1
|
Iuffrida L, Wathsala RHGR, Musella M, Palladino G, Candela M, Franzellitti S. Stability and expression patterns of housekeeping genes in Mediterranean mussels (Mytilus galloprovincialis) under field investigations. Comp Biochem Physiol C Toxicol Pharmacol 2025; 287:110047. [PMID: 39313016 DOI: 10.1016/j.cbpc.2024.110047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 09/25/2024]
Abstract
The use of marine mussels as biological models encompasses a broad range of research fields, in which the application of RNA analyses disclosed novel biomarkers of environmental stress and investigated biochemical mechanisms of action. Quantitative real-time PCR (qPCR) is the gold standard for these studies, and despite its wide use and available protocols, it may be affected by technical flaws requiring reference gene data normalization. In this study, stability of housekeeping genes commonly employed as reference genes in qPCR analyses with Mytilus galloprovincialis was explored under field conditions. Mussels were collected from farms in the Northwestern Adriatic Sea. The sampling strategy considered latitudinal gradients of environmental parameters (proxied by location), gender, and their interactions with seasonality. Analyses of gene stability were performed using different algorithms. BestKeeper and geNorm agreed that combination of the ribosomal genes 18S ribosomal RNA (18S) and 28S ribosomal RNA (28S) was the best normalization strategy in the conditions tested, which agrees with available evidence. NormFinder provided different normalization strategies, involving combinations of tubulin (TUB)/28S (Gender/Season effect) or TUB/helicase (HEL) (Location/Season effect). Since NormFinder considers data grouping and computes both intra- and inter-group stability variations, it should work better with complex experimental designs and dataset structuring. Under the selected normalization strategies, expressions of the variable housekeeping genes actin (ACT) and elongation factor-1α (EF1) correlated with seasonal and latitudinal changes of abiotic environmental factors and mussel physiological status. Results point to consider ACT and EF1 expressions as molecular biomarkers of mussel general physiological status in field studies.
Collapse
Affiliation(s)
- Letizia Iuffrida
- Animal and Environmental Physiology Laboratory, Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Ravenna, Italy
| | | | - Margherita Musella
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Giorgia Palladino
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Marco Candela
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Silvia Franzellitti
- Animal and Environmental Physiology Laboratory, Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Ravenna, Italy.
| |
Collapse
|
2
|
Gabe HB, Queiroga FR, Taruhn KA, Trevisan R. Mitigating oxidative stress in oyster larvae: Curcumin promotes enhanced redox balance, antioxidant capacity, development, and resistance to antifouling compounds. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 279:107231. [PMID: 39756171 DOI: 10.1016/j.aquatox.2024.107231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/27/2024] [Accepted: 12/27/2024] [Indexed: 01/07/2025]
Abstract
Curcumin (CUR) is a natural compound recognized for stimulating the expression of antioxidant genes. This characteristic has been used to promote animal health and production in aquaculture settings. We hypothesized that supplementing embryos of Crassostrea gigas oysters with CUR would improve their antioxidant capacity, development, and resilience to stress. Embryos were exposed to CUR ranging from 0.03 to 30 µM for 24 h. Their development was assessed, along with measurements of glutathione levels, glutathione S-transferase activity, antioxidant capacity, production of reactive oxygen species (ROS), metabolic activity, and resistance to organic hydroperoxide and the antifouling compound dichlorooctylisothiazolinone (DCOIT). Low curcumin concentrations (up to 1 μM) activated the d-larvae antioxidant system, with a significant threefold increase in glutathione levels and a 50 % decrease in ROS production. This enhancement in antioxidant defense improved the ability of larvae to detoxify organic hydroperoxide. It also resulted in larger larval size and increased survival rates, whether under normal conditions or exposure to peroxide or DCOIT. CUR shows great promise in supporting larval development, but high concentrations were toxic (EC50 = 2.90 μM), probably due to excessive antioxidant activation. Our results indicate that the antioxidant system may play a role in controlling bivalve early development. Understanding how antioxidants influence redox balance and gene expression during early life can enhance our knowledge of stress response mechanisms in marine organisms, offering insights into how they cope with pollutants and environmental challenges. Integrating CUR and antioxidant defense pathway approaches into aquaculture practices could boost productivity and sustainability in oyster aquaculture.
Collapse
Affiliation(s)
- Heloísa Bárbara Gabe
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil; Univ Brest, Ifremer, CNRS, IRD, LEMAR, IUEM, F-29280 Plouzané, France
| | | | - Karine Amabile Taruhn
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil
| | - Rafael Trevisan
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, IUEM, F-29280 Plouzané, France.
| |
Collapse
|
3
|
Iuffrida L, Spezzano R, Trapella G, Cinti N, Parma L, De Marco A, Palladino G, Bonaldo A, Candela M, Franzellitti S. Physiological plasticity and life history traits affect Chamelea gallina acclimatory responses during a marine heatwave. ENVIRONMENTAL RESEARCH 2024; 263:120287. [PMID: 39491606 DOI: 10.1016/j.envres.2024.120287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/16/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
The striped venus clam (Chamelea gallina) is a relevant economic resource in the Adriatic Sea. This study explored the physiological status of C. gallina at four sites selected along a gradient from high to low incidence of recorded historical mortality events and low to high productivity in the Northwestern Adriatic Sea. Investigations were performed during the marine heatwave in 2022 (from July to November). The optimal temperature range for C. gallina was exceeded in July and September, exacerbating stress conditions and a poor nutritional status, particularly at the low productivity sites. Transcriptional profiles assessed in digestive glands showed that clams from the low productivity sites up-regulated transcripts related to feeding/digestive functions as a possible compensatory mechanism to withstand adverse environmental conditions. Clams from the high productivity sites, that in a previous study showed enrichment of health-promoting microbiome components, displayed a healthier metabolic makeup (IDH up-regulation) and induction of protective antioxidant and immune responses. These features are hallmarks of putative enhanced resilience of the species towards environmental stress. Despite the well-known high sensitivity of C. gallina to environmental variations and its narrow window of acclimatory potential, results highlight that local conditions may influence physiological plasticity of this clam species and shape either positively or negatively its response capabilities to environmental changes. The identification of health-promoting endogenous mechanisms both from the animal (this study) and from its associated microbiome may provide the foundation for developing novel tools and strategies to improve clam health and production in low productivity areas or under adverse environmental conditions.
Collapse
Affiliation(s)
- Letizia Iuffrida
- Animal and Environmental Physiology Laboratory, Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, 48123, Ravenna, Italy
| | - Rachele Spezzano
- Ocean EcoSystems Biology Unit, Marine Biological Laboratory, Woods Hole, 02543, Massachussets, United States
| | - Giulia Trapella
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126, Bologna, Italy
| | - Nicolo Cinti
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126, Bologna, Italy
| | - Luca Parma
- Department of Veterinary Medical Sciences, University of Bologna, 40064, Ozzano Emilia, Italy
| | - Antonina De Marco
- Department of Veterinary Medical Sciences, University of Bologna, 40064, Ozzano Emilia, Italy
| | - Giorgia Palladino
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126, Bologna, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, 61032, Fano, Italy
| | - Alessio Bonaldo
- Department of Veterinary Medical Sciences, University of Bologna, 40064, Ozzano Emilia, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, 61032, Fano, Italy
| | - Marco Candela
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126, Bologna, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, 61032, Fano, Italy
| | - Silvia Franzellitti
- Animal and Environmental Physiology Laboratory, Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, 48123, Ravenna, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, 61032, Fano, Italy.
| |
Collapse
|
4
|
Valeria V, Jorge CC, Alejandra ML, Claudia GC, Humberto LM, Jorge MM. Environmental pollution by plasticizers and the relationship to vector dengue mosquito Aedes aegypti: Bisphenol A (BPA) affect the development and viral immune pathway response. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177087. [PMID: 39461527 DOI: 10.1016/j.scitotenv.2024.177087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
Bisphenol A (BPA) is a widely used industrial chemical found in various products, leading to human exposure through dietary and non-dietary sources. It acts as an endocrine disruptor, affecting reproductive processes in vertebrates by binding to estrogen receptors. While its effects on vertebrates have been extensively studied, much less is known about its impact on invertebrates. This study investigates the effects of BPA on the development and immune response of Aedes aegypti mosquitoes, which are important vectors for arboviral diseases, such as dengue, an emergent viral disease worldwide. Artificial aquatic niches (AAN) were sampled, and BPA concentrations were quantified. Ae. aegypti larvae were exposed to varying BPA concentrations, and their development, fecundity, fertility, and immune response were assessed. Results show delayed development and decreased emergence of mosquitoes exposed to BPA. Females exposed to BPA exhibited reduced oviposition while hatching rates remained unaffected. Furthermore, BPA exposure altered the expression of immune response genes in adult mosquitoes, with differential effects observed between sexes. This suggests that BPA exposure during early developmental stages can modulate the antiviral immune response in adult mosquitoes, possibly through the 20-hydroxyecdysone (20E) signaling pathway. Overall, this study highlights the potential impact of BPA on the development and immune function of mosquito vectors, with implications for vector competence and disease transmission.
Collapse
Affiliation(s)
- Vargas Valeria
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de Mèxico 04510, Mexico.
| | - Cime-Castillo Jorge
- Centro de investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos 62100, Mexico.
| | - Moyo-Leyva Alejandra
- Centro de investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos 62100, Mexico; Facultad de Ciencias Biológicas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62210, Mexico.
| | - Garay-Canales Claudia
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de Mèxico 04510, Mexico.
| | - Lanz-Mendoza Humberto
- Centro de investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos 62100, Mexico.
| | - Morales-Montor Jorge
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de Mèxico 04510, Mexico.
| |
Collapse
|
5
|
Balbi T, Bozzo M, Auguste M, Montagna M, Miglioli A, Drouet K, Vezzulli L, Canesi L. Impact of ocean warming on early development of the Mediterranean mussel Mytilus galloprovincialis: Effects on larval susceptibility to potential vibrio pathogens. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109937. [PMID: 39357629 DOI: 10.1016/j.fsi.2024.109937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/04/2024]
Abstract
In a global change scenario, ocean warming and pathogen infection can occur simultaneously in coastal areas, threatening marine species. Data are shown on the impact of temperature on early larvae of the Mediterranean mussel Mytilus galloprovincialis. Increasing temperatures (18-20-22 °C) altered larval phenotypes at 48 hpf and affected gene expression from eggs to 24 and 48 hpf, with shell biogenesis related genes among the most affected. The effects of temperature on larval susceptibility to infection were evaluated using Vibrio coralliilyticus, a coral pathogen increasingly associated with bivalve mortalities, whose ecology is affected by global warming. Malformations and mortalities at 48 hpf were observed at higher temperature and vibrio concentrations, with interactive effects. In non-lethal conditions, interactions on gene expression at 24 and 48 hpf were also detected. Although temperature is the main environmental driver affecting M. galloprovincialis early larvae, warming may increase the susceptibility to vibrio infection, with consequences on mussel populations.
Collapse
Affiliation(s)
- Teresa Balbi
- Department of Earth, Environmental and Life Sciences-DISTAV, University of Genova, Italy; National Biodiversity Future Center, 90133, Palermo, Italy.
| | - Matteo Bozzo
- Department of Earth, Environmental and Life Sciences-DISTAV, University of Genova, Italy
| | - Manon Auguste
- Department of Earth, Environmental and Life Sciences-DISTAV, University of Genova, Italy; National Biodiversity Future Center, 90133, Palermo, Italy
| | - Michele Montagna
- Department of Earth, Environmental and Life Sciences-DISTAV, University of Genova, Italy
| | - Angelica Miglioli
- Sorbonne Université/CNRS, Institut de la Mer, UMR7009 Laboratoire de Biologie du Développement, 06230, Chemin du Lazaret, 06230, Villefranche-sur-Mer, France
| | - Kévin Drouet
- Université de Toulon, Aix Marseille Univ, CNRS, IRD, MIO, Toulon, France
| | - Luigi Vezzulli
- Department of Earth, Environmental and Life Sciences-DISTAV, University of Genova, Italy; National Biodiversity Future Center, 90133, Palermo, Italy
| | - Laura Canesi
- Department of Earth, Environmental and Life Sciences-DISTAV, University of Genova, Italy; National Biodiversity Future Center, 90133, Palermo, Italy
| |
Collapse
|
6
|
Evensen KG, Rusin E, Robinson WE, Price CL, Kelly SL, Lamb DC, Goldstone JV, Poynton HC. Vertebrate endocrine disruptors induce sex-reversal in blue mussels. Sci Rep 2024; 14:23890. [PMID: 39396059 PMCID: PMC11470919 DOI: 10.1038/s41598-024-74212-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 09/24/2024] [Indexed: 10/14/2024] Open
Abstract
Mollusks are the second most diverse animal phylum, yet little is known about their endocrinology or how they respond to endocrine disrupting compound (EDC) pollution. Characteristic effects of endocrine disruption are reproductive impairment, skewed sex ratios, development of opposite sex characteristics, and population decline. However, whether classical vertebrate EDCs, such as steroid hormone-like chemicals and inhibitors of steroidogenesis, exert effects on mollusks is controversial. In the blue mussel, Mytilus edulis, EDC exposure is correlated with feminized sex ratios in wild and laboratory mussels, but sex reversal has not been confirmed. Here, we describe a non-destructive qPCR assay to identify the sex of M. edulis allowing identification of males and females prior to experimentation. We exposed male mussels to 17α-ethinylestradiol and female mussels to ketoconazole, EDCs that mimic vertebrate steroid hormones or inhibit their biosynthesis. Both chemicals changed the sex of individual mussels, interfered with gonadal development, and disrupted gene expression of the sex differentiation pathway. Impacts from ketoconazole treatment, including changes in steroid levels, confirmed a role for steroidogenesis and steroid-like hormones in mollusk endocrinology. The present study expands the possibilities for laboratory and field monitoring of mollusk species and provides key insights into endocrine disruption and sexual differentiation in bivalves.
Collapse
Affiliation(s)
- K Garrett Evensen
- School for the Environment, University of Massachusetts Boston, Boston, MA, USA
| | - Emily Rusin
- School for the Environment, University of Massachusetts Boston, Boston, MA, USA
| | - William E Robinson
- School for the Environment, University of Massachusetts Boston, Boston, MA, USA
| | - Claire L Price
- Faculty of Medicine, Health and Life Sciences, Swansea University, Swansea, SA2 8PP, Wales, UK
| | - Steven L Kelly
- Faculty of Medicine, Health and Life Sciences, Swansea University, Swansea, SA2 8PP, Wales, UK
| | - David C Lamb
- Faculty of Medicine, Health and Life Sciences, Swansea University, Swansea, SA2 8PP, Wales, UK
| | | | - Helen C Poynton
- School for the Environment, University of Massachusetts Boston, Boston, MA, USA.
| |
Collapse
|
7
|
Kim JH, Choi KS, Yang HS, Kang HS, Hong HK. In vitro impact of Bisphenol A on the immune functions of primary cultured hemocytes of Pacific abalone (Haliotis discus hannai). MARINE POLLUTION BULLETIN 2024; 206:116770. [PMID: 39053261 DOI: 10.1016/j.marpolbul.2024.116770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/08/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
This study investigated the toxic effects of Bisphenol A (BPA) on the Pacific abalone (Haliotis discus hannai) using in vitro assays with primary cultured hemocytes. The abalone hemocytes were exposed to BPA concentrations up to 100 μM to assess cytotoxicity. Subsequently, hemocytes were exposed to sublethal BPA concentrations (LC20 = 2.3 μM and LC50 = 5.8 μM) for 48 h, and we evaluated the cellular immune responses of hemocytes via flow cytometry. Results showed no significant differences between LC20 and control groups, but LC50 exposure significantly reduced phagocytosis and oxidative capacities while increasing nitric oxide production. These findings suggest that BPA exposure negatively affects the immune system of the Pacific abalone, which makes them more susceptible to infections and other stressors in their natural environment. The study also implies that in vitro assays utilizing primary cultured abalone hemocytes may serve as effective proxies for quantifying the cytotoxic effects of chemical pollutants.
