1
|
Moro H, Vaya R, Casado M, Piña B, Domínguez-García P, Gómez-Canela C, Barata C. Biomonitoring emerging hazards of pharmaceuticals in river water using gut microbiome and behavioural Daphnia magna responses. CHEMOSPHERE 2024:143612. [PMID: 39447773 DOI: 10.1016/j.chemosphere.2024.143612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
A cost-effective Daphnia magna testing framework was applied to identify emerging hazards such as neurological and cardiovascular defects as well as antibiotic resistant genes (ARGs), related to pharmaceuticals present in waste water treated (WWTP) effluent discharged into rivers. D. magna juveniles were exposed during 48 h to water samples from three rivers in the vicinity of Barcelona (NE Spain), Besós, Llobregat and Onyar, upstream and downstream of WWTP discharging points. The analyses included measuring levels of 80 pharmaceutical residues in water samples by HPLC-MS, determination of the loads of different clinically relevant antibiotic resistant genes (ARGs) in both water samples and exposed animals, and assessment of toxic effects in feeding, heartbeat responses, and behavioural indicators. ARG prevalence in water, but not in gut microbiomes, was associated with the presence of bactericides in water. These results suggest that their levels were high enough to put a selective pressure over river microbial populations, but that Daphnia guts were not easily populated by environmental bacteria. Toxic effects were found in 20 to 43% of water samples, depending on the river, and related to water quality parameters and to pollutant levels. For example, heartbeats were correlated with salinity, whereas feeding impairment did so with high loads of suspended solids. In contrast, behavioural alterations were associated to the concentration of neuroactive chemicals. Accordingly, we hypothesize that measured neuroactive chemicals have caused the observed effects. If this also applies to local invertebrate populations, the environmental consequences may be severe and unpredictable.
Collapse
Affiliation(s)
- Hugo Moro
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034 Barcelona, Spain
| | - Raquel Vaya
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034 Barcelona, Spain
| | - Marta Casado
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034 Barcelona, Spain
| | - Benjamín Piña
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034 Barcelona, Spain
| | - Pol Domínguez-García
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Cristian Gómez-Canela
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Carlos Barata
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034 Barcelona, Spain.
| |
Collapse
|
2
|
Lee THY, Li C, Dos Santos MM, Tan SY, Sureshkumar M, Srinuansom K, Ziegler AD, Snyder SA. Assessment of emerging and persistent contaminants in an anthropogenic-impacted watershed: Application using targeted, non-targeted, and in vitro bioassay techniques. CHEMOSPHERE 2024; 364:143067. [PMID: 39128775 DOI: 10.1016/j.chemosphere.2024.143067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 06/10/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Emerging and persistent contaminants (EPC) pose a significant challenge to water quality monitoring efforts. Effect-based monitoring (EBM) techniques provide an efficient and systematic approach in water quality monitoring, but they tend to be resource intensive. In this study, we investigated the EPC distribution for various land uses using target analysis (TA) and non-target screening (NTS) and in vitro bioassays, both individually and integrated, in the upper Ping River Catchment, northern Thailand. Our findings of NTS showed that urban areas were the most contaminated of all land use types, although agriculture sites had high unexpected pollution levels. We evaluated the reliability of NTS data by comparing it to TA and observed varying inconsistencies likely due to matrix interferences and isobaric compound interferences. Integrating NTS with in vitro bioassays for a thorough analysis posed challenges, primary due to a scarcity of concentration data for key compounds, and potentially additive or non-additive effects of mixture samples that could not be accounted for. While EBM approaches place emphasis on toxic sites, this study demonstrated the importance of considering non-bioactive sites that contain toxic compounds with antagonistic effects that may go undetected by traditional monitoring approaches. The present work emphasizes the importance of improving NTS workflows and ensuring high-quality EBM analyses in future water quality monitoring programs.
Collapse
Affiliation(s)
- Theodora Hui Yian Lee
- Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141, Singapore
| | - Caixia Li
- Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141, Singapore
| | - Mauricius Marques Dos Santos
- Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141, Singapore
| | - Suan Yong Tan
- Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141, Singapore
| | - Mithusha Sureshkumar
- Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141, Singapore
| | - Khajornkiat Srinuansom
- Faculty of Fisheries Technology & Aquatic Resources, Maejo University, Nong Han, San Sai District, Chiang Mai, 50290, Thailand
| | - Alan D Ziegler
- Faculty of Fisheries Technology & Aquatic Resources, Maejo University, Nong Han, San Sai District, Chiang Mai, 50290, Thailand; Water Resources Research Center, University of Hawai'i at Mānoa, 2540 Dole St., Holmes Hall 283, Honolulu, HI, 96822, USA
| | - Shane Allen Snyder
- Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141, Singapore.
| |
Collapse
|
3
|
Johnson M, Finlayson K, van de Merwe JP, Leusch FDL. Adaption and application of cell-based bioassays to whole-water samples. CHEMOSPHERE 2024; 361:142572. [PMID: 38852631 DOI: 10.1016/j.chemosphere.2024.142572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/20/2024] [Accepted: 06/07/2024] [Indexed: 06/11/2024]
Abstract
The increasing presence of contaminants of emerging concern in wastewater and their potential environmental risks require improved monitoring and analysis methods. Direct toxicity assessment (DTA) using bioassays can complement chemical analysis of wastewater discharge, but traditional in vivo tests have ethical considerations and are expensive, low-throughput, and limited to apical endpoints (mortality, reproduction, development, and growth). In vitro bioassays offer an alternative approach that is cheaper, faster, and more ethical, and can provide higher sensitivity for some environmentally relevant endpoints. This study explores the potential benefits of using whole water samples of wastewater and environmental surface water instead of traditional solid phase extraction (SPE) methods for in vitro bioassays testing. Whole water samples produced a stronger response in most bioassays, likely due to the loss or alteration of contaminants during SPE sample extraction. In addition, there was no notable difference in results for most bioassays after freezing whole water samples, which allows for increased flexibility in testing timelines and cost savings. These findings highlight the potential advantages of using whole water samples in DTA and provide a framework for future research in this area.
Collapse
Affiliation(s)
- Matthew Johnson
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Qld, 4222, Australia; Environment, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Urrbrae, SA, 5064, Australia.
| | - Kimberly Finlayson
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Qld, 4222, Australia.
| | - Jason P van de Merwe
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Qld, 4222, Australia.
| | - Frederic D L Leusch
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Qld, 4222, Australia.
| |
Collapse
|
4
|
Tanveer R, Neale PA, Melvin SD, Leusch FDL. Application of in vitro bioassays to monitor pharmaceuticals in water: A synthesis of chronological analysis, mode of action, and practical insights. CHEMOSPHERE 2024; 359:142255. [PMID: 38729441 DOI: 10.1016/j.chemosphere.2024.142255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/12/2024]
Abstract
Pharmaceutical compounds in wastewater have emerged as a significant concern for the aquatic environment. The use of in vitro bioassays represents a sustainable and cost-effective approach for assessing the potential toxicological risks of these biologically active compounds in wastewater and aligns with ethical considerations in research. It facilitates high-throughput analysis, captures mixture effects, integrates impacts of both known and unknown chemicals, and reduces reliance on animal testing. The core aim of the current review was to explore the practical application of in vitro bioassays in evaluating the environmental impacts of pharmaceuticals in wastewater. This comprehensive review strives to achieve several key objectives. First, it provides a summary categorisation of pharmaceuticals based on their mode of action, providing a structured framework for understanding their ecological significance. Second, a chronological analysis of pharmaceutical research aims to document their prevalence and trends over time, shedding light on evolving environmental challenges. Third, the review critically analyses existing bioassay applications in wastewater, while also examining bioassay coverage of representative compounds within major pharmaceutical classes. Finally, it explores the potential for developing innovative bioassays tailored for water quality monitoring of pharmaceuticals, paving the way for more robust environmental monitoring and risk assessment. Overall, adopting effect-based methods for pharmaceutical monitoring in water holds significant promise. It encompasses a broad spectrum of biological impacts, promotes standardized protocols, and supports a bioassay test battery approach indicative of different endpoints, thereby enhancing the effectiveness of environmental risk assessment.
Collapse
Affiliation(s)
- Rameesha Tanveer
- Australian Rivers Institute, Griffith University, Southport, Qld 4222, Australia.
| | - Peta A Neale
- Australian Rivers Institute, Griffith University, Southport, Qld 4222, Australia.
| | - Steven D Melvin
- Australian Rivers Institute, Griffith University, Southport, Qld 4222, Australia.
| | - Frederic D L Leusch
- Australian Rivers Institute, Griffith University, Southport, Qld 4222, Australia.
| |
Collapse
|
5
|
di Domenico K, Lacchetti I, Cafiero G, Mancini A, Carere M, Mancini L. Reviewing the use of zebrafish for the detection of neurotoxicity induced by chemical mixtures through the analysis of behaviour. CHEMOSPHERE 2024; 359:142246. [PMID: 38710414 DOI: 10.1016/j.chemosphere.2024.142246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/17/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024]
Abstract
The knowledge and assessment of mixtures of chemical pollutants in the aquatic environment is a complex issue that is often challenging to address. In this review, we focused on the use of zebrafish (Danio rerio), a vertebrate widely used in biomedical research, as a model for detecting the effects of chemical mixtures with a focus on behaviour. Our aim was to summarize the current status of the ecotoxicological research in this sector. Specifically, we limited our research to the period between January 2012 and September 2023, including only those works aimed at detecting neurotoxicity through behavioural endpoints, utilizing zebrafish at one or more developmental stages, from egg to adult. Additionally, we gathered the findings for every group of chemicals involved and summarised data from all the works we included. At the end of the screening process 101 papers were considered eligible for inclusion. Results show a growing interest in zebrafish at all life stages for this kind of research in the last decade. Also, a wide variety of different assays, involving different senses, was used in the works we surveyed, with exposures ranging from acute to chronic. In conclusion, the results of this study show the versatility of zebrafish as a model for the detection of mixture toxicity although, for what concerns behavioural analysis, the lack of standardisation of methods and endpoints might still be limiting.
Collapse
Affiliation(s)
- Kevin di Domenico
- Ecohealth Unit, Environment and Health Department, Italian National Institute of Health, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Ines Lacchetti
- Ecohealth Unit, Environment and Health Department, Italian National Institute of Health, Viale Regina Elena 299, 00161, Rome, Italy
| | - Giulia Cafiero
- Environmental Risk Assessment, Wageningen Environmental Research, Wageningen, the Netherlands
| | - Aurora Mancini
- Ecohealth Unit, Environment and Health Department, Italian National Institute of Health, Viale Regina Elena 299, 00161, Rome, Italy
| | - Mario Carere
- Ecohealth Unit, Environment and Health Department, Italian National Institute of Health, Viale Regina Elena 299, 00161, Rome, Italy
| | - Laura Mancini
- Ecohealth Unit, Environment and Health Department, Italian National Institute of Health, Viale Regina Elena 299, 00161, Rome, Italy
| |
Collapse
|
6
|
Heß S, Hof D, Oetken M, Sundermann A. Macroinvertebrate communities respond strongly but non-specifically to a toxicity gradient derived by effect-based methods. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124330. [PMID: 38848961 DOI: 10.1016/j.envpol.2024.124330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Chemical pollution is one of the most important threats to freshwater ecosystems. The plethora of potentially occurring chemicals and their effects in complex mixtures challenge standard monitoring methods. Effect-based methods (EBMs) are proposed as complementary tools for the assessment of chemical pollution and toxic effects. To investigate the effects of chemical pollution, the ecological relevance of EBMs and the potential of macroinvertebrates as toxicity-specific bioindicators, ecological and ecotoxicological data were linked. Baseline toxicity, mutagenicity, dioxin-like and estrogenic activity of water and sediment samples from 30 river sites in central Germany were quantified with four in vitro bioassays. The responses of macroinvertebrate communities at these sites were assessed by calculating 16 taxonomic and functional metrics and by investigating changes in the taxonomic and trait composition. Principal component analysis revealed an increase in toxicity along a joint gradient of chemicals with different modes of action. This toxicity gradient was associated with a decrease in biodiversity and ecological quality, as well as significant changes in taxonomic and functional composition. The strength of the effects suggested a strong impact of chemical pollution and underlined the suitability of EBMs in detecting ecological relevant effects. However, the metrics, taxa, and traits associated with vulnerability or tolerance to toxicity were found to also respond to other stressors in previous studies and thus may have only a low potential as toxicity-specific bioindicators. Because macroinvertebrates respond integratively to all present stressors, linking both ecological and environmental monitoring is necessary to investigate the overall effects but also isolate individual stressors. EBMs have a high potential to separate the toxicity of chemical mixtures from other stressors in a multiple stressor scenario, as well as identifying the presence of chemical groups with specific modes of action.
Collapse
Affiliation(s)
- Sebastian Heß
- Senckenberg Research Institute and Natural History Museum Frankfurt, Department of River Ecology and Conservation, Clamecystr. 12, 63571, Gelnhausen, Germany; Goethe University Frankfurt, Faculty Biological Sciences, Institute of Ecology, Evolution and Diversity, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany.
| | - Delia Hof
- Goethe University Frankfurt, Faculty Biological Sciences, Department Aquatic Ecotoxicology, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany
| | - Matthias Oetken
- Goethe University Frankfurt, Faculty Biological Sciences, Department Aquatic Ecotoxicology, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany; Kompetenzzentrum Wasser Hessen, Max-von-Laue-Straße 13, 60438, Frankfurt am Main, Germany
| | - Andrea Sundermann
- Senckenberg Research Institute and Natural History Museum Frankfurt, Department of River Ecology and Conservation, Clamecystr. 12, 63571, Gelnhausen, Germany; Goethe University Frankfurt, Faculty Biological Sciences, Institute of Ecology, Evolution and Diversity, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany; Kompetenzzentrum Wasser Hessen, Max-von-Laue-Straße 13, 60438, Frankfurt am Main, Germany
| |
Collapse
|
7
|
Huchthausen J, Braasch J, Escher BI, König M, Henneberger L. Effects of Chemicals in Reporter Gene Bioassays with Different Metabolic Activities Compared to Baseline Toxicity. Chem Res Toxicol 2024; 37:744-756. [PMID: 38652132 PMCID: PMC11110108 DOI: 10.1021/acs.chemrestox.4c00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
High-throughput cell-based bioassays are used for chemical screening and risk assessment. Chemical transformation processes caused by abiotic degradation or metabolization can reduce the chemical concentration or, in some cases, lead to the formation of more toxic transformation products. Unaccounted loss processes may falsify the bioassay results. Capturing the formation and effects of transformation products is important for relating the in vitro effects to in vivo. Reporter gene cell lines are believed to have low metabolic activity, but inducibility of cytochrome P450 (CYP) enzymes has been reported. Baseline toxicity is the minimal toxicity a chemical can have and is caused by the incorporation of the chemical into cell membranes. In the present study, we improved an existing baseline toxicity model based on a newly defined critical membrane burden derived from freely dissolved effect concentrations, which are directly related to the membrane concentration. Experimental effect concentrations of 94 chemicals in three bioassays (AREc32, ARE-bla and GR-bla) were compared with baseline toxicity by calculating the toxic ratio (TR). CYP activities of all cell lines were determined by using fluorescence-based assays. Only ARE-bla showed a low basal CYP activity and inducibility and AREc32 showed a low inducibility. Overall cytotoxicity was similar in all three assays despite the different metabolic activities indicating that chemical metabolism is not relevant for the cytotoxicity of the tested chemicals in these assays. Up to 28 chemicals showed specific cytotoxicity with TR > 10 in the bioassays, but baseline toxicity could explain the effects of the majority of the remaining chemicals. Seven chemicals showed TR < 0.1 indicating inaccurate physicochemical properties or experimental artifacts like chemical precipitation, volatilization, degradation, or other loss processes during the in vitro bioassay. The new baseline model can be used not only to identify specific cytotoxicity mechanisms but also to identify potential problems in the experimental performance or evaluation of the bioassay and thus improve the quality of the bioassay data.
