1
|
Ovat DY, Aslan R, Aydoğdu M, Akgür SA. Illegal Substance Analysis and Environmental Risk Assessment in Küçük Menderes River, Important Basin of the Aegean Region. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 113:56. [PMID: 39425755 DOI: 10.1007/s00128-024-03961-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 09/25/2024] [Indexed: 10/21/2024]
Abstract
Water-based studies have come into prominence for illegal substance monitoring. There are limited studies on the detection of these substances in the surface waters as opposed to wastewater. This study aims to evaluate amphetamine, benzoylecgonine, cocaine, codeine, 3,4-methylenedioxy-N-methylamphetamine, morphine, and 11-nor-Δ9- tetrahydrocannabinol-9-carboxylic acid in the Küçük Menderes (KM) River at four different stations during three different periods and assess the environmental risks. Environmental risk assessment of psychoactive substances based on the calculation of Risk Quotients (RQ) were evaluated. RQ values for amphetamine and benzoylecgonine were < 0.01 at all sampling points during all sampling periods, indicating little risk for aquatic life. Cocaine was found as environmentally high risk (RQ > 1) based on its RQ values of 1.22 and 1.37 at KM-01 and KM-02 sampling points. This research is the first report to investigate the presence of psychoactive substances and define the environmental risks of these substances in Türkiye.
Collapse
Affiliation(s)
- Duygu Yeşim Ovat
- Institute on Drug Abuse, Toxicology and Pharmaceutical Science Bornova, Ege University, Izmir, Türkiye
| | - Rukiye Aslan
- Institute on Drug Abuse, Toxicology and Pharmaceutical Science Bornova, Ege University, Izmir, Türkiye
| | - Melike Aydoğdu
- Institute on Drug Abuse, Toxicology and Pharmaceutical Science Bornova, Ege University, Izmir, Türkiye
| | - Serap Annette Akgür
- Institute on Drug Abuse, Toxicology and Pharmaceutical Science Bornova, Ege University, Izmir, Türkiye.
| |
Collapse
|
2
|
Zhang Y, Guo C, Wu R, Hou S, Liu Y, Zhao J, Jiang M, Xu J, Wu F. Global occurrence, distribution, and ecological risk assessment of psychopharmaceuticals and illicit drugs in surface water environment: A meta-analysis. WATER RESEARCH 2024; 263:122165. [PMID: 39084090 DOI: 10.1016/j.watres.2024.122165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Psychopharmaceuticals and illicit drugs (PIDs) in aquatic environments can negatively impact ecosystem and human health. However, data on the sources, distribution, drivers, and risks of PIDs in global surface waters are limited. We compiled a dataset of 331 records spanning 23 PIDs in surface waters and sediments across 100 countries by conducting a systematic review and meta-analysis of 108 studies published between 2005 and 2022. Most PIDs were sewage-derived, as wastewater treatment rarely achieved complete removal. The highest total PID levels were in Ethiopia, Australia, and Armenia, with many highly contaminated samples from low- and middle-income countries with minimal prior monitoring. Socioeconomic factors (population, GDP) and environmental variables (water stress) influenced the distribution of PIDs. 3,4-Methylenedioxy amphetamine hydrochloride (MDA), Δ9-tetrahydrocannabinol (THC), and 11- Δ9‑hydroxy-tetrahydrocannabinol (THCOH) posed the greatest ecological risks, especially in Oceania and North America. PIDs in surface waters present risks to aquatic organisms. Our findings elucidate the current status and future directions of PID research in surface waters and provide a scientific foundation for evaluating ecological risks and informing pollution control policies.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Energy and Environmental Engineering, University of Science and Technology of Beijing, Beijing 100083, China
| | - Changsheng Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Rongshan Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Song Hou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yang Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jianglu Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Minyu Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
3
|
Wang Z, Xu J, Du W. Antagonistic interaction between caffeine and ketamine in zebrafish: Implications for aquatic toxicity. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 21:100437. [PMID: 38993654 PMCID: PMC11237865 DOI: 10.1016/j.ese.2024.100437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 07/13/2024]
Abstract
The coexistence of caffeine (CF) and ketamine (KET) in surface waters across Asia has been widely reported. Previous studies have implied that CF and KET may share a mechanism of action. However, the combined toxicity of these two chemicals on aquatic organisms remains unclear at environmental levels, and the underlying mechanisms are not well understood. Here we demonstrate that KET antagonizes the adverse effects of CF on zebrafish larvae by modulating the gamma-aminobutyric acid (GABA)ergic synapse pathway. Specifically, KET (10-250 ng L-1) ameliorates the locomotor hyperactivity and impaired circadian rhythms in zebrafish larvae induced by 2 mg L-1 of CF, showing a dose-dependent relationship. Additionally, the developmental abnormalities in zebrafish larvae exposed to CF are mitigated by KET, with an incidence rate reduced from 26.7% to 6.7%. The competition between CF and KET for binding sites on the GABA-A receptor (in situ and in silico) elucidates the antagonistic interactions between the two chemicals. Following a seven-day recovery period, the adverse outcomes of CF exposure persist in the fish, whereas the changes observed in the CF + KET groups are significantly alleviated, especially with KET at 10 ng L-1. Based on these results, it is imperative to further assess the environmental risks associated with CF and KET co-pollution. This pilot study underscores the utility of systems toxicology approaches in estimating the combined toxicity of environmental chemicals on aquatic organisms. Moreover, the nighttime behavioral functions of fish could serve as a sensitive biomarker for evaluating the toxicity of psychoactive substances.
Collapse
Affiliation(s)
- Zhenglu Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Jindong Xu
- College of Oceanography, Hohai University, Nanjing, 210098, PR China
| | - Wei Du
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, PR China
| |
Collapse
|
4
|
Carvalho AR, Morão AM, Gonçalves VMF, Tiritan ME, Gorito AM, Pereira MF, Silva AMT, Castro BB, Carrola JS, Amorim MM, Ribeiro ARL, Ribeiro C. Toxicity of butylone and its enantiomers to Daphnia magna and its degradation/toxicity potential using advanced oxidation technologies. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 271:106906. [PMID: 38588636 DOI: 10.1016/j.aquatox.2024.106906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/24/2024] [Accepted: 03/29/2024] [Indexed: 04/10/2024]
Abstract
Butylone (BTL) is a chiral synthetic cathinone available as a racemate and reported as contaminant in wastewater effluents. However, there are no studies on its impact on ecosystems and possible enantioselectivity in ecotoxicity. This work aimed to evaluate: (i) the possible ecotoxicity of BTL as racemate or its isolated (R)- and (S)- enantiomers using Daphnia magna; and (ii) the efficiency of advanced oxidation technologies (AOTs) in the removal of BTL and reduction of toxic effects caused by wastewaters. Enantiomers of BTL were obtained by liquid chromatography (LC) using a chiral semi-preparative column. Enantiomeric purity of each enantiomer was > 97 %. For toxicity assessment, a 9-day sub-chronic assay was performed with the racemate (at 0.10, 1.0 or 10 μg L-1) or each enantiomer (at 0.10 or 1.0 μg L-1). Changes in morphophysiological, behavioural, biochemical and reproductive endpoints were observed, which were dependent on the form of the substance and life stage of the organism (juvenile or adult). Removal rates of BTL in spiked wastewater (10 μg L-1) treated with different AOTs (ultraviolet, UV; ozonation, O3; and UV/O3) were similar and lower than 29 %. The 48 h D. magna acute toxicity assays demonstrated a reduction in the toxicity of the treated spiked effluents, but no differences were found amongst AOTs treatments. These results warn for the contamination and negative impact of BTL on ecosystems and highlight the need for efficient removal processes.
Collapse
Affiliation(s)
- Ana R Carvalho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU 4585-116, Gandra, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU) 4585-116, Gandra, Portugal; School of Health, Polytechnic Institute of Porto 4200-072, Porto, Portugal
| | - Ana M Morão
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU 4585-116, Gandra, Portugal
| | - Virgínia M F Gonçalves
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU 4585-116, Gandra, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU) 4585-116, Gandra, Portugal; UNIPRO - Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), CESPU, CRL 4585-116, Gandra, Portugal
| | - Maria Elizabeth Tiritan
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU 4585-116, Gandra, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU) 4585-116, Gandra, Portugal; Interdisciplinary Center of Marine and Environmental Research (CIIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões 4450-208, Matosinhos, Portugal; Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto 4050-313, Porto, Portugal
| | - Ana M Gorito
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto 4200-465, Porto, Portugal
| | - M Fernando Pereira
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto 4200-465, Porto, Portugal
| | - Adrián M T Silva
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto 4200-465, Porto, Portugal
| | - Bruno B Castro
- CBMA - Centre of Molecular and Environmental Biology / ARNET - Aquatic Research Network, University of Minho, 4710-057, Braga, Portugal; IB-S - Institute of Science and Innovation for Bio-Sustainability, University of Minho 4710-057, Braga, Portugal
| | - João S Carrola
- Department of Biology and Environment, University of Trás-os-Montes and Alto Douro, CITAB/Inov4Agro 5000-801, Vila Real, Portugal
| | - Maria M Amorim
- School of Health, Polytechnic Institute of Porto 4200-072, Porto, Portugal
| | - Ana R L Ribeiro
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto 4200-465, Porto, Portugal.
| | - Cláudia Ribeiro
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU 4585-116, Gandra, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU) 4585-116, Gandra, Portugal.
| |
Collapse
|
5
|
Ding L, Zhang CM. Occurrence, ecotoxicity and ecological risks of psychoactive substances in surface waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171788. [PMID: 38499097 DOI: 10.1016/j.scitotenv.2024.171788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Psychoactive substances (PSs) represent a subset of emerging contaminants. Their widespread production and utilization contribute to a growing ecological burden and risk on a global scale. Conventional wastewater treatment methods have proven insufficient in adequately removing psychoactive substances, leading to their occurrence in surface water ecosystems worldwide. As of present, however, a thorough understanding of their geographical prevalence and distribution patterns remains elusive. Further, in the existing literature, there is a scarcity of comprehensive overviews that systematically summarize the toxicity of various psychoactive substances towards aquatic organisms. Through summarizing almost 140 articles, the present study provides an overview of the sources, pollution status, and biotoxicity of psychoactive substances in surface waters, as well as an assessment of their ecological risks. Concentrations of several psychoactive substances in surface waters were found to be as high as hundreds or even thousands of ng·L-1. In parallel, accumulation of psychoactive substances in the tissues or organs of aquatic organisms was found to potentially cause certain adverse effects, including behavioral disorders, organ damage, and DNA changes. Oxidative stress was found to be a significant factor in the toxic effects of psychoactive substances on organisms. The application of the risk quotient approach indicated that psychoactive substances posed a medium to high risk in certain surface water bodies, as well as the need for sustained long-term attention and management strategies.
Collapse
Affiliation(s)
- Lin Ding
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Chong-Miao Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; International Science and Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
6
|
Zhao S, Chen J, Zhong C, Meng L, Wang Y. Nontargeted metabolomic insights into the behavioral effects of 5-MeO-MiPT in zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116044. [PMID: 38295732 DOI: 10.1016/j.ecoenv.2024.116044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/02/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024]
Abstract
5-Methoxy-N-methyl-N-isopropyltryptamine (5-MeO-MiPT) is a novel psychoactive substance exhibiting a tryptamine structure. Despite its increasing prevalence, the environmental impact of 5-MeO-MiPT remains unexplored. Our prior investigation revealed that 5-MeO-MiPT induced inhibited spontaneous movement and prompted anxiety-like behavior in adult zebrafish-a validated toxicological model. To elucidate this phenomenon and establish a correlation between metabolomics and behavioral changes induced by 5-MeO-MiPT, zebrafish were administered varying drug concentrations. Zebrafishes were subjected to injections of different 5-MeO-MiPT concentrations. Subsequent metabolomic analysis of endogenous metabolites affected by the drug unveiled substantial variations in metabolic levels between the control group and the drug-injected cohorts. A total of 22 distinct metabolites emerged as potential biomarkers. Further scrutiny identified seven pathways significantly influenced by 5-MeO-MiPT. A focused exploration into amino acid metabolism, lipid metabolism, and energy metabolism unveiled that the metabolic repercussions of 5-MeO-MiPT on zebrafish resulted in observable brain damage. Notably, the study identified a consequential disruption in the liver-brain pathway. The comprehensive metabolomic approach employed herein effectively discerned the impact of 5-MeO-MiPT on zebrafish metabolism. This approach also shed light on the mechanism underpinning the anxiety-like behavior observed in zebrafish post-drug injection. Specifically, our findings indicate that 5-MeO-MiPT induces brain damage, particularly within the liver-brain pathway.
Collapse
Affiliation(s)
- Sen Zhao
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China; Zhejiang Police College, Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Hangzhou 310053, PR China
| | - Jinyuan Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Chenhao Zhong
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Liang Meng
- Department of Forensic Science, Fujian Police College, Fuzhou 350007, PR China
| | - Yanjiao Wang
- Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang 310053, PR China.
| |
Collapse
|
7
|
Truta F, Drăgan AM, Tertis M, Parrilla M, Slosse A, Van Durme F, de Wael K, Cristea C. Electrochemical Rapid Detection of Methamphetamine from Confiscated Samples Using a Graphene-Based Printed Platform. SENSORS (BASEL, SWITZERLAND) 2023; 23:6193. [PMID: 37448052 DOI: 10.3390/s23136193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023]
Abstract
Methamphetamine (MAP) is a highly addictive and illegal stimulant drug that has a significant impact on the central nervous system. Its detection in biological and street samples is crucial for various organizations involved in forensic medicine, anti-drug efforts, and clinical diagnosis. In recent years, nanotechnology and nanomaterials have played a significant role in the development of analytical sensors for MAP detection. In this study, a fast, simple, and cost-effective electrochemical sensor is presented that is used for the sensitive detection of MAP in confiscated street samples with a complex matrix. The optimized screen-printed sensor based on a carbon working electrode modified with graphene demonstrated an excellent limit of detection, good sensitivity, and a wide dynamic range (1-500 μM) for the target illicit drug both for standard solutions and real samples (seized samples, tap water, and wastewater samples). It can detect MAP at concentrations as low as 300 nM in real samples. This limit of detection is suitable for the rapid preliminary screening of suspicious samples in customs, ports, airports, and on the street. Furthermore, the sensor exhibits a good recovery rate, indicating its reliability and repeatability. This quality is crucial for ensuring consistent and accurate results during screening processes.
