1
|
Geng XZ, Hu JT, Zhang ZM, Li ZL, Chen CJ, Wang YL, Zhang ZQ, Zhong YJ. Exploring efficient strategies for air quality improvement in China based on its regional characteristics and interannual evolution of PM 2.5 pollution. ENVIRONMENTAL RESEARCH 2024; 252:119009. [PMID: 38679277 DOI: 10.1016/j.envres.2024.119009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
Fine particulate matter (PM2.5) harms human health and hinders normal human life. Considering the serious complexity and obvious regional characteristics of PM2.5 pollution, it is urgent to fill in the comprehensive overview of regional characteristics and interannual evolution of PM2.5. This review studied the PM2.5 pollution in six typical areas between 2014 and 2022 based on the data published by the Chinese government and nearly 120 relevant literature. We analyzed and compared the characteristics of interannual and quarterly changes of PM2.5 concentration. The Beijing-Tianjin-Hebei region (BTH), Yangtze River Delta (YRD) and Pearl River Delta (PRD) made remarkable progress in improving PM2.5 pollution, while Fenwei Plain (FWP), Sichuan Basin (SCB) and Northeast Plain (NEP) were slightly inferior mainly due to the relatively lower level of economic development. It was found that the annual average PM2.5 concentration change versus year curves in the three areas with better pollution control conditions can be merged into a smooth curve. Importantly, this can be fitted for the accurate evaluation of each area and provide reliable prediction of its future evolution. In addition, we analyzed the factors affecting the PM2.5 in each area and summarize the causes of air pollution in China. They included primary emission, secondary generation, regional transmission, as well as unfavorable air dispersion conditions. We also suggested that the PM2.5 pollution control should target specific industries and periods, and further research need to be carried out on the process of secondary production. The results provided useful assistance such as effect prediction and strategy guidance for PM2.5 pollution control in Chinese backward areas.
Collapse
Affiliation(s)
- Xin-Ze Geng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Jia-Tian Hu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Zi-Meng Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Zhi-Ling Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Chong-Jun Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yu-Long Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Zhi-Qing Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Ying-Jie Zhong
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
2
|
Wang L, Zhuang X, Bao H, Ma C, Ma C, Yang G. Chemical characterization and source apportionment of PM 2.5 in a Northeastern China city during the epidemic period. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:32901-32913. [PMID: 38668944 DOI: 10.1007/s11356-024-33473-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024]
Abstract
To investigate the influence of COVID-19 lockdown measures on PM2.5 and its chemical components in Shenyang, PM2.5 samples were continuously collected from January 1 to May 31, 2020. The samples were then analyzed for water-soluble inorganic ions, metal elements, organic carbon, and elemental carbon. The findings indicated a significant decrease in PM2.5 and its various chemical components during the lockdown period, compared to pre-lockdown levels (p < 0.05), suggesting a substantial improvement in air quality. Water-soluble inorganic ions (WSIIs) were identified as the primary contributors to PM2.5, accounting for 47% before the lockdown, 46% during the lockdown, and 37% after the lockdown. Ionic balance analysis revealed that PM2.5 exhibited neutral, weakly alkaline, and alkaline characteristics before, during, and after the lockdown, respectively. NH4+ was identified as the main balancing cation and was predominantly present in the form of NH4NO3 in the absence of complete neutralization of SO42- and NO3-. Moreover, the higher sulfur oxidation ratio (SOR) and nitrogen oxidation ratio (NOR), along with the significant increase in PM2.5/EC, suggested intense secondary transformation during the lockdown period. The elevated OC/EC ratio during the lockdown period implied higher secondary organic carbon (SOC), and the notable increase in SOC/EC ratio indicated a significant secondary transformation of total carbon. The enrichment factor (EF) results revealed that during the lockdown, 9 metal elements (As, Sn, Pb, Zn, Cu, Sb, Ag, Cd, and Se) were substantially impacted by anthropogenic emissions. Source analysis of PMF was employed to identify the sources of PM2.5 in Shenyang during the study period, and the analysis identified six factors: secondary sulfate and vehicle emissions, catering fume sources, secondary nitrate and coal combustion emissions, dust sources, biomass combustion, and industrial emissions, with secondary sulfate and vehicle emissions and catering fume sources contributing the most to PM2.5.