Collapse
Affiliation(s)
- Julia Huchthausen
- Department
of Cell Toxicology, Helmholtz Centre for
Environmental Research − UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Jenny Braasch
- Department
of Cell Toxicology, Helmholtz Centre for
Environmental Research − UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Beate I. Escher
- Department
of Cell Toxicology, Helmholtz Centre for
Environmental Research − UFZ, Permoserstr. 15, 04318 Leipzig, Germany
- Environmental
Toxicology, Department of Geosciences, Eberhard
Karls University Tübingen, 72076 Tübingen, Germany
| | - Maria König
- Department
of Cell Toxicology, Helmholtz Centre for
Environmental Research − UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Luise Henneberger
- Department
of Cell Toxicology, Helmholtz Centre for
Environmental Research − UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| |
Collapse
|
8
|
Gao X, Yang J, Song J, Wu S, Li M, Li J, Chen X, Qin H, Luan H, Chen Z, Yu K, Liu W. Toxicity removal from contaminated water by constructed wetlands assessed using multiple biomarkers in human stem cell assays. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171682. [PMID: 38494012 DOI: 10.1016/j.scitotenv.2024.171682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/26/2024] [Accepted: 03/10/2024] [Indexed: 03/19/2024]
Abstract
Constructed wetlands (CWs) have been developed rapidly as a sustainable water treatment technique. However, the capability of CWs for remediating the contaminated water based on toxicity assessment remains largely unknown. Four surface flow CWs and two integrated surface-subsurface flow CWs, from five cities in central and eastern region of China were evaluated, concerning the adverse effects of effluents and the toxicity reduction efficiency. Human bone marrow mesenchymal stem cells (hBMSCs) were employed as a human relevant in vitro model. The influent extractions caused cytotoxicity in a dose-dependent manner. The non-cytotoxic dilutions of the influents enhanced the genotoxicity marker γ-H2AX and reactive oxygen species levels. In addition, the influent repressed the osteogenic and neurogenic differentiation, and stimulated the adipogenic differentiation. Cytotoxicity of the contaminated water was reduced by 54 %-86 % after treatment with CWs. CWs were effective to remove part of the sub-lethal effects, with lower reduction than cytotoxicity. The integrated biomarker response (IBR) value of the effluents from the six CWs is lower than that of four secondary and one tertiary wastewater treatment plants. The IBR of the six CWs influents were in the range of 8.6-10.6, with a reduction of 15-50 % after the pollution restoration in CWs. The two integrated surface-subsurface flow CWs achieved higher IBR removal than the four surface flow CWs, possibly due to improved treatment effects by the combined systems. Cytotoxic and genotoxic effects of polar fractions in the CW effluents were stronger than the medium-polar and the non-polar fractions. Besides, PPARγ agonists present in the effluents played crucial roles and ERα agonists may make modest contributions. The present study enhances understanding of the role of CWs in achieving safe wastewater reclamation and provides evidence for further improving toxicity reduction in CWs performance.
Collapse
Affiliation(s)
- Xin Gao
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jing Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingyang Song
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shanshan Wu
- Ministry of Water Resources Key Laboratory for Hydro-ecology and Hydraulic Heritage, College of Architecture and Landscape of Peking University, Beijing 100871, China
| | - Minghan Li
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jianing Li
- Ministry of Water Resources Key Laboratory for Hydro-ecology and Hydraulic Heritage, College of Architecture and Landscape of Peking University, Beijing 100871, China
| | - Xiaofeng Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hui Qin
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Haiyang Luan
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, China.
| | - Kongjian Yu
- Ministry of Water Resources Key Laboratory for Hydro-ecology and Hydraulic Heritage, College of Architecture and Landscape of Peking University, Beijing 100871, China.
| | - Wei Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
9
|
Inostroza PA, Elgueta S, Krauss M, Brack W, Backhaus T. A multi-scenario risk assessment strategy applied to mixtures of chemicals of emerging concern in the River Aconcagua basin in Central Chile. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171054. [PMID: 38378069 DOI: 10.1016/j.scitotenv.2024.171054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 02/22/2024]
Abstract
Environmental risk assessments strategies that account for the complexity of exposures are needed in order to evaluate the toxic pressure of emerging chemicals, which also provide suggestions for risk mitigation and management, if necessary. Currently, most studies on the co-occurrence and environmental impacts of chemicals of emerging concern (CECs) are conducted in countries of the Global North, leaving massive knowledge gaps in countries of the Global South. In this study, we implement a multi-scenario risk assessment strategy to improve the assessment of both the exposure and hazard components in the chemical risk assessment process. Our strategy incorporates a systematic consideration and weighting of CECs that were not detected, as well as an evaluation of the uncertainties associated with Quantitative Structure-Activity Relationships (QSARs) predictions for chronic ecotoxicity. Furthermore, we present a novel approach to identifying mixture risk drivers. To expand our knowledge beyond well-studied aquatic ecosystems, we applied this multi-scenario strategy to the River Aconcagua basin of Central Chile. The analysis revealed that the concentrations of CECs exceeded acceptable risk thresholds for selected organism groups and the most vulnerable taxonomic groups. Streams flowing through agricultural areas and sites near the river mouth exhibited the highest risks. Notably, the eight risk drivers among the 153 co-occurring chemicals accounted for 66-92 % of the observed risks in the river basin. Six of them are pesticides and pharmaceuticals, chemical classes known for their high biological activity in specific target organisms.
Collapse
Affiliation(s)
- Pedro A Inostroza
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden; Institute for Environmental Research, RWTH Aachen University, Aachen, Germany.
| | - Sebastian Elgueta
- Núcleo en Ciencias Ambientales y Alimentarias (NCAA), Universidad de las Américas, Santiago, Chile; Facultad de Medicina Veterinaria y Agronomía, Universidad de las Américas, Sede Providencia, Chile
| | - Martin Krauss
- Department of Effect-Directed Analysis, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Werner Brack
- Department of Effect-Directed Analysis, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany; Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt/Main, Frankfurt/Main, Germany
| | - Thomas Backhaus
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden; Institute for Environmental Research, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
10
|
Qin W, Henneberger L, Glüge J, König M, Escher BI. Baseline Toxicity Model to Identify the Specific and Nonspecific Effects of Per- and Polyfluoroalkyl Substances in Cell-Based Bioassays. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5727-5738. [PMID: 38394616 PMCID: PMC10993398 DOI: 10.1021/acs.est.3c09950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
High-throughput screening is a strategy to identify potential adverse outcome pathways (AOP) for thousands of per- and polyfluoroalkyl substances (PFAS) if the specific effects can be distinguished from nonspecific effects. We hypothesize that baseline toxicity may serve as a reference to determine the specificity of the cell responses. Baseline toxicity is the minimum (cyto)toxicity caused by the accumulation of chemicals in cell membranes, which disturbs their structure and function. A mass balance model linking the critical membrane concentration for baseline toxicity to nominal (i.e., dosed) concentrations of PFAS in cell-based bioassays yielded separate baseline toxicity prediction models for anionic and neutral PFAS, which were based on liposome-water distribution ratios as the sole model descriptors. The specificity of cell responses to 30 PFAS on six target effects (activation of peroxisome proliferator-activated receptor (PPAR) gamma, aryl hydrocarbon receptor, oxidative stress response, and neurotoxicity in own experiments, and literature data for activation of several PPARs and the estrogen receptor) were assessed by comparing effective concentrations to predicted baseline toxic concentrations. HFPO-DA, HFPO-DA-AS, and PFMOAA showed high specificity on PPARs, which provides information on key events in AOPs relevant to PFAS. However, PFAS were of low specificity in the other experimentally evaluated assays and others from the literature. Even if PFAS are not highly specific for certain defined targets but disturb many toxicity pathways with low potency, such effects are toxicologically relevant, especially for hydrophobic PFAS and because PFAS are highly persistent and cause chronic effects. This implicates a heightened need for the risk assessment of PFAS mixtures because nonspecific effects behave concentration-additive in mixtures.
Collapse
Affiliation(s)
- Weiping Qin
- Department
of Cell Toxicology, UFZ−Helmholtz
Centre for Environmental Research, Leipzig 04318, Germany
- Environmental
Toxicology, Department of Geosciences, Eberhard
Karls University Tübingen, Schnarrenbergstr. 94-96, Tübingen DE-72076, Germany
| | - Luise Henneberger
- Department
of Cell Toxicology, UFZ−Helmholtz
Centre for Environmental Research, Leipzig 04318, Germany
| | - Juliane Glüge
- Department
of Cell Toxicology, UFZ−Helmholtz
Centre for Environmental Research, Leipzig 04318, Germany
- Institute
of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich 8092, Switzerland
| | - Maria König
- Department
of Cell Toxicology, UFZ−Helmholtz
Centre for Environmental Research, Leipzig 04318, Germany
| | - Beate I. Escher
- Department
of Cell Toxicology, UFZ−Helmholtz
Centre for Environmental Research, Leipzig 04318, Germany
- Environmental
Toxicology, Department of Geosciences, Eberhard
Karls University Tübingen, Schnarrenbergstr. 94-96, Tübingen DE-72076, Germany
| |
Collapse
|
11
|
Leusch FDL, Allen H, De Silva NAL, Hodson R, Johnson M, Neale PA, Stewart M, Tremblay LA, Wilde T, Northcott GL. Effect-based monitoring of two rivers under urban and agricultural influence reveals a range of biological activities in sediment and water extracts. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119692. [PMID: 38039589 DOI: 10.1016/j.jenvman.2023.119692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023]
Abstract
Chemical contaminants, such as pesticides, pharmaceuticals and industrial compounds are ubiquitous in surface water and sediment in areas subject to human activity. While targeted chemical analysis is typically used for water and sediment quality monitoring, there is growing interest in applying effect-based methods with in vitro bioassays to capture the effects of all active contaminants in a sample. The current study evaluated the biological effects in surface water and sediment from two contrasting catchments in Aotearoa New Zealand, the highly urbanised Whau River catchment in Tāmaki Makaurau (Auckland) and the urban and mixed agricultural Koreti (New River) Estuary catchment. Two complementary passive sampling devices, Chemcatcher for polar chemicals and polyethylene (PED) for non-polar chemicals, were applied to capture a wide range of contaminants in water, while composite sediment samples were collected at each sampling site. Bioassays indicative of induction of xenobiotic metabolism, receptor-mediated effects, genotoxicity, cytotoxicity and apical effects were applied to the water and sediment extracts. Most sediment extracts induced moderate to strong estrogenic and aryl hydrocarbon (AhR) activity, along with moderate toxicity to bacteria. The water extracts showed similar patterns to the sediment extracts, but with lower activity. Generally, the polar Chemcatcher extracts showed greater estrogenic activity, photosynthesis inhibition and algal growth inhibition than the non-polar PED extracts, though the PED extracts showed greater AhR activity. The observed effects in the water extracts were compared to available ecological effect-based trigger values (EBT) to evaluate the potential risk. For the polar extracts, most sites in both catchments exceeded the EBT for estrogenicity, with many sites exceeding the EBTs for AhR activity and photosynthesis inhibition. Of the wide range of endpoints considered, estrogenic activity, AhR activity and herbicidal activity appear to be the primary risk drivers in both the Whau and Koreti Estuary catchments.
Collapse
Affiliation(s)
- Frederic D L Leusch
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, Queensland, 4222, Australia.
| | - Hamish Allen
- Research and Evaluation Unit, Auckland Council, Auckland, 1010, New Zealand
| | | | - Roger Hodson
- Environment Southland Regional Council, Invercargill, 9810, New Zealand; Riverscape Enhancement Consulting, Invercargill, 9840, New Zealand
| | - Matthew Johnson
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, Queensland, 4222, Australia
| | - Peta A Neale
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, Queensland, 4222, Australia
| | | | - Louis A Tremblay
- Cawthron Institute, Nelson, 7010, New Zealand; School of Biological Sciences, University of Auckland, Auckland, 1142, New Zealand
| | - Taylor Wilde
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, Queensland, 4222, Australia
| | | |
Collapse
|
12
|
Choi Y, Seo CD, Lee W, Son H, Lee Y. Assessment of bioactive chemicals in wastewater effluents and surface waters using in vitro bioassays in the Nakdong River basin, Korea. CHEMOSPHERE 2024; 347:140621. [PMID: 37956933 DOI: 10.1016/j.chemosphere.2023.140621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/20/2023] [Accepted: 11/02/2023] [Indexed: 11/20/2023]
Abstract
Organic micropollutants present in effluents of wastewater treatment plants (WWTPs) can negatively affect the quality of receiving waters or drinking water sources. The present work monitored the concentration of bioactive chemicals using a battery of in vitro bioassays in 14 WWTP effluents, 2 effluent-dominant streams, and 5 river waters in the Nakdong River basin, Korea, for a two-year period. The WWTP effluents showed AR/ERα/TRβ (androgen/estrogen/thyroid hormone) activities at a few to tens ng/L, PAH/PPARγ/p53 (polycyclic-aromatic-hydrocarbon/lipid metabolism/genotoxicity) activities at hundreds ng/L, and PXR/Nrf2 (xenobiotic metabolism/oxidative stress) activities at tens to hundreds μg/L as bioanalytical equivalent concentrations. The concentration level and type of bioactivities were statistically not affected by the source, season, or treatment processes of WWTPs for most endpoints. The effluent-dominant streams showed similar levels of AR/ERα/PAH/PXR/Nrf2 activities compared to the upstream WWTP effluents. The river waters showed lower levels of AR/ERα activities (by factors of 6 or 7) but had only slightly lower PAH/PXR/Nrf2 activities (within factors of 2) than the WWTP effluents when compared based on median concentration. Cytotoxicity was below the quantification limit (0.3 μg/L) in most effluent and river samples. For ERα/PAH/PXR/Nrf2, the median bioactivity levels of the river waters were higher than at least one of the effect-based trigger (EBT) values proposed in the literature. Further monitoring work and reliable/realistic EBT derivation are needed to determine possible ecological risks posed by the observed bioactivities.
Collapse
Affiliation(s)
- Yegyun Choi
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Chang-Dong Seo
- Water Quality Institute Busan Water Authority, Republic of Korea
| | - Woorim Lee
- Environment & Energy Research Laboratory, Research Institute of Industrial Science and Technology (RIST), Pohang, 37673, Republic of Korea
| | - Heejong Son
- Water Quality Institute Busan Water Authority, Republic of Korea.
| | - Yunho Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
| |
Collapse
|
13
|
Glassmeyer ST, Burns EE, Focazio MJ, Furlong ET, Gribble MO, Jahne MA, Keely SP, Kennicutt AR, Kolpin DW, Medlock Kakaley EK, Pfaller SL. Water, Water Everywhere, but Every Drop Unique: Challenges in the Science to Understand the Role of Contaminants of Emerging Concern in the Management of Drinking Water Supplies. GEOHEALTH 2023; 7:e2022GH000716. [PMID: 38155731 PMCID: PMC10753268 DOI: 10.1029/2022gh000716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 12/30/2023]
Abstract
The protection and management of water resources continues to be challenged by multiple and ongoing factors such as shifts in demographic, social, economic, and public health requirements. Physical limitations placed on access to potable supplies include natural and human-caused factors such as aquifer depletion, aging infrastructure, saltwater intrusion, floods, and drought. These factors, although varying in magnitude, spatial extent, and timing, can exacerbate the potential for contaminants of concern (CECs) to be present in sources of drinking water, infrastructure, premise plumbing and associated tap water. This monograph examines how current and emerging scientific efforts and technologies increase our understanding of the range of CECs and drinking water issues facing current and future populations. It is not intended to be read in one sitting, but is instead a starting point for scientists wanting to learn more about the issues surrounding CECs. This text discusses the topical evolution CECs over time (Section 1), improvements in measuring chemical and microbial CECs, through both analysis of concentration and toxicity (Section 2) and modeling CEC exposure and fate (Section 3), forms of treatment effective at removing chemical and microbial CECs (Section 4), and potential for human health impacts from exposure to CECs (Section 5). The paper concludes with how changes to water quantity, both scarcity and surpluses, could affect water quality (Section 6). Taken together, these sections document the past 25 years of CEC research and the regulatory response to these contaminants, the current work to identify and monitor CECs and mitigate exposure, and the challenges facing the future.