Collapse
Affiliation(s)
- Jeong-Hwa Kim
- Department of Marine Life Science (BK21 FOUR), Marine Science Institute, Jeju National University, Jeju 63243, Republic of Korea
| | - Kwang-Sik Choi
- Department of Marine Life Science (BK21 FOUR), Marine Science Institute, Jeju National University, Jeju 63243, Republic of Korea
| | - Hyun-Sung Yang
- Tropical & Subtropical Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea
| | - Hyun-Sil Kang
- Subtropical Fisheries Research Institute, National Institute of Fisheries Science (NIFS), Jeju 63068, Republic of Korea
| | - Hyun-Ki Hong
- Department of Marine Biology and Aquaculture, Gyeongsang National University, Tongyeong 53064, Republic of Korea.
| |
Collapse
|
8
|
Nour OM, El-Saidy SA, Ghoneim AZ. Multiple-biomarker approach in the assessment of bisphenol A effect on the grooved carpet clam Ruditapes decussatus (Linnaeus, 1758). BMC ZOOL 2024; 9:19. [PMID: 39135081 PMCID: PMC11318329 DOI: 10.1186/s40850-024-00211-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/24/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Bisphenol A (BPA), a plastic additive monomer, is among the most highly produced chemicals worldwide, and is broadly used in many industries, such as food and beverage containers, milk bottles, and paper products. Previous studies demonstrated that BPA has potential toxicity to aquatic organisms, causing endocrine disturbance and behavioural disorders. The current work aimed to determine the toxic impacts of BPA on the edible marine clam Ruditapes decussatus considering a multi-biomarker approach (mortality, biochemical studies, DNA strand breaks using comet assay, and histopathological examinations with semi-quantitative and quantitative histopathological analyses). The clams were exposed under laboratory conditions to three concentrations of BPA (0 "control", 1, and 5 µg/L) for a period of 21 days. After the exposure period, BPA impacts were assessed in the digestive gland as a versatile and environmentally relevant organ for ecotoxicological studies. RESULTS In BPA-treated clams, mortality (10%) occurred only at the highest BPA concentration (5 µg/L). Biochemical impairments were detected in a concentration-dependent manner as a consequence of BPA exposure. There were significant increases in malondialdehyde (MDA) and glutathione (GSH) levels, while catalase (CAT) activity was significantly reduced. Our results revealed that BPA induced neurotoxicity in R. decussatus, as evidenced by the inhibition of acetylcholinesterase (AChE) activity in a dose-dependent manner. Furthermore, DNA damage was strongly induced as BPA levels increased. Additionally, our results have been affirmed by alterations in digestive gland tissues at BPA treatments, which consequently can impair the clam's ability for food absorption; these alterations included mainly atrophic and necrotic digestive tubules, epithelial cell vacuolization, hemocyte infiltration, and intertubular fibrosis. Based on the data obtained from the semi-quantitative and quantitative histopathological analyses, the exposure of the clam's digestive gland to BPA with concentrations of 1 and 5 µg/L for 21 days showed significant histopathological alterations compared with the control clams. CONCLUSION The multi-biomarker approach used in the current study proved to be a useful tool for assessing the impact of diphenylmethane compounds, such as BPA. Water-borne BPA causes oxidative stress, neurotoxicity, genotoxicity, and deleterious effects on the clam digestive gland; all of these could deteriorate clam performance and health, causing tissue dysfunction.
Collapse
Affiliation(s)
- Ola Mohamed Nour
- Department of Biology and Geology, Faculty of Education, Alexandria University, Alexandria, 21526, Egypt.
| | - Salwa A El-Saidy
- Zoology Department, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Aml Z Ghoneim
- Zoology Department, Faculty of Science, Damanhour University, Damanhour, Egypt
| |
Collapse
|
9
|
Elkader HTAEA, Al-Shami AS. Acetylcholinesterase and dopamine inhibition suppress the filtration rate, burrowing behaviours, and immunological responses induced by bisphenol A in the hemocytes and gills of date mussels, Lithophaga lithophaga. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 272:106971. [PMID: 38843741 DOI: 10.1016/j.aquatox.2024.106971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/15/2024]
Abstract
Bisphenol A (BPA), a common industrial chemical with estrogenic activity, has recently gained attention due to its well-documented negative effects on humans and other organisms in the environment. The potential immunotoxicity and neurotoxicity of BPA remain poorly understood in marine invertebrate species. Therefore, the impacts of exposure to BPA on a series of behaviours, immune responses, oxidative stress, neural biomarkers, histology, and the ultrastructure of gills were investigated in the date mussel, Lithophaga lithophaga. After 28 days of exposure to 0.25, 1, 2, and 5 µg/L BPA, hemolymphs from controls and exposed date mussels were collected, and the effects of BPA on immunological parameters were evaluated. Moreover, oxidative stress and neurochemical levels were measured in the gills of L. lithophaga. BPA reduced filtration rates and burrowing behaviour, whereas a 2 µg/L BPA resulted in an insignificant increase after 24 h. The exposure of date mussels to BPA significantly increased total hemocyte counts, a significant reduction in the diameter and phagocytosis of hemocytes, as well as gill lysozyme level. BPA increased lipid peroxidation levels and SOD activity in gills exposed to 2 and 5 µg/L BPA, but decreased GSH levels and SOD activity in 0.25 and 1 µg/L BPA-treated date mussels. Dose-dependent dynamics were observed in the inhibition of acetylcholinesterase activity and dopamine levels. Histological and scanning electron microscope examination revealed cilia erosion, necrosis, inflammation, and hyperplasia formation in the gills. Overall, our findings suggest a relationship between BPA exposure and changes in the measured immune parameters, oxidative stress, and neurochemical disturbances, which may be factored into the mechanisms underlying BPA toxicity in marine molluscs, providing a scientific foundation for marine BPA risk assessment and indicating immunosuppression in BPA-exposed date mussels.
Collapse
Affiliation(s)
| | - Ahmed S Al-Shami
- Biotechnology Department, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| |
Collapse
|
10
|
Miglioli A, Tredez M, Boosten M, Sant C, Carvalho JE, Dru P, Canesi L, Schubert M, Dumollard R. The Mediterranean mussel Mytilus galloprovincialis: a novel model for developmental studies in mollusks. Development 2024; 151:dev202256. [PMID: 38270401 DOI: 10.1242/dev.202256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
A model organism in developmental biology is defined by its experimental amenability and by resources created for the model system by the scientific community. For the most powerful invertebrate models, the combination of both has already yielded a thorough understanding of developmental processes. However, the number of developmental model systems is still limited, and their phylogenetic distribution heavily biased. Members of one of the largest animal lineages, the Spiralia, for example, have long been neglected. In order to remedy this shortcoming, we have produced a detailed developmental transcriptome for the bivalve mollusk Mytilus galloprovincialis, and have expanded the list of experimental protocols available for this species. Our high-quality transcriptome allowed us to identify transcriptomic signatures of developmental progression and to perform a first comparison with another bivalve mollusk: the Pacific oyster Crassostrea gigas. To allow co-labelling studies, we optimized and combined protocols for immunohistochemistry and hybridization chain reaction to create high-resolution co-expression maps of developmental genes. The resources and protocols described here represent an enormous boost for the establishment of Mytilus galloprovincialis as an alternative model system in developmental biology.
Collapse
Affiliation(s)
- Angelica Miglioli
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche (IMEV), Sorbonne Université, CNRS, Villefranche-sur-Mer 06230, France
| | - Marion Tredez
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche (IMEV), Sorbonne Université, CNRS, Villefranche-sur-Mer 06230, France
| | - Manon Boosten
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche (IMEV), Sorbonne Université, CNRS, Villefranche-sur-Mer 06230, France
- Laboratoire d'Océanologie de Villefranche (LOV), Institut de la Mer de Villefranche (IMEV), Sorbonne Université, CNRS, Villefranche-sur-Mer 06230, France
| | - Camille Sant
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche (IMEV), Sorbonne Université, CNRS, Villefranche-sur-Mer 06230, France
- Laboratoire d'Océanologie de Villefranche (LOV), Institut de la Mer de Villefranche (IMEV), Sorbonne Université, CNRS, Villefranche-sur-Mer 06230, France
| | - João E Carvalho
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche (IMEV), Sorbonne Université, CNRS, Villefranche-sur-Mer 06230, France
| | - Philippe Dru
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche (IMEV), Sorbonne Université, CNRS, Villefranche-sur-Mer 06230, France
| | - Laura Canesi
- Università degli Studi di Genova, Dipartimento di Scienze della Terra dell Ambiente e della Vita (DISTAV), Genova 16132, Italy
| | - Michael Schubert
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche (IMEV), Sorbonne Université, CNRS, Villefranche-sur-Mer 06230, France
| | - Rémi Dumollard
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche (IMEV), Sorbonne Université, CNRS, Villefranche-sur-Mer 06230, France
| |
Collapse
|
11
|
Rafiq A, Capolupo M, Addesse G, Valbonesi P, Fabbri E. Antidepressants and their metabolites primarily affect lysosomal functions in the marine mussel, Mytilus galloprovincialis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166078. [PMID: 37574064 DOI: 10.1016/j.scitotenv.2023.166078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/19/2023] [Accepted: 08/03/2023] [Indexed: 08/15/2023]
Abstract
Antidepressants widely occur as emerging contaminants in marine coastal waters, with concentrations reported in the low ng/L range. Although at relatively lower levels with respect to other pharmaceuticals, antidepressants - fluoxetine (FLX) in particular - have attracted attention because of their striking effects exerted at low doses on marine invertebrates. In this study, the effects of four antidepressants including FLX, sertraline (SER), and citalopram, as members of the selective serotonin reuptake inhibitor (SSRI) class, and venlafaxine (VEN) as a member of the serotonin and norepinephrine reuptake inhibitor (SNRI) class, were evaluated in the mussel Mytilus galloprovincialis. In addition, the effects of two main metabolites of FLX and VEN, i.e., norfluoxetine (NFL) and O-desmethylvenlafaxine (ODV) respectively, were compared to those of the parent compounds. Eight concentrations of each drug (0.5-500 ng/L range) were tested on the early life stage endpoints of gamete fertilization and larval development at 48 h post fertilization (hpf). Egg fertilization was reduced by all compounds, except for VEN. Larval development at 48 hpf was affected by all SSRIs, but not by SNRIs. The above effects were significant but never exceeded 20 % of control values. Adult mussels were exposed in vivo for 7 days to environmental concentrations of the drugs (0.5, 5, and 10 ng/L) and a battery of eight biomarkers was assessed. Antidepressants primarily targeted lysosomal functions, decreasing haemocyte lysosome membrane stability (up to 70 % reduction) and increasing of the lysosome/cytosol ratio (up to 220 %), neutral lipid (up to 230 %), and lipofuscin (up to 440 %) accumulation in digestive gland. Only SER and NFL significantly affected catalase and glutathione-S-transferase activities in gills and digestive gland. NFL and ODV, were effective and sometimes more active than the parent compounds. All compounds impaired mussel health status, as indicated by the low to high stress levels assigned using the Mussel Expert System.
Collapse
Affiliation(s)
- Ayesha Rafiq
- Department of Biological, Geological and Environmental Sciences, University of Bologna Campus of Ravenna, via S. Alberto 163, 48123 Ravenna, Italy
| | - Marco Capolupo
- Italian Institute for Environmental Protection and Research (ISPRA), Rome, Italy
| | - Giulia Addesse
- Department of Biological, Geological and Environmental Sciences, University of Bologna Campus of Ravenna, via S. Alberto 163, 48123 Ravenna, Italy
| | - Paola Valbonesi
- Department of Biological, Geological and Environmental Sciences, University of Bologna Campus of Ravenna, via S. Alberto 163, 48123 Ravenna, Italy
| | - Elena Fabbri
- Department of Biological, Geological and Environmental Sciences, University of Bologna Campus of Ravenna, via S. Alberto 163, 48123 Ravenna, Italy; National Future Biodiversity Center (NFBC), Palermo, Italy.
| |
Collapse
|
12
|
Wang X, Li F, Meng X, Xia C, Ji C, Wu H. Abnormality of mussel in the early developmental stages induced by graphene and triphenyl phosphate: In silico toxicogenomic data-mining, in vivo, and toxicity pathway-oriented approach. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 263:106674. [PMID: 37666107 DOI: 10.1016/j.aquatox.2023.106674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/06/2023]
Abstract
Increasing number of complex mixtures of organic pollutants in coastal area (especially for nanomaterials and micro/nanoplastics associated chemicals) threaten aquatic ecosystems and their joint hazards are complex and demanding tasks. Mussels are the most sensitive marine faunal groups in the world, and their early developmental stages (embryo and larvae) are particularly susceptible to environmental contaminants, which can distinguish the probable mechanisms of mixture-induced growth toxicity. In this study, the potential critical target and biological processes affected by graphene and triphenyl phosphate (TPP) were developed by mining public toxicogenomic data. And their combined toxic effects were verified by toxicological assay at early developmental stages in filter-feeding mussels (embryo and larvae). It showed that interactions among graphene/TPP with 111 genes (ABCB1, TP53, SOD, CAT, HSP, etc.) affected phenotypes along conceptual framework linking these chemicals to developmental abnormality endpoints. The PPAR signaling pathway, monocarboxylic acid metabolic process, regulation of lipid metabolic process, response to oxidative stress, and gonad development were noted as the key molecular pathways that contributed to the developmental abnormality. Enriched phenotype analysis revealed biological processes (cell proliferation, cell apoptosis, inflammatory response, response to oxidative stress, and lipid metabolism) affected by the investigated mixture. Combined, our results supported that adverse effects induced by contaminants/ mixture could not only be mediated by single receptor signaling or be predicted by the simple additive effect of contaminants. The results offer a framework for better comprehending the developmental toxicity of environmental contaminants in mussels and other invertebrate species, which have considerable potential for hazard assessment of coastal mixture.
