1
|
Wang H, Yu P, Guo X, Wang W, Wang L, Zhang H, Deng L, Yang H, He T, Wu P, Zhang Y. Mechanistic insights for efficient removal of intracellular and extracellular antibiotic resistance genes by iron-based nanocopper: Intracellular oxidative stress and internalization of nanocopper. JOURNAL OF HAZARDOUS MATERIALS 2024; 484:136745. [PMID: 39637796 DOI: 10.1016/j.jhazmat.2024.136745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/28/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
The widespread use of antibiotics has led to a severe pollution issue with antibiotic resistance genes (ARGs), which poses a significant threat to both ecological environments and human health. In this study, we developed an iron-based nanocopper bimetallic material (Fe-nCu) for the efficient removal of ARGs. Our results indicate that nCu can attach to the surface of iron, forming aggregated copper nanoclusters resembling wheat ears. The composition of Fe-nCu particles consists of 75.90 % iron and 20.95 % copper. Fe-nCu demonstrates a unique capability in eliminating ARGs, achieving removal efficiencies of 3.75 and 4.36 logs for intracellular and extracellular ARGs, respectively. Furthermore, Fe-nCu remains stable in complex water environments and is unaffected by organic substances in the water. This material induces oxidative stress in cells within a short period, leading to an imbalance in intracellular redox levels and resulting in cell membrane damage. nCu causes severe membrane damage to E. coli, penetrating the cell due to its size advantage, which leads to the encapsulation and internalization of E. coli by the copper nanoparticles. Once inside, the nCu particles cleave DNA and disrupt the function of ARGs. This study not only provides a cost-effective material for the removal of ARGs but also offers an in-depth understanding of the action mechanism of Fe-nCu, presenting a novel pathway for inhibiting the propagation of ARGs.
Collapse
Affiliation(s)
- Hao Wang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, No. 13, Section 4, Renmin South Road, Chengdu 610041, PR China; College of Resources and Environment, Chengdu University of Information Technology, No. 24 Block 1, Xuefu Road, Chengdu 610225, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Ping Yu
- Biogas Institute of Ministry of Agriculture and Rural Affairs, No. 13, Section 4, Renmin South Road, Chengdu 610041, PR China; College of Resources and Environment, Chengdu University of Information Technology, No. 24 Block 1, Xuefu Road, Chengdu 610225, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Xujing Guo
- College of Resources and Environment, Chengdu University of Information Technology, No. 24 Block 1, Xuefu Road, Chengdu 610225, PR China
| | - Wenguo Wang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, No. 13, Section 4, Renmin South Road, Chengdu 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Lan Wang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, No. 13, Section 4, Renmin South Road, Chengdu 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Hongwei Zhang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, No. 13, Section 4, Renmin South Road, Chengdu 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Liangwei Deng
- Biogas Institute of Ministry of Agriculture and Rural Affairs, No. 13, Section 4, Renmin South Road, Chengdu 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Hongnan Yang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, No. 13, Section 4, Renmin South Road, Chengdu 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Ting He
- Biogas Institute of Ministry of Agriculture and Rural Affairs, No. 13, Section 4, Renmin South Road, Chengdu 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Peike Wu
- Biogas Institute of Ministry of Agriculture and Rural Affairs, No. 13, Section 4, Renmin South Road, Chengdu 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Yunhong Zhang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, No. 13, Section 4, Renmin South Road, Chengdu 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China.
| |
Collapse
|
2
|
Liu S, Lioe TS, Sun L, Adriaenssens EM, McCarthy AJ, Sekar R. Validation of crAssphage microbial source tracking markers and comparison with Bacteroidales markers for detection and quantification of faecal contaminations in surface water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 366:125403. [PMID: 39608743 DOI: 10.1016/j.envpol.2024.125403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Human-specific faecal contamination has been affecting surface water and is a threat to both the environment and public health due to its potential co-occurrence with pathogens. Extended studies were conducted to detect and quantify faecal contamination using microbial source tracking (MST) markers targeting bacteria and viruses. The prototypical crAssphage, a presumed Bacteroides-infecting phage discovered in 2014, showed superior specificity to human faeces and high abundance in untreated sewage water. This study evaluated the applicability of crAssphage markers, CPQ_056 and CPQ_064, as MST tools for detecting domestic sewage contamination in surface water in China. Validation tests based on domestic sewage and animal faecal samples demonstrated high sensitivity/specificity of 100%/96.7% for CPQ_056 and 100%/100% for CPQ_064 within the scope of this study, surpassing the performance of traditional Bacteroidales markers such as HF183 (100%/80.4% against sewage). MST markers targeting different hosts and validated in the Taihu watershed (CPQ_056, CPQ_064, BacUni, HF183 TaqMan, Pig-2-Bac, and GFD) were quantified in water samples collected from the inflow rivers of Taihu Lake in summer and winter 2020. The results showed the dominance of sewage/wastewater as the source of contamination in all faecal pollution. Spatial analysis revealed higher contamination levels in northwest rivers, which were those most impacted by human activities. There was also a diluting pattern downstream of some rivers. Correlations with water quality parameters indicated the co-occurrence of nutrient-related pollution and faecal contamination, particularly in areas with industrial, low-density residential, green space, and municipal service land uses. The findings established the efficacy of crAssphage markers in enhancing precision and accuracy in monitoring faecal contamination, offering valuable tools for policymakers and environmental managers.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China; Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7ZX, UK
| | - Trillion Surya Lioe
- Leiden Institute of Chemistry, Faculty of Science, Leiden University, 2333, CC Leiden, the Netherlands
| | - Li Sun
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | | | - Alan J McCarthy
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7ZX, UK
| | - Raju Sekar
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China; Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7ZX, UK.
| |
Collapse
|
3
|
Siri Y, Sresung M, Paisantham P, Mongkolsuk S, Sirikanchana K, Honda R, Precha N, Makkaew P. Antibiotic resistance genes and crAssphage in hospital wastewater and a canal receiving the treatment effluent. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124771. [PMID: 39168435 DOI: 10.1016/j.envpol.2024.124771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/26/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
Hospital wastewater is a major hotspot for the spread of antimicrobial resistance (AMR) in aquatic ecosystems. This study aimed to investigate the prevalence of antibiotic resistance genes (ARGs) and their correlation with crAssphage in a hospital wastewater treatment plant (HWWTP) and a receiving canal. Water samples were analyzed for 94 ARGs and crAssphage relative to the 16S rRNA using high-throughput quantitative polymerase chain reaction (HT-qPCR). Subsequently, 7 ARGs and crAssphage were selected and quantified using qPCR. The results showed that the detected genes ranged from 79 to 93 out of 95 genes. The raw wastewater (WW) samples had the highest gene diversity compared to the upstream canal, which had less diversity than downstream samples, as determined by HT-qPCR. The blaGES was the most abundant in WW samples, while qacEΔ1, merA, IS6100, tnpA, and IS26 showed high prevalence throughout the treatment processes. The concentrations of intI1, sul1, blaTEM,blaNDM,blaVIM,tetQ, mcr-1, crAssphage, and 16S rRNA, measured using qPCR, were the highest in WW and significantly reduced in treated water samples. Although some water quality parameters, such as total suspended solids and dissolved oxygen, did not significantly differ before and after treatment, removal efficiency ranged from 0.60 to 3.23 log reduction values (LRV). The highest LRV was observed for the tetQ, whereas the mcr-1 had the lowest LRV. Strong positive correlations among the absolute concentrations of ARGs and crAssphage were observed (Spearman's rho = 0.6-1.0), and biochemical oxygen demand correlated with blaTEM and blaVIM (Spearman's rho = 0.6). These results indicate that crAssphage and water quality could reflect the distribution of other ARGs throughout the HWWTP. Further studies are needed to underscore the importance of monitoring ARGs and genetic markers such as crAssphage in HWWTPs and their receiving waters to enhance our understanding of ARG distribution.
Collapse
Affiliation(s)
- Yadpiroon Siri
- Environmental, Safety Technology and Health Program, School of Public Health, Walailak University, Thaiburi, Thasala, Nakhon Si Thammarat, 80160, Thailand
| | - Montakarn Sresung
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Phongsawat Paisantham
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Skorn Mongkolsuk
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, 10400, Thailand
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, 10400, Thailand
| | - Ryo Honda
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Nopadol Precha
- Department of Environmental Health and Technology, School of Public Health, Walailak University, Nakhon Si Thammarat, 80160, Thailand; Excellent Center for Dengue and Community Public Health (EC for DACH), Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Prasert Makkaew
- Department of Environmental Health and Technology, School of Public Health, Walailak University, Nakhon Si Thammarat, 80160, Thailand; Excellent Center for Dengue and Community Public Health (EC for DACH), Walailak University, Nakhon Si Thammarat, 80160, Thailand.
| |
Collapse
|
4
|
Wang S, Fang L, Sun X, Lu W. Occurrence and distribution of antibiotic resistance genes in urban rivers with black-odor water of Harbin, China. ENVIRONMENTAL RESEARCH 2024; 259:119497. [PMID: 38944102 DOI: 10.1016/j.envres.2024.119497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/04/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
Antibiotic resistance gene contamination in polluted rivers remains a widely acknowledged environmental issue. This study focused on investigating the contamination conditions of antibiotic resistance genes (ARGs) in Harbin's urban black-odor rivers, specifically Dongfeng Ditch and Hejia Ditch. The research employed a SmartChip Real-Time PCR System to explore the types, abundance, and distribution of ARGs in diverse habitats, such as surface water and sediment. Additionally, the study examined the correlation of ARGs with mobile genetic elements (MGEs) and various environmental factors. It was found that antibiotic resistance genes were prevalent in both water and sediment within the black-odor ditches. The dominant types of ARGs identified included aminoglycoside, sulfonamide, multidrug-resistant, and β-lactam ARGs. Notably, the top four ARGs, in terms of relative abundance, were sul1, fox5, qacEdelta1-01 and aadA1. Most categories of ARGs have significant positive connections with MGEs, indicating that the enrichment and spreading of ARGs in rivers are closely related to MGEs. Based on the correlation analysis, it is found that environmental factors such as dissolved oxygen (DO), ammonia nitrogen (NH4-N), and phosphate (PO4-P) played a substantial role in influencing the variations observed in ARGs. By employing a risk assessment framework based on the human association, host pathogenicity, and mobility of ARGs, the identification of seven high-risk ARGs was achieved. In addition, it is important to assess the environmental risk of ARGs from multiple perspectives (abundance,detection rateand mobility). This study provides a significant reference regarding the presence of ARGs contamination in urban inland black-odor rivers, essential for assessing the health risks associated with ARGs and devising strategies to mitigate the threat of antibiotic resistance.
Collapse
Affiliation(s)
- Shuangshuang Wang
- School of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Lanjin Fang
- School of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Xingbin Sun
- School of Forestry, Northeast Forestry University, Harbin, 150040, China.
| | - Weimin Lu
- Heilongjiang Province Light Industrial Science Research Institute, Harbin, Heilongjiang, 150010, China
| |
Collapse
|
5
|
Liu L, Zou X, Cheng Y, Li H, Zhang X, Yuan Q. Contrasting Dynamics of Intracellular and Extracellular Antibiotic Resistance Genes in Response to Nutrient Variations in Aquatic Environments. Antibiotics (Basel) 2024; 13:817. [PMID: 39334992 PMCID: PMC11428281 DOI: 10.3390/antibiotics13090817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
The propagation of antibiotic resistance in environments, particularly aquatic environments that serve as primary pathways for antibiotic resistance genes (ARGs), poses significant health risks. The impact of nutrients, as key determinants of bacterial growth and metabolism, on the propagation of ARGs, particularly extracellular ARGs (eARGs), remains poorly understood. In this study, we collected microorganisms from the Yangtze River and established a series of microcosms to investigate how variations in nutrient levels and delivery frequency affect the relative abundance of intracellular ARGs (iARGs) and eARGs in bacterial communities. Our results show that the relative abundance of 7 out of 11 representative eARGs in water exceeds that of iARGs, while 8 iARGs dominate in biofilms. Notably, iARGs and eARGs consistently exhibited opposite responses to nutrient variation. When nutrient levels increased, iARGs in the water also increased, with the polluted group (COD = 333.3 mg/L, COD:N:P = 100:3:0.6, m/m) and the eutrophic group (COD = 100 mg/L, COD:N:P = 100:25:5, m/m) showing 1.2 and 3.2 times higher levels than the normal group (COD = 100 mg/L, COD:N:P = 100:10:2, m/m), respectively. In contrast, eARGs decreased by 6.7% and 8.4% in these groups. On the other hand, in biofilms, higher nutrient levels led to an increase in eARGs by 1.5 and 1.7 times, while iARGs decreased by 17.5% and 50.1% in the polluted and eutrophic groups compared to the normal group. Moreover, while increasing the frequency of nutrient delivery (from 1 time/10 d to 20 times/10 d) generally did not favor iARGs in either water or biofilm, it selectively enhanced eARGs in both. To further understand these dynamics, we developed an ARGs-nutrient model by integrating the Lotka-Volterra and Monod equations. The results highlight the complex interplay of bacterial growth, nutrient availability, and mechanisms such as horizontal gene transfer and secretion influencing ARGs' propagation, driving the opposite trend between these two forms of ARGs. This contrasting response between iARGs and eARGs contributes to a dynamic balance that stabilizes bacterial resistance levels amid nutrient fluctuations. This study offers helpful implications regarding the persistence of bacterial resistance in the environment.
Collapse
Affiliation(s)
- Lele Liu
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (L.L.); (X.Z.); (Y.C.); (H.L.)
| | - Xinyi Zou
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (L.L.); (X.Z.); (Y.C.); (H.L.)
| | - Yuan Cheng
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (L.L.); (X.Z.); (Y.C.); (H.L.)
| | - Huihui Li
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (L.L.); (X.Z.); (Y.C.); (H.L.)
| | - Xueying Zhang
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (L.L.); (X.Z.); (Y.C.); (H.L.)
| | - Qingbin Yuan
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (L.L.); (X.Z.); (Y.C.); (H.L.)