Collapse
Affiliation(s)
- Susan T. Glassmeyer
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| | | | - Michael J. Focazio
- Retired, Environmental Health ProgramEcosystems Mission AreaU.S. Geological SurveyRestonVAUSA
| | - Edward T. Furlong
- Emeritus, Strategic Laboratory Sciences BranchLaboratory & Analytical Services DivisionU.S. Geological SurveyDenverCOUSA
| | - Matthew O. Gribble
- Gangarosa Department of Environmental HealthRollins School of Public HealthEmory UniversityAtlantaGAUSA
| | - Michael A. Jahne
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| | - Scott P. Keely
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| | - Alison R. Kennicutt
- Department of Civil and Mechanical EngineeringYork College of PennsylvaniaYorkPAUSA
| | - Dana W. Kolpin
- U.S. Geological SurveyCentral Midwest Water Science CenterIowa CityIAUSA
| | | | - Stacy L. Pfaller
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| |
Collapse
|
14
|
Escher BI, Binnington MJ, König M, Lei YD, Wania F. Mixture effect assessment applying in vitro bioassays to in-tissue silicone extracts of traditional foods prepared from beluga whale blubber. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:1759-1770. [PMID: 37254953 DOI: 10.1039/d3em00076a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We complement an earlier study on the nutrient and environmental contaminant levels in Arctic beluga whale traditional foods by mixture effect assessment using in vitro bioassays. Mixtures were extracted by in-tissue sampling of raw blubber and several traditional food preparations including Muktuk and Uqsuq using silicone (polydimethylsiloxane, PDMS) as sampler. PDMS extracts persistent and degradable neutral organic chemicals of a wide range of hydrophobicity with defined lipid-PDMS partition ratios. The solvent extracts of PDMS were dosed in various reporter gene assays based on human cell lines. Cytotoxicity was consistent across all cell lines and was a good indicator of overall chemical burden. No hormone-like effects on the estrogen receptor, the progesterone receptor and the glucocorticoid receptor were observed but a few samples activated the androgen receptor, albeit with low potency. The peroxisome-proliferator activated receptor (PPARγ) was the most sensitive endpoint followed by activation of oxidative stress response and activation of the arylhydrocarbon (AhR) receptor. The detected pollutants only explained a small fraction of the experimental mixture effects, indicating additional bioactive pollutants. The effect levels of the extracted mixtures were higher than those observed in blubber extracts of dugongs living off the shore of Australia. Roasting over an open fire or food preparation near a smokehouse led to increased PAH levels that were reflected in increased oxidative stress response and activation of the AhR. So far in vitro assays have only been used to quantify persistent dioxin-like chemicals in food and feed but this pilot study demonstrates a much broader potential for food safety evaluations complementing chemical analytical monitoring.
Collapse
Affiliation(s)
- Beate I Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.
- Environmental Toxicology, Department of Geosciences, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Matthew J Binnington
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada.
| | - Maria König
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.
| | - Ying D Lei
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada.
| | - Frank Wania
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada.
| |
Collapse
|
15
|
Selin E, Mandava G, Karlsson M, Lundqvist J. Evaluation of in vitro bioassays as a screening tool to monitor chemical hazards in cow's milk. Food Chem Toxicol 2023; 180:114025. [PMID: 37689098 DOI: 10.1016/j.fct.2023.114025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/30/2023] [Accepted: 09/02/2023] [Indexed: 09/11/2023]
Abstract
Studies on cow's milk have mainly focused on analyzing specific chemical groups and natural components. Therefore, in this study, we evaluated if effect-based in vitro methods could be used as a screening tool to monitor chemical hazards in milk. In total, 32 milk samples were collected from a Swedish dairy company throughout one year. These samples included conventional and organic semi-skimmed as well as raw milk. The milk samples were tested in five in vitro methods covering eight endpoints. These endpoints included cytotoxicity, endocrine disruption (estrogen/androgen induction/inhibition), aryl hydrocarbon receptor activity, oxidative stress and DNA damage. Estrogen and androgen receptor inhibition, in addition to aryl hydrocarbon receptor activity, were the most responsive endpoints, where 10 to 13 out of the 32 milk samples were bioactive. Organic and conventional milk showed no major differences. Overall, no or only low activities were observed in milk samples in the remaining in vitro assays, which is a promising result with regard to applying effect-based methods as a screening tool. Concerning the most responsive assays, more research is needed to understand the normal background variations before they can be used as a screening tool for chemical hazards in milk.
Collapse
Affiliation(s)
- Erica Selin
- Department of Biomedical Science and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-750 07 Uppsala, Sweden.
| | - Geeta Mandava
- Department of Biomedical Science and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-750 07 Uppsala, Sweden
| | | | - Johan Lundqvist
- Department of Biomedical Science and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-750 07 Uppsala, Sweden
| |
Collapse
|
16
|
Massei R, Brack W, Seidensticker S, Hollert H, Muz M, Schulze T, Krauss M, Küster E. Neurotoxicity in complex environmental mixtures-a case-study at River Danube in Novi Sad (Serbia) using zebrafish embryos. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:96138-96146. [PMID: 37566323 PMCID: PMC10482774 DOI: 10.1007/s11356-023-29186-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/01/2023] [Indexed: 08/12/2023]
Abstract
Acetylcholinesterase (AChE) inhibitors are an important class of neuroactive chemicals that are often detected in aquatic and terrestrial environments. The correct functionality of the AChE enzyme is linked to many important physiological processes such as locomotion and respiration. Consequently, it is necessary to develop new analytical strategies to identify harmful AChE inhibitors in the environment. It has been shown that mixture effects and oxidative stress may jeopardize the application of in vivo assays for the identification of AChE inhibitors in the environment. To confirm that in vivo AChE assays can be successfully applied when dealing with complex mixtures, an extract from river water impacted by non-treated wastewater was bio-tested using the acute toxicity fish embryo test (FET) and AChE inhibition assay with zebrafish. The zebrafish FET showed high sensitivity for the extract (LC10 = relative extraction factor 2.8) and we observed a significant inhibition of the AChE (40%, p < 0.01) after 4-day exposure. Furthermore, the extract was chromatographically fractionated into a total of 26 fractions to dilute the mixture effect and separate compounds according to their physico-chemical properties. As expected, non-specific acute effects (i.e., mortality) disappeared or evenly spread among the fractions, while AChE inhibition was still detected in five fractions. Chemical analysis did not detect any known AChE inhibitors in these active fractions. These results confirm that the AChE assay with Danio rerio can be applied for the detection of neuroactive effects induced in complex environmental samples, but also, they highlight the need to increase analytical and identification techniques for the detection of neurotoxic substances.
Collapse
Affiliation(s)
- Riccardo Massei
- Department of Bioanalytical Ecotoxicology, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany.
- Department of Monitoring and Exploration Technologies, UFZ-Helmholtz Centre for Environmental Research , Leipzig, Germany.
| | - Werner Brack
- Department of Effect-Directed Analysis, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
- Department of Evolutionary Ecology and Environmental Toxicology, Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | | | - Henner Hollert
- Department of Evolutionary Ecology and Environmental Toxicology, Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Melis Muz
- Department of Effect-Directed Analysis, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Tobias Schulze
- Department of Effect-Directed Analysis, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Martin Krauss
- Department of Effect-Directed Analysis, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Eberhard Küster
- Department of Bioanalytical Ecotoxicology, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
| |
Collapse
|
17
|
Huchthausen J, Escher BI, Grasse N, König M, Beil S, Henneberger L. Reactivity of Acrylamides Causes Cytotoxicity and Activates Oxidative Stress Response. Chem Res Toxicol 2023; 36:1374-1385. [PMID: 37531411 PMCID: PMC10445285 DOI: 10.1021/acs.chemrestox.3c00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Indexed: 08/04/2023]
Abstract
Acrylamides are widely used industrial chemicals that cause adverse effects in humans or animals, such as carcinogenicity or neurotoxicity. The excess toxicity of these reactive electrophilic chemicals is especially interesting, as it is mostly triggered by covalent reactions with biological nucleophiles, such as DNA bases, proteins, or peptides. The cytotoxicity and activation of oxidative stress response of 10 (meth)acrylamides measured in three reporter gene cell lines occurred at similar concentrations. Most acrylamides exhibited high excess toxicity, while methacrylamides acted as baseline toxicants. The (meth)acrylamides showed no reactivity toward the hard biological nucleophile 2-deoxyguanosine (2DG) within 24 h, and only acrylamides reacted with the soft nucleophile glutathione (GSH). Second-order degradation rate constants (kGSH) were measured for all acrylamides with N,N'-methylenebis(acrylamide) (NMBA) showing the highest kGSH (134.800 M-1 h-1) and N,N-diethylacrylamide (NDA) the lowest kGSH (2.574 M-1 h-1). Liquid chromatography coupled to high-resolution mass spectrometry was used to confirm the GSH conjugates of the acrylamides with a double conjugate formed for NMBA. The differences in reactivity between acrylamides and methacrylamides could be explained by the charge density of the carbon atoms because the electron-donating inductive effect of the methyl group of the methacrylamides lowered their electrophilicity and thus their reactivity. The differences in reactivity within the group of acrylamides could be explained by the energy of the lowest unoccupied molecular orbital and steric hindrance. Cytotoxicity and activation of oxidative stress response were linearly correlated with the second-order reaction rate constants of the acrylamides with GSH. The reaction of the acrylamides with GSH is hence not only a detoxification mechanism but also leads to disturbances of the redox balance, making the cells more vulnerable to reactive oxygen species. The reactivity of acrylamides explained the oxidative stress response and cytotoxicity in the cells, and the lack of reactivity of the methacrylamides led to baseline toxicity.
Collapse
Affiliation(s)
- Julia Huchthausen
- Department
of Cell Toxicology, Helmholtz Centre for
Environmental Research − UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Beate I. Escher
- Department
of Cell Toxicology, Helmholtz Centre for
Environmental Research − UFZ, Permoserstr. 15, 04318 Leipzig, Germany
- Department
of Geosciences, Eberhard Karls University
Tübingen, Environmental Toxicology, 72076 Tübingen, Germany
| | - Nico Grasse
- Department
of Analytical Chemistry, Helmholtz Centre
for Environmental Research − UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Maria König
- Department
of Cell Toxicology, Helmholtz Centre for
Environmental Research − UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Stephan Beil
- Institute
of Water Chemistry, Technische Universität
Dresden, 01069 Dresden, Germany
| | - Luise Henneberger
- Department
of Cell Toxicology, Helmholtz Centre for
Environmental Research − UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| |
Collapse
|
18
|
Kim F, Pablo GF, Lubertus B, Lutz A, Karin W, Félix H, Agneta O, Johan L. Effect-based evaluation of water quality in a system of indirect reuse of wastewater for drinking water production. WATER RESEARCH 2023; 242:120147. [PMID: 37320875 DOI: 10.1016/j.watres.2023.120147] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/17/2023]
Abstract
Indirect potable reuse of wastewater is a practice that is gaining attention, aiming to increase freshwater supplies to meet water scarcity. However, reusing effluent wastewater for drinking water production comes with a paired risk of adverse health effects, due to the potential presence of pathogenic microorganisms and hazardous micropollutants. Disinfection is an established method to reduce microbial hazards in drinking water, but it has been associated with formation of disinfection by-products (DBPs). In this study, we performed an effect-based assessment of chemical hazards in a system wherein a full-scale trial of disinfection by chlorination, of the treated wastewater was performed prior discharge to the reciepient river. The presence of bioactive pollutants was assessed along the entire treatment system, starting from incoming wastewater to finished drinking water at seven sites in and around the Llobregat River in Barcelona, Spain. Samples were collected in two campaigns, with and without applied chlorination treatment (13 mg Cl2/L) to the effluent wastewater. The water samples were analysed for cell viability, oxidative stress response (Nrf2 activity), estrogenicity, androgenicity, aryl hydrocarbon receptor (AhR) activity and activation of NFĸB (nuclear factor kappa-light-chain-enhancer of activated B cells) signaling using stably transfected mammalian cell lines. Nrf2 activity, estrogen receptor activation and AhR activation was detected in all investigated samples. Overall, removal efficiencies were high in both wastewater treatment and drinking water treatment samples for most of the studied endpoints. No increase in oxidative stress (Nrf2 activity) could be attributed to the additional chlorination treatment of the effluent wastewater. However, we found an increase in AhR activity and a reduction of ER agonistic activity after chlorination treatment of effluent wastewater. The bioactivity detected in finished drinking water was considerably lower compared to what was found in effluent wastewater. We could thus conclude that indirect reuse of treated wastewater for drinking water production can be possible without compromising drinking water quality. This study contributed important knowledge in efforts to increase the reuse of treated wastewater as a source for drinking water production.
Collapse
Affiliation(s)
- Frieberg Kim
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), Box 7028, Uppsala SE-750 07, Sweden.
| | - Gago-Ferrero Pablo
- Department of Environmental Chemistry, Spanish Council of Scientific Research (CSIC), Institute of Environmental Assessment and Water Research - Severo Ochoa Excellence Center (IDAEA), Jordi Girona, 18-26, Barcelona 08034, Spain; Edifici H20 - Parc Cientific i Tecnològic de Girona, Catalan Institute for Water Research (ICRA), Institut Català de Recerca de l'Aigua (ICRA), Carrer Emili Grahit, 101, Girona E-17003, Spain
| | - Bijlsma Lubertus
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castellón E-12071, Spain
| | - Ahrens Lutz
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050 SE, Uppsala 750 07, Sweden
| | - Wiberg Karin
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050 SE, Uppsala 750 07, Sweden
| | - Hernández Félix
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castellón E-12071, Spain
| | - Oskarsson Agneta
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), Box 7028, Uppsala SE-750 07, Sweden
| | - Lundqvist Johan
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), Box 7028, Uppsala SE-750 07, Sweden
| |
Collapse
|
19
|
Šauer P, Vrana B, Escher BI, Grabic R, Toušová Z, Krauss M, von der Ohe PC, König M, Grabicová K, Mikušová P, Prokeš R, Sobotka J, Fialová P, Novák J, Brack W, Hilscherová K. Bioanalytical and chemical characterization of organic micropollutant mixtures in long-term exposed passive samplers from the Joint Danube Survey 4: Setting a baseline for water quality monitoring. ENVIRONMENT INTERNATIONAL 2023; 178:107957. [PMID: 37406370 PMCID: PMC10445204 DOI: 10.1016/j.envint.2023.107957] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 07/07/2023]
Abstract
Monitoring methodologies reflecting the long-term quality and contamination of surface waters are needed to obtain a representative picture of pollution and identify risk drivers. This study sets a baseline for characterizing chemical pollution in the Danube River using an innovative approach, combining continuous three-months use of passive sampling technology with comprehensive chemical (747 chemicals) and bioanalytical (seven in vitro bioassays) assessment during the Joint Danube Survey (JDS4). This is one of the world's largest investigative surface-water monitoring efforts in the longest river in the European Union, which water after riverbank filtration is broadly used for drinking water production. Two types of passive samplers, silicone rubber (SR) sheets for hydrophobic compounds and AttractSPETM HLB disks for hydrophilic compounds, were deployed at nine sites for approximately 100 days. The Danube River pollution was dominated by industrial compounds in SR samplers and by industrial compounds together with pharmaceuticals and personal care products in HLB samplers. Comparison of the Estimated Environmental Concentrations with Predicted No-Effect Concentrations revealed that at the studied sites, at least one (SR) and 4-7 (HLB) compound(s) exceeded the risk quotient of 1. We also detected AhR-mediated activity, oxidative stress response, peroxisome proliferator-activated receptor gamma-mediated activity, estrogenic, androgenic, and anti-androgenic activities using in vitro bioassays. A significant portion of the AhR-mediated and estrogenic activities could be explained by detected analytes at several sites, while for the other bioassays and other sites, much of the activity remained unexplained. The effect-based trigger values for estrogenic and anti-androgenic activities were exceeded at some sites. The identified drivers of mixture in vitro effects deserve further attention in ecotoxicological and environmental pollution research. This novel approach using long-term passive sampling provides a representative benchmark of pollution and effect potentials of chemical mixtures for future water quality monitoring of the Danube River and other large water bodies.