Collapse
Affiliation(s)
- Xiaoqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China.
| | - Xiangjing Meng
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chunlei Xia
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China
| |
Collapse
|
13
|
Balbi T, Miglioli A, Montagna M, Piazza D, Risso B, Dumollard R, Canesi L. The biocide triclosan as a potential developmental disruptor in Mytilus early larvae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:106342-106354. [PMID: 37726635 PMCID: PMC10579167 DOI: 10.1007/s11356-023-29854-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/08/2023] [Indexed: 09/21/2023]
Abstract
The broadly utilized biocide triclosan (TCS) is continuously discharged in water compartments worldwide, where it is detected at concentrations of ng-µg/L. Given its lipophilicity and bioaccumulation, TCS is considered potentially harmful to human and environmental health and also as a potential endocrine disruptor (ED) in different species. In aquatic organisms, TCS can induce a variety of effects: however, little information is available on its possible impact on invertebrate development. Early larval stages of the marine bivalve Mytilus galloprovincialis have been shown to be sensitive to environmental concentrations of a number of emerging contaminants, including EDs. In this work, the effects of TCS were first evaluated in the 48 h larval assay in a wide concentration range (0.001-1,000 μg/L). TCS significantly affected normal development of D-veligers (LOEC = 0.1 μg/L; EC50 = 236.1 μg/L). At selected concentrations, the mechanism of action of TCS was investigated. TCS modulated transcription of different genes involved in shell mineralization, endocrine signaling, ceramide metabolism, and biotransformation, depending on larval stage (24 and 48 h post-fertilization-hpf) and concentration (1 and 10 μg/L). At 48 hpf and 10 μg/L TCS, calcein staining revealed alterations in CaCO3 deposition, and polarized light microscopy showed the absence of shell birefringence due to the mineralized phase. Observations by scanning electron microscopy highlighted a variety of defects in shell formation from concentrations as low as 0.1 μg/L. The results indicate that TCS, at environmental exposure levels, can act as a developmental disruptor in early mussel larvae mainly by interfering with the processes of biomineralization.
Collapse
Affiliation(s)
- Teresa Balbi
- Department of Earth, Environmental and Life Sciences-DISTAV, University of Genoa, Genoa, Italy
- National Biodiversity Future Center, 90133, Palermo, Italy
| | - Angelica Miglioli
- UMR7009 Laboratoire de Biologie du Développement, Sorbonne Université/CNRS, Institut de La Mer, Villefranche-Sur-Mer, France
| | - Michele Montagna
- Department of Earth, Environmental and Life Sciences-DISTAV, University of Genoa, Genoa, Italy
| | - Davide Piazza
- Department of Earth, Environmental and Life Sciences-DISTAV, University of Genoa, Genoa, Italy
| | - Beatrice Risso
- Department of Earth, Environmental and Life Sciences-DISTAV, University of Genoa, Genoa, Italy
- UMR7009 Laboratoire de Biologie du Développement, Sorbonne Université/CNRS, Institut de La Mer, Villefranche-Sur-Mer, France
| | - Remi Dumollard
- UMR7009 Laboratoire de Biologie du Développement, Sorbonne Université/CNRS, Institut de La Mer, Villefranche-Sur-Mer, France
| | - Laura Canesi
- Department of Earth, Environmental and Life Sciences-DISTAV, University of Genoa, Genoa, Italy.
- National Biodiversity Future Center, 90133, Palermo, Italy.
| |
Collapse
|
14
|
Habib MR, Mohamed AH, Nassar AHA, Sheir SK. Bisphenol A effects on the host Biomphalaria alexandrina and its parasite Schistosoma mansoni. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:97824-97841. [PMID: 37597145 DOI: 10.1007/s11356-023-29167-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 07/31/2023] [Indexed: 08/21/2023]
Abstract
Bisphenol A (BPA) is one of the most potent endocrine-disrupting chemicals (EDCs) that adversely affect aquatic organisms. The present investigation explored the effects of exposure to BPA at 0.1 and 1 mgL-1 concentrations on the fecundity of Biomphalaria alexandrina, snail's infection with Schistosoma mansoni, and histology of the ovotestis and topographical structure of S. mansoni cercariae emerged from exposed snails. The 24 h LC50 and LC90 values of BPA against B. alexandrina were 8.31 and 10.88 mgL-1 BPA, respectively. The exposure of snails to 0.1 or 1 mgL-1 BPA did not affect the snail's survival. However, these concentrations caused an increase in the reproductive rate (Ro) of infected snails. A slight decrease in egg production was observed in snails exposed to 0.1 mgL-1 BPA after being infected (infected then exposed). However, a significant increase in egg production was noted in snails exposed to 1 mgL-1 BPA after infection with S. mansoni. Histopathological investigations indicated a clear alteration in the ovotestis tissue structure of exposed and infected-exposed groups compared to the control snails. Chronic exposure to BPA caused pathological alterations in the gametogenic cells. SEM preparations of S. mansoni cercariae emerged from infected-exposed snails showed obvious body malformations. From a public health perspective, BPA pollution may negatively impact schistosomiasis transmission, as indicated by the disturbance in cercarial production and morphology. However, it has adverse effects on the reproduction and architecture of reproductive organs of exposed snails, indicating that B. alexandrina snails are sensitive to sublethal BPA exposure.
Collapse
Affiliation(s)
- Mohamed R Habib
- Medical Malacology Department, Theodor Bilharz Research Institute, Giza, 12411, Egypt.
| | - Azza H Mohamed
- Zoology Department, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt
| | | | - Sherin K Sheir
- Zoology Department, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt
| |
Collapse
|
15
|
Sunil Z, Thomas J, Mukherjee A, Chandrasekaran N. Microplastics and leachate materials from pharmaceutical bottle: An in vivo study in Donax faba (Marine Clam). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023:104205. [PMID: 37392975 DOI: 10.1016/j.etap.2023.104205] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/09/2023] [Accepted: 03/07/2023] [Indexed: 07/03/2023]
Abstract
Most pharmaceuticals are stored in synthetic polymer bottles, manufactured using polyethylene as the base material. The toxicological impact of pharmaceutical container leachate was studied on Donax faba. Several organics and inorganics were identified from the leachate. The concentrations of heavy metals in the leachate was higher than standard reference value for drinking water. In the leachate treatment the protein concentration increased to 8.5% more than the control. The reactive oxygen species (ROS) level elevated by 3 folds and malondialdehyde (MDA) increased by 4.3% in comparison to the control. Superoxide dismutase (SOD) and catalase (CAT) showed a decrease by 14 and 70.5% respectively. The leachate affected the antioxidant machinery of D. faba. Similarly, these PET (polyethylene terephthalate) pharmaceutical containers could potentially leach additives into the drugs and may cause oxidative and metabolic damages to higher organisms including human beings.
Collapse
Affiliation(s)
- Zachariah Sunil
- Centre for Nanobiotechnology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu
| | - John Thomas
- Centre for Nanobiotechnology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu
| | | |
Collapse
|
16
|
Di Bella G, Porretti M, Cafarelli M, Litrenta F, Potortì AG, Turco VL, Albergamo A, Xhilari M, Faggio C. Screening of phthalate and non-phthalate plasticizers and bisphenols in Sicilian women's blood. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104166. [PMID: 37268242 DOI: 10.1016/j.etap.2023.104166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/27/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
The plastic accumulation and its degradation into microplastics is an environmental issue not only for their ubiquity, but also for the release of intrinsic chemicals, such as phthalates (PAEs), non-phthalate plasticizers (NPPs), and bisphenols (BPs), which may reach body organs and tissues, and act as endocrine disruptors. Monitoring plastic additives in biological matrices, such as blood, may help in deriving relationships between human exposure and health outcomes. In this work, the profile of PAEs, NPPs and BPs was determined in Sicilian women's blood with different ages (20-60 years) and interpreted by chemometrics. PAEs (DiBP and DEPH), NPPs (DEHT and DEHA), BPA and BPS were at higher frequencies and greater levels in women's blood and varied in relation to age. According to statistical analysis, younger females' blood had higher contents of plasticizers than older women, probably due to a more frequent use of higher quantities of plastic products in daily life.
Collapse
Affiliation(s)
- Giuseppa Di Bella
- Department of Biomedical, Dental and Morphological and Functional Imaging Sciences of the University of Messina, Messina, Italy.
| | - Miriam Porretti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences of the University of Messina, Messina, Italy.
| | - Mirea Cafarelli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences of the University of Messina, Messina, Italy.
| | - Federica Litrenta
- Department of Biomedical, Dental and Morphological and Functional Imaging Sciences of the University of Messina, Messina, Italy.
| | - Angela Giorgia Potortì
- Department of Biomedical, Dental and Morphological and Functional Imaging Sciences of the University of Messina, Messina, Italy.
| | - Vincenzo Lo Turco
- Department of Biomedical, Dental and Morphological and Functional Imaging Sciences of the University of Messina, Messina, Italy.
| | - Ambrogina Albergamo
- Department of Biomedical, Dental and Morphological and Functional Imaging Sciences of the University of Messina, Messina, Italy.
| | | | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences of the University of Messina, Messina, Italy.
| |
Collapse
|
17
|
Smeriglio A, Lionti J, Ingegneri M, Burlando B, Cornara L, Grillo F, Mastracci L, Trombetta D. Xanthophyll-Rich Extract of Phaeodactylum tricornutum Bohlin as New Photoprotective Cosmeceutical Agent: Safety and Efficacy Assessment on In Vitro Reconstructed Human Epidermis Model. Molecules 2023; 28:molecules28104190. [PMID: 37241930 DOI: 10.3390/molecules28104190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The nutritional and health properties of algae make them perfect functional ingredients for nutraceutical and cosmeceutical applications. In this study, the Phaeodactylum tricornutum Bohlin (Phaeodactylaceae), a pleiomorphic diatom commonly found in marine ecosystems, was investigated. The in vitro culture conditions used favoured the fusiform morphotype, characterized by a high accumulation of neutral lipids, as detected by fluorescence microscopy after BODIPY staining. These data were confirmed by HPLC-DAD-APCI-MS/MS analyses carried out on the ethanolic extract (PTE), which showed a high content of xanthophylls (98.99%), and in particular of fucoxanthin (Fx, 6.67 g/100 g PTE). The antioxidant activity (ORAC, FRAP, TEAC and β-carotene bleaching) and photostability of PTE and Fx against UVA and UVB rays were firstly evaluated by in vitro cell-free assays. After this, phototoxicity and photoprotective studies were carried out on in vitro reconstructed human epidermidis models. Results demonstrated that PTE (0.1% Fx) and 0.1% Fx, both photostable, significantly (p < 0.05) reduce oxidative and inflammatory stress markers (ROS, NO and IL-1α), as well as cytotoxicity and sunburn cells induced by UVA and UVB doses simulating the solar radiation, with an excellent safety profile. However, PTE proved to be more effective than Fx, suggesting its effective and safe use in broad-spectrum sunscreens.
Collapse
Affiliation(s)
- Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Joseph Lionti
- Archimede Ricerche Srl, Corso Italia 220, 18033 Camporosso, Italy
- Department of Experimental Medicine (DIMES), University of Genova, Via Leon Battista Alberti, 2, 16132 Genova, Italy
| | - Mariarosaria Ingegneri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Bruno Burlando
- Department of Pharmacy-DIFAR, University of Genova, Viale Benedetto XV 3, 16132 Genova, Italy
| | - Laura Cornara
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132 Genova, Italy
| | - Federica Grillo
- Pathology Unit, Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genova, 16132 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Luca Mastracci
- Pathology Unit, Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genova, 16132 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
18
|
Capolupo M, Rafiq A, Coralli I, Alessandro T, Valbonesi P, Fabbri D, Fabbri E. Bioplastic leachates characterization and impacts on early larval stages and adult mussel cellular, biochemical and physiological responses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120951. [PMID: 36581238 DOI: 10.1016/j.envpol.2022.120951] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Bioplastics are promoted as safer alternatives to tackle the long-term persistence of conventional plastics. However, information on the potential release of additives and non-intentionally added substances (NIAS) in the surrounding environment is limited, and biological effects of the leachates have been little studied. Leachates produced from three bioplastics, i.e. compostable bags (CB), bio-polyethylene terephthalate bottles (bioPET) and polylactic acid cups (PLA), and a control polymeric material, i.e. rubber tire (TR), were examined. The chemical nature of bioplastic polyesters PET, PLA and poly (butylene adipate-co-terephthalate) (PBAT) in CB, was confirmed by analytical pyrolysis. Fragments were incubated in artificial sea water for 14 days at 20 °C in darkness and leachate contents examined by GC-MS and HPLC-MS/MS. Catalysts and stabilizers represented the majority of chemicals in TR, while NIAS (e.g. 1,6-dioxacyclododecane-7,12-dione) were the main components of CB. Bisphenol A occurred in all leachates at a concentration range 0.3-4.8 μg/L. Trace metals at concentrations higher than control water were found in all leachates, albeit more represented in leachates from CB and TR. A dose response to 11 dilutions of leachates (in the range 0.6-100%) was tested for biological effects on early embryo stages of Mytilus galloprovincialis. Embryotoxicity was observed in the whole range of tested concentrations, the magnitude of effect depending on the polymers. The highest concentrations caused reduction of egg fertilization (CB, bioPET, TR) and of larvae motility (CB, PLA, TR). TR leachates also provoked larvae mortality in the range 10-100%. Effects on adult mussel physiology were evaluated after a 7-day in vivo exposure to the different leachates at 0.6% concentration. Nine biomarkers concerning lysosomal functionality, neurotransmission, antioxidant and immune responses were assessed. All lysosomal parameters were affected, and serum lysozyme activity inhibited. Harmonized chemical and biological approaches are recommended to assess bioplastic safety and support production of sustainable bioplastics.
Collapse
Affiliation(s)
- Marco Capolupo
- Italian Institute for Environmental Protection and Research (ISPRA), Rome, Italy
| | - Ayesha Rafiq
- Department of Biological, Geological and Environmental Sciences University of Bologna, Campus of Ravenna via S. Alberto 163, 48123, Ravenna
| | - Irene Coralli
- Department of Chemistry "Giacomo Ciamician", Technopole of Rimini, University of Bologna, Italy
| | - Tanya Alessandro
- Department of Biological, Geological and Environmental Sciences University of Bologna, Campus of Ravenna via S. Alberto 163, 48123, Ravenna
| | - Paola Valbonesi
- Department of Biological, Geological and Environmental Sciences University of Bologna, Campus of Ravenna via S. Alberto 163, 48123, Ravenna
| | - Daniele Fabbri
- Department of Chemistry "Giacomo Ciamician", Technopole of Rimini, University of Bologna, Italy
| | - Elena Fabbri
- Department of Biological, Geological and Environmental Sciences University of Bologna, Campus of Ravenna via S. Alberto 163, 48123, Ravenna.
| |
Collapse
|
19
|
Mincarelli LF, Chapman EC, Rotchell JM, Turner AP, Wollenberg Valero KC. Sex and gametogenesis stage are strong drivers of gene expression in Mytilus edulis exposed to environmentally relevant plasticiser levels and pH 7.7. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:23437-23449. [PMID: 36322353 PMCID: PMC9938808 DOI: 10.1007/s11356-022-23801-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Plastic pollution and changes in oceanic pH are both pressing environmental issues. Little emphasis, however, has been placed on the influence of sex and gametogenesis stage when investigating the effects of such stressors. Here, we examined histology and molecular biomarkers of blue mussels Mytilus edulis exposed for 7 days to a pH 7.7 scenario (- 0.4 units) in combination with environmentally relevant concentrations (0, 0.5 and 50 µg/L) of the endocrine disrupting plasticiser di-2-ethylhexyl phthalate (DEHP). Through a factorial design, we investigated the gametogenesis cycle and sex-related expression of genes involved in pH homeostasis, stress response and oestrogen receptor-like pathways after the exposure to the two environmental stressors. As expected, we found sex-related differences in the proportion of developing, mature and spawning gonads in histological sections. Male gonads also showed higher levels of the acid-base regulator CA2, but females had a higher expression of stress response-related genes (i.e. sod, cat, hsp70). We found a significant effect of DEHP on stress response-related gene expression that was dependent on the gametogenesis stage, but there was only a trend towards downregulation of CA2 in response to pH 7.7. In addition, differences in gene expression between males and females were most pronounced in experimental conditions containing DEHP and/or acidified pH but never the control, indicating that it is important to consider sex and gametogenesis stage when studying the response of mussels to diverse stressors.