Collapse
Affiliation(s)
- Florina Truta
- Department of Analytical Chemistry, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babes, 400012 Cluj-Napoca, Romania
| | - Ana-Maria Drăgan
- Department of Analytical Chemistry, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babes, 400012 Cluj-Napoca, Romania
- A-Sense Lab, University of Antwerp, Groenenborgerlaan 171, 2010 Antwerp, Belgium
| | - Mihaela Tertis
- Department of Analytical Chemistry, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babes, 400012 Cluj-Napoca, Romania
| | - Marc Parrilla
- A-Sense Lab, University of Antwerp, Groenenborgerlaan 171, 2010 Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2010 Antwerp, Belgium
| | - Amorn Slosse
- National Institute for Criminalistics and Criminology (NICC), Vilvoordsesteenweg 100, 1120 Brussels, Belgium
| | - Filip Van Durme
- National Institute for Criminalistics and Criminology (NICC), Vilvoordsesteenweg 100, 1120 Brussels, Belgium
| | - Karolien de Wael
- A-Sense Lab, University of Antwerp, Groenenborgerlaan 171, 2010 Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2010 Antwerp, Belgium
| | - Cecilia Cristea
- Department of Analytical Chemistry, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babes, 400012 Cluj-Napoca, Romania
| |
Collapse
|
8
|
Wang Z, Tang B, Wang K, Hao Y, Yang F. Accumulation and risk prioritization of psychoactive substances in the critically endangered Yangtze finless porpoise. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130002. [PMID: 36152546 DOI: 10.1016/j.jhazmat.2022.130002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Psychoactive substances have been identified as a kind of emerging contaminants in aquatic environment and pose potential adverse effects on aquatic animals. Yangtze finless porpoise, a critically endangered species in China, is also facing the threat of psychoactive substances. In this study, the accumulation characteristics and risk prioritization of psychoactive substances were investigated in Yangtze finless porpoise collected from Poyang Lake (PYL) and Tian-E-Zhou Oxbow (TZO) in Yangtze River basin. The levels of psychoactive substances were detected in the range of below method detection limits (MDLs) to 98.4 ng/mL in the serum of Yangtze finless porpoise. Codeine (COD) and methamphetamine were identified as the major substances due to the highest residual levels with a median concentration of 0.72 ng/mL and 0.33 ng/mL, respectively. The total concentrations of psychoactive substances in the porpoise collected from TZO was significantly higher than those from PYL. Risk analysis based on effect ratio derived from the ratio of steady-state psychoactive substance serum concentration in the porpoise and human therapeutic plasma concentration revealed that COD was the substance with the highest risk among the psychoactive substances detected, followed by lysergic acid diethylamide (LSD), morphine, alprazolam (ALPZ) and lormetazepam. Location-specific risk prioritization of psychoactive substances found that the top 3 substances are LSD, lorazepam (LORZ) and ALPZ in PYL, and COD, LSD and LORZ in TZO. The results disclose the accumulation of psychoactive substances in Yangtze finless porpoise and suggest that the potential adverse effects should be concerned.
Collapse
Affiliation(s)
- Zeyuan Wang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Bin Tang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Kexiong Wang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yujiang Hao
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Fangxing Yang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
9
|
Krishnan RY, Manikandan S, Subbaiya R, Biruntha M, Balachandar R, Karmegam N. Origin, transport and ecological risk assessment of illicit drugs in the environment - A review. CHEMOSPHERE 2023; 311:137091. [PMID: 36356815 DOI: 10.1016/j.chemosphere.2022.137091] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/16/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Illicit drugs are a novel group of emerging pollutants. A growing global environmental load and ecological risk is created by the ongoing release of these toxins into the environment. Conventional water processing plants fail to completely remove drugs of abuse from both surface water and wastewater. The origin, environmental fate and ecological repercussions of illicit drugs, despite their detection in surface waterways around the world, are not well understood. In this review, illicit drug detections in potable water, surface water and wastewater globally have been studied during the past 15 years in order to establish a baseline for future years. The most common drugs with abuse potential detected in different sources of potable and surface water were methadone (0.12-22.7 ng/L), cocaine (0.05-506.6 ng/L), benzoylecgonine (0.07-1019 ng/L), amphetamine (1.4-342.6 ng/L), and codeine (0.002-42 ng/L). The bulk of research only looked at a small number of drugs of abuse, indicating that despite widespread use, a large spectrum of these intoxicants has yet to be detected. This review focuses on the origin of illicit drug contaminants in water bodies, air, and soil, their persistence in the environment, and the typical concentrations at which they occur in the environment. The impact of these drugs on aquatic organisms like Elliptio complanata mussels, crayfish and zebrafish has also been reviewed.
Collapse
Affiliation(s)
- R Yedhu Krishnan
- Department of Food Technology, Amal Jyothi College of Engineering, Kanjirappally, Kottayam, 686 518, Kerala, India
| | - S Manikandan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai - 602 105. Tamil Nadu, India.
| | - R Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box 21692, Kitwe, Zambia
| | - M Biruntha
- Department of Animal Health and Management, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| | - R Balachandar
- Department of Biotechnology, Prathyusha Engineering College, Chennai, 602 025, Tamil Nadu, India
| | - N Karmegam
- PG and Research Department of Botany, Government Arts College (Autonomous), Salem, 636 007, Tamil Nadu, India.
| |
Collapse
|
10
|
Liu W, Zhang H, Liu Y, Li X, Lu H, Guo C, Xu J. Occurrence, distribution, and ecological risk of psychoactive substances in typical lakes and rivers in Qinghai-Tibet Plateau. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113928. [PMID: 35926407 DOI: 10.1016/j.ecoenv.2022.113928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
The occurrence, distribution, and ecological risks of psychoactive substances (PSs) in Qinghai-Tibet Plateau (QTP) was investigated in this study. The surface water samples were collected in July in 2020 from five major water bodies, and 9 PSs were determined by liquid chromatography-mass spectrometry. The mean concentrations of the total PSs were 2.19-96.86 ng/L in lakes and 4.56-34.47 ng/L in rivers. Amphetamine (AMP) was the predominant contaminant both in lakes and rivers with a mean concentration of 12.21 ± 22.76 ng/L and 9.83 ± 6.14 ng/L, respectively. The compositions of PSs in lakes and rivers were significantly different. AMP, methadone (MTD), 3,4-methylenedioxyamphetamine (MDA), and ketamine (KET) were the most detected contaminants in lakes, while in rivers AMP, MDA, heroin (HER), and methamphetamine (METH) were the most detected ones. Concentrations of AMP and MTD, the two predominant drugs, varied spatially, with the decreasing concentration of AMP in the order of Huangshui River > Yamzhog Yumco Lake > Qinghai Lake > Lhasa River > Namco Lake, and of MTD in the order of Qinghai Lake > Namco Lake > Huangshui River > Yamzhog Yumco Lake. The risk quotients (RQs) of PSs ranged from 4.44 × 10-6 to 4.32 × 10-2, indicating a low risk of PSs in the aquatic ecosystem in QTP. Compared with other research in the world, the contamination of psychoactive substances in the Qinghai-Tibet Plateau was at relatively low levels with low ecological risks.
Collapse
Affiliation(s)
- Wenxiu Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Center for Environmental Health Risk Assessment and Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Heng Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Center for Environmental Health Risk Assessment and Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yang Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Center for Environmental Health Risk Assessment and Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xu Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Center for Environmental Health Risk Assessment and Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Haijian Lu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Center for Environmental Health Risk Assessment and Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Changsheng Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Center for Environmental Health Risk Assessment and Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Center for Environmental Health Risk Assessment and Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
11
|
Davey CJE, Kraak MHS, Praetorius A, Ter Laak TL, van Wezel AP. Occurrence, hazard, and risk of psychopharmaceuticals and illicit drugs in European surface waters. WATER RESEARCH 2022; 222:118878. [PMID: 35878520 DOI: 10.1016/j.watres.2022.118878] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/13/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to provide insights into the risk posed by psychopharmaceuticals and illicit drugs in European surface waters, and to identify current knowledge gaps hampering this risk assessment. First, the availability and quality of data on the concentrations of psychopharmaceuticals and illicit drugs in surface waters (occurrence) and on the toxicity to aquatic organisms (hazard) were reviewed. If both occurrence and ecotoxicity data were available, risk quotients (risk) were calculated. Where abundant ecotoxicity data were available, a species sensitivity distribution (SSD) was constructed, from which the hazardous concentration for 5% of the species (HC5) was derived, allowing to derive integrated multi-species risks. A total of 702 compounds were categorised as psychopharmaceuticals and illicit drugs based on a combination of all 502 anatomical therapeutic class (ATC) 'N' pharmaceuticals and a list of illicit drugs according to the Dutch Opium Act. Of these, 343 (49%) returned occurrence data, while only 105 (15%) returned ecotoxicity data. Moreover, many ecotoxicity tests used irrelevant endpoints for neurologically active compounds, such as mortality, which may underestimate the hazard of psychopharmaceuticals. Due to data limitations, risks could only be assessed for 87 (12%) compounds, with 23 (3.3%) compounds indicating a potential risk, and several highly prescribed drugs returned neither occurrence nor ecotoxicity data. Primary bottlenecks in risk calculation included the lack of ecotoxicity data, a lack of diversity of test species and ecotoxicological end points, and large disparities between well studied and understudied compounds for both occurrence and toxicity data. This study identified which compounds merit concern, as well as the many compounds that lack the data for any calculation of risk, driving research priorities. Despite the large knowledge gaps, we concluded that the presence of a substantial part (26%) of data-rich psychopharmaceuticals in surface waters present an ecological risk for aquatic non-target organisms.
Collapse
Affiliation(s)
- Charlie J E Davey
- FAME, UvA IBED: Universiteit van Amsterdam Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, the Netherlands.
| | - Michiel H S Kraak
- FAME, UvA IBED: Universiteit van Amsterdam Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, the Netherlands
| | - Antonia Praetorius
- FAME, UvA IBED: Universiteit van Amsterdam Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, the Netherlands
| | - Thomas L Ter Laak
- FAME, UvA IBED: Universiteit van Amsterdam Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, the Netherlands; KWR Water Research Institute, Nieuwegein, the Netherlands
| | - Annemarie P van Wezel
- FAME, UvA IBED: Universiteit van Amsterdam Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, the Netherlands
| |
Collapse
|
12
|
Roveri V, Guimarães LL, Toma W, Correia AT. Occurrence of pharmaceuticals and cocaine in the urban drainage channels located on the outskirts of the São Vicente Island (São Paulo, Brazil) and related ecological risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:57931-57945. [PMID: 35359205 PMCID: PMC8970415 DOI: 10.1007/s11356-022-19736-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/11/2022] [Indexed: 05/03/2023]
Abstract
"Wealth by the sea and poverty away from the sea breeze" is a metaphor that mirrors what happens along the Brazilian coastal zone, namely in São Vicente Island, São Paulo, Brazil. Due to the high cost of the properties on this shore, the impoverished population started to migrate to the northern outskirts of the island (away from the tourist beaches), potentiating the emergence of poor housing conditions, namely stilt-house slums. Consequently, the urban drainage channels across these outskirts neighbourhoods are potentially contaminated by human wastes. In this context, the occurrence and preliminary ecological risk assessment of eleven pharmaceuticals of various therapeutic classes (including cocaine and its primary metabolite, benzoylecgonine) were investigated, for the first time, in five urban drainage channels whose diffuse loads flow continuously to the estuarine waters of São Vicente Island. The results showed the widespread presence of these environmental stressors in all urban channels analysed, namely losartan (7.3-2680.0 ng/L), caffeine (314.0-726.0 ng/L), acetaminophen (7.0-78.2 ng/L), atenolol (6.2-23.6 ng/L), benzoylecgonine (10.2-17.2 ng/L), furosemide (1.0-7.2 ng/L), cocaine (2.3-6.7 ng/L), carbamazepine (0.2-2.6 ng/L), diclofenac (1.1-2.5 ng/L), orphenadrine (0.2-1.1 ng/L) and chlortalidone (0.5-1.0 ng/L). The overall total estimated load of pharmaceuticals and personal care products flowing to the estuarine waters of São Vicente Island is on the order of 41.1 g/day. The ecological risk assessment revealed a great environmental concern for São Vicente Island, ranging between low (e.g. carbamazepine and cocaine) and moderate to high (e.g. caffeine, acetaminophen and losartan) threats for the aquatic biota. Therefore, initiatives promoting basic sanitation, land-use regularisation and population awareness are highly recommended.
Collapse
Affiliation(s)
- Vinicius Roveri
- Universidade Metropolitana de Santos (UNIMES), Avenida Conselheiro Nébias, 536 - Encruzilhada, Santos, São Paulo, 11045-002, Brazil
- Centro Interdisciplinar de Investigação Marinha E Ambiental (CIIMAR/CIMAR), Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal
| | - Luciana Lopes Guimarães
- Laboratório de Pesquisa Em Produtos Naturais, Universidade Santa Cecília (UNISANTA), Rua Cesário Mota 8, Santos, São Paulo, F83A, 11045-040, Brazil
| | - Walber Toma
- Laboratório de Pesquisa Em Produtos Naturais, Universidade Santa Cecília (UNISANTA), Rua Cesário Mota 8, Santos, São Paulo, F83A, 11045-040, Brazil
| | - Alberto Teodorico Correia
- Centro Interdisciplinar de Investigação Marinha E Ambiental (CIIMAR/CIMAR), Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal.
- Faculdade de Ciências da Saúde da, Universidade Fernando Pessoa (FCS-UFP), Rua Carlos da Maia 296, 4200-150, Porto, Portugal.