Collapse
Affiliation(s)
- Lukai Wang
- College of Environmental Science, Liaoning University, Shenyang, 110036, China
| | - Xiaohong Zhuang
- College of Environmental Science, Liaoning University, Shenyang, 110036, China.
| | - Hongxu Bao
- College of Environmental Science, Liaoning University, Shenyang, 110036, China
| | - Chunlei Ma
- College of Environmental Science, Liaoning University, Shenyang, 110036, China
| | - Chen Ma
- College of Environmental Science, Liaoning University, Shenyang, 110036, China
| | - Guangchao Yang
- College of Environmental Science, Liaoning University, Shenyang, 110036, China
| |
Collapse
|
3
|
Wang Y, Liang L, Xu W, Liu C, Cheng H, Liu Y, Zhang G, Xu X, Yu D, Wang P, Song Q, Liu J, Cheng Y. Influence of meteorological factors on open biomass burning at a background site in Northeast China. J Environ Sci (China) 2024; 138:1-9. [PMID: 38135377 DOI: 10.1016/j.jes.2023.02.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 12/24/2023]
Abstract
Biomass burning (BB) is a very important emission source that significantly adversely impacts regional air quality. BB produces a large number of primary organic aerosol (POA) and black carbon (BC). Besides, BB also provides many precursors for secondary organic aerosol (SOA) generation. In this work, the ratio of levoglucosan (LG) to organic carbon (OC) and the fire hotspots map was used to identify the open biomass burning (OBB) events, which occurred in two representative episodes, October 13 to November 30, 2020, and April 1 to April 30, 2021. The ratio of organic aerosol (OA) to reconstructed PM2.5 concentration (PM2.5*) increased with the increase of LG/OC. When LG/OC ratio is higher than 0.03, the highest OA/PM2.5* ratio can reach 80%, which means the contribution of OBB to OA is crucial. According to the ratio of LG to K+, LG to mannosan (MN) and the regional characteristics of Longfengshan, it can be determined that the crop residuals are the main fuel. The occurrence of OBB coincides with farmers' preferred choices, i.e., burning biomass in "bright weather". The "bright weather" refers to the meteorological conditions with high temperature, low humidity, and without rain. Meteorological factors indirectly affect regional biomass combustion pollution by influencing farmers' active choices.
Collapse
Affiliation(s)
- Yulong Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Linlin Liang
- State Key Laboratory of Severe Weather & Key Laboratory for Atmospheric Chemistry, Chinese Academy of Meteorological Sciences, Beijing 100081, China.
| | - Wanyun Xu
- State Key Laboratory of Severe Weather & Key Laboratory for Atmospheric Chemistry, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Chang Liu
- State Key Laboratory of Severe Weather & Key Laboratory for Atmospheric Chemistry, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Hongbing Cheng
- State Key Laboratory of Severe Weather & Key Laboratory for Atmospheric Chemistry, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Yusi Liu
- State Key Laboratory of Severe Weather & Key Laboratory for Atmospheric Chemistry, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Gen Zhang
- State Key Laboratory of Severe Weather & Key Laboratory for Atmospheric Chemistry, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Xiaobin Xu
- State Key Laboratory of Severe Weather & Key Laboratory for Atmospheric Chemistry, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Dajiang Yu
- Longfengshan Regional Background Station, China Meteorological Administration, Heilongjiang 150200, China
| | - Peng Wang
- Longfengshan Regional Background Station, China Meteorological Administration, Heilongjiang 150200, China
| | - Qingli Song
- Heilongjiang Climate Center, Heilongjiang 150030, China
| | - Jiumeng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Yuan Cheng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
4
|
Liu F, Liu C, Liu Y, Wang J, Wang Y, Yan B. Neurotoxicity of the air-borne particles: From molecular events to human diseases. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131827. [PMID: 37315411 DOI: 10.1016/j.jhazmat.2023.131827] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/26/2023] [Accepted: 06/08/2023] [Indexed: 06/16/2023]
Abstract
Exposure to PM2.5 is associated with an increased incidence of CNS diseases in humans, as confirmed by numerous epidemiological studies. Animal models have demonstrated that PM2.5 exposure can damage brain tissue, neurodevelopmental issues and neurodegenerative diseases. Both animal and human cell models have identified oxidative stress and inflammation as the primary toxic effects of PM2.5 exposure. However, understanding how PM2.5 modulates neurotoxicity has proven challenging due to its complex and variable composition. This review aims to summarize the detrimental effects of inhaled PM2.5 on the CNS and the limited understanding of its underlying mechanism. It also highlights new frontiers in addressing these issues, such as modern laboratory and computational techniques and chemical reductionism tactics. By utilizing these approaches, we aim to fully elucidate the mechanism of PM2.5-induced neurotoxicity, treat associated diseases, and ultimately eliminate pollution.