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
6
|
Yuan W, Liu Y, Liu R, Li L, Deng P, Fu S, Riaz L, Lu J, Li G, Yang Z. Unveiling the overlooked threat: antibiotic resistance in groundwater near an abandoned sulfuric acid plant in Xingyang, China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:309. [PMID: 39002061 DOI: 10.1007/s10653-024-02100-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/24/2024] [Indexed: 07/15/2024]
Abstract
Groundwater near a sulfuric acid plant in Xingyang, Henan, China was sampled from seven distinct sites to explore the prevalence of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs). Results showed that genes aadA, blaCTX-M, tetA, qnrA, and sul1 were detected with 100% frequency followed by aac(6')-Ib (85.71%), ermB (85.71%), and tetX (71.42%). Most abundant ARGs were sul1 in LSA2 (1.15 × 1011 copies/mL), tetA in LSA6 (4.95 × 1010 copies/mL), aadA in LSA2 (4.56 × 109 copies/mL), blaCTX-M in LSA4 (1.19 × 109 copies/mL), and ermB in LSA5 (1.07 × 109 copies/mL). Moreover, in LSA2, intl1 as a marker of class 1 integron emerged as the most abundant gene as part of MGE (2.25 × 1011 copies/mL), trailed by ISCR1 (1.57 × 109 copies/mL). Environmental factors explained 81.34% of ARG variations, with a strong positive correlation between the intl2 and blaCTX-M genes, as well as the ISCR1 gene and qnrA, tetA, intl2, and blaCTX-M. Furthermore, the intI1 gene had a strong positive connection with the aadA, tetA, and sul1 genes. Moreover, the aac(6')-Ib gene was associated with As, Pb, Mg, Ca, and HCO3-. The intl2 gene was also shown to be strongly associated with Cd. Notably, network analysis highlighted blaCTX-M as the most frequently appearing gene across networks of at least five genera. Particularly, Lactobacillus, Plesiomonas, and Ligilactobacillus demonstrated correlations with aadA, qnrA, blaCTX-M, intI2, and ISCR1. Based on 16S rRNA sequencing, the dominant phyla were Proteobacteria, Firmicutes, Bacteroidota, Acidobacteriota, and Actinobacteriota, with dominant genera including Pseudomonas, Ligilactobacillus, Azoarcus, Vogesella, Streptococcus, Plesiomonas, and Ferritrophicum. These findings enhance our understanding of ARG distribution in groundwater, signaling substantial contamination by ARGs and potential risks to public health.
Collapse
Affiliation(s)
- Wei Yuan
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, Henan, China
| | - Yafei Liu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, Henan, China
| | - Ruihao Liu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, Henan, China
| | - Leicheng Li
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, Henan, China
| | - Peiyuan Deng
- Henan Engineering Research Center of Bird-Related Outage, Zhengzhou Normal University, Zhengzhou, 450044, Henan, China
| | - Shuai Fu
- College of Civil Engineering, Luoyang Institute of Science and Technology, Luoyang, 471023, Henan, China
| | - Luqman Riaz
- Department of Environmental Sciences, Kohsar University Murree, Murree, 47150, Punjab, Pakistan
| | - Jianhong Lu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, Henan, China
| | - Guoting Li
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, Henan, China
| | - Ziyan Yang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, Henan, China.
| |
Collapse
|
7
|
Zhang Y, Wang M, Zhou X, Cheng W, Ren J, Wan T, Liu X. Transmission mechanism of antibiotic resistance genes and their differences between water and sediment in the Weihe River Basin. ENVIRONMENTAL RESEARCH 2024; 252:119057. [PMID: 38705450 DOI: 10.1016/j.envres.2024.119057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/12/2024] [Accepted: 04/30/2024] [Indexed: 05/07/2024]
Abstract
Antibiotic resistance genes (ARGs) are emerging microbial pollutants that are regulated by many factors and pose potential threats to aquatic environments. In this study, we used network analysis, correlation analysis, and constructed models based on metagenomic sequencing results to explore the spatial patterns, impact mechanisms, transmission risks and differences in ARGs in the water and sediment of the Weihe River Basin. The findings revealed notable disparities in ARGs, mobile genetic elements (MGEs), and bacterial communities. In the sediment, the abundance of ARGs was considerably greater than that in water. Moreover, the percentage of ARGs shared by the two components reached a value of 85.8%. Through network analysis, it was determined that the presence of 16 MGEs and 20 bacterial phyla was strongly associated with ARGs (R2 > 0.7, P < 0.05). The Mantel test showed that abiotic factors including DO, pH, nutrients, and heavy metals played important roles in the distribution of ARGs (P < 0.05). A structural equation model revealed that the key factors influencing the distribution of ARGs in water were bacterial diversity and environmental parameters (standardized effects of -0.730 and -0.667), and those in sediment were bacterial diversity and MGEs (standardized effects of -0.751 and 0.851). Neutral modeling indicated that deterministic processes played an important role in the assembly of ARGs in the water of the Weihe River Basin, and stochastic processes were dominant in the sediment. There was a highly significant positive linear correlation between ARGs and pathogens, and there was more complex co-occurrence in the water than in the sediment (R2 > 0.9, P < 0.05), with stronger migration and transmission occurring. Exploring ARGs in large-scale watersheds is immensely important for elucidating their traits and transmission mechanisms and consequently paving the way for the formulation of efficient strategies to mitigate resistance threats.
Collapse
Affiliation(s)
- Yutong Zhang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China; Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China
| | - Min Wang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China; Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China.
| | - Xiaoping Zhou
- Power China Northwest Engineering Corporation Limited, Xi'an, Shaanxi, China
| | - Wen Cheng
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China; Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China.
| | - Jiehui Ren
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China; Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China
| | - Tian Wan
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China; Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China
| | - Xiaoyan Liu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China; Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China
| |
Collapse
|
8
|
Xu Q, Liu S, Lou S, Tu J, Li X, Jin Y, Yin W, Radnaeva LD, Nikitina E, Makhinov AN, Araruna JT, Fedorova IV. Typical antibiotic resistance genes and their association with driving factors in the coastal areas of Yangtze River Estuary. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:30440-30453. [PMID: 38607491 DOI: 10.1007/s11356-024-33198-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/30/2024] [Indexed: 04/13/2024]
Abstract
The massive use of antibiotics has led to the escalation of microbial resistance in aquatic environment, resulting in an increasing concern regarding antibiotic resistance genes (ARGs), posing a serious threat to ecological safety and human health. In this study, surface water samples were collected at eight sampling sites along the Yangtze River Estuary. The seasonal and spatial distribution patterns of 10 antibiotics and target genes in two major classes (sulfonamides and tetracyclines) were analyzed. The findings indicated a high prevalence of sulfonamide and tetracycline resistance genes along the Yangtze River Estuary. Kruskal-Wallis analysis revealed significant seasonal variations in the abundance of all target genes. The accumulation of antibiotic resistance genes in the coastal area of the Yangtze River Estuary can be attributed to the influence of urban instream runoff and the discharge of effluents from wastewater treatment plants. ANISOM analysis indicated significant seasonal differences in the microbial community structure. VPA showed that environmental factors contribute the most to ARG variation. PLS-PM demonstrate that environmental factors and microbial communities pose direct effect to ARG variation. Analysis of driving factors influencing ARGs in this study may shed new insights into the mechanism of the maintenance and propagation of ARGs.
Collapse
Affiliation(s)
- Qiuhong Xu
- Department of Hydraulic Engineering, College of Civil Engineering, Tongji University, Shanghai, China
| | - Shuguang Liu
- Department of Hydraulic Engineering, College of Civil Engineering, Tongji University, Shanghai, China
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, China
| | - Sha Lou
- Department of Hydraulic Engineering, College of Civil Engineering, Tongji University, Shanghai, China.
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, China.
| | - Junbiao Tu
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, China
| | - Xin Li
- Department of Hydraulic Engineering, College of Civil Engineering, Tongji University, Shanghai, China
| | - Yuchen Jin
- Department of Hydraulic Engineering, College of Civil Engineering, Tongji University, Shanghai, China
| | - Wenjun Yin
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Larisa Dorzhievna Radnaeva
- Laboratory of Chemistry of Natural Systems, Baikal Institute of Nature Management of Siberian Branch of the Russian Academy of Sciences, Republic of Buryatia, Russia
| | - Elena Nikitina
- Laboratory of Chemistry of Natural Systems, Baikal Institute of Nature Management of Siberian Branch of the Russian Academy of Sciences, Republic of Buryatia, Russia
| | | | | | | |
Collapse
|
9
|
Zhang L, Chen H, Gao S, Song Y, Zhao Y, Tang W, Cui J. Antibiotic resistance genes and mobile genetic elements in different rivers: The link with antibiotics, microbial communities, and human activities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170788. [PMID: 38342453 DOI: 10.1016/j.scitotenv.2024.170788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
Rivers as a critical sink for antibiotic resistance genes (ARGs), and the distribution and spread of ARGs are related to environmental factors, human activities, and biotic factors (e.g. mobile genetic elements (MGEs)). However, the potential link among ARGs, microbial community, and MGEs in rivers under different antibiotic concentration and human activities remains unclear. In this study, 2 urban rivers (URs), 1 rural-urban river (RUR), and 2 rural rivers (RRs) were investigated to identify the spatial-temporal variation and driving force of ARGs. The total concentration of quinolones (QNs) was 160.1-2151 ng·g-1 in URs, 23.34-1188 ng·g-1 in RUR, and 16.39-85.98 ng·g-1 in RRs. Total population (TP), gross domestic production (GDP), sewage, industrial enterprise (IE), and IEGDP appeared significantly spatial difference in URs, RUR, and RRs. In terms of ARGs, 145-161 subtypes were detected in URs, 59-61 subtypes in RURs, and 46-79 subtypes in RRs. For MGEs, 55-60 MGEs subtypes were detected in URs, 29-30 subtypes in RUR, and 29-35 subtypes in RRs. Significantly positive correlation between MGEs and ARGs were found in these rivers. More ARGs subtypes were related to MGEs in URs than those in RUR and RRs. Overall, MGEs and QNs showed significantly direct positive impact on the abundance of ARGs in all rivers, while microbial community was significantly positive impact on the ARGs abundance in URs and RUR. The ARGs abundance in URs/RUR were directly positive influenced by microbial community/MGEs/socioeconomic elements (SEs)/QNs, while those in RRs were directly positive influenced by QNs/MGEs and indirectly positive impacted by SEs. Most QNs resistance risk showed significantly positive correlation with the abundance of ARGs types. Therefore, not only need to consider the concentration of antibiotics, but also should pay more attention to SEs and MGEs in antibiotics risk management and control.
Collapse
Affiliation(s)
- Lulu Zhang
- College of Environment Science and Engineering, Hebei University of Science and Technology, 050000 Shijiazhuang, Hebei Province, China.
| | - Haoda Chen
- College of Environment Science and Engineering, Hebei University of Science and Technology, 050000 Shijiazhuang, Hebei Province, China
| | - Sai Gao
- College of Environment Science and Engineering, Hebei University of Science and Technology, 050000 Shijiazhuang, Hebei Province, China
| | - Yuanmeng Song
- College of Environment Science and Engineering, Hebei University of Science and Technology, 050000 Shijiazhuang, Hebei Province, China
| | - Yu Zhao
- State Key Laboratory on Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wenzhong Tang
- State Key Laboratory on Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jiansheng Cui
- College of Environment Science and Engineering, Hebei University of Science and Technology, 050000 Shijiazhuang, Hebei Province, China
| |
Collapse
|
10
|
Xu W, Pan Z, Wu Y, An XL, Wang W, Adamovich B, Zhu YG, Su JQ, Huang Q. A database on the abundance of environmental antibiotic resistance genes. Sci Data 2024; 11:250. [PMID: 38413616 PMCID: PMC10899624 DOI: 10.1038/s41597-024-03084-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/20/2024] [Indexed: 02/29/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a severe threat to global health. The wide distribution of environmental antibiotic resistance genes (ARGs), which can be transferred between microbiota, especially clinical pathogens and human commensals, contributed significantly to AMR. However, few databases on the spatiotemporal distribution, abundance, and health risk of ARGs from multiple environments have been developed, especially on the absolute level. In this study, we compiled the ARG occurrence data generated by a high-throughput quantitative PCR platform from 1,403 samples in 653 sampling sites across 18 provinces in China. The database possessed 291,870 records from five types of habitats on the abundance of 290 ARGs, as well as 8,057 records on the abundance of 30 mobile genetic elements (MGEs) from 2013 to 2020. These ARGs conferred resistance to major common types of antibiotics (a total of 15 types) and represented five major resistance mechanisms, as well as four risk ranks. The database can provide information for studies on the dynamics of ARGs and is useful for the health risk assessment of AMR.
Collapse
Affiliation(s)
- Wenjuan Xu
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhizhen Pan
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Yangyu Wu
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Xin-Li An
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Weiyi Wang
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, China
| | - Boris Adamovich
- Research Laboratory of Aquatic Ecology, Belarusian State University, Minsk, 220030, Belarus
| | - Yong-Guan Zhu
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Jian-Qiang Su
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Qiansheng Huang
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
- National Basic Science Data Center, Beijing, 100190, China.
| |
Collapse
|
11
|
Zhou ZC, Shuai XY, Lin ZJ, Zheng J, Chen H. Comprehensive profiling and risk assessment of antibiotic resistance genes in a drinking water watershed by integrated analysis of air-water-soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119092. [PMID: 37742410 DOI: 10.1016/j.jenvman.2023.119092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/04/2023] [Accepted: 08/30/2023] [Indexed: 09/26/2023]
Abstract
The prevalence of antibiotic resistance genes (ARGs) in diverse habitats threatens public health. Watersheds represent critical freshwater ecosystems that interact with both the soil and atmosphere. However, a holistic understanding of ARGs distribution across these environmental media is currently inadequate. We profiled ARGs and bacterial communities in air-water-soil in the same watershed area during four seasons using high-throughput qPCR and 16S rRNA gene sequencing. Our findings demonstrated that aminoglycoside resistance genes (58.5%) were dominant in water, and multidrug resistance genes (55.2% and 54.2%) were dominant in soil and air. Five ARGs and nineteen bacterial genera were consistently detected in all samples, were named as shared genes or bacteria. Co-occurrence Network analysis revealed the co-occurrence module of resistance genes, mobile genetic elements (MGEs), and potential bacterial hosts, indicating that shared genes and bacteria may persist and co-spread across different environmental media. The risk assessment framework, based on ARGs' abundance, detection rate, and mobility, identified 33 high-risk ARGs. This is essential to evaluate the health risks of ARGs and to develop strategies to limit the threat of antibiotic resistance. Our study offers new insights into the risks associated with ARGs in the environment and suggests that ARGs may depend on specific bacterial cohabitants that co-exist with MGEs to facilitate their spread across environmental interfaces.