- Instituto de Ciências Biomédicas Abel Salazar da Universidade Do Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| |
Collapse
|
13
|
Roveri V, Guimarães LL, Toma W, Correia AT. Occurrence and ecological risk assessment of pharmaceuticals and cocaine in the urban drainage channels of Santos beaches (São Paulo, Brazil): a neglected, but sensitive issue. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:65595-65609. [PMID: 34322794 DOI: 10.1007/s11356-021-15249-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/28/2021] [Indexed: 05/20/2023]
Abstract
In some Brazilian coastal cities, it is common to observe 'black tongues' in beaches, i.e. a mixture of urban runoff and untreated domestic sewage containing pollutants of emerging concern, namely pharmaceutical and personal care products (PPCPs), flowing into the South Atlantic Ocean. Such diffuse loads of pollutants might expose nontarget aquatic organisms to harmful compounds. In this work, the occurrence and preliminary ecological risk of 27 PPCPs of various therapeutic classes (including cocaine and its primary metabolite, benzoylecgonine) were investigated, for the first time, in seven urban drainage channels whose diffuse loads flow continuously to the beaches of Santos Bay, São Paulo, Brazil. Of these, 21 compounds were detected using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS), and nine of them were consistently quantified in all urban channels of Santos, suggesting that those pollutants are ubiquitous in this region: caffeine (143.4-516.0 ng/L), losartan (4.2-21.8 ng/L), atenolol (1.1-18.2 ng/L), acetaminophen (1.5-13.8 ng/L), benzoylecgonine (1.0-4.8 ng/L), carbamazepine (1.1-4.0 ng/L), diclofenac (1.9-3.5 ng/L), cocaine (0.5-1.7 ng/L), and orphenadrine (0.1-0.8 ng/L). Moreover, twelve compounds were found below the limit of quantification ( <LOQ): citalopram, propranolol, diazepam, rosuvastatin, atorvastatin, midazolam, ranitidine, chlortalidone, clopidogrel, chlorpheniramine, enalapril and valsartan. According to our knowledge, this is the first report on the occurrence of midazolam, ranitidine and chlorpheniramine in surface waters in Latin America and, therefore, these compounds should be considered environmental warning signs. A preliminary ecological risk assessment revealed that caffeine, acetaminophen and losartan presented a moderate risk, and carbamazepine a low risk to sensitive aquatic organisms at maximum measured concentrations. This study provides valuable information to reinforce the importance of a continuous monitoring of the diffuse loads (containing PPCPs and illicit drugs) flowing to the coastal zones in developing countries.
Collapse
Affiliation(s)
- Vinicius Roveri
- Faculdade de Ciência e Tecnologia da Universidade Fernando Pessoa (FCT-UFP), Praça 9 de Abril 349, 4249-004, Porto, Portugal
- Universidade Metropolitana de Santos (UNIMES), Avenida Conselheiro Nébias, 536 - Encruzilhada, 11045-002, Santos, São Paulo, Brasil
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal
| | - Luciana Lopes Guimarães
- Laboratório de Pesquisa em Produtos Naturais, Universidade Santa Cecília, Rua Cesário Mota 8, F83A, 11045-040 Santos, São Paulo, Brasil
| | - Walber Toma
- Laboratório de Pesquisa em Produtos Naturais, Universidade Santa Cecília, Rua Cesário Mota 8, F83A, 11045-040 Santos, São Paulo, Brasil
| | - Alberto Teodorico Correia
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal.
- Faculdade de Ciências da Saúde da Universidade Fernando Pessoa (FCS-UFP), Rua Carlos da Maia 296, 4200-150, Porto, Portugal.
- Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| |
Collapse
|
14
|
Wu J, Huang B, Yuan K, Wang Y, Chen B, Luan T. Occurrence, mass loads, and ecological risks of amphetamine-like substances in a rural area of South China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149058. [PMID: 34303256 DOI: 10.1016/j.scitotenv.2021.149058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
The occurrence and levels of amphetamine like substances (ALSs) in various environments, as a group of illicit psychoactive substances, have attracted great attention due to their potential ecological risks. In this study, three ALSs (i.e., ephedrine (EPH), amphetamine (AMP) and methamphetamine (METH)) in the raw domestic wastewater (RDW) and surface river water (SRW) collected from the rural area in South China were analyzed. METH was identified as the prevalent and dominant ALS in the RDW, which was detected in approximately 99.0% of the samples with a mean concentration of 0.7 μg·L-1, followed by AMP and EPH. Consistent trend was also found in the SRW collected from the same region. METH concentrations in the SRW were significantly and positively correlated with those in the RDW (p < 0.05), indicating that the discharge of RDW could be the important source of METH in the nearby rivers. The mean mass load of METH in the study rural area was about 65.8 mg·day-1·1000 inhabitants-1. Source apportionment showed that the abuse consumption was the main source of METH at most of sampling towns in the investigated rural area, and the mean mass load of METH at these towns (24.5 mg·day-1·1000 inhabitants-1) might reflect the abuse level of METH in this region. The disposal and illegal synthesis of METH could be important point sources, which led to the elevated METH level in the RDW. Risk assessment demonstrated that ALSs posed a minimal or medium risk to aquatic organisms. Our results provided valuable insights into the mass loads, source characteristics and ecological risks of ALSs in the rural area.
Collapse
Affiliation(s)
- Junhui Wu
- State Key Lab of Bioresource and Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510275, China
| | - Bi Huang
- State Key Lab of Bioresource and Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510275, China
| | - Ke Yuan
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China; Southern Marine Science and Engineering Guangdong Laboratory, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
| | - Yuru Wang
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Baowei Chen
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China; Southern Marine Science and Engineering Guangdong Laboratory, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China.
| | - Tiangang Luan
- State Key Lab of Bioresource and Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510275, China; Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and Safety, Guangzhou 510230, China
| |
Collapse
|
15
|
Dai S, Wang Z, Yang Y, Li X. Ketamine induction of physiological functions alterations in Caenorhabditis elegans by chronic and multigenerational exposure and corresponding aquatic environmental risk assessment. CHEMOSPHERE 2021; 288:132486. [PMID: 34637863 DOI: 10.1016/j.chemosphere.2021.132486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/22/2021] [Accepted: 10/04/2021] [Indexed: 02/05/2023]
Abstract
Although ketamine (KET) has been widely detected in aquatic environments, the ecotoxicity data in aquatic invertebrates and associated risk remained unclear. This study aimed to investigate the adverse effects on benthos (Caenorhabditis elegans (C.elegans)) posed by KET from chronic (10 days) and multigenerational (four generations) exposure. Such exposure induced dose-dependent alterations on apoptosis, reactive oxygen species (ROS) induction, locomotion activity, feeding rate, chemotaxis, and brood size of nematodes, showing a cumulative damage through generations. KET posed vulva deformations and worm bags of C. elegans with a dosed-dependent increase. As a consequence, the fecundity and viability of worms would be impaired, which could eventually impact aquatic ecosystem equilibrium. Meanwhile, the bioactivation/detoxification process of xenobiotics and longevity regulating pathway induced by KET might be responsible for the physiological function disorders. Accordingly, the risk quotients (RQ) of KET in surface water in China were calculated using the 90% indicator protection concentration (C0.1) derived from multiple toxicity indicators cumulative analyses. The results would be more objective considering numerous biomarkers changes of one species in comparison with traditional method using no observed effect concentrations (NOEC) of teratogenesis. The risk in surface water in southern China was up to high level (RQ > 1), suggesting long-term monitoring was imperative.
Collapse
Affiliation(s)
- Shuiping Dai
- National Center for Geriatrics Clinical Medicine Research, Department of Geriatrics and Gerontology, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Zhenglu Wang
- College of Oceanography, Hohai University, Nanjing, Jiangsu, 210098, PR China.
| | - Ying Yang
- Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Xiqing Li
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, PR China
| |
Collapse
|
16
|
Chen L, Guo C, Sun Z, Xu J. Occurrence, bioaccumulation and toxicological effect of drugs of abuse in aquatic ecosystem: A review. ENVIRONMENTAL RESEARCH 2021; 200:111362. [PMID: 34048744 DOI: 10.1016/j.envres.2021.111362] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/11/2021] [Accepted: 05/15/2021] [Indexed: 05/23/2023]
Abstract
Drugs of abuse are a group of emerging contaminants. As the prevalence of manufacture and consumption, there is a growing global environmental burden and ecological risk from the continuous release of these contaminants into environment. The widespread occurrence of drugs of abuse in waste wasters and surface waters is due to the incomplete removal through traditional wastewater treatment plants in different regions around the world. Although their environmental concentrations are not very high, they can potentially influence the aquatic organisms and ecosystem function. This paper reviews the occurrence of drugs of abuse and their metabolites in waste waters and surface waters, their bioaccumulation in aquatic plants, fishes and benthic organisms and even top predators, and the toxicological effects such as genotoxic effect, cytotoxic effect and even behavioral effect on aquatic organisms. In summary, drugs of abuse occur widely in aquatic environment, and may exert adverse impact on aquatic organisms at molecular, cellular or individual level, and even on aquatic ecosystem. It necessitates the monitoring and risk assessment of these compounds on diverse aquatic organisms in the further study.
Collapse
Affiliation(s)
- Like Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Changsheng Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zhenyu Sun
- Jiangsu Rainfine Environmental Science and Technology Co.,Ltd, Henan Branch Zhengzhou, 450000, China
| | - Jian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
17
|
Wang Z, Dai S, Wang J, Du W, Zhu L. Assessment on chronic and transgenerational toxicity of methamphetamine to Caenorhabditis elegans and associated aquatic risk through toxicity indicator sensitivity distribution (TISD) analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117696. [PMID: 34243081 DOI: 10.1016/j.envpol.2021.117696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/27/2021] [Accepted: 06/29/2021] [Indexed: 02/08/2023]
Abstract
Evidence about the adverse effects of methamphetamine (METH) on invertebrates is scarce. Hence, C. elegans, a representative invertebrate model, was exposed to METH at environmental levels to estimate chronic and transgenerational toxicity. The results of chronic exposure were integrated into an underlying toxicity framework of METH in invertebrates (e.g., benthos) at environmentally relevant concentrations. The induction of cellular oxidative damage-induced apoptosis and fluctuation of ecologically important traits (i.e., feeding and locomotion) might be attributed by the activation of the longevity regulating pathway regulated by DAF-16/FOXO, and detoxification by CYP family enzymes. The adverse effects to the organism level included impaired viability and decreased fecundity. The results from transgenerational exposure elucidated the cumulative METH-induced damage in invertebrates. Finally, a new risk assessment method named toxicity indicator sensitivity distribution (TISD) analysis was proposed by combining multiple toxicity indicator test data (ECx) to derive the hazardous concentration for 10% indicators (C10) of one species. The risk quotient (RQ) values calculated by measured environmental concentrations and C10 in southern China, southeastern Australia, and the western US crossed the alarm line (RQ = 5), suggesting a need for long-term monitoring.
Collapse
Affiliation(s)
- Zhenglu Wang
- College of Oceanography, Hohai University, Nanjing, Jiangsu, 210098, PR China
| | - Shuiping Dai
- National Center for Geriatrics Clinical Medicine Research, Department of Geriatrics and Gerontology, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Jinze Wang
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Wei Du
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai, 200241, PR China.
| | - Lin Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| |
Collapse
|
18
|
Yao B, Yan S, Lian L, Liu D, Cui J, Song W. Occurrence, distribution, and potential health risks of psychoactive substances in Chinese surface waters. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124851. [PMID: 33370654 DOI: 10.1016/j.jhazmat.2020.124851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/02/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Ten psychoactive substances (PSs) and metabolites were identified and quantified in 217 surface water samples collected across China to reveal the occurrence, distribution, and potential health risks in Chinese surface waters. The results showed the ubiquitous occurrence of caffeine (CFI), paraxanthine (PXT) and cotinine (CTN) at all the monitored sites, the concentrations of which ranged from not detected to 3460 ng L-1, while the remaining PSs were detected at trace levels (<50 ng L-1). High concentrations of diet-related PSs (CTN, CFI, and PXT) typically occurred in areas with high population densities. Traditional drugs tended to occur in megacities and the illegal manufacturing bases of the illicit drugs. Emerging drugs were found to be very popular across the whole country, with no significant differences among the samples. The risk assessment results suggest that drinking water containing these PS residues posed no potential human health risk in any life stage. However, the age-dependent risk quotients (RQs) of the 5 assessed PSs for the 12 age intervals ranged from < 1.0 × 10-7 to 0.005. In terms of the evaluated life stages, the RQs for early stages (from birth to <2 years) were significantly higher than the RQs for other stages.
Collapse
Affiliation(s)
- Bo Yao
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, PR China; Department of Environmental Science & Engineering, Fudan University, Shanghai 200433 PR China
| | - Shuwen Yan
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433 PR China
| | - Lushi Lian
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433 PR China
| | - Daxi Liu
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, PR China
| | - Jiansheng Cui
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, PR China.
| | - Weihua Song
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433 PR China.
| |
Collapse
|
19
|
Fontes MK, de Campos BG, Cortez FS, Pusceddu FH, Nobre CR, Moreno BB, Lebre DT, Maranho LA, Pereira CDS. Mussels get higher: A study on the occurrence of cocaine and benzoylecgonine in seawater, sediment and mussels from a subtropical ecosystem (Santos Bay, Brazil). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143808. [PMID: 33288268 DOI: 10.1016/j.scitotenv.2020.143808] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 06/12/2023]
Abstract
Data on the occurrence of cocaine (COC) and benzoylecgonine (BE) in marine environmental compartments are still limited, with few studies reporting superficial water contamination, mainly in tropical zones. In this sense, environmental data of these substances are essential to identify potential polluting sources, as well as their impact in costal ecosystems. The aim of this study was to evaluate the occurrence of COC and BE in seawater, sediment and mussels from a subtropical coastal zone (Santos Bay, São Paulo, Brazil), as well as to determine a field measured Bioaccumulation Factor (BAF). COC and BE were detected in all water samples in concentrations ranging from 1.91 ng·L-1 to 12.52 ng·L-1 and 9.88 ng·L-1 to 28.53 ng·L-1, respectively. In sediments, only COC was quantified in concentrations ranging from 0.94 ng·g-1 to 46.85 ng·g-1. Similarly, only COC was detected in tissues of mussels 0.914 μg·kg-1 to 4.58 μg·kg-1 (ww). The field-measured BAF ranged from 163 to 1454 (L·kg-1). Our results pointed out a widespread contamination by cocaine and its main human metabolite benzoylecgonine in Santos Bay. Mussels were able to accumulate COC in areas used by residents and tourists for bathing, fishing, and harvest, denoting concern to human health. Therefore, our data can be considered a preliminary assessment, which indicates the need to evaluate drugs (including illicit as COC) in environmental and seafood monitoring programs, in order to understand their risks on the ecosystem and human health.