Collapse
Affiliation(s)
- Pavel Šauer
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Branislav Vrana
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - Beate I Escher
- UFZ - Helmholtz Centre for Environmental Research, Department of Cell Toxicology, 04318 Leipzig, Germany; Environmental Toxicology, Department of Geosciences, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Zuzana Toušová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - Martin Krauss
- UFZ - Helmholtz Centre for Environmental Research, Department of Effect-Directed Analysis, 04318 Leipzig, Germany
| | - Peter C von der Ohe
- UBA - German Environment Agency (Umweltbundesamt), Wörlitzer Platz 1, D-06844 Dessau-Roßlau, Germany
| | - Maria König
- UFZ - Helmholtz Centre for Environmental Research, Department of Cell Toxicology, 04318 Leipzig, Germany
| | - Kateřina Grabicová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Petra Mikušová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - Roman Prokeš
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic; Global Change Research Institute of the Czech Academy of Sciences, Belidla 986/4a, 60300 Brno, Czech Republic
| | - Jaromír Sobotka
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - Pavla Fialová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - Jiří Novák
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - Werner Brack
- UFZ - Helmholtz Centre for Environmental Research, Department of Effect-Directed Analysis, 04318 Leipzig, Germany; Goethe University Frankfurt, Department of Evolutionary Ecology and Environmental Toxicology, Max-von-Laue-Straße 13, 60438 Frankfurt/Main, Germany
| | - Klára Hilscherová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic.
| |
Collapse
|
20
|
Tindall AJ, Du Pasquier D, Lemkine GF. Evaluation of the endocrine activity of surface water samples using aquatic eleuthero-embryos-A comparison with in vitro assays. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2023; 95:e10911. [PMID: 37475203 DOI: 10.1002/wer.10911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
Over the previous decade, numerous new approach methodologies (NAMs) have been developed and validated for the detection of endocrine activity of individual chemicals or environmental samples. These NAMs can be largely separated into three categories, in silico tools, in vitro assays, and in vivo assays using organisms or life stages not considered as laboratory animals, each with their own advantages and disadvantages. While in vitro assays provide more mechanistic information, the use of whole organisms such as fish or amphibian embryos provides a more holistic view of the net effects of an environmental sample on hormonal activity. A panel of bioassays was used to test the endocrine activity of several samples from the Danube River at Novi Sad, Serbia. The results of the in vitro assays have been published previously. Here, we present the results of the in vivo assays that were performed at the same time on the same samples. These whole organism assays are based on the use of transgenic fish and amphibian eleuthero-embryos and included the Xenopus Eleuthero-embryo Thyroid Assay (XETA), the Rapid Estrogen ACTivity In Vivo assay (REACTIV), and the Rapid Androgen Disruption Activity Reporter (RADAR) assay. Discrepancies between the different in vitro assays have previously been reported. The results of the in vivo studies also indicate discrepancies between the in vivo and in vitro data with an underestimation of the endocrine activity by the in vitro tests. Therefore, a battery of tests is advised with the initial diagnostic performed with in vivo tests to cover a wider range of modes of action and to allow the appropriate in vitro assay(s) to be selected to confirm the mode of action. PRACTITIONER POINTS: Endocrine activity was quantified in surface water using in vitro and in vivo models. The in vivo results fit with previously reported in vitro results. Higher activity was observed in water samples with in vivo models, which cover a wider range of modes of action. Endocrine activity of surface water samples may be underestimated when measured with in vitro models.
Collapse
|
21
|
Caracciolo R, Escher BI, Lai FY, Nguyen TA, Le TMT, Schlichting R, Tröger R, Némery J, Wiberg K, Nguyen PD, Baduel C. Impact of a megacity on the water quality of a tropical estuary assessed by a combination of chemical analysis and in-vitro bioassays. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162525. [PMID: 36868276 DOI: 10.1016/j.scitotenv.2023.162525] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/30/2023] [Accepted: 02/24/2023] [Indexed: 05/06/2023]
Abstract
Tropical estuaries are threatened by rapid urbanization, which leads to the spread of thousands of micropollutants and poses an environmental risk to such sensitive aqueous ecosystems. In the present study, a combination of chemical and bioanalytical water characterization was applied to investigate the impact of Ho Chi Minh megacity (HCMC, 9.2 million inhabitants in 2021) on the Saigon River and its estuary and provide a comprehensive water quality assessment. Water samples were collected along a 140-km stretch integrating the river-estuary continuum from upstream HCMC down to the estuary mouth in the East Sea. Additional water samples were collected at the mouth of the four main canals of the city center. Chemical analysis was performed targeting up to 217 micropollutants (pharmaceuticals, plasticizers, PFASs, flame retardants, hormones, pesticides). Bioanalysis was performed using six in-vitro bioassays for hormone receptor-mediated effects, xenobiotic metabolism pathways and oxidative stress response, respectively, all accompanied by cytotoxicity measurement. A total of 120 micropollutants were detected and displayed high variability along the river continuum with total concentration ranging from 0.25 to 78 μg L-1. Among them, 59 micropollutants were ubiquitous (detection frequency ≥ 80 %). An attenuation was observed in concentration and effect profiles towards the estuary. The urban canals were identified as major sources of micropollutants and bioactivity to the river, and one canal (Bến Nghé) exceeded the effect-based trigger values derived for estrogenicity and xenobiotic metabolism. Iceberg modelling apportioned the contribution of the quantified and the unknown chemicals to the measured effects. Diuron, metolachlor, chlorpyrifos, daidzein, genistein, climbazole, mebendazole and telmisartan were identified as main risk drivers of the oxidative stress response and xenobiotic metabolism pathway activation. Our study reinforced the need for improved wastewater management and deeper evaluations of the occurrence and fate of micropollutants in urbanized tropical estuarine environments.
Collapse
Affiliation(s)
- Romane Caracciolo
- Univ. Grenoble Alpes, IRD, CNRS, INRAE, Grenoble INP, Institute of Environmental Geosciences (IGE), 38000 Grenoble, France.
| | - Beate I Escher
- Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany; Eberhard Karls University Tübingen, Germany
| | - Foon Yin Lai
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), SE-75007 Uppsala, Sweden
| | - Truong An Nguyen
- Univ. Grenoble Alpes, IRD, CNRS, INRAE, Grenoble INP, Institute of Environmental Geosciences (IGE), 38000 Grenoble, France; Asian Centre for Water Research (CARE)/HCMUT, Ho Chi Minh City, Viet Nam
| | - Thi Minh Tam Le
- Asian Centre for Water Research (CARE)/HCMUT, Ho Chi Minh City, Viet Nam; Ho Chi Minh University of Technology, Ho Chi Minh City, Viet Nam
| | - Rita Schlichting
- Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Rikard Tröger
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), SE-75007 Uppsala, Sweden
| | - Julien Némery
- Univ. Grenoble Alpes, IRD, CNRS, INRAE, Grenoble INP, Institute of Environmental Geosciences (IGE), 38000 Grenoble, France; Asian Centre for Water Research (CARE)/HCMUT, Ho Chi Minh City, Viet Nam
| | - Karin Wiberg
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), SE-75007 Uppsala, Sweden
| | - Phuoc Dan Nguyen
- Asian Centre for Water Research (CARE)/HCMUT, Ho Chi Minh City, Viet Nam; Ho Chi Minh University of Technology, Ho Chi Minh City, Viet Nam
| | - Christine Baduel
- Univ. Grenoble Alpes, IRD, CNRS, INRAE, Grenoble INP, Institute of Environmental Geosciences (IGE), 38000 Grenoble, France; Asian Centre for Water Research (CARE)/HCMUT, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
22
|
Kostić-Vuković J, Kolarević S, Sunjog K, Subotić S, Višnjić-Jeftić Ž, Rašković B, Poleksić V, Vuković-Gačić B, Lenhardt M. Combined use of biomarkers to assess the impact of untreated wastewater from the Danube River, Serbia. ECOTOXICOLOGY (LONDON, ENGLAND) 2023:10.1007/s10646-023-02663-6. [PMID: 37193873 DOI: 10.1007/s10646-023-02663-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/30/2023] [Indexed: 05/18/2023]
Abstract
In this study a battery of bioassays, both in vivo (metals and metalloids concentrations, erythrocyte morphometry, comet assay, micronucleus assay, and histopathological analyses) on vimba bream Vimba vimba (L., 1758) and white bream Blicca bjoerkna (L., 1758), and in vitro (treatment of HepG2 cells with native water samples) was applied to assess the harmful potential of untreated wastewater. Faecal indicator bacteria were quantified to assess the microbiological water quality. Vimba bream had significantly higher Fe concentrations in both liver and muscle, while white bream had higher Ca and Cu concentrations in liver. Vimba bream had a significantly higher level of DNA damage in both liver and blood cells, in comparison to white bream. Low levels of micronucleus and nuclear abnormalities were observed in both species. Erythrocytes morphometry did not show significant interspecific differences. Histopathological analyses revealed a similar response of the studied species, with a significantly higher presence of ceroid pigments in the liver of vimba bream. Treatment of HepG2 cells revealed the high genotoxic potential of water downstream of the discharge point. The results of this study clearly demonstrate the importance of effect-based monitoring, in order to enforce more efficient management of natural resources and implementation of wastewater treatment systems.
Collapse
Affiliation(s)
- Jovana Kostić-Vuković
- University of Belgrade, Institute for Multidisciplinary Research, Department of Biology and Inland Waters Protection, Belgrade, Serbia.
| | - Stoimir Kolarević
- University of Belgrade, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, Department of Hydroecology and Water Protection, Belgrade, Serbia
| | - Karolina Sunjog
- University of Belgrade, Institute for Multidisciplinary Research, Department of Biology and Inland Waters Protection, Belgrade, Serbia
| | - Srđan Subotić
- University of Belgrade, Faculty of Biology, Chair of Animal Ecology and Zoogeography, Belgrade, Serbia
| | - Željka Višnjić-Jeftić
- University of Belgrade, Institute for Multidisciplinary Research, Department of Biology and Inland Waters Protection, Belgrade, Serbia
| | - Božidar Rašković
- University of Belgrade, Faculty of Agriculture, Institute of Animal Science, Belgrade, Serbia
- University of Porto, Institute of Biomedical Sciences Abel Salazar (ICBAS), R. Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Vesna Poleksić
- University of Belgrade, Faculty of Agriculture, Institute of Animal Science, Belgrade, Serbia
| | - Branka Vuković-Gačić
- University of Belgrade, Faculty of Biology, Chair of Microbiology, Center for Genotoxicology and Ecogenotoxicology, Belgrade, Serbia
| | - Mirjana Lenhardt
- University of Belgrade, Institute for Multidisciplinary Research, Department of Biology and Inland Waters Protection, Belgrade, Serbia
- University of Belgrade, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, Department of Hydroecology and Water Protection, Belgrade, Serbia
| |
Collapse
|
23
|
Neale PA, Escher BI, de Baat ML, Dechesne M, Dingemans MML, Enault J, Pronk GJ, Smeets PWMH, Leusch FDL. Application of Effect-Based Methods to Water Quality Monitoring: Answering Frequently Asked Questions by Water Quality Managers, Regulators, and Policy Makers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6023-6032. [PMID: 37026997 DOI: 10.1021/acs.est.2c06365] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Effect-based methods (EBM) have great potential for water quality monitoring as they can detect the mixture effects of all active known and unknown chemicals in a sample, which cannot be addressed by chemical analysis alone. To date, EBM have primarily been applied in a research context, with a lower level of uptake by the water sector and regulators. This is partly due to concerns regarding the reliability and interpretation of EBM. Using evidence from the peer-reviewed literature, this work aims to answer frequently asked questions about EBM. The questions were identified through consultation with the water industry and regulators and cover topics related to the basis for using EBM, practical considerations regarding reliability, sampling for EBM and quality control, and what to do with the information provided by EBM. The information provided in this work aims to give confidence to regulators and the water sector to stimulate the application of EBM for water quality monitoring.
Collapse
Affiliation(s)
- Peta A Neale
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, QLD 4222, Australia
| | - Beate I Escher
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, QLD 4222, Australia
- Department of Cell Toxicology, UFZ - Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany
- Environmental Toxicology, Department of Geosciences, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Milo L de Baat
- KWR Water Research Institute, 3433 PE Nieuwegein, The Netherlands
| | - Magali Dechesne
- Veolia Research & Innovation,765 rue Henri Becquerel, 34965 Montpellier, France
| | - Milou M L Dingemans
- KWR Water Research Institute, 3433 PE Nieuwegein, The Netherlands
- Institute for Risk Assessment Sciences, Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Jérôme Enault
- SUEZ CIRSEE, 38 rue du President Wilson, 78230 Le Pecq, France
| | - Geertje J Pronk
- KWR Water Research Institute, 3433 PE Nieuwegein, The Netherlands
| | | | - Frederic D L Leusch
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, QLD 4222, Australia
| |
Collapse
|
24
|
Neale PA, Escher BI, de Baat ML, Enault J, Leusch FDL. Effect-Based Trigger Values Are Essential for the Uptake of Effect-Based Methods in Water Safety Planning. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:714-726. [PMID: 36524849 DOI: 10.1002/etc.5544] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/26/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Effect-based methods (EBMs) using in vitro bioassays and well plate-based in vivo assays are recommended for water quality monitoring because they can capture the mixture effects of the many chemicals present in water. Many in vitro bioassays are highly sensitive, so an effect in a bioassay does not necessarily indicate poor chemical water quality. Consequently, effect-based trigger values (EBTs) have been introduced to differentiate between acceptable and unacceptable chemical water quality and are required for the wider acceptance of EBMs by the water sector and regulatory bodies. These EBTs have been derived for both drinking water and surface water to protect human and ecological health, respectively, and are available for assays indicative of specific receptor-mediated effects, as well as assays indicative of adaptive stress responses, apical effects, and receptor-mediated effects triggered by many chemicals. An overview of currently available EBTs is provided, and a simple approach is proposed to predict interim EBTs for assays currently without an EBT based on the effect concentration of the assay reference compound. There was good agreement between EBTs predicted using this simplistic approach and EBTs from the literature derived using more robust methods. Finally, an interpretation framework that outlines the steps to take if the effect of a sample exceeds the EBT was developed to help facilitate the uptake of EBMs in routine water quality monitoring and water safety planning for drinking water production. Environ Toxicol Chem 2023;42:714-726. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Peta A Neale
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Queensland, Australia
| | - Beate I Escher
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Queensland, Australia
- Department of Cell Toxicology, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
- Environmental Toxicology, Department of Geosciences, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Milo L de Baat
- KWR Water Research Institute, Nieuwegein, The Netherlands
| | | | - Frederic D L Leusch
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Queensland, Australia
| |
Collapse
|
25
|
Tue NM, Matsukami H, Tuyen LH, Suzuki G, Viet PH, Sudaryanto A, Subramanian A, Tanabe S, Kunisue T. Estrogenic, androgenic, and glucocorticoid activities and major causative compounds in river waters from three Asian countries. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:20765-20774. [PMID: 36255587 DOI: 10.1007/s11356-022-23674-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Estrogen, androgen, and glucocorticoid receptors (ER, AR, and GR) agonist activities in river water samples from Chennai and Bangalore (India), Jakarta (Indonesia), and Hanoi (Vietnam) were evaluated using a panel of chemical-activated luciferase gene expression (CALUX) assays and were detected mainly in the dissolved phase. The ER agonist activity levels were 0.011-55 ng estradiol (E2)-equivalent/l, higher than the proposed effect-based trigger (EBT) value of 0.5 ng/l in most of the samples. The AR agonist activity levels were < 2.1-110 ng dihydrotestosterone (DHT)-equivalent/l, and all levels above the limit of quantification exceeded the EBT value of 3.4 ng/l. GR agonist activities were detected in only Bangalore and Hanoi samples at dexamethasone (Dex)-equivalent levels of < 16-150 ng/l and exceeded the EBT value of 100 ng/l in only two Bangalore samples. Major compounds contributing to the ER, AR, and GR agonist activities were identified for water samples from Bangalore and Hanoi, which had substantially higher activities in all assays, by using a combination of fractionation, CALUX measurement, and non-target and target chemical analysis. The results for pooled samples showed that the major ER agonists were the endogenous estrogens E2 and estriol, and the major GR agonists were the synthetic glucocorticoids Dex and clobetasol propionate. The only AR agonist identified in major androgenic water extract fractions was DHT, but several unidentified compounds with the same molecular formulae as endogenous androgens were also found.