Collapse
Affiliation(s)
| | - Emma C Chapman
- Department of Biological and Marine Sciences, University of Hull, Hull, HU6 7RX, UK
| | - Jeanette M Rotchell
- Department of Biological and Marine Sciences, University of Hull, Hull, HU6 7RX, UK
| | - Alexander P Turner
- Department of Computer Science, University of Nottingham, Nottingham, NG8 1BB, UK
| | | |
Collapse
|
20
|
Tang Y, Han Y, Zhang W, Yu Y, Huang L, Zhou W, Shi W, Tian D, Liu G. Bisphenol A and microplastics weaken the antimicrobial ability of blood clams by disrupting humoral immune responses and suppressing hemocyte chemotactic activity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119497. [PMID: 35594997 DOI: 10.1016/j.envpol.2022.119497] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/10/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Robust antimicrobial capability is crucial for marine organisms survival in complex ocean environments. Although the detrimental impacts of emergent pollutants on cellular immune response of marine bivalve mollusks were increasingly documented, the effects of bisphenol A (BPA) and microplastics (MPs) on humoral immune response and hemocyte chemotactic activity remain unclear. Therefore, in this study, the toxicities of BPA and MPs, alone or in combination, to the antimicrobial ability, humoral immune response, and hemocyte chemotactic activity were investigated in the blood clam Tegillarca granosa. Our data demonstrated that exposure of blood clams to BPA, MPs, and BPA-MPs for 2 weeks lead to significant reductions in their survival rates upon pathogenic bacterial challenge, indicating evident impairment of antimicrobial ability. Compared to control, the plasma of pollutant-incubated blood clams exhibited significantly less antimicrobial activity against the growth of V. harveyi, suggesting significant reduction in humoral immune effectors including defensin, lysozyme (LZM), and lectin. Moreover, hemocytes migration across the polycarbonate membrane to the serum containing chamber was markedly arrested by 2-week exposure to BPA, MPs, and BPA-MPs, suggesting a hampered chemotactic activity. In addition, the intracellular contents of ROS and protein carbonyl in hemocytes were markedly induced whereas the expression levels of key genes from the MAPK and actin cytoskeleton regulation pathways were significantly suppressed upon exposure. In this study, it was also found that BPA-MP coexposure was significantly more toxic than single exposures. In summary, our findings revealed that exposure to the pollutants tested possibly impair the antimicrobial ability of blood clam through (1) reducing the inhibitory effect of plasma on bacterial growth, the contents of humoral immune effectors, and the chemotactic activity of hemocytes, (2) interrupting IL-17 activation of MAPK signal pathway, (3) inducing intracellular ROS, elevating protein carbonylation levels, and disrupting actin cytoskeleton regulation in hemocytes.
Collapse
Affiliation(s)
- Yu Tang
- Institute Or Laboratory of Origin: College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Yu Han
- Institute Or Laboratory of Origin: College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Weixia Zhang
- Institute Or Laboratory of Origin: College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Yihan Yu
- Institute Or Laboratory of Origin: College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Lin Huang
- Institute Or Laboratory of Origin: College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Weishang Zhou
- Institute Or Laboratory of Origin: College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Wei Shi
- Institute Or Laboratory of Origin: College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Dandan Tian
- Institute Or Laboratory of Origin: College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Guangxu Liu
- Institute Or Laboratory of Origin: College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China.
| |
Collapse
|
21
|
Lin Y, Liu H, Wang X. Removal effects and potential mechanisms of bisphenol A and 17α-ethynylestradiol by Biogenic Mn oxides generated by Bacillus sp. WH4. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:57261-57276. [PMID: 35349062 DOI: 10.1007/s11356-022-19831-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Endocrine disrupting compounds (EDCs), such as bisphenol A (BPA) and 17α-ethynylestradiol (EE2), have increasingly negative effects on human and wildlife health. In this study, the biogenic Mn oxides (BMOs) generated by Bacillus sp. WH4 were characterized, and the removal effects and reaction kinetics of BPA and EE2 by BMOs under different pH values, initial organic concentrations, and dosages of BMOs were discussed. The results showed that the formation of BMOs was extracellular process, and Mn(II) was oxidized to Mn(III) and Mn(IV) with 23.56% and 76.44%, respectively. The degradation processes of BPA and EE2 by BMOs followed first-order reaction kinetics, and the removal effect decreased with increasing initial BPA/EE2 concentrations and increased with increasing dosages of BMOs. However, the removal effect of BPA by BMOs decreased and then increased with increasing pH, while the removal effect of EE2 by BMOs decreased with increasing pH. Under optimal conditions, the removal efficiency of BPA and EE2 exceeded 98.2% and 94.3%, respectively. Additionally, this study showed that BMOs degraded BPA by coupling, oxidative condensation, substitution, and elimination reactions to obtain sixteen intermediate products and EE2 by substitution and elimination reactions to obtain seven intermediate products.
Collapse
Affiliation(s)
- Yan Lin
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China.
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China.
| | - Hongchun Liu
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Xiaojie Wang
- North China Municipal Engineering Design and Research Institute Co., Ltd, Tianjin, 300074, China
| |
Collapse
|
22
|
Zhu J, Li J, Chapman EC, Shi H, Ciocan CM, Chen K, Shi X, Zhou J, Sun P, Zheng Y, Rotchell JM. Gonadal Atresia, Estrogen-Responsive, and Apoptosis-Specific mRNA Expression in Marine Mussels from the East China Coast: A Preliminary Study. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 108:1111-1117. [PMID: 35075493 PMCID: PMC9188513 DOI: 10.1007/s00128-022-03461-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
This preliminary survey analysed mussel atresia incidences, estrogen-responsive and apoptotic-specific molecular end points, and aqueous and gonadal levels of selected estrogens from the East China coast. Estrogen levels were low (e.g. < LOD-28.36 ng/L, < LOD-3.88 ng/g wet weight of tissue for BPA) relative to worldwide freshwater environments, but high oocyte follicle atresia incidences (up to 26.6%) occurred at selected sites. Expression of estrogen-responsive ER2 was significantly increased in males relative to females at sites with high atresia incidences in females. A second estrogen-responsive gene, V9, was significantly increased at two sites in April in females relative to males; the opposite was true for the remaining two sites. Apoptosis-specific genes (Bcl-2, fas) showed elevated expression in males relative to females at the site with the highest atresia incidence. These results provide coastal estrogen levels and the utility of several estrogen-specific molecular-level markers for marine mussels.
Collapse
Affiliation(s)
- Jingmin Zhu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062, China
| | - Jiana Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062, China
- Department of Biological and Marine Sciences, Hardy Building, University of Hull, Cottingham Road, Hull, HU6 7RX, UK
| | - Emma C Chapman
- Department of Biological and Marine Sciences, Hardy Building, University of Hull, Cottingham Road, Hull, HU6 7RX, UK
| | - Huahong Shi
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062, China
| | - Corina M Ciocan
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Lewes Road, Brighton, BN2 4GJ, UK
| | - Kai Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062, China
| | - Xiaodong Shi
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062, China
| | - JunLiang Zhou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062, China
| | - Peiying Sun
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062, China
| | - Yueyao Zheng
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062, China
| | - Jeanette M Rotchell
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062, China.
- Department of Biological and Marine Sciences, Hardy Building, University of Hull, Cottingham Road, Hull, HU6 7RX, UK.
| |
Collapse
|
23
|
Xing SY, Li ZH, Li P, You H. A Mini-review of the Toxicity of Pollutants to Fish Under Different Salinities. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 108:1001-1005. [PMID: 35486156 DOI: 10.1007/s00128-022-03528-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
In recent years, with the development of the global economy, water pollution has increased. Pollutants migrate, accumulate, and diffuse in aquatic environments. Most of the pollutants eventually enter aquatic organisms. The accumulation of pollutants affects the development and reproduction of organisms, and many pollutants have teratogenic, carcinogenic, and/or mutagenic effects. Aquatic organisms in estuaries and coastal areas are under pressure due to both salinity and pollutants. Among them, salinity, as an environmental factor, may affect the behavior of pollutants in the aquatic environment, causing changes in their toxic effects on fishes. Salinity also directly affects the growth and development of fishes. Therefore, this paper focuses on metals and organic pollutants and discusses the toxic effects of pollutants on fish under different salinities. This research is of great significance to environmental protection and ecological risk assessment of aquatic environments.
Collapse
Affiliation(s)
- Shao-Ying Xing
- Marine College, Shandong University, 264209, Weihai, Shandong, P.R. China
| | - Zhi-Hua Li
- Marine College, Shandong University, 264209, Weihai, Shandong, P.R. China
| | - Ping Li
- Marine College, Shandong University, 264209, Weihai, Shandong, P.R. China
| | - Hong You
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150090, Harbin, P. R. China.
| |
Collapse
|
24
|
Han Y, Shi W, Tang Y, Zhou W, Sun H, Zhang J, Yan M, Hu L, Liu G. Microplastics and bisphenol A hamper gonadal development of whiteleg shrimp (Litopenaeus vannamei) by interfering with metabolism and disrupting hormone regulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152354. [PMID: 34914981 DOI: 10.1016/j.scitotenv.2021.152354] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/08/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Gonadal development is a prerequisite for the reproductive success of an organism, and might be affected by environmental factors such as emergent pollutants. Although marine crustaceans are threatened by ubiquitous emergent pollutants such as microplastics (MPs) and bisphenol A (BPA) under realistic scenarios, studies about the impacts of these pollutants on the gonadal development of crustacean species are rare. In this study, the effects of MPs and BPA, alone or in combination, on gonadal development were investigated in whiteleg shrimp (Litopenaeus vannamei). The results obtained demonstrated that whiteleg shrimp exposed to MPs and BPA had significantly smaller gonad-somatic index (GSI) and an obvious delay in the gonad developmental stage. In addition, exposure of whiteleg shrimp to pollutants tested resulted in a reduction in the oxygen consumption rate, elevation in the ammonia excretion rate, decline in the O: N ratio, and downregulation in the expression of metabolism-related genes, indicating significant disruptions of shrimp metabolism by the pollutants. Furthermore, in addition to a few exceptions, both the in vivo contents of gonadal development-related hormones (GIH and MIH) and the expression of genes encoding regulatory hormones (GIH, MIH, and CHH) were upregulated by the exposure of whiteleg shrimp to the pollutants investigated, suggesting a significant obstruction of endocrine regulation. Moreover, MP-BPA coexposure was shown to be more toxic to whiteleg shrimp than the corresponding single exposures and significantly greater amount of BPA accumulated in the gonads (both testis and ovaries) of shrimp with the coexistence of MPs, which may be caused by the Trojan horse effect and summation of the toxic impacts on common targets. In general, the data obtained in this study demonstrated that MPs and BPA at environmentally realistic concentrations significantly inhibited the gonadal development of whiteleg shrimp probably by interfering with metabolism and disrupting endocrine regulation.
Collapse
Affiliation(s)
- Yu Han
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu Tang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weishang Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongxiang Sun
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiongming Zhang
- Zhejiang Key Laboratory of Exploitation and Preservation of Coastal Bio-resource, Zhejiang Mariculture Research Institute, Wenzhou 325005, China; Wenzhou Key Laboratory of Marine Biological Genetics and Breeding, Zhejiang Mariculture Research Institute, Wenzhou 325005, China
| | - Maocang Yan
- Zhejiang Key Laboratory of Exploitation and Preservation of Coastal Bio-resource, Zhejiang Mariculture Research Institute, Wenzhou 325005, China; Wenzhou Key Laboratory of Marine Biological Genetics and Breeding, Zhejiang Mariculture Research Institute, Wenzhou 325005, China
| | - Lihua Hu
- Zhejiang Key Laboratory of Exploitation and Preservation of Coastal Bio-resource, Zhejiang Mariculture Research Institute, Wenzhou 325005, China; Wenzhou Key Laboratory of Marine Biological Genetics and Breeding, Zhejiang Mariculture Research Institute, Wenzhou 325005, China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
25
|
Liu F, Reichl FX, Milz S, Wölfle UC, Kühnisch J, Schmitz C, Geist J, Hickel R, Högg C, Sternecker K. Disrupted biomineralization in zebra mussels after exposure to bisphenol-A: Potential implications for molar-incisor hypomineralization. Dent Mater 2022; 38:689-699. [DOI: 10.1016/j.dental.2022.02.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 01/27/2022] [Accepted: 02/20/2022] [Indexed: 12/28/2022]
|
26
|
Canesi L, Miglioli A, Balbi T, Fabbri E. Physiological Roles of Serotonin in Bivalves: Possible Interference by Environmental Chemicals Resulting in Neuroendocrine Disruption. Front Endocrinol (Lausanne) 2022; 13:792589. [PMID: 35282445 PMCID: PMC8913902 DOI: 10.3389/fendo.2022.792589] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 01/25/2022] [Indexed: 11/15/2022] Open
Abstract
Contaminants of Emerging Concerns (CECs) are defined as chemicals not commonly monitored in aquatic ecosystems, but with the potential to cause adverse effects on biota. CECs include Endocrine Disrupting Chemicals (EDCs) and Neuro-Endocrine disruptors (NEDs) of vertebrates. However, most invertebrates only rely on neuroendocrine systems to maintain homeostatic processes. Although conserved neuroendocrine components have been characterized in ecologically relevant groups, limited knowledge on invertebrate neuroendocrinology makes it difficult to define EDCs and NEDs in most species. The monoamine serotonin (5-hydroxytryptamine, 5-HT) acts both as a neurotransmitter and as a peripheral hormone in mammals. In molluscs, 5-HT is involved in multiple physiological roles and molecular components of the serotonergic system have been identified. This review is focused on the effects of CECs on the serotonergic system of bivalve molluscs. Bivalves are widespread in all aquatic environments, estuarine and coastal areas in particular, where they are exposed to a variety of chemicals. In bivalves, 5-HT is involved in gametogenesis and spawning, oocyte maturation and sperm motility, regulates heart function, gill ciliary beating, mantle/siphon function, the ''catch'' state of smooth muscle and immune responses. Components of 5-HT transduction (receptors and signaling pathways) are being identified in several bivalve species. Different CECs have been shown to affect bivalve serotonergic system. This particularly applies to antidepressants, among the most commonly detected human pharmaceuticals in the aquatic environment. In particular, selective serotonin reuptake inhibitors (SSRIs) are frequently detected in seawater and in bivalve tissues. Information available on the effects and mechanisms of action of SSRIs on the serotonergic system of adult bivalves is summarized. Data are also reported on the effects of CECs on development of neuroendocrine pathways of early larval stages, in particular on the effects of model EDCs in the marine mussel Mytilus galloprovincialis. Overall, available data point at the serotonergic system as a sensitive target for neuroendocrine disruption in bivalves. The results contribute drawing Adverse Outcome Pathways (AOPs) for model EDCs and SSRIs in larvae and adults. However, basic research on neuroendocrine signaling is still needed to evaluate the potential impact of neuroendocrine disruptors in key invertebrate groups of aquatic ecosystems.