Collapse
Affiliation(s)
- Mayana Karoline Fontes
- Instituto de Biociências, Campus do Litoral Paulista, Universidade Estadual Paulista Júlio de Mesquita Filho, Praça Infante Dom Henrique s/n, 11330-900 São Vicente, Brazil
| | - Bruno Galvão de Campos
- Instituto de Biociências, Campus do Litoral Paulista, Universidade Estadual Paulista Júlio de Mesquita Filho, Praça Infante Dom Henrique s/n, 11330-900 São Vicente, Brazil
| | - Fernando Sanzi Cortez
- Laboratório de Ecotoxicologia, Universidade Santa Cecília, Rua Oswaldo Cruz 266, 11045-907 Santos, Brazil
| | - Fabio Hermes Pusceddu
- Laboratório de Ecotoxicologia, Universidade Santa Cecília, Rua Oswaldo Cruz 266, 11045-907 Santos, Brazil
| | - Caio Rodrigues Nobre
- Instituto de Biociências, Campus do Litoral Paulista, Universidade Estadual Paulista Júlio de Mesquita Filho, Praça Infante Dom Henrique s/n, 11330-900 São Vicente, Brazil
| | - Beatriz Barbosa Moreno
- Departamento de Ciências do Mar, Universidade Federal de São Paulo, Rua Maria Máximo, 168, 11030-100 Santos, Brazil
| | - Daniel Temponi Lebre
- CEMSA - Centro de Espectrometria de Massas Aplicada, CIETEC/IPEN, Av. Prof. Lineu Prestes, 2242, 05508-000 São Paulo, Brazil
| | - Luciane Alves Maranho
- Laboratório de Ecotoxicologia, Universidade Santa Cecília, Rua Oswaldo Cruz 266, 11045-907 Santos, Brazil
| | - Camilo Dias Seabra Pereira
- Laboratório de Ecotoxicologia, Universidade Santa Cecília, Rua Oswaldo Cruz 266, 11045-907 Santos, Brazil; Departamento de Ciências do Mar, Universidade Federal de São Paulo, Rua Maria Máximo, 168, 11030-100 Santos, Brazil.
| |
Collapse
|
20
|
Capaldo A, Gay F, Caputo I, Lionetti L, Paolella G, Di Gregorio I, Martucciello S, Di Lorenzo M, Rosati L, Laforgia V. Effects of environmental cocaine concentrations on COX and caspase-3 activity, GRP-78, ALT, CRP and blood glucose levels in the liver and kidney of the European eel (Anguilla anguilla). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111475. [PMID: 33068975 DOI: 10.1016/j.ecoenv.2020.111475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/18/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Cocaine is one of the most widely used illicit drugs in the world, and as a result of incomplete removal by sewage treatment plants it is found in surface waters, where it represents a new potential risk for aquatic organisms. In this study we evaluated the influence of environmental concentrations of cocaine on the liver and the kidney of the European eel (Anguilla anguilla). The eels were exposed to 20 ng L-1 of cocaine for fifty days, after which, three and ten days after the interruption of cocaine exposure their livers and kidneys were compared to controls. The general morphology of the two organs was evaluated, as well as the following parameters: cytochrome oxidase (COX) and caspase-3 activities, as markers of oxidative metabolism and apoptosis activation, respectively; glucose-regulated protein (GRP)78 levels, as a marker of endoplasmic reticulum (ER)-stress; blood glucose level, as stress marker; serum levels of alanine aminotransferase (ALT), as a marker of liver injury and serum levels of C-reactive protein (CRP), as a marker of the inflammatory process. The liver showed morphologic alterations such as necrotic areas, karyolysis and pyknotic nuclei, while the kidneys had dilated glomeruli and the renal tubules showed pyknotic nuclei and karyolysis. In the kidney, the alterations persisted after the interruption of cocaine exposure. In the liver, COX and caspase-3 activities increased (COX: P = 0.01; caspase-3: P = 0.032); ten days after the interruption of cocaine exposure, COX activity returned to control levels (P = 0.06) whereas caspase-3 activity decreased further (P = 0.012); GRP78 expression increased only in post-exposure recovery specimens (three days: P = 0.007 and ten days: P = 0.008 after the interruption of cocaine exposure, respectively). In the kidney, COX and caspase-3 activities increased (COX: P = 0.02; caspase-3: P = 0.019); after the interruption of cocaine exposure, COX activity remained high (three days: P = 0.02 and ten days: P = 0.029 after the interruption of cocaine exposure, respectively) whereas caspase-3 activity returned to control values (three days: P = 0.69 and ten days: P = 0.67 after the interruption of cocaine exposure, respectively). Blood glucose and serum ALT and CRP levels increased (blood glucose: P = 0.01; ALT: P = 0.001; CRP: 0.015) and remained high also ten days after the interruption of cocaine exposure (blood glucose: P = 0.009; ALT: P = 0.0031; CRP: 0.036). These results suggest that environmental cocaine concentrations adversely affected liver and kidney of this species.
Collapse
Affiliation(s)
- Anna Capaldo
- Department of Biology, University of Naples Federico II, Via Cinthia, Edificio 7, 80126 Naples, Italy.
| | - Flaminia Gay
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Ivana Caputo
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy; ELFID (European Laboratory for Food-Induced Diseases), University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
| | - Lillà Lionetti
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy; ELFID (European Laboratory for Food-Induced Diseases), University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
| | - Gaetana Paolella
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Ilaria Di Gregorio
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Stefania Martucciello
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Mariana Di Lorenzo
- Department of Biology, University of Naples Federico II, Via Cinthia, Edificio 7, 80126 Naples, Italy
| | - Luigi Rosati
- Department of Biology, University of Naples Federico II, Via Cinthia, Edificio 7, 80126 Naples, Italy
| | - Vincenza Laforgia
- Department of Biology, University of Naples Federico II, Via Cinthia, Edificio 7, 80126 Naples, Italy
| |
Collapse
|
21
|
Wang W, Guo C, Chen L, Qiu Z, Yin X, Xu J. Simultaneous enantioselective analysis of illicit drugs in wastewater and surface water by chiral LC-MS/MS: A pilot study on a wastewater treatment plant and its receiving river. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 273:116424. [PMID: 33465654 DOI: 10.1016/j.envpol.2021.116424] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/24/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
An enantioselective method for quantifying amphetamine-type chiral illicit drugs (CIDs) in wastewater and surface water was developed, validated, and applied to samples from a wastewater treatment plant (WWTP) and its effluent-receiving river in Beijing, China. Water samples were subjected to solid-phase extraction (SPE) and then quantified via liquid chromatography-tandem mass spectrometry. The enantioseparation of CIDs was performed with a CHIRALPAK CBH column. Chromatographic parameters, including mobile phase composition and flow rates, were tested to identify the satisfactory enantiomeric resolution. The SPE method was optimized by evaluating variables, including SPE cartridge types, extraction solvents, and solvent volumes. The Oasis HLB sorbent showed good performance with recoveries exceeding 60% and matrix effects ranging from -19.6% to 26.6% for most target enantiomers, except for norephedrine (NE), in three different aquatic matrixes. The established method was superior to previously reported methods and had a low limit of detection, low limit of quantification, and short runtime (<45 min). The repeatability and reproducibility of the method reached 19.1% and 17.8%, respectively. The method was successfully utilized to monitor the daily variations in CIDs in the influent, effluent, and effluent-receiving river of a WWTP in Beijing over 1 week. The common occurrence of 1 R,2 S-(-)-ephedrine (1 R,2 S-(-)-EPH), 1 S,2 S-(+)-pseudoephedrine (1 S,2 S-(+)-PEPH), R-(-)-methamphetamine (METH), and S-(+)-METH in wastewater samples was observed. Ephedrines (1 R,2 S-(-)-EPH and 1 S,2 S-(+)-PEPH) were the most abundant CIDs in the influent, effluent, upstream, and downstream samples with concentrations of 725.8 ± 181.2 ng/L, 22.9 ± 4.9 ng/L, 12.96 ± 0.79 ng/L, and 11.6 ± 6.7 ng/L, respectively. METH was detectable in most water samples and was present in excess in S-enantiomer form in the influent and in R-enantiomer form in the effluent and surface water. R-(-)-MDMA was detected at a concentration of up to 2.4 ng/L in the influent. The metabolites norketamine (NK), amphetamine(AMP), MDA, and NE were not detected in water samples given the low concentration of their parent drugs.
Collapse
Affiliation(s)
- Weimin Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Changsheng Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Like Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ziwen Qiu
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xingxing Yin
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Jian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
22
|
Zarei S, Salimi Y, Repo E, Daglioglu N, Safaei Z, Güzel E, Asadi A. A global systematic review and meta-analysis on illicit drug consumption rate through wastewater-based epidemiology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:36037-36051. [PMID: 32594443 DOI: 10.1007/s11356-020-09818-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/19/2020] [Indexed: 05/06/2023]
Abstract
Wastewater-based epidemiology (WBE) is a complementary, well-established comprehensive, cost-effective, and rapid technique for monitoring of illicit drugs used in a general population. This systematic review and meta-analysis is the first to estimate the rank and consumption rate of illicit drugs through WBE studies. In the current study, the related investigations regarding the illicit drug consumption rate based on WBE were searched among the international databases including Scopus, PubMed, Science direct, Google scholar, and local database, Magiran from 2012 up to May 2019. The illicit drug consumption rate with 95% confidence intervals was pooled between studies by using random effect model. The heterogeneity was determined using I2 statistics. Also, subgroup analyses were conducted to examine the possible effects of year and location of studies on observed heterogeneity. Meta-analysis of 37 articles indicates that the overall rank order of illicit drugs according to their pooled consumption rate can be summarized as tetrahydrocannabinol or cannabis (7417.9 mg/day/1000 people) > cocaine (655.7 mg/day/1000 people) > morphine (384.9 mg/day/1000 people) > methamphetamine (296.2 mg/day/1000 people) > codeine (222.7 mg/day/1000 people) > methadone (200.2 mg/day/1000 people) > 3,4-methylenedioxymethamphetamine (126.3 mg/day/1000 people) > amphetamine (118.2 mg/day/1000 people) > 2-ethylidene-1,5-dimethyl-3, 3-diphenylpyrrolidine (33.7 mg/day/1000 people). The pooled level rate was 190.16 mg/day/1000 people for benzoylecgonine (main urinary cocaine metabolite), 137.9 mg/day/1000 people for 11-nor-9-carboxy-delta9-tetrahydrocannabinol (main metabolite of cannabis), and 33.7 mg/day/1000 people for 2-ethylidene-1,5-dimethyl-3, 3-diphenylpyrrolidine (main metabolite of methadone). The I2 values for all selected drugs were 100% (P value < 0.001). The results of year subgroup indicated that the changes of heterogeneity for all selected drugs were nearly negligible. The heterogeneity within studies based on continents subgroup just decreased in America for drugs like 11-nor-9-carboxy-delta9-tetrahydrocannabinol (I2 = 24.4%) and benzoylecgonine (I2 = 94.1%). The outcome of this meta-analysis can be used for finding the illicit drugs with global serious problem in view of consumption rate (i.e., cannabis and cocaine) and helping authorities to combat them.
Collapse
Affiliation(s)
- Shabnam Zarei
- Students Research Committee, Department of Environmental Health Engineering, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yahya Salimi
- Social Development & Health Promotion Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Eveliina Repo
- Department of Separation Science, School of Engineering Science, LUT University, Mikkeli, Finland
| | - Nebile Daglioglu
- Department of Forensic Medicine, School of Medicine, University of Cukurova, 01330, Adana, Turkey
| | - Zahra Safaei
- Department of Separation Science, School of Engineering Science, LUT University, Mikkeli, Finland
| | - Evsen Güzel
- Department of Basic Sciences, Faculty of Fisheries, University of Cukurova, 01330, Adana, Turkey
| | - Anvar Asadi
- Department of Environmental Health Engineering, Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
23
|
Wang Z, Mao K, Du W, Cai M, Zhang Z, Li X. Diluted concentrations of methamphetamine in surface water induce behavior disorder, transgenerational toxicity, and ecosystem-level consequences of fish. WATER RESEARCH 2020; 184:116164. [PMID: 32688152 DOI: 10.1016/j.watres.2020.116164] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/16/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
Methamphetamine (METH) has been recognized as an emerging organic contaminant as it was widely detected in the aquatic environment via wastewater effluent discharge. However, the ecological hazard posed by METH at environmentally relevant concentrations was remained unclear. In this study, adult medaka fish were exposed to METH at environmental levels (0.05, 0.2, 0.5, 5 μg L-1) and high level (25 and 100 μg L-1) for 90 days to investigate its effect on ecologically behavioral functions, histopathology, bioconcentration, and transgenerational toxicity. The significant increase of locomotion activity, total distance, and max velocity of adult medaka were observed at low METH levels (0.2-0.5 μg L-1), while it markedly decreased at high levels (25-100 μg L-1). This effect may increase the predation risk of the fish. The significant alteration on the relative expressions of the genes (cacna1c, oxtr, erk1, and c-fos), as well as the contents of the proteins (oxytocin (OXT) and protein kinase A (PKA)) involved in Voltage Dependent Calcium Channel (VDCC) and Mitogen-Activated Protein Kinase (MAPK) signaling channel induced by METH could partly elucidate the underlying mechanisms of the changes of the behavioral traits. METH could induce obvious minimal gliosis, neuronal loss, and necrotic in brain tissues. Additionally, the significant increase of hepatic-somatic index (HSI) of male medaka at 0.2-5 μg L-1 groups, and the decrease of female medaka at 100 μg L-1 group indicated male fish was more susceptible to METH. Nephric-somatic index (NSI) of medaka markedly declined induced by METH at 0.05-100 μg L-1. The bioconcentration factor (BCF) (0.4-5.8) in medaka fish revealed the bioconcentration potential of METH in fish. This study for the first time demonstrated METH could induced the development defects of larvae in F1 generation at environmentally relevant concentrations, thereby resulting in a significant decrease in the capacity of fish to produce offspring. Meanwhile, the RQ values (>1) of METH in river in China, USA, and Australia showed a high teratogenic risk level, suggesting the ecosystem-levels consequence posed by METH should be concerned.