Collapse
Affiliation(s)
- Zhen-Chao Zhou
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xin-Yi Shuai
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ze-Jun Lin
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ji Zheng
- Ningbo Research Institute of Ecological and Environmental Sciences, Ningbo, 315012, China
| | - Hong Chen
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
12
|
Papaioannou C, Geladakis G, Kommata V, Batargias C, Lagoumintzis G. Insights in Pharmaceutical Pollution: The Prospective Role of eDNA Metabarcoding. TOXICS 2023; 11:903. [PMID: 37999555 PMCID: PMC10675236 DOI: 10.3390/toxics11110903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023]
Abstract
Environmental pollution is a growing threat to natural ecosystems and one of the world's most pressing concerns. The increasing worldwide use of pharmaceuticals has elevated their status as significant emerging contaminants. Pharmaceuticals enter aquatic environments through multiple pathways related to anthropogenic activity. Their high consumption, insufficient waste treatment, and the incapacity of organisms to completely metabolize them contribute to their accumulation in aquatic environments, posing a threat to all life forms. Various analytical methods have been used to quantify pharmaceuticals. Biotechnology advancements based on next-generation sequencing (NGS) techniques, like eDNA metabarcoding, have enabled the development of new methods for assessing and monitoring the ecotoxicological effects of pharmaceuticals. eDNA metabarcoding is a valuable biomonitoring tool for pharmaceutical pollution because it (a) provides an efficient method to assess and predict pollution status, (b) identifies pollution sources, (c) tracks changes in pharmaceutical pollution levels over time, (d) assesses the ecological impact of pharmaceutical pollution, (e) helps prioritize cleanup and mitigation efforts, and (f) offers insights into the diversity and composition of microbial and other bioindicator communities. This review highlights the issue of aquatic pharmaceutical pollution while emphasizing the importance of using modern NGS-based biomonitoring actions to assess its environmental effects more consistently and effectively.
Collapse
Affiliation(s)
- Charikleia Papaioannou
- Department of Biology, University of Patras, 26504 Patras, Greece; (C.P.); (G.G.); (V.K.)
| | - George Geladakis
- Department of Biology, University of Patras, 26504 Patras, Greece; (C.P.); (G.G.); (V.K.)
| | - Vasiliki Kommata
- Department of Biology, University of Patras, 26504 Patras, Greece; (C.P.); (G.G.); (V.K.)
| | - Costas Batargias
- Department of Biology, University of Patras, 26504 Patras, Greece; (C.P.); (G.G.); (V.K.)
| | | |
Collapse
|
13
|
Luo Y, Liu C, Wang Y, Yang Y, Mishra S. Occurrence, distribution and their correlation with different parameters of antibiotics and antibiotic resistance genes in lakes of China: A review. MARINE POLLUTION BULLETIN 2023; 193:115189. [PMID: 37354830 DOI: 10.1016/j.marpolbul.2023.115189] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/30/2023] [Accepted: 06/14/2023] [Indexed: 06/26/2023]
Abstract
The exposure of antibiotics and antibiotic resistance genes (ARGs) as potential threats to the environment has raised global concern. This study provides discussion on the emergence and distribution of antibiotics and ARGs in lakes. The correlation of critical water quality parameters with antibiotics and ARGs are evaluated along with their integrative potential ecological risk. Sulfonamides (∼67.18 ng/L) and quinolones (∼77.62 ng/L) were the dominant antibiotics distributed in the aqueous phase, while the quinolones and tetracyclines were the primary contamination factors in the sediment phase. The temporal and spatial distribution revealed that the antibiotic concentrations were significantly lower in summer than other seasons and the lakes in Hebei and Jiangsu provinces exhibited the highest antibiotic pollution. The detection frequency and relative abundance of sul1 gene have been the highest among all detected ARGs. Moreover, ARGs in lakes were driven by several factors, with bacterial communities and mobile genetic elements that prevailed the positive distribution of ARGs. Antibiotics have been identified as critical factors in inducing the propagation of ARGs, which could be further enhanced by chemical contaminants (e.g., heavy metals and nutrients). Involving the risk assessment strategies, research attention should be paid on three antibiotics (ofloxacin, sulfamethoxazole and erythromycin) to strengthen the policy and management of Baiyangdian Lake and East Dongting Lake. This review analysis will provide in-depth understanding to the researchers and policy-makers in formulation of strategies for remediation of antibiotic contamination in the lakes.
Collapse
Affiliation(s)
- Yuye Luo
- College of Environment, Hohai University, Nanjing 210098, China.
| | - Cheng Liu
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Yue Wang
- College of Environment, Hohai University, Nanjing 210098, China
| | - Yuchun Yang
- College of Environment, Hohai University, Nanjing 210098, China
| | - Saurabh Mishra
- College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, China
| |
Collapse
|
14
|
Kaiser RA, Polk JS, Datta T, Keely SP, Brinkman NE, Parekh RR, Agga GE. Occurrence and prevalence of antimicrobial resistance in urban karst groundwater systems based on targeted resistome analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162571. [PMID: 36871706 PMCID: PMC10449245 DOI: 10.1016/j.scitotenv.2023.162571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/08/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Antimicrobial resistance (AMR) is a global crisis threatening human, animal, and environmental health. The natural environment, specifically water resources, has been recognized as a reservoir and dissemination pathway for AMR; however, urban karst aquifer systems have been overlooked. This is a concern as these aquifer systems provide drinking water to about 10 % of the global population; yet, the urban influence on the resistome in these vulnerable aquifers is sparingly explored. This study used high-throughput qPCR to determine the occurrence and relative abundance of antimicrobial resistant genes (ARG) in a developing urban karst groundwater system in Bowling Green, KY. Ten sites throughout the city were sampled weekly and analyzed for 85 ARGs, as well as seven microbial source tracking (MST) genes for human and animal sources, providing a spatiotemporal understanding of the resistome in urban karst groundwater. To further understand ARGs in this environment, potential drivers (landuse, karst feature type, season, source of fecal pollution) were considered in relation to the resistome relative abundance. The MST markers highlighted a prominent human influence to the resistome in this karst setting. The concentration of targeted genes varied between the sample weeks, but all targeted ARGs were prevalent throughout the aquifer regardless of karst feature type or season, with high concentrations captured for sulfonamide (sul1), quaternary ammonium compound (qacE), and aminoglycoside (strB) antimicrobial classes. Higher prevalence and relative abundance were detected during the summer and fall seasons, as well as at the spring features. Linear discriminant analysis suggested that karst feature type had higher influence on ARGs in the aquifer compared to season and the source of fecal pollution had the least influence. These findings can contribute to the development of effective management and mitigation strategies for AMR.
Collapse
Affiliation(s)
- Rachel A Kaiser
- School of Environmental Studies, College of Interdisciplinary Studies, Tennessee Technological University, 1 William L Jones Drive, Cookeville, TN 38505, United States.
| | - Jason S Polk
- Earth, Environmental, and Atmospheric Sciences Department, Ogden College of Science and Engineering, 1906 College Heights Blvd., Bowling Green, KY 42101, United States
| | - Tania Datta
- Department of Civil and Environmental Engineering, College of Engineering, Tennessee Technological University, 1 William L Jones Drive, Cookeville, TN 38505, United States
| | - Scott P Keely
- United States Environmental Protection Agency, 26 Martin Luther King Drive West, Cincinnati, OH 45220, United States
| | - Nichole E Brinkman
- United States Environmental Protection Agency, 26 Martin Luther King Drive West, Cincinnati, OH 45220, United States
| | - Rohan R Parekh
- Food Animal Environmental Systems Research Unit, Agricultural Research Service, United States Department of Agriculture, 2413 Nashville Road B5, Bowling Green, KY 42101, United States
| | - Getahun E Agga
- Food Animal Environmental Systems Research Unit, Agricultural Research Service, United States Department of Agriculture, 2413 Nashville Road B5, Bowling Green, KY 42101, United States
| |
Collapse
|
15
|
Liu S, Xu Q, Lou S, Tu J, Yin W, Li X, Jin Y, Radnaeva LD, Nikitina E, Makhinov AN, Araruna JT, Fedorova IV. Spatiotemporal distributions of sulfonamide and tetracycline resistance genes and microbial communities in the coastal areas of the Yangtze River Estuary. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115025. [PMID: 37216861 DOI: 10.1016/j.ecoenv.2023.115025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/24/2023]
Abstract
In this paper, water and sediments were sampled at eight monitoring stations in the coastal areas of the Yangtze River Estuary in summer and autumn 2021. Two sulfonamide resistance genes (sul1 and sul2), six tetracycline resistance genes (tetM, tetC, tetX, tetA, tetO, and tetQ), one integrase gene (intI1), 16 S rRNA genes, and microbial communities were examined and analyzed. Most resistance genes showed relatively higher abundance in summer and lower abundance in autumn. One-way analysis of variance (ANOVA) showed significant seasonal variation of some ARGs (7 ARGs in water and 6 ARGs in sediment). River runoff and WWTPs are proven to be the major sources of resistance genes along the Yangtze River Estuary. Significant and positive correlations between intI1 and other ARGs were found in water samples (P < 0.05), implying that intI1 may influence the spread and propagation of resistance genes in aquatic environments. Proteobacteria was the dominant phylum along the Yangtze River Estuary, with an average proportion of 41.7%. Redundancy analysis indicated that the ARGs were greatly affected by temperature, dissolved oxygen, and pH in estuarine environments. Network analysis showed that Proteobacteria and Cyanobacteria were the potential host phyla for ARGs in the coastal areas of the Yangtze River Estuary.
Collapse
Affiliation(s)
- Shuguang Liu
- Department of Hydraulic Engineering, College of Civil Engineering, Tongji University, Shanghai, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, China
| | - Qiuhong Xu
- Department of Hydraulic Engineering, College of Civil Engineering, Tongji University, Shanghai, China
| | - Sha Lou
- Department of Hydraulic Engineering, College of Civil Engineering, Tongji University, Shanghai, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, China.
| | - Junbiao Tu
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, China
| | - Wenjun Yin
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Xin Li
- Department of Hydraulic Engineering, College of Civil Engineering, Tongji University, Shanghai, China
| | - Yuchen Jin
- Department of Hydraulic Engineering, College of Civil Engineering, Tongji University, Shanghai, China
| | - Larisa Dorzhievna Radnaeva
- Laboratory of Chemistry of Natural Systems, Baikal Institute of Nature Management of Siberian Branch of the Russian Academy of Sciences, Republic of Buryatia, Russian Republic, Russia
| | - Elena Nikitina
- Laboratory of Chemistry of Natural Systems, Baikal Institute of Nature Management of Siberian Branch of the Russian Academy of Sciences, Republic of Buryatia, Russian Republic, Russia
| | | | | | - Irina Viktorovna Fedorova
- Institute of Earth Sciences, Saint Petersburg State University, 7-9 Universitetskaya Embankment, St Petersburg, Russia
| |
Collapse
|
16
|
Sun L, Tang D, Tai X, Wang J, Long M, Xian T, Jia H, Wu R, Ma Y, Jiang Y. Effect of composted pig manure, biochar, and their combination on antibiotic resistome dissipation in swine wastewater-treated soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121323. [PMID: 36822312 DOI: 10.1016/j.envpol.2023.121323] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/13/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
The prevalence of antibiotic resistance genes (ARGs), owing to irrigation using untreated swine wastewater, in vegetable-cultivated soils around swine farms poses severe threats to human health. Furthermore, at the field scale, the remediation of such soils is still challenging. Therefore, here, we performed field-scale experiments involving the cultivation of Brassica pekinensis in a swine wastewater-treated soil amended with composted pig manure, biochar, or their combination. Specifically, the ARG and mobile genetic element (MGE) profiles of bulk soil (BS), rhizosphere soil (RS), and root endophyte (RE) samples were examined using high-throughput quantitative polymerase chain reaction. In total, 117 ARGs and 22 MGEs were detected. Moreover, we observed that soil amendment using composted pig manure, biochar, or their combination decreased the absolute abundance of ARGs in BS and RE after 90 days of treatment. However, the decrease in the abundance of ARGs in RS was not significant. We also observed that the manure and biochar co-application showed a minimal synergistic effect. To clarify this observation, we performed network and Spearman correlation analyses and used structure equation models to explore the correlations among ARGs, MGEs, bacterial composition, and soil properties. The results revealed that the soil amendments reduced the abundances of MGEs and potential ARG-carrying bacteria. Additionally, weakened horizontal gene transfer was responsible for the dissipation of ARGs. Thus, our results indicate that composted manure application, with or without biochar, is a useful strategy for soil nutrient supplementation and alleviating farmland ARG pollution, providing a justification for using an alternative to the common agricultural practice of treating the soil using only untreated swine wastewater. Additionally, our results are important in the context of soil health for sustainable agriculture.
Collapse
Affiliation(s)
- Likun Sun
- College of Animal Science, Gansu Agricultural University, Lanzhou, 730070, China; Gansu Provincial Engineering Research Center for Animal Waste Utilization, Gansu Agricultural University, Lanzhou, 730070, China
| | - Defu Tang
- College of Animal Science, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Xisheng Tai
- College of Urban Environment, Lanzhou City University, China
| | - Jiali Wang
- College of Animal Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Min Long
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Tingting Xian
- College of Animal Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Haofan Jia
- College of Animal Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Renfei Wu
- College of Animal Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yongqi Ma
- College of Animal Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yunpeng Jiang
- College of Animal Science, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
17
|
Wang Y, Li H, Li Y, Guo H, Zhou J, Wang T. Metagenomic analysis revealed sources, transmission, and health risk of antibiotic resistance genes in confluence of Fenhe, Weihe, and Yellow Rivers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159913. [PMID: 36343807 DOI: 10.1016/j.scitotenv.2022.159913] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/18/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Rivers are important vectors and reservoirs of antibiotics resistance genes (ARGs). Information regarding transmission and health risk of ARGs in river confluence is still lacking. In this study, metagenomics was used to distinguish contributions of human activities on ARGs and human pathogenic bacteria (HPB) in confluence of Fenhe, Weihe, and Yellow Rivers. Bacitracin resistance gene and bacA were the highest in all rivers, with 1.86 × 10-2-7.26 × 10-2 and 1.79 × 10-2-9.12 × 10-2 copies/16S rRNA copies, respectively. River confluence significantly increased the abundance of ARGs, especially at the confluence of three rivers with the highest 1.53 × 10-1 copies/16S rRNA copies. Antibiotic efflux and antibiotic target alteration were the dominant resistant mechanisms in three rivers. ARGs profiles were influenced by multiple factors, with the contributions of various factors ranked as microbial communities > physicochemical factors > human activities > mobile genetic elements (MGEs). Notably, human activities and animal feces were important potential contributors of ARGs in the Weihe River and Yellow River. Transposons, as the main MGEs in three rivers, played important roles in ARGs transfer. The confluence of three rivers had the highest abundance of MGEs with the greatest transfer potentials, and therefore exhibiting the largest exposure risk of ARGs with 232.4 copies/cap·d. Furthermore, correlations of ARGs, MGEs, and HPB in different rivers were constructed via co-occurrence modes to systematically illustrate the health risks of ARGs. This study firstly unveiled the transmission and health risk of ARGs in river confluence, providing supports for ARGs control in watershed.