Collapse
Affiliation(s)
- Laura Canesi
- Environmental Physiology Laboratory, Department of Earth, Environment and Life Sciences, University of Genoa, Genoa, Italy
- *Correspondence: Laura Canesi,
| | - Angelica Miglioli
- Environmental Physiology Laboratory, Department of Earth, Environment and Life Sciences, University of Genoa, Genoa, Italy
- Laboratoire de Biologie du Developpement de Villefranche-sur-mer, Institut de la mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France
| | - Teresa Balbi
- Environmental Physiology Laboratory, Department of Earth, Environment and Life Sciences, University of Genoa, Genoa, Italy
| | - Elena Fabbri
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Ravenna, Italy
| |
Collapse
|
27
|
Miglioli A, Balbi T, Montagna M, Dumollard R, Canesi L. Tetrabromobisphenol A acts a neurodevelopmental disruptor in early larval stages of Mytilus galloprovincialis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148596. [PMID: 34328967 DOI: 10.1016/j.scitotenv.2021.148596] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/08/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Tetrabromobisphenol A-TBBPA, a widely used brominated flame retardant detected in aquatic environments, is considered a potential endocrine disruptor-ED for its reproductive/developmental effects in vertebrates. In aquatic invertebrates, the modes of action of most EDs are largely unknown, due to partial knowledge of the mechanisms controlling neuroendocrine functions. In the marine bivalve Mytilus galloprovincialis, TBBPA has been previously shown to affect larval development in the 48 h larval toxicity assay at environmental concentrations. In this work, the effects of TBBPA were further investigated at different times post-fertilization. TBBPA, from 1 μg/L, affected shell biogenesis at 48 hours post fertilization-hpf, as shown by phenotypic and SEM analysis. The mechanisms of action of TBBPA were investigated at concentrations of the same order of magnitude as those found in highly polluted coastal areas (10 μg/L). At 28-32 hpf, TBBPA significantly affected deposition of both the organic matrix and CaCO3 in the shell. TBBPA also altered expression of shell-related genes from 24 to 48 hpf, in particular of tyrosinase, a key enzyme in shell matrix remodeling. At earlier stages (24 hpf), TBBPA affected the development of dopaminergic, serotoninergic and GABAergic systems, as shown by in situ hybridization-ISH and immunocytochemistry. These data contribute draw adverse outcome pathways-AOPs, where TBBPA affects the synthesis of neutrotransmitters involved in key events (neurodevelopment and shell biogenesis), resulting in phenotypic changes on individuals (delayed or arrested development) that might lead to detrimental consequences on populations.
Collapse
Affiliation(s)
- A Miglioli
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, DISTAV, Università di Genova, Corso Europa 26, 16132 Genova, Italy; Sorbonne Université/CNRS, Institut de la Mer, UMR7009 Laboratoire de Biologie du Développement, 06230, Chemin du Lazaret, 06230 Villefranche-sur-Mer, France
| | - T Balbi
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, DISTAV, Università di Genova, Corso Europa 26, 16132 Genova, Italy.
| | - M Montagna
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, DISTAV, Università di Genova, Corso Europa 26, 16132 Genova, Italy
| | - R Dumollard
- Sorbonne Université/CNRS, Institut de la Mer, UMR7009 Laboratoire de Biologie du Développement, 06230, Chemin du Lazaret, 06230 Villefranche-sur-Mer, France
| | - L Canesi
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, DISTAV, Università di Genova, Corso Europa 26, 16132 Genova, Italy
| |
Collapse
|
28
|
Wathsala RHGR, Musella M, Valbonesi P, Candela M, Franzellitti S. Variability of metabolic, protective, antioxidant, and lysosomal gene transcriptional profiles and microbiota composition of Mytilus galloprovincialis farmed in the North Adriatic Sea (Italy). MARINE POLLUTION BULLETIN 2021; 172:112847. [PMID: 34399278 DOI: 10.1016/j.marpolbul.2021.112847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 08/02/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
This study evaluates the transcriptional profiles of genes related to physiological responses in digestive glands (DG) of Mytilus galloprovincialis under the influence of seasonal changes of environmental variables, gender bias, and gonadal development. Composition of the DG microbiome was also explored. Mussels were collected across 7 months encompassing 3 seasons from a farm in the Northwestern Adriatic Sea. All gene products showed complex transcriptional patterns across seasons. Salinity, surface oxygen and transparency significantly correlate with transcriptional profiles of males, whereas in females temperature and gonadal maturation mostly explained the observed transcriptional changes. Seasonal variations and gender-specific differences were observed in DG microbiome composition, with variations resembling metabolic accommodations likely facing season progression and reproductive cycle. Results provide baseline information to improve actual monitoring strategies of mussel farming conditions and forecast potential detrimental impacts of climatological/environmental changes in the study area.
Collapse
Affiliation(s)
| | - Margherita Musella
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Fano, Italy
| | - Paola Valbonesi
- Animal and Environmental Physiology Laboratory, Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Ravenna, Italy
| | - Marco Candela
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Fano, Italy.
| | - Silvia Franzellitti
- Animal and Environmental Physiology Laboratory, Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Ravenna, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Fano, Italy.
| |
Collapse
|
29
|
Mincarelli LF, Rotchell JM, Chapman EC, Turner AP, Wollenberg Valero KC. Consequences of combined exposure to thermal stress and the plasticiser DEHP in Mytilus spp. differ by sex. MARINE POLLUTION BULLETIN 2021; 170:112624. [PMID: 34146859 DOI: 10.1016/j.marpolbul.2021.112624] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 06/12/2023]
Abstract
Little is known about the combined effect of environmental factors and contaminants on commercially important marine species, and whether this effect differs by sex. In this study, blue mussels were exposed for seven days to both single and combined stressors (i.e., +3 °C elevated temperature and two environmentally relevant concentrations of the plastic softener DEHP, 0.5 and 50 μg/l) in a factorial design. Males were observed to be more sensitive to high temperature, demonstrated by the significant increase in out-of-season spawning gonads and higher gene expression of the antioxidant catalase and the estrogen receptor genes. On the other hand, while the gametogenesis cycle in females was more resilient than in males, DEHP exposure altered the estrogen-related receptor gene expression. We show that the combined stressors DEHP and increased temperature, in environmentally relevant magnitudes, have different consequences in male and female mussels, with the potential to impact the timing and breeding season success in Mytilus spp.
Collapse
Affiliation(s)
| | - Jeanette M Rotchell
- Department of Biological and Marine Sciences, University of Hull, Hull HU6 7RX, United Kingdom
| | - Emma C Chapman
- Department of Biological and Marine Sciences, University of Hull, Hull HU6 7RX, United Kingdom
| | - Alexander P Turner
- Department of Computer Science, University of Nottingham, NG8 1BB, United Kingdom
| | | |
Collapse
|
30
|
Baralla E, Pasciu V, Varoni MV, Nieddu M, Demuro R, Demontis MP. Bisphenols' occurrence in bivalves as sentinel of environmental contamination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 785:147263. [PMID: 33930805 DOI: 10.1016/j.scitotenv.2021.147263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/25/2021] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
Bisphenols are massively used in several manufacture processes such that bisphenol A (BPA) is ubiquitous in environment worldwide. After the implementation of regulations about BPA use, manufacturers have moved their production toward alternative substances structurally similar to it. Unfortunately, BPA analogues, given their structural similarity, exert also similar adverse effects. This review aims to investigate the occurrence of bisphenols (BPs) in bivalve molluscs. In this way, valuable information on the amount of BPs released into the environment in different areas are given. The current research indicates that BPA presence in bivalve molluscs has been investigated in Asia (Indian Ocean and Pacific Ocean), Europe (Mediterranean Sea, Baltic Sea and Atlantic Ocean) and America (Lake Mead, Nevada) with the highest amount of studies reported in bivalves harvested in Asian Coasts. BPA analogues are frequently detected in several matrices and their levels will continuously increase in the environment. Nevertheless, there is a current lack of studies analysing BPs other than BPA in bivalves. Further investigations should be conducted in this direction, in order to assess environmental distribution and the hazard for animals and human health given that seafood consumption could be an important pathway of bisphenols intake.
Collapse
Affiliation(s)
- Elena Baralla
- Department of Veterinary Medicine, University of Sassari, via Vienna 2, Sassari, Italy.
| | - Valeria Pasciu
- Department of Veterinary Medicine, University of Sassari, via Vienna 2, Sassari, Italy
| | - Maria Vittoria Varoni
- Department of Veterinary Medicine, University of Sassari, via Vienna 2, Sassari, Italy
| | - Maria Nieddu
- Department of Chemistry and Pharmacy, University of Sassari, via Muroni 23, Sassari, Italy
| | - Roberto Demuro
- Revenue Agency, Provincial Division of Sassari, Territory Office, piazzale Falcone 5e, Sassari, Italy
| | - Maria Piera Demontis
- Department of Veterinary Medicine, University of Sassari, via Vienna 2, Sassari, Italy
| |
Collapse
|
31
|
Capolupo M, Gunaalan K, Booth AM, Sørensen L, Valbonesi P, Fabbri E. The sub-lethal impact of plastic and tire rubber leachates on the Mediterranean mussel Mytilus galloprovincialis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117081. [PMID: 33848903 DOI: 10.1016/j.envpol.2021.117081] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/25/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Ocean contamination by synthetic polymers can represent a risk for the fitness of marine species due to the leaching of chemical additives. This study evaluated the sub-lethal effects of plastic and rubber leachates on the mussel Mytilus galloprovincialis through a battery of biomarkers encompassing lysosomal endpoints, oxidative stress/detoxification parameters, and specific responses to metals/neurotoxicants. Mussels were exposed for 7 days to leachates from car tire rubber (CTR), polypropylene (PP), polyethylene terephthalate (PET), polystyrene (PS) and polyvinyl chloride (PVC), containing organic additives and metals in the ng-μg/L range. The leachate exposure affected general stress parameters, including the neutral lipid content (all leachates), the lysosomal membrane stability (PS, PP, PVC and CTR leachates) and lysosomal volume (PP, PVC and TR leachates). An increased content of the lipid peroxidation products malondialdehyde and lipofuscin was observed in mussels exposed to PET, PS and PP leachates, and PP, PVC and CTR leachates, respectively. PET and PP leachates increased the activity of the phase-II metabolism enzyme glutathione S-transferase, while a decreased acetylcholinesterase activity was induced by PVC leachates. Data were integrated in the mussel expert system (MES), which categorizes the organisms' health status based on biomarker responses. The MES assigned healthy status to mussels exposed to PET leachates, low stress to PS leachates, and moderate stress to PP, CTR and PVC leachates. This study shows that additives leached from selected plastic/rubber polymers cause sub-lethal effects in mussels and that the magnitude of these effects may be higher for CTR, PVC and PP due to a higher content and release of metals and organic compounds.
Collapse
Affiliation(s)
- Marco Capolupo
- University of Bologna, Department of Biological, Geological, and Environmental Sciences, Via Sant'Alberto 163, 48123, Ravenna, Italy
| | - Kuddithamby Gunaalan
- University of Bologna, Department of Biological, Geological, and Environmental Sciences, Via Sant'Alberto 163, 48123, Ravenna, Italy
| | - Andy M Booth
- SINTEF Ocean, Environment and New Resources, Trondheim, Norway
| | - Lisbet Sørensen
- SINTEF Ocean, Environment and New Resources, Trondheim, Norway
| | - Paola Valbonesi
- University of Bologna, Department of Biological, Geological, and Environmental Sciences, Via Sant'Alberto 163, 48123, Ravenna, Italy
| | - Elena Fabbri
- University of Bologna, Department of Biological, Geological, and Environmental Sciences, Via Sant'Alberto 163, 48123, Ravenna, Italy.
| |
Collapse
|
32
|
Torres T, Ruivo R, Santos MM. Epigenetic biomarkers as tools for chemical hazard assessment: Gene expression profiling using the model Danio rerio. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:144830. [PMID: 33592472 DOI: 10.1016/j.scitotenv.2020.144830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/26/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Recent reports raise the concern that exposure to several environmental chemicals may induce persistent changes that go beyond the exposed organisms, being transferred to subsequent generations even in the absence of the original chemical insult. These changes in subsequent non-exposed generations have been related to epigenetic changes. Although highly relevant for hazard and risk assessment, biomarkers of epigenetic modifications that can be associated with adversity, are still not integrated into hazard assessment frameworks. Here, in order to validate new biomarkers of epigenetic modifications in a popular animal model, zebrafish embryos were exposed to different concentrations of Bisphenol A (0.01, 0.1, 1 and 10 mg/L) and Valproic Acid (0.8, 4, 20 and 100 mg/L), two chemicals reported to alter the modulation of the epigenome. Morphological abnormalities and epigenetic changes were assessed at 80 hours-post fertilization, including DNA global methylation and gene expression of both DNA and histone epigenetic modifications. Gene expression changes were detected at concentrations below those inducing morphological abnormalities. These results further support the importance of combining epigenetic biomarkers with apical endpoints to improve guidelines for chemical testing and hazard assessment, and favour the integration of new biomarkers of epigenetic modifications into the standardized OECD test guideline 236 with zebrafish embryos.