Collapse
Affiliation(s)
- Nguyen Minh Tue
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577, Japan
- Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), VNU University of Science, Vietnam National University, 334 Nguyen Trai, Hanoi, Vietnam
| | - Hidenori Matsukami
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, 305-8506, Japan
| | - Le Huu Tuyen
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577, Japan
- Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), VNU University of Science, Vietnam National University, 334 Nguyen Trai, Hanoi, Vietnam
| | - Go Suzuki
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, 305-8506, Japan
| | - Pham Hung Viet
- Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), VNU University of Science, Vietnam National University, 334 Nguyen Trai, Hanoi, Vietnam
| | - Agus Sudaryanto
- National Research and Innovation Agency (BRIN), Jl. M.H. Thamrin 8, Jakarta, Indonesia
| | - Annamalai Subramanian
- Centre of Advanced Study in Marine Biology, Annamalai University, Parangipettai, 608 502, Tamil Nadu, India
| | - Shinsuke Tanabe
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577, Japan
| | - Tatsuya Kunisue
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577, Japan.
| |
Collapse
|
26
|
Suspect Screening of Chemicals in Hospital Wastewaters Using Effect-Directed Analysis Approach as Prioritization Strategy. Molecules 2023; 28:molecules28031212. [PMID: 36770879 PMCID: PMC9921743 DOI: 10.3390/molecules28031212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/28/2023] Open
Abstract
The increasing number of contaminants in the environment has pushed water monitoring programs to find out the most hazardous known and unknown chemicals in the environment. Sample treatment-simplification methods and non-target screening approaches can help researchers to not overlook potential chemicals present in complex aqueous samples. In this work, an effect-directed analysis (EDA) protocol using the sea urchin embryo test (SET) as a toxicological in vivo bioassay was used as simplified strategy to identify potential unknown chemicals present in a very complex aqueous matrix such as hospital effluent. The SET bioassay was used for the first time here to evaluate potential toxic fractions in hospital effluent, which were obtained after a two-step fractionation using C18 and aminopropyl chromatographic semi-preparative columns. The unknown compounds present in the toxic fractions were identified by means of liquid chromatography coupled to a Q Exactive Orbitrap high-resolution mass spectrometer (LC-HRMS) and using a suspect analysis approach. The results were complemented by gas chromatography-mass spectrometry analysis (GC-MS) in order to identify the widest range of chemical compounds present in the sample and the toxic fractions. Using EDA as sample treatment simplification method, the number of unknown chemicals (>446 features) detected in the raw sample was narrowed down to 94 potential toxic candidates identified in the significantly toxic fractions. Among them, the presence of 25 compounds was confirmed with available chemical standards including 14 pharmaceuticals, a personal care product, six pesticides and four industrial products. The observations found in this work emphasize the difficulties in identifying potential toxicity drivers in complex water samples, as in the case of hospital wastewater.
Collapse
|
27
|
Satyanarayana GNV, Kumar A, Pandey AK, Sharma MT, Natesan M, Mudiam MKR. Evaluating chemicals of emerging concern in the Ganga River at the two major cities Prayagraj and Varanasi through validated analytical approaches. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:1520-1539. [PMID: 35917068 DOI: 10.1007/s11356-022-22226-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Evaluating environmental water quality means to assess and protect the environment against unfriendly impacts from various organic impurities emerging from industrial emissions and those released during harvesting. Potential risks related with release of polycyclic aromatic hydrocarbons (PAHs), pesticides and pharmaceuticals (PhAcs), and personal care products (PCPs) into the environment have turned into an increasingly serious issue in ecological safety. Monitoring helps in control of chemicals and ecological status compliance to safeguard specific water uses, for example, drinking water abstraction. A longitudinal review was carried out for 55 different persistent organic pollutants (POPs) for the Ganga River which passes through the urban areas of Prayagraj and Varanasi, India, through validated analytical approaches and measurement uncertainty (MU) estimation to assess their potential use for routine analysis. Furthermore, environmental risk assessment (ERA) carried out in the present study has revealed risk quotient (RQ) higher than 1 in a portion of the aquatic bodies. Using a conservative RQ strategy, POPs were assessed for having extensive risks under acute and chronic exposure, proposing that there is currently critical ecological risk identified with these compounds present in the Ganga River. In general, these outcomes demonstrate a significant contribution for focusing on measures and feasible techniques to minimize the unfavorable effects of contaminants on the aquatic environment.
Collapse
Affiliation(s)
- G N V Satyanarayana
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, M.G. Marg, Uttar Pradesh, P.O. Box-80, Lucknow, 226001, India
- Department of Chemistry, School of Basic Sciences, Babu Banarasi Das University, Uttar Pradesh, Lucknow, 226028, India
| | - Anu Kumar
- CSIRO Land and Water, Urrbrae, SA, 5064, Australia
| | - Alok K Pandey
- Nanomaterial Toxicology Laboratory, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, M. G. Marg, Uttar Pradesh, P. O. Box-80, Lucknow, 226001, India
| | - Manisha T Sharma
- Department of Chemistry, School of Basic Sciences, Babu Banarasi Das University, Uttar Pradesh, Lucknow, 226028, India
| | - Manickam Natesan
- Department of Environmental Biotechnology, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, M. G. Marg, Uttar Pradesh, P. O. Box-80, Lucknow, 226001, India
| | - Mohana Krishna Reddy Mudiam
- Analytical and Structural Chemistry Department, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad, 500 007, Telangana, India.
| |
Collapse
|
28
|
Zhou S, Schulze T, Brack W, Seiler TB, Hollert H. Spatial and temporal variations in anti-androgenic activity and environmental risk in a small river. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158622. [PMID: 36084781 DOI: 10.1016/j.scitotenv.2022.158622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/24/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
The biological effects of multiple compounds have been widely investigated in aquatic environments. However, investigations of spatial and temporal variations in biological effects are rarely performed because they are time-consuming and labor-intensive. In this study, the variability of the anti-androgen, receptor-mediated activity of surface water samples was observed over 3 years using in vitro bioassays. Large-volume water samples were collected at one site upstream (Wer site) and two sites downstream (Sil and Nien sites) of a wastewater treatment plant (WWTP) outfall in the Holtemme River. Anti-AR activity was persistently present in all surface water samples over the three years. Large spatial variations in anti-androgenic activity were observed, with the lowest activity at the Wer site (mean concentration of 9.5 ± 7.2 μg flutamide equivalents/L) and the highest activity at the Sil site (mean concentration of 31.1 ± 12.0 μg flutamide equivalents/L) directly influenced by WWTP effluents. On the temporal scale, no distinct trend for anti-AR activity was observed among the seasons in all three years. The anti-androgenic activity at the upstream Wer site showed a decreasing trend from 2014 to 2016, indicating improved water quality. A novel bioanalytical-equivalent-based risk assessment method considering the frequency of risk occurrence was developed and then utilized to assess the environmental risk of anti-androgenic activity in the Holtemme River. The results revealed that the highest risk was present at the Sil site, while the risk was considerably reduced at the Nien site. The risk at the upstream Wer site was the lowest.
Collapse
Affiliation(s)
- Shangbo Zhou
- RWTH Aachen University, Institute for Environmental Research (Biology V), Department of Ecosystem Analysis, Worringerweg 1, D-52074 Aachen, Germany; College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| | - Tobias Schulze
- UFZ Helmholtz Centre for Environmental Research, Department of Effect-Directed Analysis, Permoserstraße 15, D-04318 Leipzig, Germany
| | - Werner Brack
- UFZ Helmholtz Centre for Environmental Research, Department of Effect-Directed Analysis, Permoserstraße 15, D-04318 Leipzig, Germany; Goethe University Frankfurt, Faculty Biological Sciences, Department Evolutionary Ecology and Environmental Toxicology, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| | - Thomas-Benjamin Seiler
- RWTH Aachen University, Institute for Environmental Research (Biology V), Department of Ecosystem Analysis, Worringerweg 1, D-52074 Aachen, Germany; Hygiene-Institut des Ruhrgebiets, Rotthauser Str. 21, 45879 Gelsenkirchen, Germany
| | - Henner Hollert
- RWTH Aachen University, Institute for Environmental Research (Biology V), Department of Ecosystem Analysis, Worringerweg 1, D-52074 Aachen, Germany; College of Environment and Ecology, Chongqing University, Chongqing 400044, China; Goethe University Frankfurt, Faculty Biological Sciences, Department Evolutionary Ecology and Environmental Toxicology, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
29
|
Lazofsky A, Buckley B. Recent Trends in Multiclass Analysis of Emerging Endocrine Disrupting Contaminants (EDCs) in Drinking Water. Molecules 2022; 27:8835. [PMID: 36557967 PMCID: PMC9781274 DOI: 10.3390/molecules27248835] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Ingestion of water is a major route of human exposure to environmental contaminants. There have been numerous studies exploring the different compounds present in drinking water, with recent attention drawn to a new class of emerging contaminants: endocrine-disrupting compounds (EDCs). EDCs encompass a broad range of physio-chemically diverse compounds; from naturally occurring to manmade. Environmentally, EDCs are found as mixtures containing multiple classes at trace amounts. Human exposure to EDCs, even at low concentrations, is known to lead to adverse health effects. Therefore, the ability to evaluate EDC contamination with a high degree of sensitivity and accuracy is of the utmost importance. This review includes (i) discussion on the perceived and actual risks associated with EDC exposure (ii) regulatory actions that look to limit EDC contamination (iii) analytical methods, including sample preparation, instrumentation and bioassays that have been advanced and employed for multiclass EDC identification and quantitation.
Collapse
Affiliation(s)
| | - Brian Buckley
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, Piscataway, NJ 08854, USA
| |
Collapse
|
30
|
Finlayson KA, Leusch FDL, van de Merwe JP. Review of ecologically relevant in vitro bioassays to supplement current in vivo tests for whole effluent toxicity testing - Part 1: Apical endpoints. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:157817. [PMID: 35970462 DOI: 10.1016/j.scitotenv.2022.157817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/12/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Whole effluent toxicity (WET) testing is commonly used to ensure that wastewater discharges do not pose an unacceptable risk to receiving environments. Traditional WET testing involves exposing animals to (waste)water samples to assess four major ecologically relevant apical endpoints: mortality, growth, development, and reproduction. Recently, with the widespread implementation of the 3Rs to replace, reduce and refine the use of animals in research and testing, there has been a global shift away from in vivo testing towards in vitro alternatives. However, prior to the inclusion of in vitro bioassays in regulatory frameworks, it is critical to establish their ecological relevance and technical suitability. This is part 1 of a two-part review that aims to identify in vitro bioassays that can be used in WET testing and relate them to ecologically relevant endpoints through toxicity pathways, providing the reader with a high-level overview of current capabilities. Part 1 of this review focuses on four apical endpoints currently included in WET testing: mortality, growth, development, and reproduction. For each endpoint, the link between responses at the molecular or cellular level, that can be measured in vitro, and the adverse outcome at the organism level were established through simplified toxicity pathways. Additionally, literature from 2015 to 2020 on the use of in vitro bioassays for water quality assessments was reviewed to identify a list of suitable bioassays for each endpoint. This review will enable the prioritization of relevant endpoints and bioassays for incorporation into WET testing.
Collapse
Affiliation(s)
| | - Frederic D L Leusch
- Australian Rivers Institute, Griffith University, Australia; School of Environment and Science, Griffith University, Gold Coast, Australia
| | - Jason P van de Merwe
- Australian Rivers Institute, Griffith University, Australia; School of Environment and Science, Griffith University, Gold Coast, Australia
| |
Collapse
|
31
|
Finlayson KA, van de Merwe JP, Leusch FDL. Review of ecologically relevant in vitro bioassays to supplement current in vivo tests for whole effluent toxicity testing - Part 2: Non-apical endpoints. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158094. [PMID: 35987232 DOI: 10.1016/j.scitotenv.2022.158094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 08/03/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Whole effluent toxicity (WET) testing uses whole animal exposures to assess the toxicity of complex mixtures, like wastewater. These assessments typically include four apical endpoints: mortality, growth, development, and reproduction. In the last decade, there has been a shift to alternative methods that align with the 3Rs to replace, reduce, and refine the use of animals in research. In vitro bioassays can provide a cost-effective, high-throughput, ethical alternative to in vivo assays. In addition, they can potentially include additional, more sensitive, environmentally relevant endpoints than traditional toxicity tests. However, the ecological relevance of these endpoints must be established before they are adopted into regulatory frameworks. This is Part 2 of a two-part review that aims to identify in vitro bioassays that are linked to ecologically relevant endpoints that could be included in WET testing. Part 2 of this review focuses on non-apical endpoints that should be incorporated into WET testing. In addition to the four apical endpoints addressed in Part 1, this review identified seven additional toxic outcomes: endocrine disruption, xenobiotic metabolism, carcinogenicity, oxidative stress, inflammation, immunotoxicity and neurotoxicity. For each, the response at the molecular or cellular level measured in vitro was linked to the response at the organism level through a toxicity pathway. Literature from 2015 to 2020 was used to identify suitable bioassays that could be incorporated into WET testing.
Collapse
Affiliation(s)
| | - Jason P van de Merwe
- Australian Rivers Institute, Griffith University, Australia; School of Environment and Science, Griffith University, Gold Coast, Australia
| | - Frederic D L Leusch
- Australian Rivers Institute, Griffith University, Australia; School of Environment and Science, Griffith University, Gold Coast, Australia
| |
Collapse
|
32
|
Kruger A, Pieters R, Horn S, van Zijl C, Aneck-Hahn N. The role of effect-based methods to address water quality monitoring in South Africa: a developing country's struggle. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:84049-84055. [PMID: 36229735 PMCID: PMC9646548 DOI: 10.1007/s11356-022-23534-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 10/05/2022] [Indexed: 05/31/2023]
Abstract
Water is an important resource, and it is a worldwide struggle to provide water of good quality to the whole population. Despite good governing laws and guidelines set in place to help protect the water resources and ensure it is of good quality for various consumers, the water quality in South Africa is worsening due to lack of management. The deteriorating infrastructure is becoming progressively worse, due to corruption and insufficient funds. The ever-increasing number of toxicants, as well as the identification of emerging chemicals of concern, are also challenges South Africa is facing. Chemical analysis cannot determine the total biological effect of a mixture of chemical compounds, but this shortcoming can be addressed by adding effect-based methods (EBMs) to water quality monitoring programmes. In this paper, the current status of water quality monitoring in South Africa is discussed, as well as the capacity of the country to add EBMs to its water quality monitoring programmes to protect and improve human and animal life. Created in Biorender.com.
Collapse
Affiliation(s)
- Annika Kruger
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa.
| | - Rialet Pieters
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Suranie Horn
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
- Occupational Hygiene and Health Research Initiative, North-West University, Potchefstroom, South Africa
| | - Catherina van Zijl
- Environmental Chemical Pollution and Health Research Unit, University of Pretoria, Pretoria, South Africa
| | - Natalie Aneck-Hahn
- Environmental Chemical Pollution and Health Research Unit, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
33
|
Finckh S, Buchinger S, Escher BI, Hollert H, König M, Krauss M, Leekitratanapisan W, Schiwy S, Schlichting R, Shuliakevich A, Brack W. Endocrine disrupting chemicals entering European rivers: Occurrence and adverse mixture effects in treated wastewater. ENVIRONMENT INTERNATIONAL 2022; 170:107608. [PMID: 36343551 PMCID: PMC9720157 DOI: 10.1016/j.envint.2022.107608] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
In the present study on endocrine disrupting chemicals (EDCs) in treated wastewater, we used chemical and effect-based tools to analyse 56 wastewater treatment plant (WWTP) effluents from 15 European countries. The main objectives were (i) to compare three different receptor-based estrogenicity assays (ERα-GeneBLAzer, p-YES, ERα-CALUX®), and (ii) to investigate a combined approach of chemical target analysis and receptor-based testing for estrogenicity, glucocorticogenic activity, androgenicity and progestagenic activity (ERα-, GR-, AR- and PR-GeneBLAzer assays, respectively) in treated wastewater. A total of 56 steroids and phenols were detected at concentrations ranging from 25 pg/L (estriol, E3) up to 2.4 μg/L (cortisone). WWTP effluents, which passed an advanced treatment via ozonation or via activated carbon, were found to be less contaminated, in terms of lower or no detection of steroids and phenols, as well as hormone receptor-mediated effects. This result was confirmed by the effect screening, including the three ERα-bioassays. In the GeneBLAzer assays, ERα-activity was detected in 82 %, and GR-activity in 73 % of the samples, while AR- and PR-activity were only measured in 14 % and 21 % of the samples, respectively. 17β-estradiol was confirmed as the estrogen dominating the observed estrogenic mixture effect and triamcinolone acetonide was the dominant driver of glucocorticogenic activity. The comparison of bioanalytical equivalent concentrations (BEQ) predicted from the detected concentrations and the relative effect potency (BEQchem) with measured BEQ (BEQbio) demonstrated good correlations of chemical target analysis and receptor-based testing results with deviations mostly within a factor of 10. Bioassay-specific effect-based trigger values (EBTs) from the literature, but also newly calculated EBTs based on previously proposed derivation options, were applied and allowed a preliminary assessment of the water quality of the tested WWTP effluent samples. Overall, this study demonstrates the high potential of linking chemical with effect-based analysis in water quality assessment with regard to EDC contamination.