Collapse
Affiliation(s)
- Fang Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong 250014, China
| | - Chunyan Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong 250014, China
| | - Yin Liu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Jiahui Wang
- College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yibing Wang
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong 250014, China.
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
5
|
Cai X, Hu H, Liu C, Tan Z, Zheng S, Qiu S. The effect of natural and socioeconomic factors on haze pollution from global and local perspectives in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:68356-68372. [PMID: 37120500 DOI: 10.1007/s11356-023-27134-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/17/2023] [Indexed: 05/27/2023]
Abstract
Analyzing the factors that cause haze and the regional differences in the influence of factors on haze is the premise and critical to precise prevention and control of haze pollution. This paper explores the global effects of haze pollution drivers and the spatial heterogeneity of factors on haze pollution using global and local regression models. The results show that, from a global perspective, a 1 μg/m3 increase in the average PM2.5 concentration of a city's neighbors will increase the city's PM2.5 concentration by 0.965 μg/m3. Temperature, atmospheric pressure, population density, and green coverage of built-up areas are positively associated with haze, while GDP per capita is the opposite. From a local perspective, each factor has different influencing scales on haze pollution. Specifically, technical support is on a global scale, and for every 1 unit increase in technical support level, the PM2.5 concentration will decrease by 0.106-0.102 μg/m3. The influencing scales of other drivers are local. In southern China, the concentration of PM2.5 decreases by 0.001-0.075 μg/m3 for every 1 °C increase in temperature, while in northern China, the concentration of PM2.5 increases by 0.001-0.889 μg/m3. In the region around the Bohai Sea in eastern China, the concentration of PM2.5 will decrease by 0.001-0.889 μg/m3 for every 1 m/s increase in wind speed. Population density positively impacts haze pollution, and the impact intensity gradually increases from 0.097 to 1.140 from south to north. For every 1% increase in the proportion of the secondary industry in southwest China, the PM2.5 concentration will increase by 0.001-0.284 μg/m3. For cities in northeast China, for every 1% increase in the urbanization rate, the PM2.5 concentration will decrease by 0.001-0.203 μg/m3. These findings help policymakers develop targeted joint prevention and control policies for haze pollution, considering regional differences.
Collapse
Affiliation(s)
- Xiaomei Cai
- School of Management, China University of Mining and Technology, No. 11 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Han Hu
- School of Management, China University of Mining and Technology, No. 11 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Chan Liu
- School of Management, China University of Mining and Technology, No. 11 Xueyuan Road, Haidian District, Beijing, 100083, China.