Collapse
Affiliation(s)
- Tiago Torres
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Group of Endocrine Disruptors and Emerging Contaminants, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Raquel Ruivo
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Group of Endocrine Disruptors and Emerging Contaminants, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Miguel Machado Santos
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Group of Endocrine Disruptors and Emerging Contaminants, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| |
Collapse
|
33
|
Jimenez-Guri E, Roberts KE, García FC, Tourmente M, Longdon B, Godley BJ. Transgenerational effects on development following microplastic exposure in Drosophila melanogaster. PeerJ 2021; 9:e11369. [PMID: 34012729 PMCID: PMC8109007 DOI: 10.7717/peerj.11369] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/07/2021] [Indexed: 01/22/2023] Open
Abstract
Background Plastic pollution affects all ecosystems, and detrimental effects to animals have been reported in a growing number of studies. However, there is a paucity of evidence for effects on terrestrial animals in comparison to those in the marine realm. Methods We used the fly Drosophila melanogaster to study the effects that exposure to plastics may have on life history traits and immune response. We reared flies in four conditions: In media containing 1% virgin polyethylene, with no chemical additives; in media supplemented with 1% or 4% polyvinyl chloride, known to have a high content of added chemicals; and control flies in non-supplemented media. Plastic particle size ranged from 23–500 µm. We studied fly survival to viral infection, the length of the larval and pupal stage, sex ratios, fertility and the size of the resultant adult flies. We then performed crossings of F1 flies in non-supplemented media and looked at the life history traits of the F2. Results Flies treated with plastics in the food media showed changes in fertility and sex ratio, but showed no differences in developmental times, adult size or the capacity to fight infections in comparison with controls. However, the offspring of treated flies reared in non-supplemented food had shorter life cycles, and those coming from both polyvinyl chloride treatments were smaller than those offspring of controls.
Collapse
Affiliation(s)
- Eva Jimenez-Guri
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter Cornwall Campus, University of Exeter, Penryn, Cornwall, United Kingdom.,Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dhorn, Naples, Italy
| | - Katherine E Roberts
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter Cornwall Campus, University of Exeter, Penryn, Cornwall, United Kingdom
| | - Francisca C García
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter Cornwall Campus, University of Exeter, Penryn, Cornwall, United Kingdom
| | - Maximiliano Tourmente
- Institute for Biological and Technological Research (IIByT), National Scientific and Technical Research Council (CONICET), Córdoba, Argentina.,Centre for Cell and Molecular Biology. Faculty of Exact, Physical, and Natural Sciences, University of Córdoba, Córdoba, Argentina
| | - Ben Longdon
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter Cornwall Campus, University of Exeter, Penryn, Cornwall, United Kingdom
| | - Brendan J Godley
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter Cornwall Campus, University of Exeter, Penryn, Cornwall, United Kingdom
| |
Collapse
|
34
|
Miglioli A, Balbi T, Besnardeau L, Dumollard R, Canesi L. Bisphenol A interferes with first shell formation and development of the serotoninergic system in early larval stages of Mytilus galloprovincialis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:144003. [PMID: 33321361 DOI: 10.1016/j.scitotenv.2020.144003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/15/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
Bisphenol A-BPA, a widespread plastic additive, is an emerging contaminant of high concern and a potential endocrine disruptor in mammals. BPA also represents a potential threat for aquatic species, especially for larval stages. In the marine bivalve Mytilus galloprovincialis, BPA has been previously shown to affect early larval development and gene transcription. In this work, the effects of BPA (0.05-0.5-5 μM) were further investigated at different times post fertilization (24-28-32-48 hpf). BPA induced concentration-dependent alterations in deposition of the organic matrix and calcified shell at different larval stages, as shown by double calcofluor/calcein staining, resulting in altered phenotypes at 48hpf. Transcription of Tyrosinase-TYR, that plays a key role in remodelling of the shell organic matrix, and of HOX1, a member of homeobox genes involved in larval shell formation and neurogenesis, were evaluated by In Situ Hybrydization-ISH. BPA altered the spatial pattern of expression of both genes, with distinct effects depending on the concentration and developmental stage. Moreover, BPA affected the time course of mRNA levels for TYR from 24 to 48hpf. BPA impaired development of serotonin-5-HT-immunoreactive neurons at different times pf; at 48hpf, the reduction in the number of serotoninergic neurons was associated with developmental delay and downregulation of the 5-HT receptor-5-HTR. All the effects were observed from the lowest concentration tested, corresponding to detectable BPA levels in contaminated coastal waters. These data demonstrate that BPA interferes with key processes occurring during the first developmental stages of mussels, thus representing a potential threat for natural populations.
Collapse
Affiliation(s)
- A Miglioli
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, DISTAV, Università di Genova, Corso Europa 26, 16132 Genova, Italy; Laboratoire de Biologie du Developpement de Villefranche-sur-mer, Institut de la mer, Sorbonne Université, CNRS, 181 Chemin du Lazaret, 06230 Villefranche-sur-mer, France
| | - T Balbi
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, DISTAV, Università di Genova, Corso Europa 26, 16132 Genova, Italy
| | - L Besnardeau
- Laboratoire de Biologie du Developpement de Villefranche-sur-mer, Institut de la mer, Sorbonne Université, CNRS, 181 Chemin du Lazaret, 06230 Villefranche-sur-mer, France
| | - R Dumollard
- Laboratoire de Biologie du Developpement de Villefranche-sur-mer, Institut de la mer, Sorbonne Université, CNRS, 181 Chemin du Lazaret, 06230 Villefranche-sur-mer, France
| | - L Canesi
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, DISTAV, Università di Genova, Corso Europa 26, 16132 Genova, Italy.
| |
Collapse
|
35
|
Sendra M, Sparaventi E, Novoa B, Figueras A. An overview of the internalization and effects of microplastics and nanoplastics as pollutants of emerging concern in bivalves. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:142024. [PMID: 33207452 DOI: 10.1016/j.scitotenv.2020.142024] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 05/22/2023]
Abstract
Microplastic and nanoplastic pollution in aquatic environments is a topic of emerging concern due to the internalization, retention time and effects of these particles in aquatic biota. Bivalves are considered bioindicators due to their wide distribution, sessile behaviour, occupation of ecological niches and ability to filter a large water volume. The study of microplastics and nanoplastics in bivalves has revealed the uptake mechanisms, internalization, distribution and depuration of these particles as well as their effects on physiological parameters, morphological alterations, immunotoxicity and changes in gene expression and proteomic profiles. In this review, we examine the primary characteristics of microplastics and nanoplastics (type of material, size, coating, density, additives and shapes) involved in their possible toxicity in bivalves. Furthermore, secondary characteristics such as the suspension media, aggregation stage and adsorption of persistent pollutants were also recorded to assess the impact of these materials on bivalves. Here, we have highlighted the efforts exerted thus far and the remaining gaps in understanding the extent of microplastic and nanoplastic impacts on bivalves on the basis of laboratory experiments and mesocosm bioassays and in the field. Furthermore, further microplastic and nanoplastic toxicological studies are proposed to facilitate the realistic assessment of environmental risk.
Collapse
Affiliation(s)
- M Sendra
- Institute of Marine Research (IIM), National Research Council (CSIC), Eduardo Cabello 6, 36208 Vigo, Spain.
| | - E Sparaventi
- Institute of Marine Sciences of Andalusia (ICMAN), National Research Council (CSIC), Campus Río San Pedro, 11510 Puerto Real, Cádiz, Spain
| | - B Novoa
- Institute of Marine Research (IIM), National Research Council (CSIC), Eduardo Cabello 6, 36208 Vigo, Spain
| | - A Figueras
- Institute of Marine Research (IIM), National Research Council (CSIC), Eduardo Cabello 6, 36208 Vigo, Spain
| |
Collapse
|
36
|
Lear G, Kingsbury JM, Franchini S, Gambarini V, Maday SDM, Wallbank JA, Weaver L, Pantos O. Plastics and the microbiome: impacts and solutions. ENVIRONMENTAL MICROBIOME 2021; 16:2. [PMID: 33902756 PMCID: PMC8066485 DOI: 10.1186/s40793-020-00371-w] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/28/2020] [Indexed: 05/12/2023]
Abstract
Global plastic production has increased exponentially since manufacturing commenced in the 1950's, including polymer types infused with diverse additives and fillers. While the negative impacts of plastics are widely reported, particularly on marine vertebrates, impacts on microbial life remain poorly understood. Plastics impact microbiomes directly, exerting toxic effects, providing supplemental carbon sources and acting as rafts for microbial colonisation and dispersal. Indirect consequences include increased environmental shading, altered compositions of host communities and disruption of host organism or community health, hormone balances and immune responses. The isolation and application of plastic-degrading microbes are of substantial interest yet little evidence supports the microbial biodegradation of most high molecular weight synthetic polymers. Over 400 microbial species have been presumptively identified as capable of plastic degradation, but evidence for the degradation of highly prevalent polymers including polypropylene, nylon, polystyrene and polyvinyl chloride must be treated with caution; most studies fail to differentiate losses caused by the leaching or degradation of polymer monomers, additives or fillers. Even where polymer degradation is demonstrated, such as for polyethylene terephthalate, the ability of microorganisms to degrade more highly crystalline forms of the polymer used in commercial plastics appears limited. Microbiomes frequently work in conjunction with abiotic factors such as heat and light to impact the structural integrity of polymers and accessibility to enzymatic attack. Consequently, there remains much scope for extremophile microbiomes to be explored as a source of plastic-degrading enzymes and microorganisms. We propose a best-practice workflow for isolating and reporting plastic-degrading taxa from diverse environmental microbiomes, which should include multiple lines of evidence supporting changes in polymer structure, mass loss, and detection of presumed degradation products, along with confirmation of microbial strains and enzymes (and their associated genes) responsible for high molecular weight plastic polymer degradation. Such approaches are necessary for enzymatic degraders of high molecular weight plastic polymers to be differentiated from organisms only capable of degrading the more labile carbon within predominantly amorphous plastics, plastic monomers, additives or fillers.
Collapse
Affiliation(s)
- G Lear
- School of Biological Sciences, University of Auckland, 3a Symonds Street, Auckland, 1010, New Zealand.
| | - J M Kingsbury
- Institute of Environmental Science and Research, 27 Creyke Rd, Ilam, Christchurch, 8041, New Zealand
| | - S Franchini
- School of Biological Sciences, University of Auckland, 3a Symonds Street, Auckland, 1010, New Zealand
| | - V Gambarini
- School of Biological Sciences, University of Auckland, 3a Symonds Street, Auckland, 1010, New Zealand
| | - S D M Maday
- School of Biological Sciences, University of Auckland, 3a Symonds Street, Auckland, 1010, New Zealand
| | - J A Wallbank
- School of Biological Sciences, University of Auckland, 3a Symonds Street, Auckland, 1010, New Zealand
| | - L Weaver
- Institute of Environmental Science and Research, 27 Creyke Rd, Ilam, Christchurch, 8041, New Zealand
| | - O Pantos
- Institute of Environmental Science and Research, 27 Creyke Rd, Ilam, Christchurch, 8041, New Zealand
| |
Collapse
|
37
|
Miglioli A, Canesi L, Gomes IDL, Schubert M, Dumollard R. Nuclear Receptors and Development of Marine Invertebrates. Genes (Basel) 2021; 12:genes12010083. [PMID: 33440651 PMCID: PMC7827873 DOI: 10.3390/genes12010083] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Nuclear Receptors (NRs) are a superfamily of transcription factors specific to metazoans that have the unique ability to directly translate the message of a signaling molecule into a transcriptional response. In vertebrates, NRs are pivotal players in countless processes of both embryonic and adult physiology, with embryonic development being one of the most dynamic periods of NR activity. Accumulating evidence suggests that NR signaling is also a major regulator of development in marine invertebrates, although ligands and transactivation dynamics are not necessarily conserved with respect to vertebrates. The explosion of genome sequencing projects and the interpretation of the resulting data in a phylogenetic context allowed significant progress toward an understanding of NR superfamily evolution, both in terms of molecular activities and developmental functions. In this context, marine invertebrates have been crucial for characterizing the ancestral states of NR-ligand interactions, further strengthening the importance of these organisms in the field of evolutionary developmental biology.
Collapse
Affiliation(s)
- Angelica Miglioli
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche, Sorbonne Université, CNRS, 181 Chemin du Lazaret, 06230 Villefranche-sur-Mer, France; (A.M.); (I.D.L.G.); (M.S.)
- Dipartimento di Scienze della Terra, dell’Ambiente e della Vita (DISTAV), Università degli Studi di Genova, Corso Europa 26, 16132 Genova, Italy;
| | - Laura Canesi
- Dipartimento di Scienze della Terra, dell’Ambiente e della Vita (DISTAV), Università degli Studi di Genova, Corso Europa 26, 16132 Genova, Italy;
| | - Isa D. L. Gomes
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche, Sorbonne Université, CNRS, 181 Chemin du Lazaret, 06230 Villefranche-sur-Mer, France; (A.M.); (I.D.L.G.); (M.S.)
| | - Michael Schubert
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche, Sorbonne Université, CNRS, 181 Chemin du Lazaret, 06230 Villefranche-sur-Mer, France; (A.M.); (I.D.L.G.); (M.S.)
| | - Rémi Dumollard
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche, Sorbonne Université, CNRS, 181 Chemin du Lazaret, 06230 Villefranche-sur-Mer, France; (A.M.); (I.D.L.G.); (M.S.)
- Correspondence:
| |
Collapse
|
38
|
Wang Y, Guan J, Li L, Wang Z, Yuan X, Yan Y, Li X, Lu N. Graphite-bridged indirect Z-scheme system TiO 2-C-BiVO 4 film with enhanced photoelectrocatalytic activity towards serial bisphenols. ENVIRONMENTAL RESEARCH 2020; 191:110221. [PMID: 32946890 DOI: 10.1016/j.envres.2020.110221] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 09/02/2020] [Accepted: 09/12/2020] [Indexed: 06/11/2023]
Abstract
Due to the increase in the occurrence of bisphenols (BPs) in the environments, it is urgent to develop efficient and ecofriendly methods for their removal. A novel, indirect Z-scheme TiO2-C-BiVO4 film was prepared by a sol-gel method combined with hydrothermal carbonization. The doped graphite carbon was generated in situ from glucose, which acted as an electron-transfer bridge for the Z-scheme system to enhance the heterojunction tightness between TiO2 and BiVO4. This resulted in an increasing separation efficiency of photogenerated electrons and holes and a stronger redox ability of the TiO2-C-BiVO4 film for the degradation and detoxification of BPs. The degradation efficiency of BPs was over 95% in 240 min, except for that of 4,4'-sulphonyldiphenol (BPS) due to the presence of the OSO group, and all of the BPs were nearly completely mineralized when the reaction time reached 360 min. Consequently, the inhibition ratio towards Vibrio fischeri decreased significantly along with the loss and mineralization of aromatic intermediates during photoelectrocatalytic degradation. 2,2-bis(4-Hydroxyphenyl) butane (BPB), 4,4'-(1-phenylethylidene)-bisphenol (BPAP), and (4,4'-hexafluoroisopropylidene) diphenol (BPAF), with relatively high toxicity levels and lipophilicity and as toxic product precursors, require attention in terms of environmental safety. Overall, this work provides a promising and environmentally friendly way to remove BPs from water.