Collapse
Affiliation(s)
- Saskia Finckh
- Department of Effect-Directed Analysis, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany; Department of Evolutionary Ecology and Environmental Toxicology, Goethe University, Frankfurt am Main, Germany.
| | - Sebastian Buchinger
- Department of Biochemistry and Ecotoxicology, Federal Institute for Hydrology - BfG, Koblenz, Germany
| | - Beate I Escher
- Department of Cell Toxicology, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany; Environmental Toxicology, Department of Geosciences, Eberhard Karls University, Tübingen, Germany
| | - Henner Hollert
- Department of Evolutionary Ecology and Environmental Toxicology, Goethe University, Frankfurt am Main, Germany
| | - Maria König
- Department of Cell Toxicology, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Martin Krauss
- Department of Effect-Directed Analysis, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Warich Leekitratanapisan
- Environmental Toxicology Unit - GhEnToxLab, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Sabrina Schiwy
- Department of Evolutionary Ecology and Environmental Toxicology, Goethe University, Frankfurt am Main, Germany
| | - Rita Schlichting
- Department of Cell Toxicology, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Aliaksandra Shuliakevich
- Department of Evolutionary Ecology and Environmental Toxicology, Goethe University, Frankfurt am Main, Germany
| | - Werner Brack
- Department of Effect-Directed Analysis, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany; Department of Evolutionary Ecology and Environmental Toxicology, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
34
|
Wei R, Escher BI, Glaser C, König M, Schlichting R, Schmitt M, Störiko A, Viswanathan M, Zarfl C. Modeling the Dynamics of Mixture Toxicity and Effects of Organic Micropollutants in a Small River under Unsteady Flow Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14397-14408. [PMID: 36170232 DOI: 10.1021/acs.est.2c02824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The presence of anthropogenic organic micropollutants in rivers poses a long-term threat to surface water quality. To describe and quantify the in-stream fate of single micropollutants, the advection-dispersion-reaction (ADR) equation has been used previously. Understanding the dynamics of the mixture effects and cytotoxicity that are cumulatively caused by micropollutant mixtures along their flow path in rivers requires a new concept. Thus, we extended the ADR equation from single micropollutants to defined mixtures and then to the measured mixture effects of micropollutants extracted from the same river water samples. Effects (single and mixture) are expressed as effect units and toxic units, the inverse of effect concentrations and inhibitory concentrations, respectively, quantified using a panel of in vitro bioassays. We performed a Lagrangian sampling campaign under unsteady flow, collecting river water that was impacted by a wastewater treatment plant (WWTP) effluent. To reduce the computational time, the solution of the ADR equation was expressed by a convolution-based reactive transport approach, which was used to simulate the dynamics of the effects. The dissipation dynamics of the individual micropollutants were reproduced by the deterministic model following first-order kinetics. The dynamics of experimental mixture effects without known compositions were captured by the model ensemble obtained through Bayesian calibration. The highly fluctuating WWTP effluent discharge dominated the temporal patterns of the effect fluxes in the river. Minor inputs likely from surface runoff and pesticide diffusion might contribute to the general effect and cytotoxicity pattern but could not be confirmed by the model-based analysis of the available effect and chemical data.
Collapse
Affiliation(s)
- Ran Wei
- Department of Geosciences, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
| | - Beate I Escher
- Department of Geosciences, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
- Department of Cell Toxicology, UFZ-Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany
| | - Clarissa Glaser
- Department of Geosciences, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
| | - Maria König
- Department of Cell Toxicology, UFZ-Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany
| | - Rita Schlichting
- Department of Cell Toxicology, UFZ-Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany
| | - Markus Schmitt
- Department of Geosciences, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
| | - Anna Störiko
- Department of Geosciences, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
| | - Michelle Viswanathan
- Institute of Soil Science and Land Evaluation, University of Hohenheim, 70599 Stuttgart, Germany
| | - Christiane Zarfl
- Department of Geosciences, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
35
|
Ma XY, Chen W, Tang L, Wang YK, Li M, Wang XC. The impact of natural sunlight irradiation on the biotoxicities of different molecular sizes EfOM/SRNOM and its relationship with spectral and molecular level parameters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:156972. [PMID: 35772563 DOI: 10.1016/j.scitotenv.2022.156972] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/26/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Natural sunlight irradiation is regarded as an efficient and low-carbon method for controlling the biotoxicity of effluents from domestic wastewater treatment plants (WWTPs). Dissolved organic matter in WWTPs effluent (EfOM) is responsible for the non-specific biotoxicity of effluent. In the present study, the variation in spectral characteristics, molecular composition, luminescent bacteria toxicity, and genotoxicity of EfOM of different molecular sizes (MOSs) during natural sunlight irradiation were investigated from a systematic perspective, and the standard natural organic matter from the Suwannee River (SRNOM) was synchronously assessed for comparative purposes. To further explore the cause of the biotoxicity changes, the relationships between the spectral or molecular level parameters (obtained from FT-ICR MS analysis) and biotoxicity were assessed using correlation analysis. The molecules in <1 kDa EfOM with lower molecular weight, higher unsaturation degree, and higher humification and fluorescence had higher luminescent bacteria toxicity under sunlight irradiation. However, in the <1 kDa SRNOM, the molecules which were characterized by higher humification and fluorescence had higher luminescent bacteria toxicity. The notable genotoxicity reduction of EfOM under sunlight irradiation was attributed to the photochemical degradation of components with a high unsaturation degree. Such findings could enable ecological safety improvement of aquatic environments using natural sunlight.
Collapse
Affiliation(s)
- Xiaoyan Y Ma
- Key Lab of Environmental Engineering (Shaanxi province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China.
| | - Wenfeng Chen
- Key Lab of Environmental Engineering (Shaanxi province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Lei Tang
- Key Lab of Environmental Engineering (Shaanxi province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Yongkun K Wang
- School of Environment and Tourism, West Anhui University, Lùan 237000, PR China
| | - Mengkai Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Xiaochang C Wang
- Key Lab of Environmental Engineering (Shaanxi province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| |
Collapse
|
36
|
Simon E, Riegraf C, Schifferli A, Olbrich D, Bucher T, Vermeirssen ELM. Evaluation of Three ISO Estrogen Receptor Transactivation Assays Applied to 52 Domestic Effluent Samples. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2512-2526. [PMID: 35876436 PMCID: PMC9826432 DOI: 10.1002/etc.5445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/23/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Estrogens are released to the aquatic environment by wastewater treatment plant (WWTP) effluents and can affect wildlife. In the last three decades, many in vitro assay platforms have been developed to detect and quantify estrogenicity in water. In 2018, the International Organization for Standardization (ISO) standardized protocols became available for three types of in vitro estrogen receptor transactivation assays (ERTAs) detecting estrogenicity in 96-well plates (ISO19040 1-3). Two ERTAs-lyticase Yeast Estrogen Screen (L-YES) and Arxula YES (A-YES)-use genetically modified yeast strains, whereas the third utilizes stably transfected human cells. One human cell based assay is ERα-CALUX, which is based on a genetically modified human bone osteosarcoma cell line. In the present study, we characterized the performance, comparability, and effectiveness of these three ERTAs, including an evaluation involving proposed water quality thresholds (effect-based trigger values [EBTs]). For a robust evaluation, we collected 52 effluent samples over three sampling campaigns at 15 different WWTPs in Switzerland. Estrogen receptor transactivation assay results were correlated and compared with results from chemical analysis targeting known estrogens. The three ERTAs showed comparable data over all campaigns. However, the selection of EBTs plays a significant role in the interpretation and comparison of bioassay results to distinguish between acceptable and unacceptable water quality. Applying a fixed cross-assay EBT for effluent of 4 ng L-1 resulted in varying numbers of threshold exceedances ranging between zero and four samples depending on the ERTA used. Using assay-specific EBTs showed exceedances in eight samples (ERα-CALUX) and in one sample (A-YES), respectively. Thus, proposed EBTs do not produce similar risk profiles across samples and further refinement of assay-specific EBTs is needed to account for assay-specific differences and to enable the application of ERTAs as effect-based methods in environmental monitoring. Environ Toxicol Chem 2022;41:2512-2526. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Eszter Simon
- Swiss Centre for Applied EcotoxicologyDübendorfSwitzerland
- Air Pollution Control and Chemicals Division, Industrial Chemicals SectionFederal Office for the EnvironmentBernSwitzerland
| | | | | | - Daniel Olbrich
- Swiss Centre for Applied EcotoxicologyDübendorfSwitzerland
| | - Thomas Bucher
- Swiss Centre for Applied EcotoxicologyDübendorfSwitzerland
- Current affiliation: ETH ZurichLehrlabor BiologieZürichSwitzerland
| | | |
Collapse
|
37
|
Karengera A, Verburg I, Sterken MG, Riksen JAG, Murk AJ, Dinkla IJT. Determining Toxic Potencies of Water-Soluble Contaminants in Wastewater Influents and Effluent Using Gene Expression Profiling in C. elegans as a Bioanalytical Tool. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 83:284-294. [PMID: 36190544 PMCID: PMC9556352 DOI: 10.1007/s00244-022-00959-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
With chemical analysis, it is impossible to qualify and quantify the toxic potency of especially hydrophilic bioactive contaminants. In this study, we applied the nematode C. elegans as a model organism for detecting the toxic potency of whole influent wastewater samples. Gene expression in the nematode was used as bioanalytical tool to reveal the presence, type and potency of molecular pathways induced by 24-h exposure to wastewater from a hospital (H), nursing home (N), community (C), and influent (I) and treated effluent (E) from a local wastewater treatment plant. Exposure to influent water significantly altered expression of 464 genes, while only two genes were differentially expressed in nematodes treated with effluent. This indicates a significant decrease in bioactive pollutant-load after wastewater treatment. Surface water receiving the effluent did not induce any genes in exposed nematodes. A subset of 209 genes was differentially expressed in all untreated wastewaters, including cytochromes P450 and C-type lectins related to the nematode's xenobiotic metabolism and immune response, respectively. Different subsets of genes responded to particular waste streams making them candidates to fingerprint-specific wastewater sources. This study shows that gene expression profiling in C. elegans can be used for mechanism-based identification of hydrophilic bioactive compounds and fingerprinting of specific wastewaters. More comprehensive than with chemical analysis, it can demonstrate the effective overall removal of bioactive compounds through wastewater treatment. This bioanalytical tool can also be applied in the process of identification of the bioactive compounds via a process of toxicity identification evaluation.
Collapse
Affiliation(s)
- Antoine Karengera
- Department of Animal Sciences, Marine Animal Ecology Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Ilse Verburg
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Mark G. Sterken
- Plant Sciences, Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Joost A. G. Riksen
- Plant Sciences, Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Albertinka J. Murk
- Department of Animal Sciences, Marine Animal Ecology Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Inez J. T. Dinkla
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| |
Collapse
|
38
|
Zheng LL, Zhang J, Liu XZ, Tian L, Xiong ZS, Xiong X, Chen P, Wu DS, Zou JP. Degradation of pesticide wastewater with simultaneous resource recovery via ozonation coupled with anaerobic biochemical technology. CHEMOSPHERE 2022; 300:134520. [PMID: 35398067 DOI: 10.1016/j.chemosphere.2022.134520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/23/2022] [Accepted: 04/02/2022] [Indexed: 06/14/2023]
Abstract
The effective treatment of pesticide wastewater with high organic content, complex composition and high-toxicity has attracted enormous attention of researchers. This work proposes a new idea for removing the pesticide wastewater with simultaneous resource recovery, which is different from the traditional view of mineralization of pesticide wastewater via composite technology. This novel strategy involved a sequential three-step treatment: (a) acidic Ozonation process, to remove the venomous aromatic heterocyclic compounds; (b) hydrolysis and ozonation in alkaline conditions, enhancing the biodegradability of pesticide wastewater, mainly due to the dehalogenation, elimination of C=C bonds and production of low molecular-weight carboxylate anions; (c) the final step is anaerobic biological reactions. Based on the characterizations, this two-stage acidic-alkaline ozonation can efficiently degraded the virulence of pesticide wastewater and enhance its biodegradability from 0.08 to 0.32. The final anaerobic biochemical treatment can stably remove the residuals and convert the low molecular-weight organics into CH4, achieving the resource recovery. This work explored the pH-dependent of ozonized degradation of pesticide wastewater and gives a new perspective of wastewater treatment.
Collapse
Affiliation(s)
- Ling-Ling Zheng
- Key Laboratory of Poyang Lake Environment and Resource Utilization of Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang, 330031, PR China; Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Jun Zhang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Xiao-Zhen Liu
- Key Laboratory of Poyang Lake Environment and Resource Utilization of Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang, 330031, PR China.
| | - Lei Tian
- Key Laboratory of Poyang Lake Environment and Resource Utilization of Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang, 330031, PR China; Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Zhen-Sheng Xiong
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Xin Xiong
- Key Laboratory of Poyang Lake Environment and Resource Utilization of Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang, 330031, PR China; Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Peng Chen
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Dai-She Wu
- Key Laboratory of Poyang Lake Environment and Resource Utilization of Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang, 330031, PR China
| | - Jian-Ping Zou
- Key Laboratory of Poyang Lake Environment and Resource Utilization of Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang, 330031, PR China; Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China.
| |
Collapse
|
39
|
Reiter EB, Escher BI, Siebert U, Jahnke A. Activation of the xenobiotic metabolism and oxidative stress response by mixtures of organic pollutants extracted with in-tissue passive sampling from liver, kidney, brain and blubber of marine mammals. ENVIRONMENT INTERNATIONAL 2022; 165:107337. [PMID: 35696845 DOI: 10.1016/j.envint.2022.107337] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
We used in-tissue passive equilibrium sampling using the silicone polydimethylsiloxane (PDMS) to transfer chemical mixtures present in organs from marine mammals with lipid contents between 2.3 and 99%into in vitro bioassays. Tissues from five harbor porpoises (Phocoena phocoena), one harbor seal (Phoca vitulina) and one orca (Orcinus orca) from the North and Baltic Seas were sampled until thermodynamic equilibrium was reached. Mixture effects were quantified with cellular reporter gene bioassays targeting the activation of the aryl hydrocarbon receptor (AhR-CALUX), the peroxisome proliferator-activated receptor gamma (PPARγ-bla) and the oxidative stress response (AREc32), with parallel cytotoxicity measurements in all assays. After removing co-extracted lipids and other matrix residues with a non-destructive cleanup method (freeze-out of acetonitrile extract followed by a primary secondary amine sorbent extraction), the activation of the PPARγ and AREc32 were reduced by factors of on average 4.3 ± 0.15 (n = 22) and 2.5 ± 0.23 (n = 18), respectively, whereas the activation of the AhR remained largely unaltered: 1.1 ± 0.075 (n = 6). The liver extracts showed the highest activation, followed by the corresponding kidney and brain extracts, and the blubber extracts of the animals were the least active ones. The activation of the PPARγ by the liver extracts was reduced after cleanup by a factor of 11 ± 0.26 (n = 7) and the AREc32 activity by a factor of 1.9 ± 0.32 (n = 4). The blubber extracts did not activate the AhR up to concentrations where cytotoxicity occurred or up to an acceptable lipid volume fraction of 0.27% as derived from earlier work, whereas all liver extracts that had undergone cleanup activated the AhR. The developed in-tissue passive sampling approach allows a direct comparison of the bioassay responses between different tissues without further normalization and serves as a quantitative method suitable for biomonitoring of environmental biota samples.