Collapse
Affiliation(s)
- Zhenglu Wang
- Key Laboratory of Marine Hazards Forecasting, Ministry of Natural Resources, Hohai University, Nanjing, Jiangsu 210098, PR China; College of Oceanography, Hohai University, Nanjing, Jiangsu 210098, PR China; Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Wei Du
- School of Geographical Sciences, East China Normal University, Shanghai 200241, PR China
| | - Min Cai
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, PR China
| | - Zhaobin Zhang
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Xiqing Li
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China.
| |
Collapse
|
24
|
Fontes MK, Maranho LA, Pereira CDS. Review on the occurrence and biological effects of illicit drugs in aquatic ecosystems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:30998-31034. [PMID: 32361972 DOI: 10.1007/s11356-020-08375-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 03/09/2020] [Indexed: 06/11/2023]
Abstract
Illicit drugs (IDs) and their metabolites are recognized as contaminants of emerging concern. After consumption, illicit drugs are partially metabolized and excreted unchanged in urine and feces or as active metabolites reaching wastewater treatment plants (WWTPs). Furthermore, most WWTPs are insufficient in the treatment of effluents containing IDs, which may be released into aquatic ecosystems. Once in the water or sediment, these substances may interact and affect non-target organisms and some evidences suggest that illicit drugs may exhibit pseudo-persistence because of a continuous environmental input, resulting in long-term exposure to aquatic organisms that may be negatively affected by these biologically active compounds. We reviewed the literature on origin and consumption, human metabolism after consumption, aquatic occurrences, and toxicity of the major groups of illicit drugs (opioids, cannabis, synthetic drugs, and cocaine). As a result, it could be concluded that illicit drugs and their metabolites are widespread in diverse aquatic ecosystems in levels able to trigger sublethal effects to non-target organisms, besides to concentrate in seafood. This class of emerging contaminants represents a new environmental concern to academics, managers, and policymakers, whose would be able to assess risks and identify proper responses to reduce environmental impacts.
Collapse
Affiliation(s)
| | | | - Camilo Dias Seabra Pereira
- Department of Ecotoxicology, Santa Cecília University, Santos, São Paulo, Brazil.
- Department of Marine Sciences, Federal University of São Paulo, Santos, São Paulo, Brazil.
| |
Collapse
|
25
|
Mao K, Zhang H, Pan Y, Zhang K, Cao H, Li X, Yang Z. Nanomaterial-based aptamer sensors for analysis of illicit drugs and evaluation of drugs consumption for wastewater-based epidemiology. Trends Analyt Chem 2020; 130:115975. [PMID: 32834242 PMCID: PMC7336936 DOI: 10.1016/j.trac.2020.115975] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The abuse of illicit drugs usually associated with dramatic crimes may cause significant problems for the whole society. Wastewater-based epidemiology (WBE) has been demonstrated to be a novel and cost-effective way to evaluate the abuse of illicit drugs at the community level, and has been used as a routine method for monitoring and played a significant role for combating the crimes in some countries, e.g. China. The method can also provide temporal and spatial variation of drugs of abuse. The detection methods mainly remain on the conventional liquid chromatography coupled with mass spectrometry, which is extremely sensitive and selective, however needs advanced facility and well-trained personals, thus limit it in the lab. As an alternative, sensors have emerged to be a powerful analytical tool for a wide spectrum of analytes, in particular aptamer sensors (aptasensors) have attracted increasing attention and could act as an efficient tool in this field due to the excellent characteristics of selectivity, sensitivity, low cost, miniaturization, easy-to-use, and automation. In this review, we will briefly introduce the context, specific assessment process and applications of WBE and the recent progress of illicit drug aptasensors, in particular focusing on optical and electrochemical sensors. We then highlight several recent aptasensors for illicit drugs in new technology integration and discuss the feasibility of these aptasensor for WBE. We will summarize the challenges and propose our insights and opportunity on aptasensor for WBE to evaluate community-wide drug use trends and public health.
Collapse
Affiliation(s)
- Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Yuwei Pan
- Cranfield Water Science Institute, Cranfield University, Cranfield, MK43 0AL, United Kingdom
| | - Kuankuan Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Haorui Cao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Xiqing Li
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Zhugen Yang
- Cranfield Water Science Institute, Cranfield University, Cranfield, MK43 0AL, United Kingdom
| |
Collapse
|
26
|
Wang Z, Xu Z, Wu Y, Zhang Z, Li X. Impact of ketamine on the behavior and immune system of adult medaka (Oryzias latipes) at environmentally relevant concentrations and eco-risk assessment in surface water. JOURNAL OF HAZARDOUS MATERIALS 2020; 393:121577. [PMID: 32126430 DOI: 10.1016/j.jhazmat.2019.121577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/23/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
This work for the first time investigated the bioconcentration factor (BCF), toxicity, and eco-risk of KET using adult medaka fish (Oryzias latipes) as model organism after exposure at environmental concentrations (0.05-0.5 μg L-1) and higher levels (5-100 μg L-1) for 90 days. The BCF of KET was approximately 1.07- to 10.94- folds. The behavioral functions, including swimming properties, feeding rate, and food preference, were significantly impacted by KET (≥0.05 μg L-1). After 90-days exposure, KET induced histological abnormalities in liver and kidney tissue at 0.1 and 0.2 μg L-1, respectively. Additionally, the condition factor, hepatic-somatic index (HSI), and nephric-somatic index (NSI) of medaka were markedly impacted by KET treatment at 0.5, 0.5, and 0.1 μg L-1, respectively. Morphological inflammation (i.e., haemorrhage and erosion) in the fish body was observed exposed to KET, and the EC10 value was 0.407 μg L-1. Alterations in the expressions of genes (i.e., cacna1c, oxtr, erk1, and c-fos) and proteins (i.e., OXT and PKA), involved in in calcium ion channels induced by KET, could partly elucidate the underlying mechanism of the toxicity. The inflammatory risk to fish posed by KET in some rivers in southern China was at high level, suggesting the long-term concentration monitoring was required.
Collapse
Affiliation(s)
- Zhenglu Wang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, PR China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, PR China
| | - Zeqiong Xu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, PR China
| | - Yuexia Wu
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, 73 East Beijing Road, 210008, Nanjing, PR China
| | - Zhaobin Zhang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, PR China
| | - Xiqing Li
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, PR China.
| |
Collapse
|
27
|
De Felice B, Mondellini S, Salgueiro-González N, Castiglioni S, Parolini M. Methamphetamine exposure modulated oxidative status and altered the reproductive output in Daphnia magna. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137728. [PMID: 32169646 DOI: 10.1016/j.scitotenv.2020.137728] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
Methamphetamine (METH) is a central nervous system stimulant drug whose use has increased in the last few years worldwide. After the ingestion of even a single dose, METH is excreted by the organism and enters the aquatic ecosystems, whereby concentrations up to hundreds of ng/L were measured in both sewage and surface waters. Although the environmental concentrations are currently quite low, the high biological activity of METH might cause adverse effects towards non-target organisms. However, to date the information on METH toxicity towards aquatic organisms is limited. Thus, the present study aimed at investigating biochemical and behavioral effects induced by METH exposure towards the Cladoceran Daphnia magna. A 21-days exposure to two environmental concentrations of METH (50 ng/L and 500 ng/L) was performed. At selected time points (7, 14 and 21 days) the amount of pro-oxidant molecules, the activity of antioxidant enzymes (SOD, CAT, GPx) and levels of lipid peroxidation (LPO) were measured as oxidative stress-related endpoints. Changes in swimming activity and reproductive output were assessed as behavioral endpoints. METH exposure affected the oxidative status of D. magna specimens at both tested concentrations, although no oxidative damage occurred. Although METH did not modulate the swimming activity of D. magna, a significant, positive effect on reproductive output, in terms of number of offspring was found. Our results showed that low concentrations of METH might represent a threat for D. magna, affecting the health status of this aquatic species at different level of biological organization.
Collapse
Affiliation(s)
- Beatrice De Felice
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, I-20133 Milan, Italy.
| | - Simona Mondellini
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, I-20133 Milan, Italy
| | - Noelia Salgueiro-González
- Istituto di Ricerche Farmacologiche Mario Negri - IRCCS, Department of Environmental Health Sciences, Via Mario Negri 2, 20156 Milan, Italy
| | - Sara Castiglioni
- Istituto di Ricerche Farmacologiche Mario Negri - IRCCS, Department of Environmental Health Sciences, Via Mario Negri 2, 20156 Milan, Italy
| | - Marco Parolini
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, I-20133 Milan, Italy
| |
Collapse
|
28
|
Wang Z, Gao S, Dai Q, Zhao M, Yang F. Occurrence and risk assessment of psychoactive substances in tap water from China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114163. [PMID: 32078882 DOI: 10.1016/j.envpol.2020.114163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 01/09/2020] [Accepted: 02/09/2020] [Indexed: 06/10/2023]
Abstract
Psychoactive substances are becoming a new concern in aquatic environment along with the increase in use of these substances. In this study, 23 psychoactive substances were investigated in the tap water collected in 63 sites in China. Eighteen out of 23 psychoactive substances were detected at the range of < method detection limits (MDLs) to 24.9 ng L-1. It was found that diazepam and temazepam were the major psychoactive substances in the tap water with the median concentration of 1.0 and 0.06 ng L-1, respectively. The high exposure dose for each psychoactive substance was calculated from 0.6 to 855 pg kg-1 bw d-1 and showed an order of men ≥ boys ≥ girls ≥ women. Risk assessment revealed there was little risk of psychoactive substances on human health at current residual levels.
Collapse
Affiliation(s)
- Zeyuan Wang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Natural Resources and Environmental Science, Zhejiang University, 310058 Hangzhou, China
| | - Siyue Gao
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Natural Resources and Environmental Science, Zhejiang University, 310058 Hangzhou, China
| | - Qingying Dai
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Natural Resources and Environmental Science, Zhejiang University, 310058 Hangzhou, China
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Fangxing Yang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Natural Resources and Environmental Science, Zhejiang University, 310058 Hangzhou, China.
| |
Collapse
|
29
|
Wang Z, Han S, Cai M, Du P, Zhang Z, Li X. Environmental behavior of methamphetamine and ketamine in aquatic ecosystem: Degradation, bioaccumulation, distribution, and associated shift in toxicity and bacterial community. WATER RESEARCH 2020; 174:115585. [PMID: 32105996 DOI: 10.1016/j.watres.2020.115585] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/26/2020] [Accepted: 02/01/2020] [Indexed: 06/10/2023]
Abstract
Ketamine (KET) and methamphetamine (METH) have been recognized as emerging contaminants in aquatic ecosystems. This paper aimed to investigate the environmental behaviour, including the degradation, distribution, and bioaccumulation, of METH, KET, and their main metabolites (amphetamine (AMP) and norketamine (NorKET)). The changes in acute toxicity in the aqueous phase and in the bacterial community in sediment were determined to assess the associated eco-risk of the drug exposure. Five types of lab-scale aquatic ecosystems were established and exposed to KET or METH for 40 days: a water- sediment- organisms- KET system (K), a water- sediment- organisms- METH system (M), a water- sediment- organism- METH- KET system (M + K), a water-sediment- KET- METH system (control), and a water- sediment- organisms system (biocontrol). The results demonstrated that much faster degradation occurred for both METH (t1/2 = 3.89 and 2.37 days in the M and M + K group, respectively) and KET(t1/2 = 5.69 days 5.39 days in the K group and M + K group, respectively) than in the control group (t1/2 = 7.83 and 86.71days for METH and KET, respectively). Rapid adsorption of KET, METH, and their metabolites was observed in the sediment, which had clay and silt as the main particle sizes. KET was observed to be absorbed by shallow-water fish (Chinese medaka, rosy bitterling and mosquito fish), while METH was dominantly ingested by bottom-dwellers (loach). Duckweed might play a crucial role in the dissipation process of METH and KET, which were mainly adsorbed by duckweed roots. During incubation, the acute toxic levels in the K and M + K groups changed from non-toxic to medium toxicity levels, and the toxicity in the M and control groups changed from non-toxic to low toxicity levels. Moreover, marked changes in the bacterial community in the sediment induced by METH or KET exposure were observed, and the most significant change in the bacterial community was observed in the group spiked with both METH and KET. This work for the first time elucidated the environmental behaviors of METH and KET in aquatic ecosystem and associated the impact on ecological system equilibrium.