Collapse
Affiliation(s)
- Yaqi Wang
- School of Environment, Northeast Normal University, Changchun, 130117, PR China
| | - Jiunian Guan
- School of Environment, Northeast Normal University, Changchun, 130117, PR China
| | - Lu Li
- School of Environment, Northeast Normal University, Changchun, 130117, PR China
| | - Zirui Wang
- School of Environment, Northeast Normal University, Changchun, 130117, PR China
| | - Xing Yuan
- School of Environment, Northeast Normal University, Changchun, 130117, PR China.
| | - Yu Yan
- Institute of Environmental Assessment, China Northeast Municipal Engineering Design & Research Institute Co., Ltd, Changchun, 130021, PR China
| | - Xiaodan Li
- Institute of Environmental Assessment, China Northeast Municipal Engineering Design & Research Institute Co., Ltd, Changchun, 130021, PR China
| | - Nan Lu
- School of Environment, Northeast Normal University, Changchun, 130117, PR China.
| |
Collapse
|
39
|
Balbi T, Vezzulli L, Lasa A, Pallavicini A, Canesi L. Insight into the microbial communities associated with first larval stages of Mytilus galloprovincialis: Possible interference by estrogenic compounds. Comp Biochem Physiol C Toxicol Pharmacol 2020; 237:108833. [PMID: 32585367 DOI: 10.1016/j.cbpc.2020.108833] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/29/2020] [Accepted: 06/19/2020] [Indexed: 12/12/2022]
Abstract
The microbiota, the host-associated community of microbes, play important roles in health status and whole body homeostasis of all organisms, including marine species. In bivalves, the microbiota composition has been mainly investigated in adults, whereas little information is available during development. In this work, the microbiota composition of the first larval stages of Mytilus galloprovincialis was evaluated by 16S rRNA gene-based profiling, at 24 and 48 hours post fertilization in comparison with those of eggs and sperm. The main genera detected in both larvae (Vibrio, Pseudoalteromonas, Psychrobium, Colwellia) derived from eggs. However, a clear shift in microbiota was observed in developing larvae compared to eggs, both in terms of core microbiome and relative abundance of different genera. The results provide a first insight into the composition of the microbial communities associated with gametes and early larvae of mussels. Moreover, the impact on larval microbiome of estrogenic chemicals that potentially affect Mytilus early development, 17βestradiol-E2, Bisphenol A-BPA and Bisphenol F-BPF (10 μg/L), was investigated. Exposure to estrogenic chemicals leads to changes in abundance of different genera, with distinct and common effects depending on the compound and larval stage. Both potential pathogens (Vibrio, Arcobacter, Tenacibaculum) and genera involved in xenobiotic biotransformation (Oleispira, Shewanella) were affected. The effects of estrogenic compounds on larval microbiome were not related to their developmental effects: however, the results address the importance of evaluating the impact of emerging contaminants on the microbiota of marine invertebrates, including larval stages, that are most sensitive to environmental perturbations.
Collapse
Affiliation(s)
- T Balbi
- DISTAV, Dept. of Earth, Environment and Life Sciences, University of Genoa, Italy.
| | - L Vezzulli
- DISTAV, Dept. of Earth, Environment and Life Sciences, University of Genoa, Italy
| | - A Lasa
- Dept. of Microbiology and Parasitology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - A Pallavicini
- Dept. of Life Sciences, University of Trieste, Italy
| | - L Canesi
- DISTAV, Dept. of Earth, Environment and Life Sciences, University of Genoa, Italy
| |
Collapse
|
40
|
Llorente L, Herrero Ó, Aquilino M, Planelló R. Prodiamesa olivacea: de novo biomarker genes in a potential sentinel organism for ecotoxicity studies in natural scenarios. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 227:105593. [PMID: 32861021 DOI: 10.1016/j.aquatox.2020.105593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
Along with traditional ecotoxicological approaches in model organisms, toxicological studies in non-model organisms are being taken into consideration in order to complement them and contribute to more robust approaches. This allows us to figure out the complexity of the exposures involved in natural ecosystems. In this context, in the present research we have used the model species Chironomus riparius (Chironomidae, Diptera) and the non-model species Prodiamesa olivacea (Chironomidae, Diptera) to assess the aquatic toxic effects of acute 4-h and 24-h exposures to 1 μgL-1 of three common environmental pollutants: butyl benzyl phthalate (BBP), bisphenol A (BPA), and benzophenone 3 (BP3). Individuals of both species were collected from a contaminated river (Sar) in Galicia (Spain). Regarding Chironomus, there are four OECD standardized tests for the evaluation of water and sediment toxicity, in which different species in this genus can be used to assess classical toxicity parameters such as survival, immobilization, reproduction, and development. In contrast, Prodiamesa is rarely used in toxicity studies, even though it is an interesting toxicological species because it shares habitats with Chironomus but requires less extreme conditions (e.g., contamination) and higher oxygen levels. These different requirements are particularly interesting in assessing the different responses of both species to pollutant exposure. Quantitative real-time PCR was used to evaluate the transcriptional changes caused by xenobiotics in different genes of interest. Since information about P. olivacea in genomic databases is scarce, its transcriptome was obtained using de novo RNAseq. Genes involved in biotransformation pathways and the oxidative stress response (MnSOD, CAT, PHGPx, Cyp4g15, Cyp6a14-like and Cyp6a2-like) were de novo identified in this species. Our results show differential toxic responses depending on the species and the xenobiotic, being P. olivacea the dipteran that showed the most severe effects in most of the studied biomarker genes. This work represents a multi-species approach that allows us to deepen in the toxicity of BBP, BPA, and BP3 at the molecular level. Besides, it provides an assessment of the tolerance/sensitivity of natural populations of model and non-model insect species chronically exposed to complex mixtures of pollutants in natural scenarios. These findings may have important implications for understanding the adverse biological effects of xenobiotics on P. olivacea, providing new sensitive biomarkers of exposure to BBP, BPA, and BP3. It also highlights the suitability of Prodiamesa for ecotoxicological risk assessment, especially in aquatic ecosystems.
Collapse
Affiliation(s)
- Lola Llorente
- Biology and Environmental Toxicology Group, Faculty of Sciences, Universidad Nacional de Educación a Distancia (UNED), Paseo de la Senda del Rey 9, 28040 Madrid, Spain
| | - Óscar Herrero
- Biology and Environmental Toxicology Group, Faculty of Sciences, Universidad Nacional de Educación a Distancia (UNED), Paseo de la Senda del Rey 9, 28040 Madrid, Spain
| | - Mónica Aquilino
- Biology and Environmental Toxicology Group, Faculty of Sciences, Universidad Nacional de Educación a Distancia (UNED), Paseo de la Senda del Rey 9, 28040 Madrid, Spain
| | - Rosario Planelló
- Biology and Environmental Toxicology Group, Faculty of Sciences, Universidad Nacional de Educación a Distancia (UNED), Paseo de la Senda del Rey 9, 28040 Madrid, Spain.
| |
Collapse
|
41
|
Tang Y, Zhou W, Sun S, Du X, Han Y, Shi W, Liu G. Immunotoxicity and neurotoxicity of bisphenol A and microplastics alone or in combination to a bivalve species, Tegillarca granosa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:115115. [PMID: 32806413 DOI: 10.1016/j.envpol.2020.115115] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/16/2020] [Accepted: 06/25/2020] [Indexed: 05/24/2023]
Abstract
Though invertebrates are one of the largest groups of animal species in the sea and exhibit robust immune and neural responses that are crucial for their health and survival, the potential immunotoxicity and neurotoxicity of the most produced chemical bisphenol A (BPA), especially in conjunction with microplastics (MPs), still remain poorly understood in marine invertebrate species. Therefore, the impacts of exposure to BPA and MPs alone or in combination on a series of immune and neural biomarkers were investigated in the invertebrate bivalve species blood clam (Tegillarca granosa). Evident immunotoxicity as indicated by alterations in hematic indexes was observed after two weeks of exposure to BPA and MPs at environmentally realistic concentrations. The expression of four immune-related genes from the NFκB signaling pathway was also found to be significantly suppressed by the BPA and MP treatment. In addition, exposure to BPA and MPs led to an increase in the in vivo contents of three key neurotransmitters (GABA, DA, and ACh) but a decrease in the expression of genes encoding modulatory enzymes and receptors for these neurotransmitters, implying the evident neurotoxicity of BPA and MPs to blood clam. Furthermore, the results demonstrated that the toxic impacts exerted by BPA were significantly aggravated by the co-presence of MPs, which may be due to interactions between BPA and MPs as well as those between MPs and clam individuals.
Collapse
Affiliation(s)
- Yu Tang
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Weishang Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Shuge Sun
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Xueying Du
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Yu Han
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China.
| |
Collapse
|
42
|
Gunaalan K, Fabbri E, Capolupo M. The hidden threat of plastic leachates: A critical review on their impacts on aquatic organisms. WATER RESEARCH 2020; 184:116170. [PMID: 32698093 DOI: 10.1016/j.watres.2020.116170] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/02/2020] [Accepted: 07/11/2020] [Indexed: 05/12/2023]
Abstract
Plastic products are made from the essential polymer mixed with a complex blend of substances including catalyst remnants, polymerization solvents, and a wide range of other additives deliberately added to enhance the desirable characteristics of the final product. Additives include bisphenols, phthalates, flame retardants, and further emerging and legacy contaminants. With a few exceptions, additives are not chemically bound to the polymer, and potentially migrate within the material reaching its surface, then possibly leach out to the environment. Leachates are mixtures of additives, some of which belong to the list of emerging contaminants, i.e. substances that show the potential to pose risks to the environment and human health, while are not yet regulated. The review discusses the state of the art and gaps concerning the hidden threat of plastic leachates. The focus is on reports addressing the biological impacts of plastic leachates as a whole mixture. Degradation of plastics, including the weathering-driven fragmentation, and the release of additives, are analysed together with the techniques currently employed for chemically screening leachates. Because marine plastic litter is a major concern, the review mainly focuses on the effects of plastic leachates on marine flora and fauna. Moreover, it also addresses impacts on freshwater organisms. Finally, research needs and perspectives are examined, to promote better focused investigations, that may support developing different plastic materials and new regulations.
Collapse
Affiliation(s)
- Kuddithamby Gunaalan
- Interdepartment Centre for Environmental Science Research, University of Bologna, Ravenna, Italy
| | - Elena Fabbri
- Interdepartment Centre for Environmental Science Research, University of Bologna, Ravenna, Italy; Department of Biological, Geological and Environmental Sciences (BIGEA), University of Bologna, Ravenna, Italy.
| | - Marco Capolupo
- Department of Biological, Geological and Environmental Sciences (BIGEA), University of Bologna, Ravenna, Italy
| |
Collapse
|
43
|
Xiong X, Qiu N, Su L, Hou M, Xu C, Xiong Y, Dong X, Song Z, Wang J. In Situ Assessment of Donghu Lake China Using Rare Minnow (Gobiocypris rarus). ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 79:246-257. [PMID: 32607658 DOI: 10.1007/s00244-020-00744-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
In this work, rare minnow (Gobiocypris rarus) was applied as a sentinel organism and set in cages at control and test sampling sites in Donghu Lake for 4 weeks in March, June, September, and December 2016 to assess the biological toxicity of in situ water. Sampling for active biomonitoring and physicochemical variables was performed weekly. The control was obtained from the outdoor pool of the Institute of Hydrobiology, China. Superoxide dismutase, lipoperoxidation, metallothioneins, acetylcholinesterase activity, and Vtg mRNA expression were determined as biomarkers during the field exposure period. Survival and growth also were monitored to evaluate the overall physiological condition of the fish. The seasonal changes of organic pollutants and trace metals (As, Hg, Cr, Cu, Zn, Cd, Pb) in surface water were determined. The integrated biomarker response (IBR) index was applied to summarize biomarker responses and correlate stress levels with concentrations of organic pollutants and trace metals in the surface water. Results indicated that complex pollution by persistent organic pollutants and heavy metals was present in Donghu Lake and that the in situ exposed organisms were stressed. Moreover, the complex pollution of Donghu Lake in summer and autumn was more serious than that in spring and winter. Active biomonitoring combined with IBR analysis enabled good discrimination among different exposure seasons. The proposed protocol with caged rare minnow revealed marked biological effects caused by the investigated Lake and a useful approach that can easily be extended to monitor water pollution.
Collapse
Affiliation(s)
- Xiaoqin Xiong
- The Key of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, People's Republic of China
- Key Laboratory of Conservation and Utilization of Fish Resources, College of Life Sciences, Neijiang Normal University, Neijiang, 641100, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100039, People's Republic of China
| | - Ning Qiu
- The Key of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100039, People's Republic of China
| | - Liangxia Su
- The Key of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100039, People's Republic of China
| | - Miaomiao Hou
- The Key of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100039, People's Republic of China
| | - Chunsen Xu
- The Key of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100039, People's Republic of China
| | - Yuxiang Xiong
- Key Laboratory of Rare Mineral, Ministry of Natural Resources, Wuhan, 430034, People's Republic of China
| | - Xuelin Dong
- Key Laboratory of Rare Mineral, Ministry of Natural Resources, Wuhan, 430034, People's Republic of China
| | - Zhou Song
- Key Laboratory of Rare Mineral, Ministry of Natural Resources, Wuhan, 430034, People's Republic of China
| | - Jianwei Wang
- The Key of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, People's Republic of China.
| |
Collapse
|
44
|
Franzellitti S, Prada F, Viarengo A, Fabbri E. Evaluating bivalve cytoprotective responses and their regulatory pathways in a climate change scenario. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137733. [PMID: 32325610 DOI: 10.1016/j.scitotenv.2020.137733] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 06/11/2023]
Abstract
Temperature is a relevant abiotic factor affecting physiological performance and distribution of marine animals in natural environments. The changes in global seawater temperatures make it necessary to understand how molecular mechanisms operate under the cumulative effects of global climate change and chemical pollution to promote/hamper environmental acclimatization. Marine mussels are excellent model organisms to infer the impacts of those anthropogenic threats on coastal ecosystems. In this study, Mediterranean mussels (Mytilus galloprovincialis) were exposed to different concentrations of the metal copper (Cu as CuCl2: 2.5, 5, 10, 20, 40 μg/L) or the antibiotic oxytetracycline (OTC: 0.1, 1, 10, 100, 1000 μg/L) at increasing seawater temperatures (16 °C, 20 °C, 24 °C). Transcriptional modulation of a 70-kDa heat shock protein (HSP70) and of the ABC transporter P-glycoprotein (P-gp, encoded by the ABCB gene) was assessed along with the cAMP/PKA signaling pathway regulating both gene expressions. At the physiological temperature of mussels (16 °C), Cu and OTC induced bimodal changes of cAMP levels and PKA activities in gills of exposed animals. A correlation between OTC- or Cu- induced changes of PKA activity and expression of hsp70 and ABCB was observed. Temperature increases (up to 24 °C) altered ABCB and hsp70 responses to the pollutants and disrupted their relationship with cAMP/PKA modulation, leading to loss of correlation between the biological endpoints. On the whole, the results indicate that temperature may impair the effects of inorganic and organic chemicals on the cAMP/PKA signaling pathway of mussels, in turn altering key molecular mediators of physiological plasticity and cytoprotection.