Collapse
Affiliation(s)
- Yangyang Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Hu Li
- Breeding Base for State Key Lab. of Land Degradation and Ecological Restoration in northwestern, China; Key Lab. of Restoration and Reconstruction of Degraded Ecosystems in northwestern China of Ministry of Education, China; School of Ecology and Environment, Ningxia University, Yinchuan 750021, China
| | - Yingwei Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - He Guo
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
18
|
Zhang M, Wang Y, Bai M, Jiang H, Cui R, Lin K, Tan C, Gao C, Zhang C. Metagenomics analysis of antibiotic resistance genes, the bacterial community and virulence factor genes of fouled filters and effluents from household water purifiers in drinking water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158572. [PMID: 36075417 DOI: 10.1016/j.scitotenv.2022.158572] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
The aim of this study was to explore the influence and removal of household water purifiers (HWPs) on emerging contaminants in drinking water, and their distribution characteristics. The antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), virulence factor genes (VFGs) and bacterial communities were profiled in the fouled filters, influents, and effluents from HWPs with five steps of filtration after 150 days operation, using metagenomics. The results showed that the diversity of dominant species in Poly Propylene 1 μm (PP1) and nanofiltration membrane (NM) was significantly higher than that in other filters. Post-activated carbon (AC) was used to detect low species richness or diversity, and the highest proportion of dominant species, which contributes to the greater microbial risk of HWPs effluents in drinking water. The number of dominant bacterial genera in the filters disinfected with chloramine was higher than that in the same group disinfected with chlorine. The bacterial species richness or diversity in water was reduced by the purification of HWPs because the filter elements effectively trapped a variety of microorganisms. The relative abundance of Antibiotic efflux in the effluents of chlorinated and chloraminated HWPs was 5.58 × 10-3 and 4.60 × 10-3, respectively, which was the main resistance mechanism. High abundance of VFGs was found in HWPs effluents and the relative abundance of aggressive VFGs was significantly higher than those of defensive VFGs. Based on the co-occurrence results, 243 subtypes of ARGs co-occurred with VFGs, and a variety of bacteria were thought to be possible ARGs hosts, which indicated that the host bacteria of VFGs in HWP effluents had a stronger attack ability. The effluent of HWPs with only filtration processes is exposed to the risk of ARGs and VFGs. This study helps to understand the actual purification effect of HWPs and provides a theoretical reference for the management and control of ARGs pollution in domestic drinking water.
Collapse
Affiliation(s)
- Minglu Zhang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Yue Wang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Miao Bai
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Center for Disease Control and Prevention of Chinese PLA, Beijing 100071, China
| | - Hairong Jiang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Ruoqi Cui
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Kaizong Lin
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Chaohong Tan
- School of Environmental and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 102616, China
| | - Cuiling Gao
- Shandong Institute of Product Quality Inspection, Testing Technology Lab of Material Safety, Jinan 250102, China
| | - Can Zhang
- Center for Disease Control and Prevention of Chinese PLA, Beijing 100071, China.
| |
Collapse
|
19
|
Zhang L, Ju Z, Su Z, Fu Y, Zhao B, Song Y, Wen D, Zhao Y, Cui J. The antibiotic resistance and risk heterogeneity between urban and rural rivers in a pharmaceutical industry dominated city in China: The importance of social-economic factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158530. [PMID: 36063953 DOI: 10.1016/j.scitotenv.2022.158530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Rivers are important environmental sources of human exposure to antibiotic resistance. Many factors can change antibiotic resistance in rivers, including bacterial communities, human activities, and environmental factors. However, the systematic comparison of the differences in antibiotics resistance and risks between urban rivers (URs) and rural rivers (RRs) in a pharmaceutical industry dominated city is still rare. In this study, Shijiazhuang City (China) was selected as an example to compare the differences in antibiotics resistance and risks between URs and RRs. The results showed higher concentrations of total quinolones (QNs) antibiotics in both water and sediment samples collected from URs than those from RRs. The subtypes and abundances of antibiotic resistance genes (ARGs) in URs were significantly higher than those in RRs, and most emerging ARGs (including OXA-type, GES-type, MCR-type, and tet(X)) were only detected in URs. The ARGs were mainly influenced by QNs in URs and social-economic factors (SEs) in RRs. The composition of the bacterial community was significantly different between URs and RRs. The abundance of antibiotic-resistant pathogenic bacteria (ARPBs) and virulence factors (VFs) were higher in URs than those in RRs. Therein, 371 and 326 pathogen types were detected in URs and RRs, respectively. Most emerging ARGs showed a significantly positive correlation with priority ARPBs. Variance partitioning analysis revealed that SEs were the main driving factors of ARGs (80 %) and microbial communities (92 %) both in URs and RRs. Structural equation models indicated that antibiotics (QNs) and microbial communities were the most direct influence of ARGs in URs and RRs, respectively. The cumulative resistance risk of QNs was high in URs, but relatively low in RRs. Enrofloxacin and flumequine posed the highest risk in water and sediment, respectively. This study could help us to better manage and control the risk of antibiotic resistance in different rivers.
Collapse
Affiliation(s)
- Lulu Zhang
- College of Environment Science and Engineering, Hebei University of Science and Technology, 050000 Shijiazhuang, Hebei Province, China; College of Environmental Science and Engineering, Peking University, 100871 Beijing, China.
| | - Zejia Ju
- College of Environment Science and Engineering, Hebei University of Science and Technology, 050000 Shijiazhuang, Hebei Province, China
| | - Zhiguo Su
- College of Environmental Science and Engineering, Peking University, 100871 Beijing, China
| | - Yu Fu
- College of Environment Science and Engineering, Hebei University of Science and Technology, 050000 Shijiazhuang, Hebei Province, China
| | - Bo Zhao
- College of Environment Science and Engineering, Hebei University of Science and Technology, 050000 Shijiazhuang, Hebei Province, China
| | - Yuanmeng Song
- College of Environment Science and Engineering, Hebei University of Science and Technology, 050000 Shijiazhuang, Hebei Province, China
| | - Donghui Wen
- College of Environmental Science and Engineering, Peking University, 100871 Beijing, China
| | - Yu Zhao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China
| | - Jiansheng Cui
- College of Environment Science and Engineering, Hebei University of Science and Technology, 050000 Shijiazhuang, Hebei Province, China
| |
Collapse
|
20
|
Zhou Z, Shuai X, Lin Z, Meng L, Ba X, Holmes MA, Chen H. Short-term inhalation exposure evaluations of airborne antibiotic resistance genes in environments. J Environ Sci (China) 2022; 122:62-71. [PMID: 35717091 DOI: 10.1016/j.jes.2021.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/06/2021] [Accepted: 10/06/2021] [Indexed: 06/15/2023]
Abstract
Antibiotic resistance is a sword of Damocles that hangs over humans. In regards to airborne antibiotic resistance genes (AARGs), critical knowledge gaps still exist in the identification of hotspots and quantification of exposure levels in different environments. Here, we have studied the profiles of AARGs, mobile genetic elements (MGEs) and bacterial communities in various atmospheric environments by high throughput qPCR and 16S rRNA gene sequencing. We propose a new AARGs exposure dose calculation that uses short-term inhalation (STI). Swine farms and hospitals were high-risk areas where AARGs standardised abundance was more abundant than suburbs and urban areas. Additionally, resistance gene abundance in swine farm worker sputum was higher than that in healthy individuals in other environments. The correlation between AARGs with MGEs and bacteria was strong in suburbs but weak in livestock farms and hospitals. STI exposure analysis revealed that occupational intake of AARGs (via PM10) in swine farms and hospitals were 110 and 29 times higher than in suburbs, were 1.5 × 104, 5.6 × 104 and 5.1 × 102 copies, i.e., 61.9%, 75.1% and 10.7% of the overall daily inhalation intake, respectively. Our study comprehensively compares environmental differences in AARGs to identify high-risk areas, and forwardly proposes the STI exposure dose of AARGs to guide risk assessment.
Collapse
Affiliation(s)
- Zhenchao Zhou
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 9DA , UK
| | - Xinyi Shuai
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zejun Lin
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lingxuan Meng
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoliang Ba
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 9DA , UK
| | - Mark A Holmes
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 9DA , UK
| | - Hong Chen
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
21
|
Huang Y, Wang F, Li Y, Yue C, Zhang Y, Zhou P, Mu J. Influence of anthropogenic disturbances on antibiotic resistance gene distributions along the Minjiang River in Southeast China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 323:116154. [PMID: 36095989 DOI: 10.1016/j.jenvman.2022.116154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/03/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
River-reservoir systems have become ubiquitous among modern global aquatic environments due to the widespread construction of dams. However, little is known of antibiotic resistance gene (ARG) distributions in reservoir-river systems experiencing varying degrees of anthropogenic impacts. Here, the diversity, abundance, and spatial distribution of ARGs were comprehensively characterized along the main stem of the Minjiang River, a typical subtropic reservoir-river system in Southeast China using high-throughput quantitative PCR. A total of 252 ARG subtypes were detected from twelve sampling sites that were dominated by aac(3)-Via, followed by czcA, blaTEM, and sul1. Urban river waters (sites S9-S12) harbored more diverse ARGs than did the reservoir waters (sites S1-S7), indicating more serious antibiotic resistance pollution in areas with larger population densities. Dam construction could reduce the richness and absolute abundance of ARGs from upstream (site S7) to downstream (site S8). Urban river waters also harbored a higher proportion of mobile genetic elements (MGEs), suggesting that intensive human activities may promote ARG horizontal gene transfers. The mean relative abundance of Proteobacteria that could promote antibiotic resistance within microbial communities was also highest in urban river waters. Variance partitioning analysis indicated that MGEs and bacterial communities could explain 67.33%, 44.7%, and 90.29% of variation in selected ARGs for the entire watershed, aquaculture waters, and urban river waters, respectively. These results further suggest that urban rivers are ideal media for the acquisition and spread of ARGs. These findings provide new insights into the occurrence and potential mechanisms determining the distributions of ARGs in a reservoir-river system experiencing various anthropogenic disturbances at the watershed scale.
Collapse
Affiliation(s)
- Yaling Huang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Feipeng Wang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Yue Li
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China; College Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chen Yue
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China; College Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuting Zhang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Pei Zhou
- Xiamen Urban Planning & Design Institute Co, LTD, Xiamen, 361012, China
| | - Jingli Mu
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China.
| |
Collapse
|
22
|
Huang H. Captivity and geography influence the antibiotic resistome of non-human primates. Front Vet Sci 2022; 9:1020276. [PMID: 36467639 PMCID: PMC9716204 DOI: 10.3389/fvets.2022.1020276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/02/2022] [Indexed: 05/24/2024] Open
Abstract
INTRODUCTION Antibiotic resistance poses a serious threat for animals and humans health worldwide. Yet a comprehensive exploration of the influence of captivity and geography on non-human primate (NPH) gut antibiotic resistance remains incomplete. METHODS In this study, 131 metagenomic sequencing datasets of five species of NHPs included different regions and lifestyles were selected to perform the antibiotic resistance analysis. RESULTS Nineteen related resistance antibiotics and 325 antibiotic resistance genes (ARGs) were obtained. A significantly higher abundance and diversity index of ARGs in the captive NHPs than in the wild was found but not for all of the samples. The biomarker-tracking of ARGs analysis identified key ARGs related to aminoglycoside resistance genes and tetracycline resistance genes. DISCUSSION These results suggest that captivity and geography changes associated with human activities can lead to marked changes in the ecology of the NHP gut flora ARGs.
Collapse
Affiliation(s)
- Hongli Huang
- Clinical Biological Specimen Bank, Discipline Construction Office, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Life Sciences Institute, Guangxi Medical University, Nanning, China
| |
Collapse
|
23
|
Wu T, Zhang Y, Wang B, Chen C, Cheng Z, Li Y, Wang B, Li J. Antibiotic resistance genes in Chishui River, a tributary of the Yangtze River, China: Occurrence, seasonal variation and its relationships with antibiotics, heavy metals and microbial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157472. [PMID: 35870598 DOI: 10.1016/j.scitotenv.2022.157472] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/14/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
The large-scale use and release of antibiotics may create selective pressure on antibiotic resistance genes (ARGs), causing potential harm to human health. River ecosystems have long been considered repositories of antibiotics and ARGs. Therefore, the distribution characteristics and seasonal variation in antibiotics and ARGs in the surface water of the main stream and tributaries of the Chishui River were studied. The concentrations of antibiotics in the dry season and rainy season were 54.18-425.74 ng/L and 66.57-256.40 ng/L, respectively, gradually decreasing along the river direction. The results of antibiotics in the dry season and rainy season showed that livestock and poultry breeding were the main sources in the surface water of the Chishui River basin. Risk assessments indicated high risk levels of OFL in both seasons. In addition, analysis of ARGs and microbial community diversity showed that sul1 and sul3 were the main ARGs in the two seasons. The highest abundance of ARGs was 7.70 × 107 copies/L, and intl1 was significantly positively correlated with all resistance genes (p< 0.01), indicating that it can significantly promote the transmission of ARGs. Proteobacteria were the dominant microorganisms in surface water, with a higher average abundance in the dry season (60.64 %) than in the rainy season (39.53 %). Finally, correlation analyses were performed between ARGs and antibiotics, microbial communities and heavy metals. The results showed that there was a significant positive correlation between ARGs and most microorganisms and heavy metals (p< 0.01), indicating that occurrence and transmission in the environment are influenced by various environmental factors and cross-selection. In conclusion, the persistent residue and transmission of ARGs and their transfer to pathogens are a great threat to human health and deserve further study and attention.