Collapse
Affiliation(s)
- Zhenglu Wang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, PR China; Institute of Marine Biology, College of Oceanography, Hohai University, Nanjing, Jiangsu, 210098, PR China
| | - Sheng Han
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, PR China
| | - Min Cai
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China
| | - Peng Du
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Zhaobin Zhang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, PR China
| | - Xiqing Li
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, PR China.
| |
Collapse
|
30
|
Ložek F, Kuklina I, Grabicová K, Kubec J, Buřič M, Randák T, Císař P, Kozák P. Cardiac and Locomotor Responses to Acute Stress in Signal Crayfish Pacifastacus leniusculus Exposed to Methamphetamine at an Environmentally Relevant Concentration. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17062084. [PMID: 32245179 PMCID: PMC7143509 DOI: 10.3390/ijerph17062084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 11/16/2022]
Abstract
Methamphetamine (METH), a central nervous system stimulant used as a recreational drug, is frequently found in surface waters at potentially harmful concentrations. To determine effects of long-term exposure to environmentally relevant levels on nontarget organisms, we analysed cardiac and locomotor responses of signal crayfish Pacifastacus leniusculus to acute stress during a 21-day exposure to METH at 1 μg L-1 followed by 14 days depuration. Heart rate and locomotion were recorded over a period of 30 min before and 30 min after exposure to haemolymph of an injured conspecific four times during METH exposure and four times during the depuration phase. Methamphetamine-exposed crayfish showed a weaker cardiac response to stress than was observed in controls during both exposure and depuration phases. Similarly, methamphetamine-exposed crayfish, during METH exposure, showed lower locomotor reaction poststressor application in contrast to controls. Results indicate biological alterations in crayfish exposed to METH at low concentration level, potentially resulting in a shift in interactions among organisms in natural environment.
Collapse
|
31
|
Sulej-Suchomska AM, Klupczynska A, Dereziński P, Matysiak J, Przybyłowski P, Kokot ZJ. Urban wastewater analysis as an effective tool for monitoring illegal drugs, including new psychoactive substances, in the Eastern European region. Sci Rep 2020; 10:4885. [PMID: 32184422 PMCID: PMC7078280 DOI: 10.1038/s41598-020-61628-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 02/27/2020] [Indexed: 11/26/2022] Open
Abstract
The use of illicit drugs causes unquestionable societal and economic damage. To implement actions aimed at combating drug abuse, it is necessary to assess illicit drug consumption patterns. The purpose of this paper was to develop, optimize, validate and apply a procedure for determining new psychoactive substances (NPSs) and classic drugs of abuse and their main metabolites in wastewater samples by using solid phase extraction (SPE) and high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS). Moreover, detailed validation of the procedure was conducted. The developed SPE–HPLC-MS/MS procedure (within the sewage-based epidemiology strategy) allowed for the simultaneous, selective, very sensitive, accurate (recoveries ≥ 80.1%) and precise (CV ≤ 8.1%) determination of new and classic psychoactive substances in wastewater samples. This study is characterized by new scientific elements, especially in terms of the freeze-thaw and post-preparative stability of the selected psychoactive substances. This is the first time that NPSs (mephedrone and ketamine), the main metabolites of heroin (6-acetylmorphine, 6-AM) and marijuana (11-nor-9-carboxy-Δ9-tetrahydrocannabinol, THC-COOH) have been detected and monitored in Poland. This study is also the first to corroborate the data available from the EMCDDA and EUROPOL report and indicates that the retail market for cocaine is expanding in Eastern Europe.
Collapse
Affiliation(s)
- Anna Maria Sulej-Suchomska
- Gdynia Maritime University, Faculty of Entrepreneurship and Quality Science, Department of Commodity and Quality Science, 81-87, Morska Str., 81-225, Gdynia, Poland.
| | - Agnieszka Klupczynska
- Poznan University of Medical Sciences, Faculty of Pharmacy, Department of Inorganic and Analytical Chemistry, 6, Grunwaldzka Str., 60-780, Poznań, Poland
| | - Paweł Dereziński
- Poznan University of Medical Sciences, Faculty of Pharmacy, Department of Inorganic and Analytical Chemistry, 6, Grunwaldzka Str., 60-780, Poznań, Poland
| | - Jan Matysiak
- Poznan University of Medical Sciences, Faculty of Pharmacy, Department of Inorganic and Analytical Chemistry, 6, Grunwaldzka Str., 60-780, Poznań, Poland
| | - Piotr Przybyłowski
- Gdynia Maritime University, Faculty of Entrepreneurship and Quality Science, Department of Commodity and Quality Science, 81-87, Morska Str., 81-225, Gdynia, Poland
| | - Zenon J Kokot
- Poznan University of Medical Sciences, Faculty of Pharmacy, Department of Inorganic and Analytical Chemistry, 6, Grunwaldzka Str., 60-780, Poznań, Poland
| |
Collapse
|
32
|
Du P, Liu X, Zhong G, Zhou Z, Thomes MW, Lee CW, Bong CW, Zhang X, Hao F, Li X, Zhang G, Thai PK. Monitoring Consumption of Common Illicit Drugs in Kuala Lumpur, Malaysia, by Wastewater-Cased Epidemiology. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17030889. [PMID: 32023897 PMCID: PMC7036889 DOI: 10.3390/ijerph17030889] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/13/2020] [Accepted: 01/23/2020] [Indexed: 01/29/2023]
Abstract
Southeast Asian countries including Malaysia play a major role in global drug trade and abuse. Use of amphetamine-type stimulants has increased in the past decade in Malaysia. This study aimed to apply wastewater-based epidemiology for the first time in Kuala Lumpur, Malaysia, to estimate the consumption of common illicit drugs in urban population. Influent wastewater samples were collected from two wastewater treatment plants in Kuala Lumpur in the summer of 2017. Concentrations of twenty-four drug biomarkers were analyzed for estimating drug consumption. Fourteen drug residues were detected with concentrations of up to 1640 ng/L. Among the monitored illicit drugs, 3,4-methylenedioxy-methamphetamine (MDMA) or ecstasy had the highest estimated per capita consumptions. Consumption and dose of amphetamine-type stimulants (methamphetamine and MDMA) were both an order of magnitude higher than those of opioids (heroin and codeine, methadone and tramadol). Amphetamine-type stimulants were the most prevalent drugs, replacing opioids in the drug market. The prevalence trend measured by wastewater-based epidemiology data reflected the shift to amphetamine-type stimulants as reported by the Association of Southeast Asian Nations Narcotics Cooperation Center. Most of the undetected drug residues were new psychoactive substances (NPSs), suggesting a low prevalence of NPSs in the drug market.
Collapse
Affiliation(s)
- Peng Du
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, China; (P.D.); (X.Z.); (F.H.)
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China;
| | - Xin Liu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; (X.L.); (G.Z.)
| | - Guangcai Zhong
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; (X.L.); (G.Z.)
| | - Zilei Zhou
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China;
| | - Margaret William Thomes
- Institute of Biological Sciences, University of Malaya, Kuala Lumpur 50603, Malaysia; (M.W.T.); (C.W.L.); (C.W.B.)
| | - Choon Weng Lee
- Institute of Biological Sciences, University of Malaya, Kuala Lumpur 50603, Malaysia; (M.W.T.); (C.W.L.); (C.W.B.)
- Institute of Ocean and Earth Sciences (IOES), University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Chui Wei Bong
- Institute of Biological Sciences, University of Malaya, Kuala Lumpur 50603, Malaysia; (M.W.T.); (C.W.L.); (C.W.B.)
- Institute of Ocean and Earth Sciences (IOES), University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Xuan Zhang
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, China; (P.D.); (X.Z.); (F.H.)
| | - Fanghua Hao
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, China; (P.D.); (X.Z.); (F.H.)
| | - Xiqing Li
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China;
- Correspondence: (X.L.); (G.Z.)
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; (X.L.); (G.Z.)
- Correspondence: (X.L.); (G.Z.)
| | - Phong K. Thai
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane 4102, Queensland, Australia;
| |
Collapse
|
33
|
Gu D, Guo C, Lv J, Hou S, Zhang Y, Feng Q, Zhang Y, Xu J. Removal of methamphetamine by UV-activated persulfate: Kinetics and mechanisms. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.05.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Capaldo A, Gay F, Laforgia V. Changes in the gills of the European eel (Anguilla anguilla) after chronic exposure to environmental cocaine concentration. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:112-119. [PMID: 30445241 DOI: 10.1016/j.ecoenv.2018.11.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/01/2018] [Accepted: 11/03/2018] [Indexed: 05/20/2023]
Abstract
The recent discovery of illicit drugs in the aquatic environment has raised concerns about the possible effects on the aquatic fauna, because of the pharmacological activity of these substances. Cocaine is an illicit drug widespread in surface waters since it is the third most widely used drug in North America, Western and Central Europe, and the second in Latin America and the Caribbean. The aim of this study was to evaluate the influence of environmental concentrations of cocaine on the gills of the European eel (Anguilla anguilla). The gills of male silver eels exposed to 20 ng L-1 of cocaine for fifty days were compared to control, vehicle control and post-exposure recovery ten days groups. The following parameters were evaluated: the thickness of the interlamellar epithelium (TIE), the length of the secondary lamellae (LSL) and the fraction of the interlamellar epithelium and the secondary lamellae occupied by the mucous cells (MC(IE-SL)FA) 3) the plasma cortisol and prolactin levels. After cocaine exposure, the gill epithelium appeared hyperplastic. The following changes were observed: proliferation in the interlamellar epithelium; partial and total fusion of the secondary lamellae, that appeared shortened and dilated; epithelial lifting and aneurism in the secondary lamellae. Moreover, in cocaine exposed eels, an increase in TIE and MC(IE-SL)FA and a decrease in LSL were observed. These changes were still present ten days after the interruption of cocaine exposure. Plasma levels of both cortisol and prolactin increased after cocaine exposure; ten days after the interruption of cocaine exposure, the plasma cortisol levels were still higher, whereas the plasma prolactin levels were lower, than control values. Our results show that even a chronic exposure to low environmental cocaine concentrations severely harms the eel gills, suggesting damages to their functions, and potentially affecting the survival of this species.
Collapse
Affiliation(s)
- Anna Capaldo
- Department of Biology, University of Naples Federico II, Via Cinthia, Edificio 7, 80126 Naples, Italy.
| | - Flaminia Gay
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 132 - 84084 Fisciano, Salerno, Italy.
| | - Vincenza Laforgia
- Department of Biology, University of Naples Federico II, Via Cinthia, Edificio 7, 80126 Naples, Italy.
| |
Collapse
|
35
|
Wang Z, Xu Z, Li X. Impacts of methamphetamine and ketamine on C.elegans's physiological functions at environmentally relevant concentrations and eco-risk assessment in surface waters. JOURNAL OF HAZARDOUS MATERIALS 2019; 363:268-276. [PMID: 30312923 DOI: 10.1016/j.jhazmat.2018.09.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 06/08/2023]
Abstract
In this work, C. elegans as a model organism was treated with methamphetamine (METH) and ketamine (KET) to assess its eco-toxicity at a range (0.05-250 μg L-1) that covers environmentally relevant concentrations (0.05-0.5 μg L-1). METH (≥0.05 μg L-1) and KET (≥0.5 μg L-1) significantly affected the feeding rate, locomotion, gustation and olfaction (P < 0.05), which may result in pronounced disturbance to aquatic ecology. Alterations in the contents of neurotransmitters (i.e., octopamine (OA), dopamine (DA), and serotonin (5-HT)) correlated with the physiology change. The metabolic activities and the antioxidase activity (i.e., superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT)) of METH and KET in C. elegans were different, which could partly explain the difference of the physiological changes induced by the two substances. Moreover, these two drugs could induce vulva deformity, and the 50% effect concentrations were 620.34 μg L-1 for METH and 54.39 μg L-1 for KET, respectively. The risk quotients (RQ) in two Chinese rivers, the Shenzhen and Liangshui River, were calculated to assess eco-risks of METH and KET. RQs of KET in the Shenzhen River were over 0.1 at the medium risk level, indicating that eco-risks of illicit drugs to aquatic organism cannot be overlooked.
Collapse
Affiliation(s)
- Zhenglu Wang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Zeqiong Xu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Xiqing Li
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
36
|
Capaldo A, Gay F, Lepretti M, Paolella G, Martucciello S, Lionetti L, Caputo I, Laforgia V. Effects of environmental cocaine concentrations on the skeletal muscle of the European eel (Anguilla anguilla). THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 640-641:862-873. [PMID: 29879672 DOI: 10.1016/j.scitotenv.2018.05.357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 05/26/2018] [Accepted: 05/28/2018] [Indexed: 05/02/2023]
Abstract
The presence of illicit drugs in the aquatic environment represents a new potential risk for aquatic organisms, due to their constant exposure to substances with strong pharmacological activity. Currently, little is known about the ecological effects of illicit drugs. The aim of this study was to evaluate the influence of environmental concentrations of cocaine, an illicit drug widespread in surface waters, on the skeletal muscle of the European eel (Anguilla anguilla). The skeletal muscle of silver eels exposed to 20 ng L-1 of cocaine for 50 days were compared to control, vehicle control and two post-exposure recovery groups (3 and 10 days after interruption of cocaine). The eels general health, the morphology of the skeletal muscle and several parameters indicative of the skeletal muscle physiology were evaluated, namely the muscle whole protein profile, marker of the expression levels of the main muscle proteins; cytochrome oxidase activity, markers of oxidative metabolism; caspase-3, marker of apoptosis activation; serum levels of creatine kinase, lactate dehydrogenase and aspartate aminotransferase, markers of skeletal muscle damages. Cocaine-exposed eels appeared hyperactive but they showed the same general health status as the other groups. In contrast, their skeletal muscle showed evidence of serious injury, including muscle breakdown and swelling, similar to that typical of rhabdomyolysis. These changes were still present 10 days after the interruption of cocaine exposure. In fact, with the exception of the expression levels of the main muscle proteins, which remained unchanged, all the other parameters examined showed alterations that persisted for at least 10 days after the interruption of cocaine exposure. This study shows that even low environmental concentrations of cocaine cause severe damage to the morphology and physiology of the skeletal muscle of the silver eel, confirming the harmful impact of cocaine in the environment that potentially affects the survival of this species.
