L; AMW: 1385 Da). Even though these features led to an increase in the percentage removal of organics by coagulation with alum (64% for wet compared with 53% for dry season samples) and a lower alum dose rate (10 versus 15 mg alum/mg DOC removal), there was a higher THM formation potential (THMFP) from wet season waters (treated waters: 217 μg/L vs 172 μg/L). For reservoir waters, samples collected during the wet seasons had an average DOC concentration (X¯: 15 mg/L), percentage removal of organics by alum (54%), alum dose rates (13 mg/mg DOC) and THMFP (treated waters: 207 μg/L) that were similar to samples collected during the dry seasons (mean DOC: 15 mg/L; removal of organics: 52%; alum dose rate: 13 mg/mg DOC; THMFP: 212 μg/L for treated waters). These results show that DOM present in river waters and treatability by alum are highly impacted by seasonal environmental variations. However these in reservoir waters exhibit less seasonal variability. Storage of large volumes of water in the reservoir enables mixing of influent waters and stabilization of water quality.
Collapse
Affiliation(s)
- John Awad
- School of Natural and Built Environments, University of South Australia, South Australia, 5095, Australia
| | - John van Leeuwen
- School of Natural and Built Environments, University of South Australia, South Australia, 5095, Australia; SKLEAC, Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China.
| | - Christopher W K Chow
- School of Natural and Built Environments, University of South Australia, South Australia, 5095, Australia; Australian Water Quality Centre, SA Water Corporation, 250 Victoria Square, Adelaide, South Australia, 5000, Australia; SKLEAC, Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China
| | - Ronald J Smernik
- School of Agriculture, Food & Wine and Waite Research Institute, The University of Adelaide, Urrbrae, South Australia, 5064, Australia
| | - Sharolyn J Anderson
- School of Natural and Built Environments, University of South Australia, South Australia, 5095, Australia
| | - Jim W Cox
- School of Biological Sciences, The University of Adelaide, North Terrace, South Australia, 5005, Australia; South Australian Research and Development Institute, Urrbrae, South Australia, 5064, Australia
| |
Collapse
|
10
|
Safiri S, Sani M, Ayubi E. Blood trihalomethane levels and the risk of total cancer mortality in US adults: Methodological issues. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 219:118. [PMID: 27794256 DOI: 10.1016/j.envpol.2016.10.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 10/09/2016] [Indexed: 06/06/2023]
Affiliation(s)
- Saeid Safiri
- Managerial Epidemiology Research Center, Department of Public Health, School of Nursing and Midwifery, Maragheh University of Medical Sciences, Maragheh, Iran; Road Traffic Injury Research Center, Department of Statistics & Epidemiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohadeseh Sani
- Department of Public Health, School of Public Health, Zabol University of Medical Sciences, Zabol, Iran
| | - Erfan Ayubi
- Department of Epidemiology, School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Epidemiology & Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Cirillo S, Canistro D, Vivarelli F, Paolini M. Effects of chlorinated drinking water on the xenobiotic metabolism in Cyprinus carpio treated with samples from two Italian municipal networks. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:18777-18788. [PMID: 27316649 DOI: 10.1007/s11356-016-7091-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/13/2016] [Indexed: 06/06/2023]
Abstract
Drinking water (DW) disinfection represents a milestone of the past century, thanks to its efficacy in the reduction of risks of epidemic forms by water micro-organisms. Nevertheless, such process generates disinfection by-products (DBPs), some of which are genotoxic both in animals and in humans and carcinogenic in animals. At present, chlorination is one of the most employed strategies but the toxicological effects of several classes of DBPs are unknown. In this investigation, a multidisciplinary approach foreseeing the chemical analysis of chlorinated DW samples and the study of its effects on mixed function oxidases (MFOs) belonging to the superfamily of cytochrome P450-linked monooxygenases of Cyprinus carpio hepatopancreas, was employed. The experimental samples derived from aquifers of two Italian towns (plant 1, river water and plant 2, spring water) were obtained immediately after the disinfection (A) and along the network (R1). Animals treated with plant 1 DW-processed fractions showed a general CYP-associated MFO induction. By contrast, in plant 2, a complex modulation pattern was achieved, with a general up-regulation for the point A and a marked MFO inactivation in the R1 group, particularly for the testosterone metabolism. Together, the toxicity and co-carcinogenicity (i.e. unremitting over-generation of free radicals and increased bioactivation capability) of DW linked to the recorded metabolic manipulation, suggests that a prolonged exposure to chlorine-derived disinfectants may produce adverse health effects.
Collapse
Affiliation(s)
- Silvia Cirillo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy.
| | - Donatella Canistro
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy.
| | - Fabio Vivarelli
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy
| | - Moreno Paolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy
| |
Collapse
|
12
|
Sharifan H, Klein D, Morse AN. UV filters interaction in the chlorinated swimming pool, a new challenge for urbanization, a need for community scale investigations. ENVIRONMENTAL RESEARCH 2016; 148:273-276. [PMID: 27088731 DOI: 10.1016/j.envres.2016.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/01/2016] [Accepted: 04/01/2016] [Indexed: 06/05/2023]
Abstract
Sunscreen products and some personal care products contain the Ultraviolet (UV) chemical filters, which are entering the surface water. Public concerns about secondary effects of these compounds are growing because of the contamination of the aquatic environment that may reach to potentially toxic concentration levels. This article highlights the reaction of certain UV filters with hypochlorite disinfectant in the presence of sunlight. Due to urbanization and industrialization, use of outdoor plastic swimming pools is increasing. The relatively smaller volume of these pools compared to larger pools may increase the concentration of the UV filters in the pool and their potential interactions with materials of human origin (urine, sweat, cosmetics, skin cells, and hair) to the levels of toxicity concerns for children through the creation of disinfection by products (DBP). Based on our analysis, the minimum concentration levels of 2.85, 1.9, 1.78 and 0.95g/L, respectively, for EHMC, OC, 4-MBC and BP3 UV filters in children pools are predicted. Therefore, this article calls for an urgent investigation of potential toxic effects of the UV filters, the creation of DBPs and their subsequent impacts on human health.
Collapse
Affiliation(s)
- Hamidreza Sharifan
- Department of Civil, Environmental, and Construction Engineering, Texas Tech University, United States.
| | - David Klein
- Department of Environmental Toxicology, Institute of Environmental and Human Health, Texas Tech University, United States.
| | - Audra N Morse
- Department of Civil, Environmental, and Construction Engineering, Texas Tech University, United States.
| |
Collapse
|