Collapse
Affiliation(s)
- Tianyu Wu
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Yuntao Zhang
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Bin Wang
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, China
| | - Chao Chen
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Zhentao Cheng
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Yancheng Li
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, China
| | - Bin Wang
- College of Civil Engineering, Guizhou University, Guiyang 550025, China
| | - Jiang Li
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, China.
| |
Collapse
|
24
|
Xiong S, Wang K, Yan H, Hou D, Wang Y, Li M, Zhang D. Geographic patterns and determinants of antibiotic resistomes in coastal sediments across complex ecological gradients. Front Microbiol 2022; 13:922580. [PMID: 36406438 PMCID: PMC9669582 DOI: 10.3389/fmicb.2022.922580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/29/2022] [Indexed: 09/17/2023] Open
Abstract
Coastal areas are highly influenced by terrestrial runoffs and anthropogenic disturbances, commonly leading to ecological gradients from bay, nearshore, to offshore areas. Although the occurrence and distribution of sediment antibiotic resistome are explored in various coastal environments, little information is available regarding geographic patterns and determinants of coastal sediment antibiotic resistomes across ecological gradients at the regional scale. Here, using high-throughput quantitative PCR, we investigated the geographic patterns of 285 antibiotic resistance genes (ARGs) in coastal sediments across a ~ 200 km scale in the East China Sea. Sediment bacterial communities and physicochemical properties were characterized to identify the determinants of sediments antibiotic resistome. Higher richness and abundance of ARGs were detected in the bay samples compared with those in nearshore and offshore samples, and significant negative correlations between the richness and/or abundance of ARGs and the distance to coastline (DTC) were identified, whereas different types of ARGs showed inconsistency in their relationships with DTC. The composition of antibiotic resistome showed significant correlations with nutrition-related variables (including NH4 +-N, NO3 --N, and total phosphorus) and metals/metalloid (including As, Cu, Ni, and Zn), suggesting that terrestrial disturbances largely shape the antibiotic resistome. The Bipartite network showed strong associations between ARGs and mobile genetic elements (MGEs), and Partial Least Squares Path Modeling further revealed that terrestrial disturbance strength (as indicated by DTC) directly affected abiotic environmental conditions and bacterial community composition, and indirectly affected antibiotic resistome via MGEs. These findings provide insights into regional variability of sediment antibiotic resistome and its shaping path across complex ecological gradients, highlighting terrestrial disturbances as determinative forces in shaping coastal sediment antibiotic resistomes.
Collapse
Affiliation(s)
- Shangling Xiong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, China
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Kai Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo, China
| | - Huizhen Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Dandi Hou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Yanting Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Meng Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Demin Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo, China
| |
Collapse
|
25
|
Hu J, Chen Q, Zhong S, Liu Y, Gao Q, Graham EB, Chen H, Sun W. Insight into co-hosts of nitrate reduction genes and antibiotic resistance genes in an urban river of the qinghai-tibet plateau. WATER RESEARCH 2022; 225:119189. [PMID: 36215840 DOI: 10.1016/j.watres.2022.119189] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Microbial co-hosts of nitrate reduction genes (NRGs) and antibiotic resistance genes (ARGs) have been recently reported, but their ecology and biochemical role in urban waterways remain largely unknown. Here, we collected 29 surface water and 29 sediment samples in the Huangshui River on the Qinghai-Tibet Plateau during the wet and dry season, and 11 water samples from wastewater treatment plants and wetlands along the river. Using metagenomic sequencing, we retrieved 278 medium-to-high-quality metagenome-assembled genomes (MAGs) of NRG-ARG co-hosts, mainly belonging to the phyla Proteobacteria, Actinobacteriota, and Bacteroidota. Of microorganisms carrying ARGs, a high proportion (75.3%‒94.9%) also encoded NRGs, supporting nitrate reducing bacteria as dominant hosts of ARGs. Seasonal changes in antibiotic levels corresponded to significant variation in the relative abundance of NRG-ARG co-host in both water and sediments, resulting in a concomitant change in antibiotic resistance pathways. In contrast, the contribution of NRG-ARG co-hosts to nitrate reduction was stable between seasons. We identify specific antibiotics (e.g., sulphonamides) and microbial taxa (e.g., Acinetobacter and Hafnia) that may disproportionately impact these relationships to serve as a basis for laboratory investigations into bioremediation strategies. Our study suggests that highly abundant nitrate reducing microorganisms in contaminated environments may also directly impact human health as carriers of antibiotic resistance.
Collapse
Affiliation(s)
- Jinyun Hu
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Qian Chen
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China.
| | - Sining Zhong
- Fujian Agriculture and Forestry University, College of Resources and Environment, Fuzhou 350002, PR.China
| | - Yaping Liu
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Qiang Gao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, PR.China
| | - Emily B Graham
- Pacific Northwest National Laboratory, Richland, WA 99354, United States; Washington State University, Richland, WA 99354, United States
| | - Huan Chen
- Department of Environmental Engineering and Earth Sciences, Clemson University, South Carolina 29634, United States.
| | - Weiling Sun
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| |
Collapse
|
26
|
Fernanda PA, Liu S, Yuan T, Ramalingam B, Lu J, Sekar R. Diversity and abundance of antibiotic resistance genes and their relationship with nutrients and land use of the inflow rivers of Taihu Lake. Front Microbiol 2022; 13:1009297. [PMID: 36267172 PMCID: PMC9577174 DOI: 10.3389/fmicb.2022.1009297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/08/2022] [Indexed: 11/23/2022] Open
Abstract
Taihu Lake is the third largest freshwater lake in China and an important source for drinking water, flood protection, aquaculture, agriculture, and other activities. This lake is connected to many principal and small rivers with inflow from west and outflow on the eastern side of the lake and these inflow rivers are believed to significantly contribute to the water pollution of the lake. This study was aimed at assessing the diversity and abundance of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs), and their relationship with water quality parameters and land use patterns. Water samples were collected from 10 major inflow rivers and the source water protection area of the Taihu Lake in spring and summer 2019. High-throughput profiling was used to detect and quantify 384 ARGs and MGEs and in addition, 11 water quality parameters were analyzed. The results showed that the number of ARGs/MGEs detected in each inflow river ranged from 105 to 185 in spring and 107 to 180 in summer. The aminoglycoside resistance genes were the most dominant types ARGs detected followed by beta-lactam resistance, multidrug resistance, macrolide-lincosamide-streptogramin B (MLSB) resistance genes, which contributed to 65% of the ARGs. The water quality parameters showed significant correlation with absolute abundance of ARGs. Furthermore, significant correlation between ARGs and MGEs were also observed which demonstrates potential gene transfer among organisms through horizontal gene transfer via MGEs. ARGs showed strong positive correlation with cultivated and industrial lands whereas, negative correlation was observed with river, lake, forest, land for green buffer, and land for port and harbor. The overall results indicate that the inflow rivers of Taihu Lake are polluted by various sources including multiple nutrients and high abundance of ARGs, which needs attention for better management of the inflow rivers of this lake.
Collapse
Affiliation(s)
| | - Shuang Liu
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, China
| | - Tianma Yuan
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, China
| | | | - Jing Lu
- Marie Skłodowska-Curie Actions, SDGine for Healthy People and Cities, Department of Forestry and Environmental Management, Technical University of Madrid (UPM), Madrid, Spain
| | - Raju Sekar
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, China
- *Correspondence: Raju Sekar,
| |
Collapse
|
27
|
Reddy S, Kaur K, Barathe P, Shriram V, Govarthanan M, Kumar V. Antimicrobial resistance in urban river ecosystems. Microbiol Res 2022; 263:127135. [DOI: 10.1016/j.micres.2022.127135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/24/2022] [Accepted: 07/13/2022] [Indexed: 12/07/2022]
|
28
|
Lassen SB, Ahsan ME, Islam SR, Zhou XY, Razzak MA, Su JQ, Brandt KK. Prevalence of antibiotic resistance genes in Pangasianodon hypophthalmus and Oreochromis niloticus aquaculture production systems in Bangladesh. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:151915. [PMID: 34826462 DOI: 10.1016/j.scitotenv.2021.151915] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
Antibiotic resistance genes (ARGs) constitute emerging pollutants of significant public health concern. Antibiotics applied in aquaculture may stimulate the proliferation and dissemination of ARGs. This study investigated the prevalence and diversity of ARGs in Pangasianodon hypophthalmus (formerly Pangasius) and Oreochromis niloticus (formerly Tilapia) commercial aquaculture ponds from four economically important divisions (i.e. regions) of Bangladesh using a high-throughput qPCR ARG SmartChip and further aimed to explore effects of aquaculture pond management and water quality on the observed ARG prevalence patterns. A total of 160 ARGs and 10 mobile genetic elements (MGEs) were detected across all samples (n = 33), of which 76 ARGs and MGEs were shared between all regions. Multidrug resistance genes were the most frequently encountered ARGs, followed by ARGs conferring resistance to β-lactams, aminoglycosides, tetracyclines, and macrolide-lincosamide-streptogramin B (MLSB). Research ponds managed by the Bangladesh Agricultural University had the lowest abundance and diversity of ARGs, suggesting that proper management such as regular water quality monitoring, fortnightly water exchange and use of probiotics instead of antibiotics may mitigate the dissemination of antibiotic resistance from aquaculture ponds. The Adonis test (R2 = 0.35, p < 0.001) and distance decay relationships revealed that the ARGs composition displayed a significant biogeographical pattern (i.e., separation based on geographic origin). However, this effect could possibly be due to feed type as different feed types were used in different regions. In conclusion, our results indicate that there is a vast potential for improving aquaculture pond management practices in Bangladesh to mitigate the environmental dissemination of ARGs and their subsequent transmission to humans.
Collapse
Affiliation(s)
- Simon Bo Lassen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; Sino-Danish Center for Education and Research (SDC), University of Chinese Academy of Sciences, 380 Huaibeizhuang, Beijing, China
| | - Md Emranul Ahsan
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark; Department of Aquaculture, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh; Department of Fisheries Management, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Salna, Gazipur 1706, Bangladesh
| | - Seikh Razibul Islam
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark; Department of Aquaculture, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Xin-Yuan Zhou
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Muhammad Abdur Razzak
- Department of Aquaculture, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Kristian Koefoed Brandt
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark; Sino-Danish Center for Education and Research (SDC), University of Chinese Academy of Sciences, 380 Huaibeizhuang, Beijing, China.
| |
Collapse
|
29
|
Wang L, Chai B. Fate of Antibiotic Resistance Genes and Changes in Bacterial Community With Increasing Breeding Scale of Layer Manure. Front Microbiol 2022; 13:857046. [PMID: 35356511 PMCID: PMC8959713 DOI: 10.3389/fmicb.2022.857046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/22/2022] [Indexed: 11/24/2022] Open
Abstract
The use of antimicrobials in intensive poultry production is becoming increasingly common because of its high throughput of meat and egg products. However, the profile of antibiotic resistance genes (ARGs) and the underlying mechanisms in different breeding scale farms were not fully explored. The study examined the profiles of ARGs in layer manure from three free-range and 12 intensive layer farms with different scales (N500, N5000, N10000, and N20000). A quantitative PCR (qPCR) array was used to quantify ARGs, and microbial community structure was analyzed by 16S rRNA gene sequencing. A total of 48 ARGs, belonging to seven major types, were identified in the layer manure samples, with sul2, tetM-01, and ermB being the predominant ones. The abundance, diversity, and mobility potential of ARGs in layer manure changed significantly with the increasing of the breeding scale. The abundances of total ARGs had significantly positive correlations with mobile genetic elements (MGEs), suggesting the mobility potential of ARGs in layer manure samples. Bacterial abundance did not show significant differences among the five group manure samples. However, bacterial diversity showed an increasing trend along the breeding scale. Pathogenic Bacteroidetes increased in the largest-scale layer manure samples and showed significant positive correlations with most ARGs. Network analysis revealed significant co-occurrence patterns between ARGs and microbial taxa, indicating ARGs had a wide range of bacterial hosts. Proteobacteria and Firmicutes were potential hosts for tetracycline and macrolide-lincosamide-streptogramin B (MLSB) resistant genes. Our results indicated that the expansion of the breeding scale of a farm promotes the abundance, diversity, and mobility potential of ARGs in layer manure.
Collapse
|
30
|
Han M, Zhang L, Zhang N, Mao Y, Peng Z, Huang B, Zhang Y, Wang Z. Antibiotic resistome in a large urban-lake drinking water source in middle China: Dissemination mechanisms and risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127745. [PMID: 34799156 DOI: 10.1016/j.jhazmat.2021.127745] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/29/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
The increasing pollution of urban drinking water sources by antibiotic resistance genes (ARGs) threatens human health worldwide. However, the distribution and influencing factors of ARGs, especially how to reveal the risks of ARGs in this environment remains unclear. Hence, Chaohu Lake was selected as an example to investigate the characteristics of ARGs and explore the interactions among physicochemical factors, microorganisms, and ARGs by metagenomic approach. In this work, 75 ARG subtypes with an average of 30.4 × /Gb (ranging from 15.2 ×/Gb to 57.9 ×/Gb) were identified, and multidrug and bacA were most frequent in Chaohu Lake. Non-random co-occurrence patterns and potential host bacteria of ARGs were revealed through co-occurrence networks. Microbial community and mobile genetic elements (MGEs) were the major direct factors in ARG profiles. The dissemination of ARGs was mainly driven by plasmids. Considering the interactions among MGEs, human bacterial pathogens, and ARGs, antibiotic resistome risk index (ARRI) was proposed to manifest the risks of ARGs. Overall, our work systemically investigated the composition and associated factors of ARGs and built ARRI to estimate the potential risks of ARGs in a typical urban drinking water source, providing an intuitive indicator for managing similar lakes.
Collapse
Affiliation(s)
- Maozhen Han
- School of Life Science, Anhui Medical University, Hefei, Anhui 230032, China
| | - Lu Zhang
- Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Science, Wuhan 430077, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Zhang
- School of Life Science, Anhui Medical University, Hefei, Anhui 230032, China
| | - Yujie Mao
- School of Life Science, Anhui Medical University, Hefei, Anhui 230032, China
| | - Zhangjie Peng
- School of Life Science, Anhui Medical University, Hefei, Anhui 230032, China
| | - Binbin Huang
- School of Life Science, Anhui Medical University, Hefei, Anhui 230032, China
| | - Yan Zhang
- School of Life Sciences, Hefei Normal University, Hefei, Anhui 230601, China.
| | - Zhi Wang
- Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Science, Wuhan 430077, China.
| |
Collapse
|
31
|
Huang J, Zhu J, Liu S, Luo Y, Zhao R, Guo F, Li B. Estuarine salinity gradient governs sedimentary bacterial community but not antibiotic resistance gene profile. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151390. [PMID: 34740654 DOI: 10.1016/j.scitotenv.2021.151390] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Antibiotic resistance gene (ARG) pollution in estuarine environment has drawn great attention, and it is not clear if the physical and chemical parameters such as salinity, total organic carbon, total nitrogen, total phosphorus and antibiotics affects the distribution of ARGs. Herein, we deciphered the ARG profiles and microbial community compositions in sediments from Jiulong River Estuary (JRE) and Min River Estuary (MRE) of China using high-throughput sequencing-based metagenomics analysis. Furthermore, we explored the influence of salinity on bacterial community and ARG profiles. The results showed that Proteobacteria, Chloroflexi, and Acidobacteria were the dominant phyla in these two estuaries. The abundance of ARGs ranged from 1.05 × 10-1 to 2.93 × 10-1 copy of ARG per copy of 16S rRNA gene in all the sediment samples and the profiles of ARGs presented similar patterns in two estuaries. Multidrug resistance genes were the dominant ARG types in both estuaries, with an overall abundance of 2.39 × 10-2-1.07 × 10-1 copy of ARG per copy of 16S rRNA gene, followed by genes conferring resistance to bacitracin and macrolide-lincosamide-streptogramin. Salinity was an important influencing factor on the bacterial community but not on the ARG profiles. Instead, stochastic processes exerted the main influence on the distribution of ARGs. The comparison of ARG profiles among estuary sediments, marine sediments, and samples from anthropogenic pollution environments revealed remarkable similarity of ARG profiles between samples from estuary sediments and those from municipal wastewater treatment plants. These results suggested that the complex emission of anthropogenic pollution could cause the stochastic ecological pattern of ARGs.