| | - Zhanglu Tan
- School of Management, China University of Mining and Technology, No. 11 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Shuxian Zheng
- School of Management, China University of Mining and Technology, No. 11 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Shuohan Qiu
- China Electronics Standardization Institute, Beijing, 100007, China
| |
Collapse
|
6
|
Schleicher NJ, Weiss DJ. Identification of atmospheric particulate matter derived from coal and biomass burning and from non-exhaust traffic emissions using zinc isotope signatures. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121664. [PMID: 37085103 DOI: 10.1016/j.envpol.2023.121664] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/30/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Improving urban air quality is a global challenge. To implement successful abatement measures that reduce atmospheric particulate matter (APM) and associated metal concentrations, precise source apportionment is needed. For this, apportioning contributions from coal and biomass burning and differentiating these from non-exhaust traffic emissions in urban APM is critical. Recent studies characterising the metal isotope composition of urban APM, and potential source materials suggested that non-traditional isotope systems could prove unique fingerprinting tools. Zinc isotopes should be able to separate APM derived from uncontrolled combustion (fly ash, isotopically heavy) from non-exhaust traffic sources (tyre and brake wear, intermediate) and from controlled industrial emissions (flue gas, light). To test this hypothesis, we determined zinc isotope ratios of APM (TSP, PM2.5, PM1) in Beijing (coal combustion for residential heating) and Varanasi (biomass burning in pre-monsoon periods). In Beijing, δ66ZnLyon values of PM2.5 ranged from -0.41 to +1.01‰ in 2015 (avg = +0.25 ± 0.50‰, n = 19). Aerosols (including TSP, PM2.5 and PM1 samples) from the heating period were significantly (t-test, p < 0.001) heavier (avg = +0.90 ± 0.12‰, n = 7) than those from the non-heating period (avg = +0.14 ± 0.36‰, n = 23). Average δ66ZnLyon values of PM2.5 in Varanasi in spring 2015 were +0.82 ± 0.11‰ (n = 4). Extent and direction of isotope fractionation is in line with that expected from theoretical models and the isotope signatures observed agree with previously determined ratios of source materials. Our study links for the first time comprehensively the heavy zinc isotope compositions in APM to coal and biomass burning and shows that zinc isotope compositions of aerosols can discriminate between non-exhaust traffic and combustion sources.
Collapse
Affiliation(s)
- Nina J Schleicher
- Department of Earth Science and Engineering, Imperial College London, South Kensington Campus, Prince Consort Road, SW7 2AZ, London, United Kingdom.
| | - Dominik J Weiss
- Department of Earth Science and Engineering, Imperial College London, South Kensington Campus, Prince Consort Road, SW7 2AZ, London, United Kingdom
| |
Collapse
|
7
|
Li Y, Zhou Y, Guo W, Zhang X, Huang Y, He E, Li R, Yan B, Wang H, Mei F, Liu M, Zhu Z. Molecular Imaging Reveals Two Distinct Mixing States of PM 2.5 Particles Sampled in a Typical Beijing Winter Pollution Case. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6273-6283. [PMID: 37022139 DOI: 10.1021/acs.est.2c08694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Mixing states of aerosol particles are crucial for understanding the role of aerosols in influencing air quality and climate. However, a fundamental understanding of the complex mixing states is still lacking because most traditional analysis techniques only reveal bulk chemical and physical properties with limited surface and 3-D information. In this research, 3-D molecular imaging enabled by ToF-SIMS was used to elucidate the mixing states of PM2.5 samples obtained from a typical Beijing winter haze event. In light pollution cases, a thin organic layer covers separated inorganic particles; while in serious pollution cases, ion exchange and an organic-inorganic mixing surface on large-area particles were observed. The new results provide key 3-D molecular information of mixing states, which is highly potential for reducing uncertainty and bias in representing aerosol-cloud interactions in current Earth System Models and improving the understanding of aerosols on air quality and human health.