Collapse
Affiliation(s)
- Eva B Reiter
- Department Ecological Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany.
| | - Beate I Escher
- Department Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany; Environmental Toxicology, Center for Applied Geoscience, Eberhard Karls University Tübingen, Schnarrenbergstr. 94-96, 72076 Tübingen, Germany
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Werftstr. 6, 25761 Büsum, Germany
| | - Annika Jahnke
- Department Ecological Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany; Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
40
|
Sossalla NA, Nivala J, Escher BI, Schlichting R, van Afferden M, Müller RA, Reemtsma T. Impact of various aeration strategies on the removal of micropollutants and biological effects in aerated horizontal flow treatment wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154423. [PMID: 35276169 DOI: 10.1016/j.scitotenv.2022.154423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Two aerated horizontal subsurface flow treatment wetlands were studied over two years for the removal efficacy with respect of conventional wastewater parameters, micropollutants and effect-based methods. One wetland served as control and was aerated 24 h d-1 across 100% of the fractional length of the system. The second aerated horizontal flow treatment wetland was investigated under several aeration modes: first year with a zone of 85% aeration, followed by five months with a zone of 50% aeration and six months with a zone of 35% aeration. With 85% aeration, no significant difference in the removal efficacy as compared to the fully aerated control could be observed, except for E. coli, which were removed four times better in the control. No significant difference in removal efficacy for Total Organic Carbon, 5-day Carbonaceous Biochemical Oxygen Demand, caffeine, and naproxen were observed. A 50% non-aerated zone reduced the overall removal efficacy of biological effects. The highest removal efficacy for the moderately biodegradable micropollutants benzotriazole and diclofenac was observed in the system with 50% aeration. This could be due to the sharp increase of dissolved oxygen (DO) and oxidation reduction potential at the passage from the non-aerated to the aerated zone (at 75% of the fractional length). The internal concentration profiles of caffeine, ibuprofen and naproxen varied from 12.5%, 25%, 50% to 75% fractional length due to redox shift, DO variations and other conditions. A reduction of the aerated zone to 35% of the fractional length results in reduced treatment efficacy for benzotriazole, diclofenac, acesulfame and biological effects but 50% aeration yielded as much degradation as the fully aerated control. These results indicate that less aeration could provide similar effluent water quality, depending on the pollutants of interest. E. coli and biological effects were removed best in the fully aerated system.
Collapse
Affiliation(s)
- Nadine A Sossalla
- Centre for Environmental Biotechnology, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, 04318 Leipzig, Germany; Faculty of Environmental Science, Dresden University of Technology, Bergstraße 66, 01069 Dresden, Germany.
| | - Jaime Nivala
- INRAE - French National Research Institute for Agriculture, Food and Environment, Research Unit REVERSAAL, 5 rue de la Doua, CS 20244, 69625 Villeurbanne Cedex, France
| | - Beate I Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, 04318 Leipzig, Germany; Center for Applied Geoscience, Eberhard Karls University Tübingen, Schnarrenbergstraße 94-96, 72076 Tübingen, Germany
| | - Rita Schlichting
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, 04318 Leipzig, Germany
| | - Manfred van Afferden
- Centre for Environmental Biotechnology, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, 04318 Leipzig, Germany
| | - Roland A Müller
- Centre for Environmental Biotechnology, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, 04318 Leipzig, Germany
| | - Thorsten Reemtsma
- Institute of Analytical Chemistry, University of Leipzig, Linnéstraße 3, 04103 Leipzig, Germany; Department of Analytical Chemistry, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, 04318 Leipzig, Germany
| |
Collapse
|
41
|
Luo YS, Chen Z, Hsieh NH, Lin TE. Chemical and biological assessments of environmental mixtures: A review of current trends, advances, and future perspectives. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128658. [PMID: 35290896 DOI: 10.1016/j.jhazmat.2022.128658] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/21/2022] [Accepted: 03/07/2022] [Indexed: 05/28/2023]
Abstract
Considering the chemical complexity and toxicity data gaps of environmental mixtures, most studies evaluate the chemical risk individually. However, humans are usually exposed to a cocktail of chemicals in real life. Mixture health assessment remains to be a research area having significant knowledge gaps. Characterization of chemical composition and bioactivity/toxicity are the two critical aspects of mixture health assessments. This review seeks to introduce the recent progress and tools for the chemical and biological characterization of environmental mixtures. The state-of-the-art techniques include the sampling, extraction, rapid detection methods, and the in vitro, in vivo, and in silico approaches to generate the toxicity data of an environmental mixture. Application of these novel methods, or new approach methodologies (NAMs), has increased the throughput of generating chemical and toxicity data for mixtures and thus refined the mixture health assessment. Combined with computational methods, the chemical and biological information would shed light on identifying the bioactive/toxic components in an environmental mixture.
Collapse
Affiliation(s)
- Yu-Syuan Luo
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei City, Taiwan.
| | - Zunwei Chen
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Nan-Hung Hsieh
- Interdisciplinary Faculty of Toxicology and Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Tzu-En Lin
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
42
|
Schaffert A, Karkossa I, Ueberham E, Schlichting R, Walter K, Arnold J, Blüher M, Heiker JT, Lehmann J, Wabitsch M, Escher BI, von Bergen M, Schubert K. Di-(2-ethylhexyl) phthalate substitutes accelerate human adipogenesis through PPARγ activation and cause oxidative stress and impaired metabolic homeostasis in mature adipocytes. ENVIRONMENT INTERNATIONAL 2022; 164:107279. [PMID: 35567983 DOI: 10.1016/j.envint.2022.107279] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/08/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
The obesity pandemic is presumed to be accelerated by endocrine disruptors such as phthalate-plasticizers, which interfere with adipose tissue function. With the restriction of the plasticizer di-(2-ethylhexyl)-phthalate (DEHP), the search for safe substitutes gained importance. Focusing on the master regulator of adipogenesis and adipose tissue functionality, the peroxisome proliferator-activated receptor gamma (PPARγ), we evaluated 20 alternative plasticizers as well as their metabolites for binding to and activation of PPARγ and assessed effects on adipocyte lipid accumulation. Among several compounds that showed interaction with PPARγ, the metabolites MINCH, MHINP, and OH-MPHP of the plasticizers DINCH, DINP, and DPHP exerted the highest adipogenic potential in human adipocytes. These metabolites and their parent plasticizers were further analyzed in human preadipocytes and mature adipocytes using cellular assays and global proteomics. In preadipocytes, the plasticizer metabolites significantly increased lipid accumulation, enhanced leptin and adipsin secretion, and upregulated adipogenesis-associated markers and pathways, in a similar pattern to the PPARγ agonist rosiglitazone. Proteomics of mature adipocytes revealed that both, the plasticizers and their metabolites, induced oxidative stress, disturbed lipid storage, impaired metabolic homeostasis, and led to proinflammatory and insulin resistance promoting adipokine secretion. In conclusion, the plasticizer metabolites enhanced preadipocyte differentiation, at least partly mediated by PPARγ activation and, together with their parent plasticizers, affected the functionality of mature adipocytes similar to reported effects of a high-fat diet. This highlights the need to further investigate the currently used plasticizer alternatives for potential associations with obesity and the metabolic syndrome.
Collapse
Affiliation(s)
- Alexandra Schaffert
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Isabel Karkossa
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Elke Ueberham
- Department of GMP Process Development / ATMP Design, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Rita Schlichting
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Katharina Walter
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Josi Arnold
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Leipzig, Germany; Department of Endocrinology, Nephrology and Rheumatology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - John T Heiker
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Leipzig, Germany
| | - Jörg Lehmann
- Department of Preclinical Development and Validation, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany; Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Ulm University Medical Center, Ulm, Germany
| | - Beate I Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany; Environmental Toxicology, Center for Applied Geoscience, Eberhard Karls University Tübingen, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany; Institute of Biochemistry, Leipzig University, Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Kristin Schubert
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany.
| |
Collapse
|
43
|
Robitaille J, Denslow ND, Escher BI, Kurita-Oyamada HG, Marlatt V, Martyniuk CJ, Navarro-Martín L, Prosser R, Sanderson T, Yargeau V, Langlois VS. Towards regulation of Endocrine Disrupting chemicals (EDCs) in water resources using bioassays - A guide to developing a testing strategy. ENVIRONMENTAL RESEARCH 2022; 205:112483. [PMID: 34863984 DOI: 10.1016/j.envres.2021.112483] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 06/13/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are found in every environmental medium and are chemically diverse. Their presence in water resources can negatively impact the health of both human and wildlife. Currently, there are no mandatory screening mandates or regulations for EDC levels in complex water samples globally. Bioassays, which allow quantifying in vivo or in vitro biological effects of chemicals are used commonly to assess acute toxicity in water. The existing OECD framework to identify single-compound EDCs offers a set of bioassays that are validated for the Estrogen-, Androgen-, and Thyroid hormones, and for Steroidogenesis pathways (EATS). In this review, we discussed bioassays that could be potentially used to screen EDCs in water resources, including in vivo and in vitro bioassays using invertebrates, fish, amphibians, and/or mammalians species. Strengths and weaknesses of samples preparation for complex water samples are discussed. We also review how to calculate the Effect-Based Trigger values, which could serve as thresholds to determine if a given water sample poses a risk based on existing quality standards. This work aims to assist governments and regulatory agencies in developing a testing strategy towards regulation of EDCs in water resources worldwide. The main recommendations include 1) opting for internationally validated cell reporter in vitro bioassays to reduce animal use & cost; 2) testing for cell viability (a critical parameter) when using in vitro bioassays; and 3) evaluating the recovery of the water sample preparation method selected. This review also highlights future research avenues for the EDC screening revolution (e.g., 3D tissue culture, transgenic animals, OMICs, and Adverse Outcome Pathways (AOPs)).
Collapse
Affiliation(s)
- Julie Robitaille
- Centre Eau Terre Environnement, Institut National de La Recherche Scientifique (INRS), Quebec City, QC, Canada
| | | | - Beate I Escher
- Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany; Eberhard Karls University Tübingen, Tübingen, Germany
| | | | - Vicki Marlatt
- Simon Fraser University, Burnaby, British Columbia, Canada
| | | | - Laia Navarro-Martín
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | | | - Thomas Sanderson
- Centre Armand-Frappier Santé Biotechnologie, INRS, Laval, QC, Canada
| | | | - Valerie S Langlois
- Centre Eau Terre Environnement, Institut National de La Recherche Scientifique (INRS), Quebec City, QC, Canada.
| |
Collapse
|
44
|
Kondor AC, Molnár É, Jakab G, Vancsik A, Filep T, Szeberényi J, Szabó L, Maász G, Pirger Z, Weiperth A, Ferincz Á, Staszny Á, Dobosy P, Horváthné Kiss K, Hatvani IG, Szalai Z. Pharmaceuticals in water and sediment of small streams under the pressure of urbanization: Concentrations, interactions, and risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152160. [PMID: 34864023 DOI: 10.1016/j.scitotenv.2021.152160] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 06/13/2023]
Abstract
Small streams are crucial but vulnerable elements of ecological networks. To better understand the occurrence of pharmaceutically active compounds (PhACs) in streams, this study focused on the occurrence, distribution, and environmental risk of 111 PhACs and 7 trace elements based on a total of 141 water and sediment samples from small streams located in the urbanizing region of Budapest, Hungary. Eighty-one PhACs were detected in the aqueous phase, whereas sixty-two compounds were detected in the sediment. Carbamazepine (CBZ) was the most frequently identified PhAC in water, and was found in 91.5% of all samples. However, the highest concentrations were measured for lamotrigine (344.8 μg·L-1) and caffeine (221.4 μg·L-1). Lidocaine was the most frequently occurring PhAC in sediment (73.8%), but the maximum concentrations were detected for CBZ (395.9 ng·g-1) and tiapride (187.7 ng·g-1). In both water and sediment, more PhACs were found downstream of the wastewater treatment plants (WWTPs) than in the samples not affected by treated wastewater, even though no relationship was observed between the total amount of treated wastewater and the number of detected PhACs. The PhAC concentrations were also independent of the distance from the WWTP effluents. PhAC-polluted samples were detected upstream of the WWTPs, thereby suggesting the relevance of diffuse emissions in addition to WWTP outlets. The most frequently detected PhACs in the sediment were usually also present in the water samples collected at the same place and time. The varying concentrations of PhACs and the fluctuating water-sediment properties resulted in a lack of correlation between the general chemical properties and the concentrations of PhACs, which makes it difficult to predict PhAC contamination and risks in urbanized small streams. The environmental risk assessment indicated that diclofenac had the highest risk in the sampling area.
Collapse
Affiliation(s)
- Attila Csaba Kondor
- Geographical Institute, Research Centre for Astronomy and Earth Sciences, MTA Centre for Excellence, Budaörsi út 45, Budapest H-1112, Hungary
| | - Éva Molnár
- Balaton Limnological Research Institute, Eötvös Loránd Research Network, Klebelsberg Kuno u. 3, Tihany H-8237, Hungary
| | - Gergely Jakab
- Geographical Institute, Research Centre for Astronomy and Earth Sciences, MTA Centre for Excellence, Budaörsi út 45, Budapest H-1112, Hungary; Department of Environmental and Landscape Geography, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest H-1117, Hungary; Institute of Geography and Geoinformatics, University of Miskolc, Egyetemváros, Miskolc H-3515, Hungary.
| | - Anna Vancsik
- Geographical Institute, Research Centre for Astronomy and Earth Sciences, MTA Centre for Excellence, Budaörsi út 45, Budapest H-1112, Hungary
| | - Tibor Filep
- Geographical Institute, Research Centre for Astronomy and Earth Sciences, MTA Centre for Excellence, Budaörsi út 45, Budapest H-1112, Hungary
| | - József Szeberényi
- Geographical Institute, Research Centre for Astronomy and Earth Sciences, MTA Centre for Excellence, Budaörsi út 45, Budapest H-1112, Hungary
| | - Lili Szabó
- Geographical Institute, Research Centre for Astronomy and Earth Sciences, MTA Centre for Excellence, Budaörsi út 45, Budapest H-1112, Hungary; Department of Environmental and Landscape Geography, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest H-1117, Hungary
| | - Gábor Maász
- Balaton Limnological Research Institute, Eötvös Loránd Research Network, Klebelsberg Kuno u. 3, Tihany H-8237, Hungary; Soós Ernő Research and Development Center, University of Pannonia, Zrínyi Miklós Str. 18, Nagykanizsa H-8800, Hungary
| | - Zsolt Pirger
- Balaton Limnological Research Institute, Eötvös Loránd Research Network, Klebelsberg Kuno u. 3, Tihany H-8237, Hungary
| | - András Weiperth
- Department of Freshwater Fish Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter K. u. 1, Gödöllő H-2100, Hungary
| | - Árpád Ferincz
- Department of Freshwater Fish Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter K. u. 1, Gödöllő H-2100, Hungary
| | - Ádám Staszny
- Department of Freshwater Fish Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter K. u. 1, Gödöllő H-2100, Hungary
| | - Péter Dobosy
- Institute of Aquatic Ecology, Centre for Ecological Research, Karolina út 29, Budapest H-1113, Hungary
| | | | - István Gábor Hatvani
- Institute for Geological and Geochemical Research, Research Centre for Astronomy and Earth Sciences, MTA Centre for Excellence, Budaörsi út 45, Budapest H-1112, Hungary
| | - Zoltán Szalai
- Geographical Institute, Research Centre for Astronomy and Earth Sciences, MTA Centre for Excellence, Budaörsi út 45, Budapest H-1112, Hungary; Department of Environmental and Landscape Geography, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest H-1117, Hungary
| |
Collapse
|
45
|
The Effects of Wastewater Treatment Plant Failure on the Gulf of Gdansk (Southern Baltic Sea). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042048. [PMID: 35206237 PMCID: PMC8871907 DOI: 10.3390/ijerph19042048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 11/28/2022]
Abstract
In August 2019 and during August/September 2020, the main collection system of the Wastewater Treatment Plant (WWTP) in Warsaw, Poland, malfunctioned. During that system failure, over 4.8 million m3 of untreated wastewater was dropped directly into the Vistula River in just a few days. It is currently considered as one of the largest known failures of WWTP worldwide. In order to assess the environmental impact, water samples were collected from 2 spots at the Vistula river estuary (406 and 415 km from the discharge location, respectively), and 4 spots at the Gulf of Gdansk, situated on the southern shore of the Baltic Sea. The sampling was conducted before the wastewater wave reached the Vistula river’s mouth, followed by daily sampling during 21 days after the malfunction occurred. The study showed the decline in water quality at the Vistula river estuary and the Baltic shore waters as the wave of wastewater reached those points, despite being situated over 400 km downstream from the place of the accident. Those changes included the reduction in the dissolved oxygen content (by 0.69-fold at its peak), the increase in Total Organic Carbon (TOC) (by 1.28-fold at its peak), nitrate-nitrogen (N-NO3) (by 1.68-fold at its peak), phosphorous (P) (by 2.41-fold at its peak), conductivity (by 16.8-fold at its peak), and Chemical Oxygen Demand (COD) (by 1.84-fold). In the samples from the Vistula river, the decline in water quality was seen as incidental and lasted 2–3 days. Subsequently, the levels of physical and chemical parameters returned to the levels from before the accident. However, the changes in the Gulf of Gdańsk lasted significantly longer, especially on the West side of the Vistula river, where, even after 21 days from the initial accident, some parameters remained altered.