Collapse
Affiliation(s)
- Silvia Franzellitti
- Animal and Environmental Physiology Laboratory, Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Ravenna, Italy; Fano Marine Center, Department of Biological, Geological, and Environmental Sciences (BiGeA), University of Bologna, Fano, Italy.
| | - Fiorella Prada
- Fano Marine Center, Department of Biological, Geological, and Environmental Sciences (BiGeA), University of Bologna, Fano, Italy; Marine Science Group, Department of Biological, Geological, and Environmental Sciences (BiGeA), University of Bologna, Bologna, Italy
| | - Aldo Viarengo
- Ecotoxicology and Environmental Safety Unit, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Elena Fabbri
- Animal and Environmental Physiology Laboratory, Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Ravenna, Italy
| |
Collapse
|
45
|
Yin Z, Hua L, Chen L, Hu D, Li J, An Z, Tian T, Ning H, Ge Y. Bisphenol-A exposure induced neurotoxicity and associated with synapse and cytoskeleton in Neuro-2a cells. Toxicol In Vitro 2020; 67:104911. [PMID: 32512148 DOI: 10.1016/j.tiv.2020.104911] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 05/07/2020] [Accepted: 06/01/2020] [Indexed: 12/16/2022]
Abstract
Bisphenol A (BPA) is an environmental chemical that induces neurotoxic effects for human. Synaptophysin (SYP) and drebrin (Dbn) proteins are involved in regulating synaptic morphology. The stability of the cytoskeleton in nerve cells in the brain is regulated by Tau and MAP2. This study aimed to determine the toxicity of BPA to Neuro-2a cells by investigating the synaptic and cytoskeletal damage induced in these cells by 24 h of exposure to 0 (MEM), 50, 100, 150, or 200 μM BPA or DMSO. MTT and LDH assays showed that the death rates of Neuro-2a cells increased, as the BPA concentration increased. Ultrastructural assays revealed that cells underwent nucleolar swelling as well as nuclear membrane and partial mitochondrial dissolution or condensation, following BPA exposure. Morphological analysis further revealed that compared with the cells in the control group, the cells in the BPA-treated groups shrank, became rounded, and exhibited a reduced number of synapses. BPA also significantly decreased the relative protein and mRNA expression levels of Dbn, MAP2 and Tau (P < .01), but increased the relative protein and mRNA expression levels of SYP (P < .01). These results indicated that BPA suppressed the development and proliferation of Neuro-2a cells by disrupting cellular and synaptic integrity and inflicting cytoskeleton injury.
Collapse
Affiliation(s)
- Zhihong Yin
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China
| | - Liushuai Hua
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China
| | - Lingli Chen
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China
| | - Dongfang Hu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China
| | - Jinglong Li
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China
| | - Zhixing An
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China
| | - Tian Tian
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China
| | - Hongmei Ning
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China
| | - Yaming Ge
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China.
| |
Collapse
|
46
|
Auguste M, Balbi T, Ciacci C, Canonico B, Papa S, Borello A, Vezzulli L, Canesi L. Shift in Immune Parameters After Repeated Exposure to Nanoplastics in the Marine Bivalve Mytilus. Front Immunol 2020; 11:426. [PMID: 32351496 PMCID: PMC7174705 DOI: 10.3389/fimmu.2020.00426] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/25/2020] [Indexed: 12/14/2022] Open
Abstract
Bivalves are widespread in coastal environments subjected to a wide range of environmental fluctuations: however, the rapidly occurring changes due to several anthropogenic factors can represent a significant threat to bivalve immunity. The mussel Mytilus spp. has extremely powerful immune defenses toward different potential pathogens and contaminant stressors. In particular, the mussel immune system represents a significant target for different types of nanoparticles (NPs), including amino-modified nanopolystyrene (PS-NH2) as a model of nanoplastics. In this work, the effects of repeated exposure to PS-NH2 on immune responses of Mytilus galloprovincialis were investigated after a first exposure (10 μg/L; 24 h), followed by a resting period (72-h depuration) and a second exposure (10 μg/L; 24 h). Functional parameters were measured in hemocytes, serum, and whole hemolymph samples. In hemocytes, transcription of selected genes involved in proliferation/apoptosis and immune response was evaluated by qPCR. First exposure to PS-NH2 significantly affected hemocyte mitochondrial and lysosomal parameters, serum lysozyme activity, and transcription of proliferation/apoptosis markers; significant upregulation of extrapallial protein precursor (EPp) and downregulation of lysozyme and mytilin B were observed. The results of functional hemocyte parameters indicate the occurrence of stress conditions that did not however result in changes in the overall bactericidal activity. After the second exposure, a shift in hemocyte subpopulations, together with reestablishment of basal functional parameters and of proliferation/apoptotic markers, was observed. Moreover, hemolymph bactericidal activity, as well as transcription of five out of six immune-related genes, all codifying for secreted proteins, was significantly increased. The results indicate an overall shift in immune parameters that may act as compensatory mechanisms to maintain immune homeostasis after a second encounter with PS-NH2.
Collapse
Affiliation(s)
- Manon Auguste
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - Teresa Balbi
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - Caterina Ciacci
- Department of Biomolecular Sciences (DIBS), University of Urbino, Urbino, Italy
| | - Barbara Canonico
- Department of Biomolecular Sciences (DIBS), University of Urbino, Urbino, Italy
| | - Stefano Papa
- Department of Biomolecular Sciences (DIBS), University of Urbino, Urbino, Italy
| | - Alessio Borello
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - Luigi Vezzulli
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - Laura Canesi
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| |
Collapse
|
47
|
Capolupo M, Sørensen L, Jayasena KDR, Booth AM, Fabbri E. Chemical composition and ecotoxicity of plastic and car tire rubber leachates to aquatic organisms. WATER RESEARCH 2020; 169:115270. [PMID: 31731243 DOI: 10.1016/j.watres.2019.115270] [Citation(s) in RCA: 261] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/22/2019] [Accepted: 11/02/2019] [Indexed: 05/21/2023]
Abstract
Synthetic polymer-based materials are ubiquitous in aquatic environments, where weathering processes lead to their progressive fragmentation and the leaching of additive chemicals. The current study assessed the chemical content of freshwater and marine leachates produced from car tire rubber (CTR), polypropylene (PP), polyethylene terephthalate (PET), polystyrene (PS) and polyvinyl chloride (PVC) microplastics, and their adverse effects on the microalgae Raphidocelis subcapitata (freshwater) and Skeletonema costatum (marine) and the Mediterranean mussel Mytilus galloprovincialis. A combination of non-target and target chemical analysis revealed a number of organic and metal compounds in the leachates, including representing plasticizers, antioxidants, antimicrobials, lubricants, and vulcanizers. CTR and PVC materials and their corresponding leachates had the highest content of tentatively identified organic additives, while PET had the lowest. The metal content varied both between polymer leachates and between freshwater and seawater. Notable additives identified in high concentrations were benzothiazole (CTR), phthalide (PVC), acetophenone (PP), cobalt (CTR, PET), zinc (CTR, PVC), lead (PP) and antimony (PET). All leachates, except PET, inhibited algal growth with EC50 values ranging from 0.5% (CTR) and 64% (PP) of the total leachate concentration. Leachates also affected mussel endpoints, including the lysosomal membrane stability and early stages endpoints as gamete fertilization, embryonic development and larvae motility and survival. Embryonic development was the most sensitive parameter in mussels, with EC50 values ranging from 0.8% (CTR) to 65% (PET) of the total leachate. The lowest impacts were induced on D-shell larvae survival, reflecting their ability to down-regulate motility and filtration in the presence of chemical stressors. This study provides evidence of the relationship between chemical composition and toxicity of plastic/rubber leachates. Consistent with increasing contamination by organic and inorganic additives, the leachates ranged from slightly to highly toxic to mussels and algae, highlighting the need for a better understanding of the overall impact of plastic-associated chemicals on aquatic ecosystems.
Collapse
Affiliation(s)
- Marco Capolupo
- University of Bologna, Department of Biological, Geological, and Environmental Sciences, Via Sant'Alberto 163, 48123, Ravenna, Italy
| | - Lisbet Sørensen
- SINTEF Ocean, Environment and New Resources, Trondheim, Norway
| | - Kongalage Don Ranil Jayasena
- University of Bologna, Department of Biological, Geological, and Environmental Sciences, Via Sant'Alberto 163, 48123, Ravenna, Italy
| | - Andy M Booth
- SINTEF Ocean, Environment and New Resources, Trondheim, Norway.
| | - Elena Fabbri
- University of Bologna, Department of Biological, Geological, and Environmental Sciences, Via Sant'Alberto 163, 48123, Ravenna, Italy
| |
Collapse
|
48
|
Miglioli A, Dumollard R, Balbi T, Besnardeau L, Canesi L. Characterization of the main steps in first shell formation in Mytilus galloprovincialis: possible role of tyrosinase. Proc Biol Sci 2019; 286:20192043. [PMID: 31771478 DOI: 10.1098/rspb.2019.2043] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bivalve biomineralization is a highly complex and organized process, involving several molecular components identified in adults and larval stages. However, information is still scarce on the ontogeny of the organic matrix before calcification occurs. In this work, first shell formation was investigated in the mussel Mytilus galloprovincialis. The time course of organic matrix and CaCO3 deposition were followed at close times post fertilization (24, 26, 29, 32, 48 h) by calcofluor and calcein staining, respectively. Both components showed an exponential trend in growth, with a delay between organic matrix and CaCO3 deposition. mRNA levels of genes involved in matrix deposition (chitin synthase; tyrosinase- TYR) and calcification (carbonic anhydrase; extrapallial protein) were quantified by qPCR at 24 and 48 hours post fertilization (hpf) with respect to eggs. All transcripts were upregulated across early development, with TYR showing highest mRNA levels from 24 hpf. TYR transcripts were closely associated with matrix deposition as shown by in situ hybridization. The involvement of tyrosinase activity was supported by data obtained with the enzyme inhibitor N-phenylthiourea. Our results underline the pivotal role of shell matrix in driving first CaCO3 deposition and the importance of tyrosinase in the formation of the first shell in M. galloprovincialis.
Collapse
Affiliation(s)
- A Miglioli
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, DISTAV, Università di Genova, Corso Europa 26, 16132 Genova, Italy.,Laboratoire de Biologie du Developpement de Villefranche-sur-mer, Institut de la mer, Sorbonne Université, CNRS, 181 Chemin du Lazaret, 06230 Villefranche-sur-mer, France
| | - R Dumollard
- Laboratoire de Biologie du Developpement de Villefranche-sur-mer, Institut de la mer, Sorbonne Université, CNRS, 181 Chemin du Lazaret, 06230 Villefranche-sur-mer, France
| | - T Balbi
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, DISTAV, Università di Genova, Corso Europa 26, 16132 Genova, Italy
| | - L Besnardeau
- Laboratoire de Biologie du Developpement de Villefranche-sur-mer, Institut de la mer, Sorbonne Université, CNRS, 181 Chemin du Lazaret, 06230 Villefranche-sur-mer, France
| | - L Canesi
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, DISTAV, Università di Genova, Corso Europa 26, 16132 Genova, Italy
| |
Collapse
|
49
|
Franzellitti S, Balbi T, Montagna M, Fabbri R, Valbonesi P, Fabbri E, Canesi L. Phenotypical and molecular changes induced by carbamazepine and propranolol on larval stages of Mytilus galloprovincialis. CHEMOSPHERE 2019; 234:962-970. [PMID: 31519105 DOI: 10.1016/j.chemosphere.2019.06.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 05/13/2019] [Accepted: 06/05/2019] [Indexed: 06/10/2023]
Abstract
The possible impact of carbamazepine (CBZ) and propranolol (PROP), two widespread pharmaceuticals in the aquatic environment, were investigated on morphology and gene transcription of early larvae of Mytilus galloprovincialis. Pharmaceuticals were first tested in a wide concentration range (from 0.01 to 1000 μg/L) through the 48-hpf embryotoxicity assay. The results showed that both compounds significantly affected embryo development from environmental concentrations. Although similar EC50 were obtained, (≅ 1 μg/L) CBZ induced a progressive increase in embryo malformations, whereas PROP apparently showed greater impacts in terms of arrested development and embryo mortality at higher concentrations (>10 μg/L). Transcriptional analyses of 17 genes involved in different physiological functions in mussels and/or in their response to environmental contaminants, were performed at 24 and 48 h pf at two selected concentrations of CBZ and PROP (0.01 and 1 μg/L). Both compounds induced down-regulation of shell-specific and neuroendocrine related transcripts, while distinct effects were observed on antioxidant, lysosomal, and immune-related transcripts, also depending on the larval stage investigated. The results demonstrate that CBZ and PROP can affect development and gene transcription in mussel early larvae at environmental concentrations.
Collapse
Affiliation(s)
- Silvia Franzellitti
- Animal and Environmental Physiology Laboratory, Department of Biological, Geological and Environmental Sciences (BiGEA), University of Bologna, Ravenna, Italy
| | - Teresa Balbi
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Genova, Italy
| | - Michele Montagna
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Genova, Italy
| | - Rita Fabbri
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Genova, Italy
| | - Paola Valbonesi
- Animal and Environmental Physiology Laboratory, Department of Biological, Geological and Environmental Sciences (BiGEA), University of Bologna, Ravenna, Italy
| | - Elena Fabbri
- Animal and Environmental Physiology Laboratory, Department of Biological, Geological and Environmental Sciences (BiGEA), University of Bologna, Ravenna, Italy.
| | - Laura Canesi
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Genova, Italy
| |
Collapse
|
50
|
Świacka K, Maculewicz J, Smolarz K, Szaniawska A, Caban M. Mytilidae as model organisms in the marine ecotoxicology of pharmaceuticals - A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:113082. [PMID: 31472454 DOI: 10.1016/j.envpol.2019.113082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/17/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
Growing production and consumption of pharmaceuticals is a global problem. Due to insufficient data on the concentration and distribution of pharmaceuticals in the marine environment, there are no appropriate legal regulations concerning their emission. In order to understand all aspects of the fate of pharmaceuticals in the marine environment and their effect on marine biota, it is necessary to find the most appropriate model organism for this purpose. This paper presents an overview of the ecotoxicological studies of pharmaceuticals, regarding the assessment of Mytilidae as suitable organisms for biomonitoring programs and toxicity tests. The use of mussels in the monitoring of pharmaceuticals allows the observation of changes in the concentration and distribution of these compounds. This in turn gives valuable information on the amount of pharmaceutical pollutants released into the environment in different areas. In this context, information necessary for the assessment of risks related to pharmaceuticals in the marine environment are provided based on what effective management procedures can be developed. However, the accumulation capacity of individual Mytilidae species, the bioavailability of pharmaceuticals and their biological effects should be further scrutinized.
Collapse
Affiliation(s)
- Klaudia Świacka
- Department of Experimental Ecology of Marine Organisms, Institute of Oceanography, University of Gdansk, Av. Pilsudskiego 46, 81-378 Gdynia, Poland.
| | - Jakub Maculewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Katarzyna Smolarz
- Department of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdansk, Av. Pilsudskiego 46, 81-378 Gdynia, Poland
| | - Anna Szaniawska
- Department of Experimental Ecology of Marine Organisms, Institute of Oceanography, University of Gdansk, Av. Pilsudskiego 46, 81-378 Gdynia, Poland
| | - Magda Caban
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|