Collapse
Affiliation(s)
- Ye Li
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
- Division of Geochemistry, Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York 10964, United States
| | - Yadong Zhou
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Wenxiao Guo
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Xin Zhang
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Ye Huang
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
| | - Erkai He
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
| | - Runkui Li
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Beizhan Yan
- Division of Geochemistry, Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York 10964, United States
| | - Hailong Wang
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Fan Mei
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Min Liu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
| | - Zihua Zhu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
8
|
Fatima S, Mishra SK, Ahlawat A, Dimri AP. Physico-Chemical Properties and Deposition Potential of PM 2.5 during Severe Smog Event in Delhi, India. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15387. [PMID: 36430104 PMCID: PMC9690713 DOI: 10.3390/ijerph192215387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/12/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
The present work studies a severe smog event that occurred in Delhi (India) in 2017, targeting the characterization of PM2.5 and its deposition potential in human respiratory tract of different population groups in which the PM2.5 levels raised from 124.0 µg/m3 (pre-smog period) to 717.2 µg/m3 (during smog period). Higher concentration of elements such as C, N, O, Na, Mg, Al, Si, S, Fe, Cl, Ca, Ti, Cr, Pb, Fe, K, Cu, Cl, P, and F were observed during the smog along with dominant organic functional groups (aldehyde, ketones, alkyl halides (R-F; R-Br; R-Cl), ether, etc.), which supported potential contribution from transboundary biomass-burning activities along with local pollution sources and favorable meteorological conditions. The morphology of individual particles were found mostly as non-spherical, including carbon fractals, aggregates, sharp-edged, rod-shaped, and flaky structures. A multiple path particle dosimetry (MPPD) model showed significant deposition potential of PM2.5 in terms of deposition fraction, mass rate, and mass flux during smog conditions in all age groups. The highest PM2.5 deposition fraction and mass rate were found for the head region followed by the alveolar region of the human respiratory tract. The highest mass flux was reported for 21-month-old (4.7 × 102 µg/min/m2), followed by 3-month-old (49.2 µg/min/m2) children, whereas it was lowest for 21-year-old adults (6.8 µg/min/m2), indicating babies and children were more vulnerable to PM2.5 pollution than adults during smog. Deposition doses of toxic elements such as Cr, Fe, Zn, Pb, Cu, Mn, and Ni were also found to be higher (up to 1 × 10-7 µg/kg/day) for children than adults.
Collapse
Affiliation(s)
- Sadaf Fatima
- CSIR-National Physical Laboratory, New Delhi 110012, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sumit Kumar Mishra
- CSIR-National Physical Laboratory, New Delhi 110012, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ajit Ahlawat
- Atmospheric Chemistry Department, Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße, 04318 Leipzig, Germany
| | - Ashok Priyadarshan Dimri
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
- Indian Institute of Geomagnetism, Navi Mumbai 410206, India
| |
Collapse
|
9
|
Mukherjee S, Dutta M, Ghosh A, Chatterjee A. A year-long study on PM 2.5 and its carbonaceous components over eastern Himalaya in India: Contributions of local and transported fossil fuel and biomass burning during premonsoon. ENVIRONMENTAL RESEARCH 2022; 212:113546. [PMID: 35660403 DOI: 10.1016/j.envres.2022.113546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 05/06/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
A year-long (March 2019-February 2020) study on the characterization of fine mode carbonaceous aerosols has been conducted over a high altitude urban atmosphere, Darjeeling (27.01°N, 88.15°E, 2200 m asl) in eastern Himalaya. The fine mode aerosol (PM2.5; 41.7 ± 23.7 μgm-3), total carbonaceous aerosols (TCA; 19.8 ± 7.7 μgm-3), organic carbon (OC; 8.0 ± 3.9 μgm-3) and elemental carbon (EC; 2.0 ± 0.9 μgm-3) exhibited similar seasonal variability with the highest abundance during winter followed by premonsoon, postmonsoon and minimum in monsoon. The OC:EC varied over a range of 2.8-19.4 whereas the secondary organic carbon ranged between 1.9 and 17.1 μgm-3 respectively. Higher PM2.5 associated with higher winds and elevated mixing layer depth suggest a strong influence of regional and long-range transport. In addition to the usual morning and evening rush-hour peaks, the impact of low land plain regions driven by up-slope valley winds was observed for the carbonaceous components. A novel approach has been taken to find out the individual contributions from the local and transported fossil fuel, biomass burning, and biogenic sources to OC and EC during premonsoon. We observed that the local fossil fuel (43%) contributions dominated over the biomass burning (39%) for EC whereas the contributions of local biomass burning and the local fossil fuel were same (46%) for OC. EC exhibited a higher contribution (18%) from the regional/long-range transport compared to OC (8%). IGP and Nepal were found to be the maximum contributing long distant source regions for the carbonaceous aerosol loading over eastern Himalaya. Such individual source apportionment of carbonaceous aerosols over eastern Himalaya makes the study unique and first-ever of its kind and immensely helpful for building robust mitigation action plans.