Collapse
|
46
|
Schulte B, König M, Escher BI, Wittenburg S, Proj M, Wolf V, Lemke C, Schnakenburg G, Sosič I, Streeck H, Müller CE, Gütschow M, Steinebach C. Andrographolide Derivatives Target the KEAP1/NRF2 Axis and Possess Potent Anti-SARS-CoV-2 Activity. ChemMedChem 2022; 17:e202100732. [PMID: 35099120 PMCID: PMC9015489 DOI: 10.1002/cmdc.202100732] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/13/2022] [Indexed: 01/08/2023]
Abstract
Naturally occurring compounds represent a vast pool of pharmacologically active entities. One of such compounds is andrographolide, which is endowed with many beneficial properties, including the activity against severe acute respiratory syndrome coronavirus type 2 (SARS‐CoV‐2). To initiate a drug repurposing or hit optimization campaign, it is imperative to unravel the primary mechanism(s) of the antiviral action of andrographolide. Here, we showed by means of a reporter gene assay that andrographolide exerts its anti‐SARS‐CoV‐2 effects by inhibiting the interaction between Kelch‐like ECH‐associated protein 1 (KEAP1) and nuclear factor erythroid 2‐related factor 2 (NRF2) causing NRF2 upregulation. Moreover, we demonstrated that subtle structural modifications of andrographolide could lead to derivatives with stronger on‐target activities and improved physicochemical properties. Our results indicate that further optimization of this structural class is warranted to develop novel COVID‐19 therapies.
Collapse
Affiliation(s)
- Bianca Schulte
- Institute of Virology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Maria König
- Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Beate I Escher
- Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318, Leipzig, Germany.,Center for Applied Geoscience, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Sophie Wittenburg
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Matic Proj
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Valentina Wolf
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Carina Lemke
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Gregor Schnakenburg
- Institute of Inorganic Chemistry, University of Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| | - Izidor Sosič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Hendrik Streeck
- Institute of Virology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.,German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Germany
| | - Christa E Müller
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Michael Gütschow
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Christian Steinebach
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| |
Collapse
|
47
|
Papa M, Dogruer G, Bailey D, Leusch FDL. Anaerobic digestion of sewage sludge has no effect on glucocorticoid and anti-progestagenic activity but increases estrogenicity three-fold. CHEMOSPHERE 2022; 286:131753. [PMID: 34358896 DOI: 10.1016/j.chemosphere.2021.131753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/14/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Although the recovery and beneficial reuse of organic matter and nutrients from sludge represents an important move towards environmental sustainability, the accumulation of chemicals in biosolid-amended soils could pose serious environmental and human health risks. However, (eco)toxicological profiling of complex chemical mixtures in biosolids is currently limited. In particular, the effect of anaerobic digestion (AD), the most common stabilization process for sewage sludge, on the (eco)toxicity of those complex mixtures is poorly studied. In this work, we fill this research gap by applying an effect-based monitoring approach to screen sludge samples (n = 4) from a full-scale sewage treatment plant before and after conventional mesophilic (37 °C) AD using a battery of cell-based in vitro bioassays for four types of hormonal activity: estrogenic, androgenic, progestagenic and glucocorticoid activity, both in agonist and antagonist modes. We detected estrogenic, glucocorticoid and anti-progestagenic activity in all sludge samples. The glucocorticoid and anti-progestagenic activity remained mostly unchanged after AD treatment, but estrogenicity increased three-fold, likely as a result of bioactivation processes in the digestor. This study presents the first report on the concentration and fate of glucocorticoid and anti-progestagenic activity in AD. Future research should apply bioanalytical tools to a wider range of sludge samples to get a better understanding of the typical hormonal activity in sludge and develop effect-based trigger (EBT) values for biosolids to help interpret the risk posed by the hormonal activity detected in sludge.
Collapse
Affiliation(s)
- Matteo Papa
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, QLD, 4222, Australia.
| | - Gulsah Dogruer
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, QLD, 4222, Australia
| | - David Bailey
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, QLD, 4222, Australia
| | - Frederic D L Leusch
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, QLD, 4222, Australia
| |
Collapse
|
48
|
Landi C, Liberatori G, Cotugno P, Sturba L, Vannuccini ML, Massari F, Miniero DV, Tursi A, Shaba E, Behnisch PA, Carleo A, Di Giuseppe F, Angelucci S, Bini L, Corsi I. First Attempt to Couple Proteomics with the AhR Reporter Gene Bioassay in Soil Pollution Monitoring and Assessment. TOXICS 2021; 10:toxics10010009. [PMID: 35051051 PMCID: PMC8779689 DOI: 10.3390/toxics10010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 11/16/2022]
Abstract
A topsoil sample obtained from a highly industrialized area (Taranto, Italy) was tested on the DR-CALUX® cell line and the exposed cells processed with proteomic and bioinformatics analyses. The presence of polyhalogenated compounds in the topsoil extracts was confirmed by GC-MS/MS analysis. Proteomic analysis of the cells exposed to the topsoil extracts identified 43 differential proteins. Enrichment analysis highlighted biological processes, such as the cellular response to a chemical stimulus, stress, and inorganic substances; regulation of translation; regulation of apoptotic process; and the response to organonitrogen compounds in light of particular drugs and compounds, extrapolated by bioinformatics all linked to the identified protein modifications. Our results confirm and reflect the complex epidemiological situation occurring among Taranto inhabitants and underline the need to further investigate the presence and sources of inferred chemicals in soils. The combination of bioassays and proteomics reveals a more complex scenario of chemicals able to affect cellular pathways and leading to toxicities rather than those identified by only bioassays and related chemical analysis. This combined approach turns out to be a promising tool for soil risk assessment and deserves further investigation and developments for soil monitoring and risk assessment.
Collapse
Affiliation(s)
- Claudia Landi
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (C.L.); (E.S.)
| | - Giulia Liberatori
- Department of Physical, Earth and Environmental Sciences, University of Siena, 53100 Siena, Italy; (G.L.); (L.S.); (M.L.V.)
| | - Pietro Cotugno
- Department of Biology, University of Bari Aldo Moro, 70121 Bari, Italy; (P.C.); (F.M.); (D.V.M.); (A.T.)
| | - Lucrezia Sturba
- Department of Physical, Earth and Environmental Sciences, University of Siena, 53100 Siena, Italy; (G.L.); (L.S.); (M.L.V.)
| | - Maria Luisa Vannuccini
- Department of Physical, Earth and Environmental Sciences, University of Siena, 53100 Siena, Italy; (G.L.); (L.S.); (M.L.V.)
| | - Federica Massari
- Department of Biology, University of Bari Aldo Moro, 70121 Bari, Italy; (P.C.); (F.M.); (D.V.M.); (A.T.)
| | - Daniela Valeria Miniero
- Department of Biology, University of Bari Aldo Moro, 70121 Bari, Italy; (P.C.); (F.M.); (D.V.M.); (A.T.)
| | - Angelo Tursi
- Department of Biology, University of Bari Aldo Moro, 70121 Bari, Italy; (P.C.); (F.M.); (D.V.M.); (A.T.)
| | - Enxhi Shaba
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (C.L.); (E.S.)
| | - Peter A. Behnisch
- BioDetection System BV (BDS) Amsterdam, 1098 XH Amsterdam, The Netherlands;
| | - Alfonso Carleo
- Department of Pulmonology, Hannover Medical School, 30625 Hannover, Germany;
| | - Fabrizio Di Giuseppe
- Department of Medical, Oral & Biotechnological Sciences, Dentistry and Biotechnology and Proteomics Unit, Centre of Advanced Studies and Technology, “G. D’Annunzio”, University of Chieti-Pescara, 66100 Chieti, Italy; (F.D.G.); (S.A.)
| | - Stefania Angelucci
- Department of Medical, Oral & Biotechnological Sciences, Dentistry and Biotechnology and Proteomics Unit, Centre of Advanced Studies and Technology, “G. D’Annunzio”, University of Chieti-Pescara, 66100 Chieti, Italy; (F.D.G.); (S.A.)
| | - Luca Bini
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (C.L.); (E.S.)
- Correspondence: (L.B.); (I.C.); Tel.: +39-0577-234938 (L.B.); +39-0577-232169 (I.C.)
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, 53100 Siena, Italy; (G.L.); (L.S.); (M.L.V.)
- Correspondence: (L.B.); (I.C.); Tel.: +39-0577-234938 (L.B.); +39-0577-232169 (I.C.)
| |
Collapse
|
49
|
Villanueva CM, Espinosa A, Gracia-Lavedan E, Vlaanderen J, Vermeulen R, Molina AJ, Amiano P, Gómez-Acebo I, Castaño-Vinyals G, Vineis P, Kogevinas M. Exposure to widespread drinking water chemicals, blood inflammation markers, and colorectal cancer. ENVIRONMENT INTERNATIONAL 2021; 157:106873. [PMID: 34543938 DOI: 10.1016/j.envint.2021.106873] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/12/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Trihalomethanes (THMs) and nitrate are widespread chemicals in drinking water associated with colorectal cancer risk but mechanisms are not well understood. OBJECTIVES We explored the association between exposure to THMs and nitrate in drinking water and inflammation markers, and the link with colorectal cancer risk. METHODS A subset of 198 colorectal cancer cases and 205 controls from the multicase-control study MCC-Spain were included. Average concentration of THMs (chloroform, bromodichloromethane, dibromochloromethane, bromoform) and nitrate in tap water at the residence was estimated from age 18 until 2 years before the interview ("long term") and for a recent period (3 years before diagnosis). Serum levels of EGF, eotaxin, G-CSF, IL-17E, IL-1rA, IL-8, IP-10, MDC, MPO, periostin, VEGF, and C-reactive protein (CRP) were measured. We estimated the linear association between inflammation markers and exposure among controls, and the odds ratio of colorectal cancer associated with THM and nitrate exposure, and inflammation markers. A mediation analysis was conducted to identify inflammation markers in the pathway between THM/nitrate exposure and colorectal cancer. RESULTS Serum concentrations of EGF, IL-8, IL-17E and eotaxin increased with recent residential levels of brominated THMs, chloroforom and/or total THM. No associations were observed for nitrate and for long-term residential THM levels. All residential exposures except chloroform were positively associated with colorectal cancer. Serum concentrations of VEGF and periostin were positively associated with colorectal cancer, while EGF was inversely associated. One protein-exposure combination (periostin-recent ingested brominated THMs) slightly mediated the association with colorectal cancer risk. DISCUSSION Results suggest that estimated THM exposure is involved in inflammation processes. However, the study design was limited to stablish etiologically relevant associations between the protein levels and colorectal cancer risk. The lack of association between nitrate exposure and inflammation markers suggests other biological mechanisms are involved in the link with colorectal cancer.
Collapse
Affiliation(s)
- Cristina M Villanueva
- ISGlobal, Barcelona, Spain; CIBER epidemiología y salud pública (CIBERESP), Madrid, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.
| | - Ana Espinosa
- ISGlobal, Barcelona, Spain; CIBER epidemiología y salud pública (CIBERESP), Madrid, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Esther Gracia-Lavedan
- ISGlobal, Barcelona, Spain; CIBER epidemiología y salud pública (CIBERESP), Madrid, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Jelle Vlaanderen
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| | - Antonio José Molina
- The Research Group in Gene - Environment and Health Interactions (GIIGAS)/Institute of Biomedicine (IBIOMED), Universidad de León, León, Spain; Faculty of Health Sciences, Department of Biomedical Sciences, Area of Preventive Medicine and Public Health, Universidad de León, Spain
| | - Pilar Amiano
- CIBER epidemiología y salud pública (CIBERESP), Madrid, Spain; Public Health Division of Gipuzkoa, Biodonostia Research Institute, San Sebastian, Spain
| | - Inés Gómez-Acebo
- CIBER epidemiología y salud pública (CIBERESP), Madrid, Spain; Universidad de Cantabria, Santander, Spain
| | - Gemma Castaño-Vinyals
- ISGlobal, Barcelona, Spain; CIBER epidemiología y salud pública (CIBERESP), Madrid, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Paolo Vineis
- School of Public Health, Imperial College London, London, UK; Italian Institute of Technology, Genova, Liguria, Italy
| | - Manolis Kogevinas
- ISGlobal, Barcelona, Spain; CIBER epidemiología y salud pública (CIBERESP), Madrid, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| |
Collapse
|
50
|
Schuijt LM, Peng FJ, van den Berg SJP, Dingemans MML, Van den Brink PJ. (Eco)toxicological tests for assessing impacts of chemical stress to aquatic ecosystems: Facts, challenges, and future. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148776. [PMID: 34328937 DOI: 10.1016/j.scitotenv.2021.148776] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/23/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
Monitoring of chemicals in the aquatic environment by chemical analysis alone cannot completely assess and predict the effects of chemicals on aquatic species and ecosystems. This is primarily because of the increasing number of (unknown) chemical stressors and mixture effects present in the environment. In addition, the ability of ecological indices to identify underlying stressors causing negative ecological effects is limited. Therefore, additional complementary methods are needed that can address the biological effects in a direct manner and provide a link to chemical exposure, i.e. (eco)toxicological tests. (Eco)toxicological tests are defined as test systems that expose biological components (cells, individuals, populations, communities) to (environmental mixtures of) chemicals to register biological effects. These tests measure responses at the sub-organismal (biomarkers and in vitro bioassays), whole-organismal, population, or community level. We performed a literature search to obtain a state-of-the-art overview of ecotoxicological tests available for assessing impacts of chemicals to aquatic biota and to reveal datagaps. In total, we included 509 biomarkers, 207 in vitro bioassays, 422 tests measuring biological effects at the whole-organismal level, and 78 tests at the population- community- and ecosystem-level. Tests at the whole-organismal level and biomarkers were most abundant for invertebrates and fish, whilst in vitro bioassays are mostly based on mammalian cell lines. Tests at the community- and ecosystem-level were almost missing for organisms other than microorganisms and algae. In addition, we provide an overview of the various extrapolation challenges faced in using data from these tests and suggest some forward looking perspectives. Although extrapolating the measured responses to relevant protection goals remains challenging, the combination of ecotoxicological experiments and models is key for a more comprehensive assessment of the effects of chemical stressors to aquatic ecosystems.
Collapse
Affiliation(s)
- Lara M Schuijt
- Aquatic Ecology and Water Quality Management group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands.
| | - Feng-Jiao Peng
- Wageningen Environmental Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands; Human Biomonitoring Research Unit, Department of Population Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Sanne J P van den Berg
- Aquatic Ecology and Water Quality Management group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands; Wageningen Environmental Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| | - Milou M L Dingemans
- KWR Water Research Institute, Nieuwegein, the Netherlands; Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Paul J Van den Brink
- Aquatic Ecology and Water Quality Management group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands; Wageningen Environmental Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| |
Collapse
|