Collapse
Affiliation(s)
- Jin Huang
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; Shenzhen Environmental Science and New Energy Laboratory, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Jun Zhu
- School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Xiamen University, Xiamen, China
| | - Siguang Liu
- Fujian Institute of Oceanography, Xiamen, China
| | - Yuanrong Luo
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, China
| | - Renxin Zhao
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Feng Guo
- School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Xiamen University, Xiamen, China; Key Laboratory of Fujian Provincial University for Microorganism Resource, Xiamen, China.
| | - Bing Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.
| |
Collapse
|
32
|
Yu Q, Feng T, Yang J, Su W, Zhou R, Wang Y, Zhang H, Li H. Seasonal distribution of antibiotic resistance genes in the Yellow River water and tap water, and their potential transmission from water to human. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118304. [PMID: 34627965 DOI: 10.1016/j.envpol.2021.118304] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/05/2021] [Accepted: 10/05/2021] [Indexed: 05/25/2023]
Abstract
The prevalence and transmission of antibiotic resistance genes (ARGs) and opportunistic pathogens in water environments can pose great threat to public health. However, the dissemination of ARGs and opportunistic pathogens from water environments to humans has been poorly explored. Here, we employed 16S rRNA gene sequencing and high-throughput quantitative PCR techniques to explore the seasonal distribution of ARGs and opportunistic pathogens in the Yellow River water (source water) and tap water, as well as their relationships with healthy humans at Lanzhou, China. Physiochemical analysis was applied to detect water quality parameters and heavy metal contents. The absolute abundance and diversity of ARGs in the Yellow River and tap water demonstrated distinct seasonal patterns. In winter, the Yellow river water had the highest ARG abundance and diversity, while tap water owned the lowest. Mobile genetic elements (MGEs) were the predominant driver of ARG profiles in both the Yellow river and tap water. Null model analysis showed that ARG assembly in the Yellow River was more influenced by stochastic processes than tap water and this was independent of seasons. Total organic carbon and arsenic contents exhibited positive correlations with many ARGs. Opportunistic pathogens Aeromonas and Pseudomonas may be potential hosts for ARGs. Approximately 80% of detected ARGs were shared between water samples and the human gut. These persistent ARGs could not be entirely eliminated through drinking water treatment processes. Thus, it is crucial to protect sources of tap water from anthropogenic pollution and improve water treatment technologies to reduce the dissemination of ARGs and ensure drinking-water biosafety for human health.
Collapse
Affiliation(s)
- Qiaoling Yu
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Tianshu Feng
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Jiawei Yang
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Wanghong Su
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Rui Zhou
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Yijie Wang
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Hong Zhang
- Anhui Microanaly Gene Co., Ltd., Hefei, 230601, China
| | - Huan Li
- School of Public Health, Lanzhou University, Lanzhou, 730000, China; Center for Grassland Microbiome, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
33
|
Wang H, Su X, Su J, Zhu Y, Ding K. Profiling the antibiotic resistome in soils between pristine and human-affected sites on the Tibetan Plateau. J Environ Sci (China) 2022; 111:442-451. [PMID: 34949372 DOI: 10.1016/j.jes.2021.04.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 06/14/2023]
Abstract
With increasing pressure from anthropogenic activity in pristine environments, the comprehensive profiling of antibiotic resistance genes (ARGs) is essential to evaluate the potential risks from human-induced antibiotic resistance in these under-studied places. Here, we characterized the microbial resistome in relatively pristine soil samples collected from four distinct habitats on the Tibetan Plateau, using a Smart chip based high-throughput qPCR approach. We compared these to soils from the same habitats that had been subjected to various anthropogenic activities, including residential sewage discharge, animal farming, atmospheric deposition, and tourism activity. Compared to pristine samples, an average of 23.7% more ARGs were detected in the human-affected soils, and the ARGs enriched in these soils mainly encoded resistances to aminoglycoside and beta-lactam. Of the four habitats studied, soils subjected to animal farming showed the highest risks of ARG enrichment and dissemination. As shown, the number of ARGs enriched (a total of 42), their fold changes (17.6 fold on average), and the co-occurrence complexity between ARGs and mobile genetic elements were all the highest in fecal-polluted soils. As well as antibiotics themselves, heavy metals also influenced ARG distributional patterns in Tibetan environments. However, compared to urban areas, the Tibetan Plateau had a low potential for ARG selection and exhibited low carriage of ARGs by mobile genetic elements, even in environments impacted by humans, suggesting that these ARGs have a limited capacity to disseminate. The present study examined the effects of multiple anthropogenic activities on the soil resistomes in relatively pristine environments.
Collapse
Affiliation(s)
- Hang Wang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, Kunming 650224, China; National Plateau Wetlands Research Center, Southwest Forestry University, Kunming 650224, China
| | - Xiaoxuan Su
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jianqiang Su
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yongguan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Kai Ding
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
34
|
Zuo X, Suo P, Li Y, Xu Q. Diversity and distribution of antibiotic resistance genes associated with road sediments transported in urban stormwater runoff. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118470. [PMID: 34748884 DOI: 10.1016/j.envpol.2021.118470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/24/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Recently, increasing attention has been paid to antibiotic resistance genes (ARGs) in urban stormwater runoff. However, there were little data on the diversity and distribution of ARGs associated with road sediments transported in runoff. The investigation of ARGs diversity showed that sulfonamide resistance genes (sul2 and sul3) occupied 61.7%-82.3% of total ARGs in runoff. The analysis of ARGs distribution in particulate matter (PM) implied that both tetQ and trbC existed mainly in PM with size of 150-300 μm, but other ARGs and mobile genetic elements (MGEs) were dominant in PM with size <75 μm. The discussion of potential hosts indicated that target genes (ermF, blaOXA1/blaOXA30, ermC, qnrA, sul2, tnpA-01, intI2, tetW, intI1, sul3, trbC) had the strongest subordinate relationship with Proteobacteria at phylum level and Enterobacter at genus level. The effect evaluation of ARGs distribution suggested that 13 kinds of ARGs were positively correlated with Pr/PS and Zeta potential, resulting in the more ARGs in PM with smaller size (<75 μm).
Collapse
Affiliation(s)
- XiaoJun Zuo
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Joint Laboratory of Atmospheric Pollution Control, Nanjing, 210044, China.
| | - PengCheng Suo
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Joint Laboratory of Atmospheric Pollution Control, Nanjing, 210044, China
| | - Yang Li
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Joint Laboratory of Atmospheric Pollution Control, Nanjing, 210044, China
| | - Qiangqiang Xu
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Joint Laboratory of Atmospheric Pollution Control, Nanjing, 210044, China
| |
Collapse
|
35
|
Dang C, Liu S, Chen Q, Sun W, Zhong H, Hu J, Liang E, Ni J. Response of microbial nitrogen transformation processes to antibiotic stress in a drinking water reservoir. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149119. [PMID: 34303244 DOI: 10.1016/j.scitotenv.2021.149119] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/08/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Effects of antibiotics on microbial nitrogen transformation processes in natural aquatic ecosystems are largely unknown. In this study, we utilized the 15N stable isotope tracers and metagenomic sequencing to identify how antibiotics drive nitrogen transformation processes in Danjiangkou Reservoir, which is the largest artificial drinking water reservoir in China. We retrieved 51 nitrogen functional genes, and found that the highest abundances of nitrate reduction and denitrification-related genes occurred in dissimilatory nitrogen transformation pathways. 15N-labelling analysis substantiated that denitrification was the main pathway for nitrogen removal, accounting for 57.1% of nitrogen loss. Nitrogen functional genes and antibiotic resistance genes co-occurred in Danjiangkou Reservoir, and they were mainly carried by the denitrifying bacteria such as Rhodoferax, Polaromonas, Limnohabitans, Pararheinheimera, Desulfobulbus, and Pseudopelobacter. Genome annotation revealed that antibiotic deactivation, Resistance-Nodulation-Division and facilitator superfamily efflux pumps were responsible for the multiple-resistance to antibiotics in these bacteria. Moreover, antibiotics showed non-significant effects on nitrogen transformation processes. It is speculated that denitrifying bacteria harboring ARGs played crucial roles in protecting nitrogen transformation from low-level antibiotics stress in the reservoir. Our results highlight that denitrifying bacteria are important hosts of ARGs, which provides a novel perspective for evaluating the effects of antibiotics on nitrogen cycle in natural aquatic ecosystems.
Collapse
Affiliation(s)
- Chenyuan Dang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shufeng Liu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; State Environmental Protection Key Laboratory of All Materials Flux in River Ecosystems, Beijing 100871, China
| | - Qian Chen
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; State Environmental Protection Key Laboratory of All Materials Flux in River Ecosystems, Beijing 100871, China.
| | - Weiling Sun
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; State Environmental Protection Key Laboratory of All Materials Flux in River Ecosystems, Beijing 100871, China
| | - Haohui Zhong
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; State Environmental Protection Key Laboratory of All Materials Flux in River Ecosystems, Beijing 100871, China
| | - Jinyun Hu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; State Environmental Protection Key Laboratory of All Materials Flux in River Ecosystems, Beijing 100871, China
| | - Enhang Liang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; State Environmental Protection Key Laboratory of All Materials Flux in River Ecosystems, Beijing 100871, China
| | - Jinren Ni
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; State Environmental Protection Key Laboratory of All Materials Flux in River Ecosystems, Beijing 100871, China
| |
Collapse
|
36
|
Lai FY, Muziasari W, Virta M, Wiberg K, Ahrens L. Profiles of environmental antibiotic resistomes in the urban aquatic recipients of Sweden using high-throughput quantitative PCR analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117651. [PMID: 34426396 DOI: 10.1016/j.envpol.2021.117651] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/13/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Antibiotic resistance in aquatic ecosystems presents an environmental health issue worldwide. Urban recipient water quality is susceptible to effluent discharges with antibiotic resistance contaminants and needs to be protected, particularly for those as sources of drinking water production. Knowledge on aquatic resistome profiles in downstream of wastewater treatment plants allows a better understanding of the extent to which antibiotic resistance contaminants emerge and spread in recipient waters, but such information remains very limited in Sweden. The key objective of this study was to determine the resistome profiles of numerous antibiotic resistance genes (ARGs), mobile genetic elements (MGEs) and other genes in urban recipient water systems connected to Sweden's major drinking water reservoir. This was achieved through analysis of surface water samples for 296 genes using high-throughput quantitative PCR arrays. A total of 167 genes were detected in at least one of the samples, including 150 ARGs conferring resistance to 11 classes of antibiotics, 7 integrase MGEs and 9 other genes. There was a spatial difference in the resistome profiles with the greatest average relative abundance of resistance genes observed in the water body of Västerås followed by Uppsala, Stockholm and Eskilstuna, as similar to the general pattern of the antibiotic sales for these regions. ARGs against β-lactams and sulfonamides showed the highest average relative abundance in the studied water bodies, while vancomycin resistance genes were only found in the Uppsala water environment. Generally, the recipient water bodies were detected with higher numbers of genes and greater relative abundances as compared to the upstream sites. Anthropogenic pollution, i.e., wastewater discharge, in the recipient water was also reflected by the finding of intI, sul1 and crAssphage. Overall, this study provided the first quantitative assessment of aquatic environmental resistomes in Sweden, highlighting the widespread of antibiotic resistance contaminants in urban recipient waters.
Collapse
Affiliation(s)
- Foon Yin Lai
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, SE-750 07, Uppsala, Sweden.
| | - Windi Muziasari
- Department of Food and Environmental Sciences, Division of Microbiology and Biotechnology, University of Helsinki, Viikinkaari 9, Helsinki, 00014, Finland; Resistomap Oy, Helsinki, Finland
| | - Marko Virta
- Department of Food and Environmental Sciences, Division of Microbiology and Biotechnology, University of Helsinki, Viikinkaari 9, Helsinki, 00014, Finland
| | - Karin Wiberg
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, SE-750 07, Uppsala, Sweden
| | - Lutz Ahrens
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, SE-750 07, Uppsala, Sweden
| |
Collapse
|
37
|
Wang Y, Lu S, Liu X, Chen J, Han M, Wang Z, Guo W. Profiles of antibiotic resistance genes in an inland salt-lake Ebinur Lake, Xinjiang, China: The relationship with antibiotics, environmental factors, and microbial communities. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 221:112427. [PMID: 34171688 DOI: 10.1016/j.ecoenv.2021.112427] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 06/02/2021] [Accepted: 06/13/2021] [Indexed: 05/23/2023]
Abstract
Lakes in arid northwestern China, as the main pollutant-holding water bodies in the typical ecologically fragile areas, are facing the unknown risk of exposure to antibiotics and antibiotic resistance genes (ARGs). In this study, five ARGs and one mobile genetic element (intI1) and their relation with antibiotics, microbial communities and water quality were investigated in Ebinur Lake Basin, a typical salt-lake of China. Quantitative PCR analysis indicated that ARGs decreasing order in both surface water and sediment was sul1 >sul2 >tetW>ermB>qnrS, which means sulfonamide resistance genes were the main pollution ARGs. Macrolide antibiotics were the predominant antibiotics in the surface water and sediment in winter, while sulfonamides and quinolones accounted for a high proportion in summer. There was a non-corresponding relationship between ARGs and antibiotics. Moreover, the relationship between ARGs and microbial communities were defined. Sulfonamide resistance genes were carried by a greater diversity of potential host bacteria (76 genera) than other ARGs (9 genera). And their positive correlation with intI1 (p < 0.05) which promotes their migration and provides possibility of their co-occurrence in bacterial populations (e.g., Nitrospira). Bacterial genera were the main driver of ARGs distribution pattern in highly saline lake sediment. Environmental factors like salinity, total nitrogen and organic matter could have a certain influence on the occurrence of ARGs by affecting microorganisms. The results systematically show the distribution and propagation characteristics of ARGs in typical inland salt-lakes in China, and preliminarily explored the relationship between ARGs and antibiotics, resistance genes and microorganisms in lakes in ecologically fragile areas.