Collapse
Affiliation(s)
- Sauryadeep Mukherjee
- Environmental Sciences Section, Bose Institute, P 1/12 CIT Scheme VIIM, Kolkata, 700054, India
| | - Monami Dutta
- Environmental Sciences Section, Bose Institute, P 1/12 CIT Scheme VIIM, Kolkata, 700054, India
| | - Abhinandan Ghosh
- Environmental Sciences Section, Bose Institute, P 1/12 CIT Scheme VIIM, Kolkata, 700054, India
| | - Abhijit Chatterjee
- Environmental Sciences Section, Bose Institute, P 1/12 CIT Scheme VIIM, Kolkata, 700054, India.
| |
Collapse
|
10
|
Zhang Y, Kong S, Yan Q, Zhu K, Jiang X, Liu L, Xu L, Wang Y, Pang Y, Teng X, Zhu J, Li W. An overlooked source of nanosized lead particles in the atmosphere: Residential honeycomb briquette combustion. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129289. [PMID: 35739795 DOI: 10.1016/j.jhazmat.2022.129289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/19/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Atmospheric lead (Pb) pollution has attracted long-term and widespread concerns due to its high toxicity. The definite source identification of atmospheric Pb is the key step to mitigate this pollution. Here, we first report an overlooked source of atmospheric nanosized Pb particles using transmission electron microscopy and bulk sample analyses, finding that residential honeycomb briquette combustion emits large numbers of nanosized Pb-rich particles. We found that 33.7 ± 19.9 % of primary particles by number from residential honeycomb briquette combustion contains the crystalline Pb particles. These Pb-rich particles range in size from 14 to 956 nm with a mean diameter of 117 nm. Compared with raw coal chunks, honeycomb briquette combustion could emit less carbonaceous particles, but largely increase nanosized Pb particle emissions. This result is attributed to two key factors: (1) higher Pb content in honeycomb briquette (63.6 μg g-1) than that in coal chunk (8.5 μg g-1), and (2) higher Pb release rate for honeycomb briquette (62.3 %) caused by honeycomb structure than that for coal chunk (20.1 %). This study highlights that atmospheric and health implications of high emissions of toxic nanosized Pb from honeycomb briquette should be paid more attention in future research on ambient and indoor airs.
Collapse
Affiliation(s)
- Yinxiao Zhang
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
| | - Shaofei Kong
- Department of Atmospheric Sciences, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Qin Yan
- Department of Atmospheric Sciences, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Kongyang Zhu
- School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
| | - Xiaotong Jiang
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
| | - Lei Liu
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
| | - Liang Xu
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
| | - Yuanyuan Wang
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
| | - Yuner Pang
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
| | - Xiaomi Teng
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
| | - Jihao Zhu
- Key Laboratory of Submarine Geosciences, State Oceanic Administration, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Weijun Li
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
11
|
Kwak N, Lee H, Maeng H, Seo A, Lee K, Kim S, Lee M, Cha JW, Shin B, Park K. Morphological and chemical classification of fine particles over the Yellow Sea during spring, 2015-2018. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119286. [PMID: 35439601 DOI: 10.1016/j.envpol.2022.119286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
Airborne fine particles can affect climate change and human health; moreover, they can be transported over significant distances. However, studies on characteristics of individual particles and their morphology, elemental composition, aging processes, and spatial distribution after long-range transport over the Yellow Sea are limited. Therefore, in this study, we conducted shipborne measurements of fine particulate matter of less than 2.5 μm in diameter (PM2.5) over the Yellow Sea and classified the individual particles into seven types based on their morphology and composition. Overall, the percentage of organic-rich particles was the highest, followed by that of sea spray, sulfur-rich, dust, metals, fly ash, soot, and other particles. Near Shandong, China, the percentage of fly ash and sulfur-rich particles increased, while an increased percentage of only sulfur-rich particles was observed near the Korean Peninsula. In the open sea, the PM2.5 concentrations were the lowest, and sea spray particles predominated. During the cruises, three types (Types 1, 2, and 3) of events with substantially increased PM2.5 concentrations occurred, each with different dominant particles. Type 1 events frequently featured air masses from northern China and Mongolia with high wind speeds and increased dust particles. Type 2 events involved air masses from China with high wind speeds; fly ash, soot, organic-rich particles, and the sulfate percentage in PM2.5 increased. Type 3 events displayed stagnant conditions and local transport (from Korea); soot, dust particles, and the secondary sulfate and nitrate percentages in PM2.5 increased. Thus, different types of transport affected concentrations and dominant types of fine particles over the Yellow Sea during spring.