Collapse
Affiliation(s)
- Anna Capaldo
- Department of Biology, University of Naples Federico II, Via Cinthia, Edificio 7, 80126 Naples, Italy.
| | - Flaminia Gay
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 132 - 84084 Fisciano - Salerno, Italy.
| | - Marilena Lepretti
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 132 - 84084 Fisciano - Salerno, Italy.
| | - Gaetana Paolella
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 132 - 84084 Fisciano - Salerno, Italy.
| | - Stefania Martucciello
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 132 - 84084 Fisciano - Salerno, Italy.
| | - Lillà Lionetti
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 132 - 84084 Fisciano - Salerno, Italy; ELFID (European Laboratory for Food-Induced Diseases), University of Naples Federico II, via Pansini 5, 80131 Naples, Italy.
| | - Ivana Caputo
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 132 - 84084 Fisciano - Salerno, Italy; ELFID (European Laboratory for Food-Induced Diseases), University of Naples Federico II, via Pansini 5, 80131 Naples, Italy.
| | - Vincenza Laforgia
- Department of Biology, University of Naples Federico II, Via Cinthia, Edificio 7, 80126 Naples, Italy.
| |
Collapse
|
37
|
López-García E, Mastroianni N, Postigo C, Barceló D, López de Alda M. A fully automated approach for the analysis of 37 psychoactive substances in raw wastewater based on on-line solid phase extraction-liquid chromatography-tandem mass spectrometry. J Chromatogr A 2018; 1576:80-89. [DOI: 10.1016/j.chroma.2018.09.038] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/07/2018] [Accepted: 09/17/2018] [Indexed: 10/28/2022]
|
38
|
Wang Z, Xu Z, Li X. Biodegradation of methamphetamine and ketamine in aquatic ecosystem and associated shift in bacterial community. JOURNAL OF HAZARDOUS MATERIALS 2018; 359:356-364. [PMID: 30048950 DOI: 10.1016/j.jhazmat.2018.07.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/05/2018] [Accepted: 07/09/2018] [Indexed: 06/08/2023]
Abstract
Methamphetamine (METH) and ketamine (KET) are widely detected in surface waters and thus may pose threat to aquatic organisms. However, their degradation in aquatic systems and the effects on bacterial community were unknown. The present study investigated the biodegradation process of METH and KET in river waters and sediments. Three microcosms were examined over 40-days' incubation under (i) aerobic and illumination conditions, (ii) anaerobic condition exposed to light, (iii) anaerobic-dark condition. Statistically significant biodegradation of METH and KET (1 mg L-1) was observed in all treatments. The half-lives under the examined conditions indicate that the two drugs were refractory in aquatic environment. Moreover, there were no pronounced absorption and photolysis observed in this work. Illumina MiSeq sequencing analysis revealed that Methylophilaceae, Saprospiraceae, WCHB1-69, Desulfobulbaceae, Porphyromonadaceae, FamilyXI, Peptococcaceae, and Rhizobiaceae were the predominant candidatus families during KET and METH biodegradation, and the preponderance would impair other microorganisms' prosperity since them were scarcely detected in the wild. Meanwhile, canonical correlation analysis (CCA) indicates that METH as an environmental factor may affect bacterial community structure in field water samples.
Collapse
Affiliation(s)
- Zhenglu Wang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Zeqiong Xu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Xiqing Li
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
39
|
Devault DA, Maguet H, Merle S, Péné-Annette A, Lévi Y. Wastewater-based epidemiology in low Human Development Index states: bias in consumption monitoring of illicit drugs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:27819-27838. [PMID: 30109683 DOI: 10.1007/s11356-018-2864-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 07/27/2018] [Indexed: 06/08/2023]
Abstract
Wastewater-based epidemiology is a promising approach worldwide, and its application is currently being developed in non-advanced economies. This technology, based on known toxicokinetic data initially used to detect illicit drugs in well-managed and maintained local sewer networks, has been extended to assess other products such as pesticides, alcohol, flame retardants, nicotine, and other substances. This technology is also used in countries with non-advanced economies. The present review aims to support future wastewater-based epidemiology in such countries by providing toxicokinetic data for locally used narcotic drugs that are expected or known to be emerging in developed countries, outlining the excretion differences due to human polymorphism, and summarising the practical obstacles due to the coverage, maintenance efficiency, or type of local sewage network.Case study feedback from Martinique is presented as an example; the Martinique field study complies with the Organisation for Economic Co-operation and Development standards for health issues, but not with regard to population and urban dynamics.
Collapse
Affiliation(s)
- Damien A Devault
- Faculté de Pharmacie, Univ. Paris Sud, Univ. Paris Saclay, UMR 8079, CNRS, AgroParisTech, France, 5 rue J. B. Clement, 92290, Chatenay-Malabry, France.
| | - Hadrien Maguet
- Centre Hospitalier Universitaire de Martinique, CS 90632 - 97261, Fort-de-France Cedex, France
| | - Sylvie Merle
- Observatoire de la Santé de la Martinique, Immeuble Objectif 3000, Acajou sud, 97232, Le Lamentin, Martinique
| | - Anne Péné-Annette
- Laboratoire EA 929 AIHP-GEODE-BIOSPHERES Campus Universitaire de Schœlcher, 97275, Schœlcher, France
| | - Yves Lévi
- Faculté de Pharmacie, Univ. Paris Sud, Univ. Paris Saclay, UMR 8079, CNRS, AgroParisTech, France, 5 rue J. B. Clement, 92290, Chatenay-Malabry, France
| |
Collapse
|
40
|
Cosenza A, Maida CM, Piscionieri D, Fanara S, Di Gaudio F, Viviani G. Occurrence of illicit drugs in two wastewater treatment plants in the South of Italy. CHEMOSPHERE 2018; 198:377-385. [PMID: 29421753 DOI: 10.1016/j.chemosphere.2018.01.158] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/24/2018] [Accepted: 01/28/2018] [Indexed: 06/08/2023]
Abstract
In this study the occurrence and the behavior of illicit drugs and their metabolites have been investigated for two wastewater treatment plants (WWTPs) (namely, WWTP-1 and WWTP-2) located in Sicily (island of Italy). Samples were analyzed for methamphetamine, cocaine (COC), 3,4-methylenedioxymethamphetamine (MDMA), methadone (METH), 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP), 3,4-methylenedioxy amphetamine (MDA); 3,4-methylenedioxy ethylamphetamine (MDEA), 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (THC-COOH) and Benzoylecgonine (BEG). The BEG, COC, MOR and THC-COOH were found at the highest concentration in both WWTPs. The Wastewater-based epidemiology calculation for BEG, COC, cannabinoids and THC-COOH was performed. On average, for both plants, population consumes 1.6 and 23.4 dose 1000 inh-1 day-1 of cocaine and cannabis, respectively. For WWTP-1 negative removals of illicit drugs were observed. For WWTP-2 the following average removal efficiencies were obtained: BEG (77.85%), COC (92.34%), CODEINE (64.75%), MOR (90.16%) and THC-COOH (68.64%).
Collapse
Affiliation(s)
- Alida Cosenza
- Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali (DICAM), Scuola Politecnica, Università di Palermo, Viale delle Scienze, 90128, Palermo, Italy.
| | - Carmelo Massimo Maida
- Dipartimento di Scienze per la Promozione della Salute e Materno Infantile, Scuola di Medicina e Chirurgia, Università di Palermo, Via del Vespro 13, 90127, Palermo, Italy
| | - Donatella Piscionieri
- Mass Spectrometry Laboratory for Clinical Risk and Quality Control, A.O.U.P. "P. Giaccone", Palermo, Italy
| | - Serena Fanara
- Mass Spectrometry Laboratory for Clinical Risk and Quality Control, A.O.U.P. "P. Giaccone", Palermo, Italy
| | - Francesca Di Gaudio
- Mass Spectrometry Laboratory for Clinical Risk and Quality Control, A.O.U.P. "P. Giaccone", Palermo, Italy
| | - Gaspare Viviani
- Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali (DICAM), Scuola Politecnica, Università di Palermo, Viale delle Scienze, 90128, Palermo, Italy
| |
Collapse
|
41
|
Zhang Y, Zhang T, Guo C, Hou S, Hua Z, Lv J, Zhang Y, Xu J. Development and application of the diffusive gradients in thin films technique for simultaneous measurement of methcathinone and ephedrine in surface river water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 618:284-290. [PMID: 29131996 DOI: 10.1016/j.scitotenv.2017.11.068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 06/07/2023]
Abstract
In this study, a passive sampling technique, diffusive gradients in thin films (DGT) was developed to simultaneously measure two drugs, methcathinone (MC) and ephedrine (EPH) in surface water. Four types of binding gels and four types of filter membranes were tested for the optimal configuration. XAD18 agarose binding gel and agarose diffusive gel, together with polyethersulfone filter membrane were used for measuring MC and EPH in the DGT device. 5% NH3 in acetonitrile was used as the elution solvent, with the elution efficiency for MC and EPH higher than 71%. At 25°C, the diffusion coefficients of MC and EPH in the diffusive gel were 7.60×10-6cm2s-1 and 6.62×10-6cm2s-1, respectively. The DGT was effective in a wide range of pH (4-11) and ionic strength (NaCl: 0.001-0.5M). The DGT device was deployed in Beijing urban surface water for successive 7days to measure the time-weighted concentrations of MC and EPH. Results showed that EPH was detected in all samples, while MC was below its detection limit. DGT concentrations were comparable to the concentrations determined by SPE. This study demonstrated that the developed DGT method was effective to monitor the two drugs in surface water in situ.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Tingting Zhang
- Drug Intelligence and Forensic Center, Ministry of Public Security, Beijing 100193, China
| | - Changsheng Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Song Hou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhendong Hua
- Drug Intelligence and Forensic Center, Ministry of Public Security, Beijing 100193, China.
| | - Jiapei Lv
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yuan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
42
|
Du P, Zhou Z, Bai Y, Xu Z, Gao T, Fu X, Li X. Estimating heroin abuse in major Chinese cities through wastewater-based epidemiology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 605-606:158-165. [PMID: 28666170 DOI: 10.1016/j.scitotenv.2017.05.262] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 05/26/2017] [Accepted: 05/29/2017] [Indexed: 06/07/2023]
Abstract
Heroin consumption in major cities across China was estimated for the first time via wastewater-based epidemiology. Influent and effluent wastewater samples were collected from 49 wastewater treatment plants (WWTPs) in 24 major cities that cover all the geographic regions of the country. Concentrations of morphine, 6-acetylmorphine, and codeine were measured. Near complete removal of morphine by wastewater treatment processes was observed, whereas removal rates of codeine were slightly lower. Morphine loads were much higher than codeine loads at most WWTPs in China, a trend opposite to that in many European countries. In addition, morphine and codeine loads were strongly correlated at most WWTPs, indicating morphine and codeine in wastewater were predominantly from the same source, street heroin. At WWTPs in Guangzhou and Shenzhen, codeine loads were considerably higher than morphine loads, consistent with previous reports of codeine abuse (e.g., as cough syrup) among middle and high school students in Guangdong province. Heroin consumption was derived based on morphine loads and taking into account therapeutic use of morphine and codeine, as well as contribution of codeine and acetylcodeine in street heroin. Highest heroin consumption was observed in northwestern and southwestern China. The average heroin consumption of the sampled cities was 64.6±78.7mg/1000inh/d. The nation-wide average heroin consumption was much lower than that of methamphetamine, consistent with seizure data and numbers of registered heroin and methamphetamine users in China.
Collapse
Affiliation(s)
- Peng Du
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, 100871 Beijing, China
| | - Zilei Zhou
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, 100871 Beijing, China
| | - Ya Bai
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, 100871 Beijing, China
| | - Zeqiong Xu
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, 100871 Beijing, China
| | - Tingting Gao
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, 100871 Beijing, China
| | - Xiaofang Fu
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, 100871 Beijing, China
| | - Xiqing Li
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, 100871 Beijing, China.
| |
Collapse
|
43
|
Yadav MK, Short MD, Aryal R, Gerber C, van den Akker B, Saint CP. Occurrence of illicit drugs in water and wastewater and their removal during wastewater treatment. WATER RESEARCH 2017; 124:713-727. [PMID: 28843086 DOI: 10.1016/j.watres.2017.07.068] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 07/25/2017] [Accepted: 07/25/2017] [Indexed: 06/07/2023]
Abstract
This review critically evaluates the types and concentrations of key illicit drugs (cocaine, amphetamines, cannabinoids, opioids and their metabolites) found in wastewater, surface water and drinking water sources worldwide and what is known on the effectiveness of wastewater treatment in removing such compounds. It is also important to amass information on the trends in specific drug use as well as the sources of such compounds that enter the environment and we review current international knowledge on this. There are regional differences in the types and quantities of illicit drug consumption and this is reflected in the quantities detected in water. Generally, the levels of illicit drugs in wastewater effluents are lower than in raw influent, indicating that the majority of compounds can be at least partially removed by conventional treatment processes such as activated sludge or trickling filters. However, the literature also indicates that it is too simplistic to assume non-detection equates to drug removal and/or mitigation of associated risks, as there is evidence that some compounds may avoid detection via inadequate sampling and/or analysis protocols, or through conversion to transformation products. Partitioning of drugs from the water to the solids fraction (sludge/biosolids) may also simply shift the potential risk burden to a different environmental compartment and the review found no information on drug stability and persistence in biosolids. Generally speaking, activated sludge-type processes appear to offer better removal efficacy across a range of substances, but the lack of detail in many studies makes it difficult to comment on the most effective process configurations and operations. There is also a paucity of information on the removal effectiveness of alternative treatment processes. Research is also required on natural removal processes in both water and sediments that may over time facilitate further removal of these compounds in receiving environments.