Collapse
Affiliation(s)
- Yongqiang Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), Research Centre of Lake Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shaoyong Lu
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), Research Centre of Lake Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Xiaohui Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), Research Centre of Lake Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Tsinghua University, Beijing 100084, China.
| | - Jing Chen
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Maozhen Han
- School of Life Sciences, Anhui Medical University, Hefei 230032, China
| | - Zhi Wang
- Key Laboratory for Environment and Disaster Monitoring and Evaluation, Hubei, Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan 430077, China
| | - Wei Guo
- College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
38
|
Hou L, Wang H, Chen Q, Su JQ, Gad M, Li J, Mulla SI, Yu CP, Hu A. Fecal pollution mediates the dominance of stochastic assembly of antibiotic resistome in an urban lagoon (Yundang lagoon), China. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126083. [PMID: 34000699 DOI: 10.1016/j.jhazmat.2021.126083] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/19/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
Sewage and fecal pollution cause antibiotic resistance genes (ARGs) pollution in urban lagoons. Seasonality also affects ARG dynamics. However, knowledge of factors controlling ARG community assembly across seasons is still limited. Here, we revealed the seasonal variation of ARGs and depict the underlying assembly processes and drivers via high-throughput quantitative PCR in an urban lagoon, China. A higher richness and abundance of ARGs were observed in summer and winter compared to spring and fall (Kruskal-Wallis test, P < 0.05). Both ARG and prokaryotic communities were mainly governed by stochastic processes, however, these processes drove ARGs and prokaryotes differently across seasons. Stochastic processes played a more dominant role in shaping ARG communities in summer (average stochasticity: 83%) and winter (75%), resulting in a stable antibiotic resistome. However, no such seasonal pattern of stochastic processes was determined for prokaryotes, indicating a decoupling of the assembly process of ARGs and prokaryotes. Moreover, fecal microorganisms (e.g., Bacteroidetes and Faecalibacterium) mediated the stochastic processes of ARG profiles, via enhancement of prokaryotic biomass and mobile genetic element abundances. The tnpA-07 transposase was the key for the horizontal gene transfer. These findings will enhance our understanding of how fecal pollution shapes ARG community assembly in urban lagoons.
Collapse
Affiliation(s)
- Liyuan Hou
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Hongjie Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Qingfu Chen
- Yundang Lake Management Center, Xiamen, Fujian 361004, China
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
| | - Mahmoud Gad
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Water Pollution Research Department, National Research Centre, Giza 12622, Egypt
| | - Jiangwei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Sikandar I Mulla
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Department of Biochemistry, School of Applied Sciences, Reva University, Bangalore 560064, India
| | - Chang-Ping Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
39
|
Xu S, Qasim MZ, Zhang T, Wang R, Li C, Ge S. Diversity, abundance and expression of the antibiotic resistance genes in a Chinese landfill: Effect of deposit age. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126027. [PMID: 33990039 DOI: 10.1016/j.jhazmat.2021.126027] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 05/23/2023]
Abstract
Landfills are the hotspots for the occurrence of antibiotic resistance genes (ARGs) in the environment. However, limited information is available on the profile of ARGs in response to the varying age of refuse in landfills. In this study, the diversity, abundance and expression of ARGs in a Chinese landfill were assessed by high-throughput quantitative PCR. A total of 154 ARGs were detected and 66% of them were transcriptionally active. The total abundance of ARG transcripts was one magnitude lower than that of ARGs. The ermT-01, tetX, sul2, aadA-02 and aadA2-03 genes were found to be the most abundant ARGs (ARG transcripts) and their sum abundance showed a linear relation with the total abundance of ARGs (ARG transcripts). The total abundance of ARGs (ARG transcripts) in young refuse was significantly higher than that in old refuse (p < 0.01) and the profile of ARGs (ARG transcripts) between the old and young refuse was distinct as revealed by the principal coordinates analysis. The variation partitioning analysis showed heavy metals (mainly Cr and Zn) were the major drivers that affect the profile of ARGs (ARG transcripts). These findings provided new insights into the ARGs in landfills and indicated their potential threats should not be neglected.
Collapse
Affiliation(s)
- Sai Xu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; Hunan BISEN Environmental & Energy Co. Ltd., Changsha 410100, China
| | - Muhammad Zeeshan Qasim
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Tao Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Ruyue Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Chao Li
- Hunan BISEN Environmental & Energy Co. Ltd., Changsha 410100, China
| | - Shijian Ge
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
40
|
Li X, Wang P, Chu S, Su Y, Wu D, Xie B. The variation of antibiotic resistance genes and their links with microbial communities during full-scale food waste leachate biotreatment processes. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125744. [PMID: 33862482 DOI: 10.1016/j.jhazmat.2021.125744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/10/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
The prevalence of antibiotic resistance genes (ARGs) has been widely reported in various environments. However, little is known of them in food waste (FW) leachate with high organic content and how their distribution is influenced by biotreatment processes. Here, twelve ARGs, two integrase genes and bacterial communities were investigated during two full-scale FW biotreatment processes. High ARGs abundances (absolute: 1.03 × 107-2.82 × 109copies/mL; relative: 0.076-2.778copies/16S rRNA) were observed across all samples. Although biotreatment effectively reduced absolute abundance of ARGs, additional bacteria acquiring ARGs caused an increase in their relative abundance, which further increased the transmission risk of ARGs. mexF, blaCTX-M, sul1 played crucial roles and sul1 might be considered as an indicator for the prediction of total ARGs. It is worrying that the discharge (effluent and sludge) included highly abundant ARGs (5.09 × 1014-4.83 × 1015copies/d), integrons (1.11 × 1014-6.04 × 1014copies/d) and potential pathogens (such as Pseudomonas and Streptococcus), which should be given more attentions. blaCTX-M and tetQ possessed most potential hosts, Proteobacteria-L and Firmicutes-W were predominant contributors of ARGs-hosts at genus level. This study suggested FW leachate biotreatment systems could be reservoirs of ARGs and facilitated the proliferation of them. The exploration of effective removal methods and formulation of emission standard are necessary for future ARGs mitigation.
Collapse
Affiliation(s)
- Xunan Li
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Panliang Wang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Siqin Chu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Yinglong Su
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200062, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Dong Wu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200062, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200062, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
41
|
Zou HY, He LY, Gao FZ, Zhang M, Chen S, Wu DL, Liu YS, He LX, Bai H, Ying GG. Antibiotic resistance genes in surface water and groundwater from mining affected environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145516. [PMID: 33571766 DOI: 10.1016/j.scitotenv.2021.145516] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 05/05/2023]
Abstract
Mining activities are known to generate a large amount of mine tailings and acid mine drainage which contain varieties of heavy metals. Heavy metals play an important role in co-selection for bacterial antibiotic resistance. However, the characteristics of antibiotic resistance genes (ARGs) in mining-affected water environments are still unclear. Here we investigated the pollution of metals, profiles of ARGs, mobile genetic elements (MGEs) and microbial community in mining-affected surface water and groundwater. The results showed that in the tested water samples, the concentrations of Zn and Mn were the highest, and Ni was the lowest. Higher abundances of ARGs with great proportion of sulfonamides, chloramphenicols and tetracyclines resistance genes were found in mining-affected water when compared with those without mining activities. Additionally, there were positive correlations between heavy metals (especially Ni, Zn and Mn) and these ARGs. Linear regression analysis suggested that MGEs were positively correlated with ARGs. In addition, total phosphorus was correlated with ARGs (p < 0.05). The microbial community was different between the mining-affected water and the reference (p < 0.05). Proteobacteria, Bacteroidetes and Actinobacteria were dominant phyla in the surface water and groundwater. Network analysis showed that many ARGs were significantly associated with these dominant bacteria, which suggested they might be potential hosts for these ARGs. These findings provide a clear evidence that the mining activities in the study area had a significant impact on surface water and groundwater to different degrees.
Collapse
Affiliation(s)
- Hai-Yan Zou
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Liang-Ying He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Fang-Zhou Gao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Min Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Shuai Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Dai-Ling Wu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - You-Sheng Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Lu-Xi He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Hong Bai
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
42
|
Distribution and Risk Assessment of Toxic Pollutants in Surface Water of the Lower Yellow River, China. WATER 2021. [DOI: 10.3390/w13111582] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The lower reaches of the Yellow River is known for the rapid development of industry and agriculture, which has also led to some pollution. However, information about the level of toxic contaminants in the surface waters is lacking in this area. Therefore, five sampling points were set in the lower Yellow River to investigate the distribution of various pollutants and analyze the potential risks. The presence of heavy metals (Heavy metals tested for in this study were: Mercury (Hg), Arsenic (As), Copper (Cu), Chromium (Cr), and Zinc (Zn)) and antibiotics (Antibiotics tested for in this study were: Enrofloxacin (ENR), Ciprofloxacin (CIP), and Norfloxacin (NOR)) in water samples taken from the lower Yellow River were measured to reveal the spatial distribution and risk potential of the compounds. Various water quality parameters (Water quality parameters used in this study were: chemical oxygen demand (COD), biological oxygen demand (BOD5), total phosphorus (TP), and total nitrogen (TN)) were also tested. Study results showed the main surface water pollution components were COD, BOD5, TN, and TP. The average levels were 37.79 mg/L, 16.64 mg/L, 4.14 mg/L, and 0.42 mg/L, respectively. Among the detected metals from the water samples, Hg (LOD-0.1 μg/L) levels were only in line with the surface water class III or worse. Both fish and water samples contained antibiotics. According to an ecological risk assessment conducted along the river, the distribution of pollutants in the waters exhibited a spatial relationship with the land-use pattern in the study region and the Kenli site was the most polluted. Research shows that up-to-date data on the residual levels and distribution characteristics of pollutants in the lower Yellow River could provide valuable baseline data and technical support for relevant government departments and their management going forward.
Collapse
|
43
|
Lin ZJ, Zhou ZC, Zhu L, Meng LX, Shuai XY, Sun YJ, Chen H. Behavior of antibiotic resistance genes in a wastewater treatment plant with different upgrading processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:144814. [PMID: 33540158 DOI: 10.1016/j.scitotenv.2020.144814] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
Wastewater treatment plants (WWTPs) in China have been upgraded or renovated with a variety of emerging processes, but a comprehensive understanding of the behavior of antibiotic resistance genes (ARGs) in these WWTPs is still lacking. Here, the distribution of ARGs and bacterial community were investigated in a wastewater treatment plant with upgrading processes (WWTP-UP). 238 unique ARGs were detected in all samples. During the study period, the average ARGs concentration decreased by 98.4% along the entire treatment process. The removal efficiency of A2/O-membrane bioreactor (MBR) process was significantly higher than that of A2/O-high efficiency flocculent settling/cloth media filter (HEFS/CMF) process (p < 0.05), which corresponded to 3.5 and 2.1 log values on average, respectively. Notably, 35 ARGs and 14 mobile genetic elements (MGEs) were persistent in all samples. Based on the co-occurrence pattern revealed by network analysis, persistent ARGs possibly spread through the transfer of persistent MGEs among persistent bacteria. Using multiple linear regression analysis, we obtained 3 to 5 possible indicators for major ARG types, which might be served to evaluate the general distribution of ARGs or even predict the abundance of different ARG types. Our findings provide new insights into the impacts of upgrading process on ARGs and highlight the need for better strategies to improve ARGs elimination in WWTPs.
Collapse
Affiliation(s)
- Ze-Jun Lin
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhen-Chao Zhou
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lin Zhu
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ling-Xuan Meng
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xin-Yi Shuai
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu-Jie Sun
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hong Chen
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
44
|
Chen Z, Yao L, Sun F, Zhu Y, Li N, Shen D, Wang M. Antibiotic resistance genes are enriched with prolonged age of refuse in small and medium-sized landfill systems. ENVIRONMENTAL RESEARCH 2021; 197:111194. [PMID: 33878316 DOI: 10.1016/j.envres.2021.111194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/10/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
Landfills are sites for the disposal of waste over decades. The dynamics of contaminants during landfill treatment influence the functions and environmental risks of the landfill systems, but the patterns of these dynamics are not fully characterized, especially for antibiotic resistant genes (ARGs), an emerging contaminant of global concern. Here, seventeen typical ARG subtypes were quantitatively investigated in refuse samples from small and medium-sized landfills with ages of <3 years, ~5 years, and 8-10 years. The abundance of ARGs, including tetM, tetX, blaPER, emrB, sul1 and sul2, increased significantly (p < 0.05), approaching 8- to 304-fold on average, from refuse of < 3years to that of 8-10 years, while there was no obvious change (p > 0.05) in abundance for other ARGs, including tetQ, tetW, ampC, blaCTX-M, blaSHV, emrA, mefA, qnrD, qnrS, and mexF. Accordingly, resistance to tetracyclines, macrolides, and sulfonamides increased with landfill age, while resistance to β-lactams and quinolones remained unchanged. The increase in ARG abundance with increasing refuse age was probably related with the increased horizontal gene transfer (HGT) (indicated by the increased abundance of mobile gene elements) and the enhanced co-selective pressure (suggested by the increased contents of heavy metals). These results indicated a potential risk from ARG enrichment with an increase in refuse age in small and medium-sized landfills, which should be managed to ensure landfill safety.
Collapse
Affiliation(s)
- Zaiming Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, 310012, China
| | - Lihua Yao
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Feng Sun
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Yisong Zhu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Na Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, 310012, China
| | - Dongsheng Shen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, 310012, China
| | - Meizhen Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, 310012, China.
| |
Collapse
|
45
|
Zhou ZC, Lin ZJ, Shuai XY, Zheng J, Meng LX, Zhu L, Sun YJ, Shang WC, Chen H. Temporal variation and sharing of antibiotic resistance genes between water and wild fish gut in a peri-urban river. J Environ Sci (China) 2021; 103:12-19. [PMID: 33743895 DOI: 10.1016/j.jes.2020.10.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/28/2020] [Accepted: 10/13/2020] [Indexed: 06/12/2023]
Abstract
Antibiotic resistance genes (ARGs) as emergence contaminations have spread widely in the water environment. Wild fish may be recipients and communicators of ARGs in the water environment, however, the distribution and transmission of ARGs in the wild fish and relevant water environment were rarely reported. Here, we have profiled ARGs and bacterial communities in wild freshwater fish and relevant water in a peri-urban river using high-throughput qPCR and 16S rRNA gene sequence. A total of 80 and 220 unique ARG subtypes were identified in fish and water samples. Fish and water both showed significant ARG seasonal variations (P < 0.05). The highest absolute abundance of ARGs in fish and water occurred in summer (1.32 × 109 copies per g, on average) and autumn (9.04 × 106 copies per mL), respectively. In addition, the bipartite network analysis showed that 9 ARGs and 1 mobile genetic element continuously shared in fish and water. Furthermore, bacteria shared in fish and water were found to significantly correlate with shard ARGs. The findings demonstrate that bacteria and ARGs in fish and water could interconnect and ARGs might transfer between fish and water using bacteria as a spreading medium.