Collapse
Affiliation(s)
- Meena K Yadav
- Natural and Built Environments Research Centre, School of Natural and Built Environments, University of South Australia, Mawson Lakes, SA 5095, Australia.
| | - Michael D Short
- Natural and Built Environments Research Centre, School of Natural and Built Environments, University of South Australia, Mawson Lakes, SA 5095, Australia; Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia.
| | - Rupak Aryal
- Natural and Built Environments Research Centre, School of Natural and Built Environments, University of South Australia, Mawson Lakes, SA 5095, Australia.
| | - Cobus Gerber
- School of Pharmacy and Medical Science, City East Campus, North Terrace, Playford Building, Level 4, Room 47, Adelaide, SA 5000, Australia.
| | - Ben van den Akker
- Natural and Built Environments Research Centre, School of Natural and Built Environments, University of South Australia, Mawson Lakes, SA 5095, Australia; Australian Water Quality Centre, SA Water, 250 Victoria Square, Adelaide SA 5000; GPO Box 1751, Adelaide SA 5001, Australia.
| | - Christopher P Saint
- Natural and Built Environments Research Centre, School of Natural and Built Environments, University of South Australia, Mawson Lakes, SA 5095, Australia; Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia.
| |
Collapse
|
44
|
Li SW, Wang YH, Lin AYC. Ecotoxicological effect of ketamine: Evidence of acute, chronic and photolysis toxicity to Daphnia magna. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 143:173-179. [PMID: 28549301 DOI: 10.1016/j.ecoenv.2017.05.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/15/2017] [Accepted: 05/20/2017] [Indexed: 06/07/2023]
Abstract
Ketamine has been increasingly used in medicine and has the potential for abuse or illicit use around the world. Ketamine cannot be removed by conventional wastewater treatment plants. Although ketamine and its metabolite norketamine have been detected to a significant degree in effluents and aquatic environments, their ecotoxicity effects in aquatic organisms remain undefined. In this study, we investigated the acute toxicity of ketamine and its metabolite, along with the chronic reproductive toxicity of ketamine (5-100μg/L) to Daphnia magna. Multiple environmental scenarios were also evaluated, including drug mixtures and sunlight irradiation toxicity. Ketamine and norketamine caused acute toxicity to D. magna, with half lethal concentration (LC50) values of 30.93 and 25.35mg/L, respectively, after 48h of exposure. Irradiated solutions of ketamine (20mg/L) significantly increased the mortality of D. magna; pre-irradiation durations up to 2h rapidly increased the death rate to 100%. A new photolysis byproduct (M.W. 241) of norketamine that accumulates during irradiation was identified for the first time. The relevant environmental concentration of ketamine produced significant reproductive toxicity effects in D. magna, as revealed by the reduction of the number of total live offspring by 33.6-49.8% (p < 0.05). The toxicity results indicate that the environmental hazardous risks of the relevant ketamine concentration cannot be ignored and warrant further examination.
Collapse
Affiliation(s)
- Shih-Wei Li
- Graduate Institute of Environmental Engineering, National Taiwan University, 71, Chou-Shan Rd., Taipei 106, Taiwan
| | - Yu-Hsiang Wang
- Graduate Institute of Environmental Engineering, National Taiwan University, 71, Chou-Shan Rd., Taipei 106, Taiwan
| | - Angela Yu-Chen Lin
- Graduate Institute of Environmental Engineering, National Taiwan University, 71, Chou-Shan Rd., Taipei 106, Taiwan.
| |
Collapse
|
45
|
Guo C, Zhang T, Hou S, Lv J, Zhang Y, Wu F, Hua Z, Meng W, Zhang H, Xu J. Investigation and Application of a New Passive Sampling Technique for in Situ Monitoring of Illicit Drugs in Waste Waters and Rivers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:9101-9108. [PMID: 28735534 DOI: 10.1021/acs.est.7b00731] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Illicit drugs constitute a class of emerging contaminants that has been drawing significant concern due to its potent pharmacological and biological activities. In this study, an in situ passive sampling approach that uses diffusive gradients in thin films (DGT) was successfully tested for measuring ketamine (KET), methamphetamine (METH), and amphetamine (AMP) in water. The diffusion coefficients of KET, METH, and AMP in diffusive gel were (8.13 ± 0.12) × 10-6, (8.55 ± 0.14) × 10-6, and (7.72 ± 0.18) × 10-6 cm2 s-1 at 22 °C, respectively. The capacities of an XAD binding gel for KET, METH, and AMP were 92, 57, and 45 μg per binding gel disc, which were suitable for long-term environmental monitoring. The DGT measurement of these drugs was not influenced by the pH (4 to 9) and the ionic strength (0.001 M - 0.1 M) and unaffected by the water flow, demonstrating the effectiveness of the XAD-based DGT for the in situ monitoring of illicit drugs. DGT samplers were deployed in a WWTP influent and natural rivers in Beijing, China. The ng L-1 levels of the drugs were high in the wastewater influent and low in river waters, with an insignificant fluctuation during the seven-day monitoring. The DGT-measured concentrations were comparable to the average concentrations determined by SPE method, which suggested that the average data measured by DGT could be substituted for high-frequency grab sampling. This study has demonstrated systematically for the first time that DGT is effective and accurate for monitoring illicit drugs in wastewater and surface waters, and provides a powerful tool to investigating the presence, transport, and environmental behaviors of these drugs in the aquatic ecosystem.
Collapse
Affiliation(s)
- Changsheng Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences , 100012 Beijing, China
| | - Tingting Zhang
- National Narcotics Laboratory, Drug Intelligence and Forensic Center of the Ministry of Public Security , Beijing 100193, China
| | - Song Hou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences , 100012 Beijing, China
| | - Jiapei Lv
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences , 100012 Beijing, China
| | - Yuan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences , 100012 Beijing, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences , 100012 Beijing, China
| | - Zhendong Hua
- National Narcotics Laboratory, Drug Intelligence and Forensic Center of the Ministry of Public Security , Beijing 100193, China
| | - Wei Meng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences , 100012 Beijing, China
| | - Hao Zhang
- Lancaster Environment Centre, Lancaster University , Lancaster LA1 4YQ, United Kingdom
| | - Jian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences , 100012 Beijing, China
| |
Collapse
|
46
|
Wang C, Hou L, Li J, Xu Z, Gao T, Yang J, Zhang H, Li X, Du P. Occurrence of diazepam and its metabolites in wastewater and surface waters in Beijing. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:15379-15389. [PMID: 28508332 DOI: 10.1007/s11356-017-8922-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 03/23/2017] [Indexed: 06/07/2023]
Abstract
Occurrence of diazepam and its metabolites, nordiazepam, temazepam, and oxazepam in the water environment in Beijing was investigated. Samples were collected from four rivers flowing through the city and from all the thirteen sewage treatment plants in the urban area. Average influent concentrations of diazepman, temazepam, and oxazepam in 2013 summer ranged from 0.9 to 7.1, 1.5 to 3.4, and 2.9 to 12.4 ng L-1, respectively, whereas nordiazepam concentrations were below quantification limit on the majority of sampling dates. No significant seasonal variation in influent concentrations was observed. Removal during treatment was low for diazepman (<50%), temazepam (<20%), and oxazepam (<20%), consistent with previous findings reported in the literature. Wastewater-based epidemiology approach was applied to back-calculate population size-normalized diazepam consumption (using temazepam as biomarker) in Beijing, which was found to be at least 3.8 times more of the national average. Diazepam, temazepam, and oxazepam were widely detected in surface waters, with concentrations greater than concentrations in sewage influents at many sampling points, strongly indicating direct discharge of wastewater of high diazepam concentrations into the surface waters in the city.
Collapse
Affiliation(s)
- Congcong Wang
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, 100871, Beijing, People's Republic of China
| | - Linlin Hou
- College of Chemistry and Chemical Engineering, Anyang Normal University, 45500, Henan, People's Republic of China
| | - Jing Li
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, 100871, Beijing, People's Republic of China
| | - Zeqiong Xu
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, 100871, Beijing, People's Republic of China
| | - Tingting Gao
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, 100871, Beijing, People's Republic of China
| | - Jun Yang
- Beijing Urban Drainage Monitoring Center Co. Ltd., Beijing, 100012, China
| | - Huafang Zhang
- Beijing Urban Drainage Monitoring Center Co. Ltd., Beijing, 100012, China
| | - Xiqing Li
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, 100871, Beijing, People's Republic of China.
| | - Peng Du
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, 100871, Beijing, People's Republic of China.
| |
Collapse
|
47
|
Zhang Y, Zhang T, Guo C, Lv J, Hua Z, Hou S, Zhang Y, Meng W, Xu J. Drugs of abuse and their metabolites in the urban rivers of Beijing, China: Occurrence, distribution, and potential environmental risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 579:305-313. [PMID: 27887830 DOI: 10.1016/j.scitotenv.2016.11.101] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/01/2016] [Accepted: 11/16/2016] [Indexed: 06/06/2023]
Abstract
The occurrence and distribution of five drugs of abuse and their metabolites, namely, methamphetamine (METH), amphetamine (AMP), ketamine (KET), ephedrine (EPH), and hydroxylimine (HY), were investigated in the surface water in urban rivers in Beijing, China. A total of 117 surface water samples were collected from the seven rivers in the Beijing urban areas during four different seasons. Laboratory analyses revealed that EPH and METH were the most predominant drugs, with detection frequency ranging from 94% to 100% and from 65% to 100%, respectively. High levels of METH and KET were observed in the center part of the urban areas, which was likely associated with the drug abuse and the entertainment activities. Seasonal variation of the drug occurrence showed that the highest concentration of drugs of abuse was found during winter, which was likely due to the high consumption, low temperature, and low water flows during the cold weather. By contrast, the concentration and detection frequency of AMP and HY were relatively low. Risk assessment by the risk quotient method indicated that the five drugs of abuse and their metabolites were not likely to exert biological effects on the aquatic ecosystems at current levels in the surface water. However, the potential adverse effect of drugs of abuse and their metabolites on ecosystem functioning and human health should not be neglected.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Tingting Zhang
- Drug Intelligence and Forensic Center of the Ministry of Public Security, Beijing 100193, China
| | - Changsheng Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jiapei Lv
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhendong Hua
- Drug Intelligence and Forensic Center of the Ministry of Public Security, Beijing 100193, China.
| | - Song Hou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yuan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wei Meng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
48
|
Yao B, Lian L, Pang W, Yin D, Chan SA, Song W. Determination of illicit drugs in aqueous environmental samples by online solid-phase extraction coupled to liquid chromatography-tandem mass spectrometry. CHEMOSPHERE 2016; 160:208-215. [PMID: 27376860 DOI: 10.1016/j.chemosphere.2016.06.092] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 05/27/2016] [Accepted: 06/25/2016] [Indexed: 06/06/2023]
Abstract
In this study, a fully automated analytical method, based on online solid phase extraction coupled to liquid chromatography-triple quadrupole tandem mass spectrometry (online SPE-LC-MS/MS), has been developed and optimized for the quantification of 10 illicit drugs and metabolites in environmentally aqueous samples collected from China. The particular attention was devoted to minimize the matrix effects through a washing step, which washed out the interferences effectively and helped to reduce the matrix effect significantly. The key advantages of the method are high sensitivity, selectivity and reliability of results, smaller sample manipulation, full automation, and fairly high throughput. The whole procedure was then successfully applied in the analysis of various surface water and wastewater effluents samples. Pseudoephedrine have been detected at trace levels (several tens ng L(-1) or less), while MDA, MDMA, benzoylecgonine and methadone were below the LOQ in all samples. Caffeine, cotinine and paraxanthine, which may be derived from medicines and foods, were detected with the highest frequencies and concentrations.
Collapse
Affiliation(s)
- Bo Yao
- Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, PR China
| | - Lushi Lian
- Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, PR China
| | - Weihai Pang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China.
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Shen-An Chan
- Agilent Technology, Inc., 1350 North Sichuan Road, Shanghai, 200080, PR China
| | - Weihua Song
- Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, PR China.
| |
Collapse
|
49
|
Wang DG, Zheng QD, Wang XP, Du J, Tian CG, Wang Z, Ge LK. Illicit drugs and their metabolites in 36 rivers that drain into the Bohai Sea and north Yellow Sea, north China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:16495-16503. [PMID: 27167374 DOI: 10.1007/s11356-016-6824-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/02/2016] [Indexed: 06/05/2023]
Abstract
Illicit drugs and their metabolites have recently been recognized as an emerging group of contaminants due to their potential ecotoxicological impact in aquatic ecosystems. To date, information on the occurrence of these compounds in the aquatic environment of China remains limited. In this study, we collected surface water samples from 36 rivers in north China that discharge into the Bohai Sea and north Yellow Sea and measured the concentrations of amphetamine-like compounds, ketamines, cocainics, and opioids. The occurrence and spatial patterns of these substances show significant differences between the rivers and regions. Two designer drugs, methamphetamine (METH) and ketamine (KET), were the most abundant compounds detected in the entire set of samples (detection frequency of 92 and 69 %). The concentrations of METH and KET ranged from <0.1 to 42.0 ng L(-1) (mean = 4.53 ng L(-1)) and <0.05 to 4.50 ng L(-1) (mean = 0.49 ng L(-1)), respectively. The high detection frequencies of METH and KET are consistent with the fact that they are the main illicit drugs consumed in China. The high concentrations of these illicit drugs and their metabolites were found in areas that have a high population density. The riverine input of total illicit drugs into the Bohai Sea and north Yellow Sea was estimated to be in the range of 684 to 1160 kg per year.
Collapse
Affiliation(s)
- De-Gao Wang
- School of Environmental Science and Technology, Dalian Maritime University, 1 Linghai Road, Dalian, 116023, Liaoning, China.
| | - Qiu-Da Zheng
- School of Environmental Science and Technology, Dalian Maritime University, 1 Linghai Road, Dalian, 116023, Liaoning, China
| | - Xiao-Ping Wang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, CAS, Yantai, 264003, China
| | - Juan Du
- School of Environmental Science and Technology, Dalian Maritime University, 1 Linghai Road, Dalian, 116023, Liaoning, China
| | - Chong-Guo Tian
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, CAS, Yantai, 264003, China
| | - Zhuang Wang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Lin-Ke Ge
- Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian, 116023, China
| |
Collapse
|