Collapse
Affiliation(s)
- Zhen-Chao Zhou
- Institute of Environmental Technology, College of Environmental and Resource Sciences; Zhejiang University, Hangzhou 310058, China
| | - Ze-Jun Lin
- Institute of Environmental Technology, College of Environmental and Resource Sciences; Zhejiang University, Hangzhou 310058, China
| | - Xin-Yi Shuai
- Institute of Environmental Technology, College of Environmental and Resource Sciences; Zhejiang University, Hangzhou 310058, China
| | - Ji Zheng
- Ningbo Research Institute of Ecological and Environmental Sciences, Ningbo 315012, China
| | - Ling-Xuan Meng
- Institute of Environmental Technology, College of Environmental and Resource Sciences; Zhejiang University, Hangzhou 310058, China
| | - Lin Zhu
- Institute of Environmental Technology, College of Environmental and Resource Sciences; Zhejiang University, Hangzhou 310058, China
| | - Yu-Jie Sun
- Institute of Environmental Technology, College of Environmental and Resource Sciences; Zhejiang University, Hangzhou 310058, China
| | - Wei-Chun Shang
- Ningbo Research Institute of Ecological and Environmental Sciences, Ningbo 315012, China
| | - Hong Chen
- Institute of Environmental Technology, College of Environmental and Resource Sciences; Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
46
|
Jiang C, Diao X, Wang H, Ma S. Diverse and abundant antibiotic resistance genes in mangrove area and their relationship with bacterial communities - A study in Hainan Island, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 276:116704. [PMID: 33652188 DOI: 10.1016/j.envpol.2021.116704] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
Antibiotic resistance genes (ARGs) are emerging contaminants in the environment and have been highlighted as a worldwide environmental and health concern. As important participants in the biogeochemical cycles, mangrove ecosystems are subject to various anthropogenic disturbances, and its microbiota may be affected by various contaminants such as ARGs. This study selected 13 transects of mangrove-covered areas in Hainan, China for sediment sample collection. The abundance and diversity of ARGs and mobile genetic elements (MGEs) were investigated using high-throughput quantitative polymerase chain reaction (HT-qPCR), and high-throughput sequencing was used to study microbial structure and diversity. A total of 179 ARGs belonging to 9 ARG types were detected in the study area, and the detection rates of vanXD and vatE-01 were 100%. The abundance of ARGs was 8.30 × 107-6.88 × 108 copies per g sediment (1.27 × 10-2-3.39 × 10-2 copies per 16S rRNA gene), which was higher than similar studies, and there were differences in the abundance of ARGs in these sampling transects. The multidrug resistance genes (MRGs) accounted for the highest proportion (69.0%), which indicates that the contamination of ARGs in the study area was very complicated. The ARGs significantly positively correlated with MGEs, which showed that the high level of ARGs was related to its self-enhancement. The dominant bacteria at the genus level were Desulfococcus, Clostridium, Rhodoplanes, Bacillus, Vibrio, Enterococcus, Sedimentibacter, Pseudoalteromonas, Paracoccus, Oscillospira, Mariprofundus, Sulfurimonas, Aminobacterium, and Novosphingobium. There was a significant positive correlation between 133 bacterial genera and some ARGs. Chthoniobacter, Flavisolibacter, Formivibrio, Kaistia, Moryella, MSBL3, Perlucidibaca, and Zhouia were the main potential hosts of ARGs in the sediments of Hainan mangrove area, and many of these bacteria are important participants in biogeochemical cycles. The results contribute to our understanding of the distribution and potential hosts of ARGs and provide a scientific basis for the protection and management of Hainan mangrove ecosystem.
Collapse
Affiliation(s)
- Chunxia Jiang
- College of Ecology and Environment, Hainan University, Haikou, 570228, China; State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Xiaoping Diao
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou, 570228, China; College of Life Science, Hainan Normal University, Haikou, 571158, China.
| | - Haihua Wang
- College of Ecology and Environment, Hainan University, Haikou, 570228, China; State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Siyuan Ma
- College of Life Science, Hainan Normal University, Haikou, 571158, China
| |
Collapse
|
47
|
Sta Ana KM, Madriaga J, Espino MP. β-Lactam antibiotics and antibiotic resistance in Asian lakes and rivers: An overview of contamination, sources and detection methods. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 275:116624. [PMID: 33571856 DOI: 10.1016/j.envpol.2021.116624] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
Lakes and rivers are sources of livelihood, food and water in many parts of the world. Lakes provide natural resources and valuable ecosystem services. These aquatic ecosystems are also vulnerable to known and new environmental pollutants. Emerging water contaminants are now being studied including antibiotics because of the global phenomenon on antibiotic resistance. β-Lactam antibiotics are widely used in human and animal disease prevention or treatment. The emergence of antibiotic resistance is a public health threat when bacteria become more resistant and infections consequently increase requiring treatment using last resort drugs that are more expensive. This review summarizes the key findings on the occurrence, contamination sources, and determination of β-lactam antibiotics and β-lactam antibiotic resistant bacteria and genes in the Asian lake and river waters. The current methods in the analytical measurements of β-lactam antibiotics in water involving solid-phase extraction and liquid chromatography-mass spectrometry are discussed. Also described is the determination of antibiotic resistance genes which is primarily based on a polymerase chain reaction method. To date, β-lactam antibiotics in the Asian aquatic environments are reported in the ng/L concentrations. Studies on β-lactam resistant bacteria and resistance genes were mostly conducted in China. The occurrence of these emerging contaminants is largely uncharted because many aquatic systems in the Asian region remain to be studied. Comprehensive investigations encompassing the environmental behavior of β-lactam antibiotics, emergence of resistant bacteria, transfer of resistance genes to non-resistant bacteria, multiple antibiotic resistance, and effects on aquatic biota are needed particularly in rivers and lakes that are eventual sinks of these water contaminants.
Collapse
Affiliation(s)
- Katrina Marie Sta Ana
- Institute of Chemistry, University of the Philippines Diliman, Quezon City, 1101, Philippines
| | - Jonalyn Madriaga
- Institute of Chemistry, University of the Philippines Diliman, Quezon City, 1101, Philippines
| | - Maria Pythias Espino
- Institute of Chemistry, University of the Philippines Diliman, Quezon City, 1101, Philippines.
| |
Collapse
|
48
|
Jia J, Gomes-Silva G, Plath M, Pereira BB, UeiraVieira C, Wang Z. Shifts in bacterial communities and antibiotic resistance genes in surface water and gut microbiota of guppies (Poecilia reticulata) in the upper Rio Uberabinha, Brazil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111955. [PMID: 33497859 DOI: 10.1016/j.ecoenv.2021.111955] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Anthropogenic activities especially water pollution can affect the diversity and composition of microbial communities and promote the spread of antibiotic resistance genes (ARGs). In this study, water samples and guppies (Poecilia reticulata) were sampled from six sampling sites along the Uberabinha River in southeastern Brazil, both microbial communities and ARGs of surface waters and intestinal microbiota of guppies (Poecilia reticulata) were detected. According to the results of 16S rRNA amplicon sequencing, Proteobacteria, Bacteroidetes, Firmicutes and Actinobacteria were dominant phyla in both water and intestinal microbiota, but the abundance of putative pathogens was higher at heavily polluted sites. Up to 83% of bacteria in intestinal microbiota originated from water microbiota; this proportion was relatively higher in less polluted compared to polluted environments. ARGs providing resistance of tetracyclines and quinolones were dominant in both water and gut microbiota. The relative abundances of class I integrons and ARGs were as high as 1.74 × 10-1/16S rRNA copies and 3.61 × 10-1/16S rRNA copies, respectively, at heavily polluted sites. Correlation analysis suggests that integrons and bacteria play key roles in explaining the widespread occurrence of ARGs in the surface, but not in intestinal microbiota. We could rule out the class I integrons a potential intermediary bridge for ARGs between both types of microbiomes. Our results highlight the tight link in microbial communities and ARGs between ambient microbiota of stream ecosystems and intestinal microbiota of fish. Our study could have far-reaching consequences for fisheries and consumer safety and calls for investigations of gut microbiota of target species of both commercial fisheries and recreational (hobby) angling.
Collapse
Affiliation(s)
- Jia Jia
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Guilherme Gomes-Silva
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Martin Plath
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Boscolli Barbosa Pereira
- Institute of Geography, Department of Environmental Health, Federal University of Uberlândia, Santa Mônica Campus, Uberlândia, Minas Gerais 34.408-100, Brazil; Institute of Biotechnology, Department of Genetics and Biochemistry, Federal University of Uberlândia, Umuarama Campus, Uberlândia, Minas Gerais 34.408-100, Brazil
| | - Carlos UeiraVieira
- Institute of Geography, Department of Environmental Health, Federal University of Uberlândia, Santa Mônica Campus, Uberlândia, Minas Gerais 34.408-100, Brazil
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
49
|
Hou L, Zhang L, Li F, Huang S, Yang J, Ma C, Zhang D, Yu CP, Hu A. Urban ponds as hotspots of antibiotic resistome in the urban environment. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:124008. [PMID: 33265037 DOI: 10.1016/j.jhazmat.2020.124008] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/04/2020] [Accepted: 09/14/2020] [Indexed: 06/12/2023]
Abstract
The occurrence, dissemination and assembly processes of antibiotic resistance genes (ARGs) in urban water ecosystems are far from being understood. Here, we examined the diversity and abundance of ARGs in urban water ecosystems including landscape ponds, drinking water reservoirs, influents (IFs) and effluents (EFs) of wastewater treatment plants of a coastal city, China through high-throughput quantitative PCR. A total of 237 ARGs were identified, where multidrug, aminoglycoside and beta-lactamase resistance genes were the most abundant. Urban ponds had a comparatively high diversity and large numbers of shared ARGs with IFs and EFs. The average absolute abundance of ARGs (1.38 × 107 copies/mL) and mobile genetic elements (MGEs) (4.19 × 106 copies/mL) in ponds were only one order of magnitude lower than those of IFs, but higher than those of EFs and reservoirs. Stochastic processes dominated the ARG community assembly in IFs and ponds due to the random horizontal gene transfer caused by MGEs. These results imply that urban ponds are hotspots of ARGs. We further identified 25, 3, and 11 indicator ARGs for tracing the ARG contamination from IFs, EFs and ponds, respectively. Our study represents the first to highlight the role of urban ponds in the dissemination of ARGs.
Collapse
Affiliation(s)
- Liyuan Hou
- CAS Key Laboratory of Urban pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Department of Chemistry, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Lanping Zhang
- CAS Key Laboratory of Urban pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Furun Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sijun Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Jun Yang
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Cong Ma
- Xiamen Municipal Environment Technology Co., Ltd., Xiamen 361001, China
| | - Duanxin Zhang
- General Water of Xiamen Sewage Co., Ltd., Xiamen 361001, China
| | - Chang-Ping Yu
- CAS Key Laboratory of Urban pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Anyi Hu
- CAS Key Laboratory of Urban pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
50
|
Chaturvedi P, Singh A, Chowdhary P, Pandey A, Gupta P. Occurrence of emerging sulfonamide resistance (sul1 and sul2) associated with mobile integrons-integrase (intI1 and intI2) in riverine systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:142217. [PMID: 33181985 DOI: 10.1016/j.scitotenv.2020.142217] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 06/11/2023]
Abstract
Global use of antibiotics has exceedingly enhanced in agricultural, veterinary and prophylactic human use in recent days. Hence, these antibiotics can easily be found in the environment. This study revealed the occurrence of emerging MDR and ESBL producing strains, pollution profile, and factors integrons (intI1 and intI2) and environmental factors associated, in the riverine systems under different ecological and geo-climatic zones were investigated. The samples were collected based on anthropogenic intervention such as discharge of domestic wastes, industrial wastes, hospital, and municipal wastes. Among 160bacterial morphotypes, 121 (75.62%) exhibited MDR trait with maximum resistance towards lincosamide (CD = 71.3%), beta-lactams (P = 70.6%; AMX = 66.3%), cephalosporin (CZ = 60.6%; CXM = 34.4%), sulfonamide (COT = 50.6%; TR = 43.8%) followed by macrolide (E = 29.4%), tetracycline (TET = 18.8%), aminoglycosides (S = 18.8%; GEN = 6.3%), fluoroquinolones (NX = 18.1%; OF = 4.4%) and carbapenem (IPM = 5.0%). IntI1 gene was detected in 73 (60.3%) of isolates, whereas intI2 was found in 11 (9.09%) isolates. Eight (6.61%) isolates carried both integron genes (intI1 and intI2). sul1 and dfrA1 genes were detected in 53 (72.6%) and 63 (86.3%) isolates, respectively. A total of 103 (85.1%) were found ESBL positive with the presence of ESBL genes in 100 (97.08%) isolates. In riverine systems most prevalent ESBL gene blaTEM (93.0%) was detected alone as well as in combination with bla genes. The data can be utilized for public awareness and regulation of guidelines by local governing bodies as an alarming threat to look-out against the prevalent resistance in environment thereby assisting in risk management during epidemics. This study is a comprehensive investigation of emerging antibiotic pollutants and its resistance in bacteria associated with factors integrons-integrase responsible for its dissemination. It may also assist in global surveillance of antibiotic resistance and policies to curtail unnecessary antibiotic use.
Collapse
Affiliation(s)
- Preeti Chaturvedi
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Department of Biotechnology, National Institute of Technology-Raipur, G.E. Road, Raipur 492010, Chhattisgarh, India.
| | - Anuradha Singh
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Pankaj Chowdhary
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Ashok Pandey
- Centre for Innovation and Transnational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, Uttar Pradesh, India
| | - Pratima Gupta
- Department of Biotechnology, National Institute of Technology-Raipur, G.E. Road, Raipur 492010, Chhattisgarh, India.
| |
Collapse
|