Collapse
Affiliation(s)
- Nohhyeon Kwak
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Haebum Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Hyunok Maeng
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Arom Seo
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Kwangyul Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Seojeong Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Meehye Lee
- Department of Earth and Environmental Sciences, Korea University, Seoul, Republic of Korea
| | - Joo Wan Cha
- Convergence Meteorological Science Research Department, National Institute of Meteorological Sciences, Jeju, Republic of Korea
| | - Beomcheol Shin
- Operational Systems Development Department, National Institute of Meteorological Sciences, Jeju, Republic of Korea
| | - Kihong Park
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea.
| |
Collapse
|
12
|
Hong Y, Cao F, Fan MY, Lin YC, Gul C, Yu M, Wu X, Zhai X, Zhang YL. Impacts of chemical degradation of levoglucosan on quantifying biomass burning contribution to carbonaceous aerosols: A case study in Northeast China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:152007. [PMID: 34856277 DOI: 10.1016/j.scitotenv.2021.152007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Biomass burning (BB) is an important source of carbonaceous aerosols in Northeast China (NEC). Quantifying the original contribution of BB to organic carbon (OC) [BB-OC] can provide an essential scientific information for the policy-makers to formulate the control measures to improve the air quality in the NEC region. Daily PM2.5 samples were collected in the rural area of Changchun city over the NEC region from May 2017 to May 2018. In addition to carbon contents, BB tracers (e.g., levoglucosan and K+BB, defined as potassium from BB) were also determined, in order to investigate the relative contribution of BB-OC. The results showed that OC was the dominant (28%) components of PM2.5 during the sampling period. Higher concentrations of OC, levoglucosan, and K+BB were observed in the autumn followed by the winter, spring, and summer, indicating that the higher BB activities during autumn and winter in Changchun. By using the Bayesian mixing model, it was found that burning of crop residues were the dominant source (65-79%) of the BB aerosols in Changchun. During the sampling period, the aging in air mass (AAM) ratio was 0.14, indicating that ~86% of levoglucosan in Changchun was degraded. Without considering the degradation of levoglucosan in the atmosphere, the BB-OC ratios were 23%, 28%, 7%, and 4% in the autumn, winter, spring, and summer, respectively, which were 1.4-4.8 time lower than those (14-42%) with consideration of levoglucosan degradation. This illustrated that the relative contribution of BB to OC would be underestimated (~59%) without considering degradation effects of levoglucosan. Although some uncertainty was existed in our estimation, our results did highlight that the control of straw burning was an efficient way to decrease the airborne PM2.5, improving the air quality in the NEC plain.
Collapse
Affiliation(s)
- Yihang Hong
- Yale-NUIST Center on Atmospheric Environment, International Joint Laboratory on Climate and Environment Change, Nanjing University of Information Science and Technology, Nanjing 210044, China; Key Laboratory Meteorological Disaster, Ministry of Education & Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disaster, Nanjing University of Information Science and Technology, Nanjing 210044, China; Jiangsu Provincial Key Laboratory of Agricultural Meteorology, College of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Fang Cao
- Yale-NUIST Center on Atmospheric Environment, International Joint Laboratory on Climate and Environment Change, Nanjing University of Information Science and Technology, Nanjing 210044, China; Key Laboratory Meteorological Disaster, Ministry of Education & Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disaster, Nanjing University of Information Science and Technology, Nanjing 210044, China; Jiangsu Provincial Key Laboratory of Agricultural Meteorology, College of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Mei-Yi Fan
- Yale-NUIST Center on Atmospheric Environment, International Joint Laboratory on Climate and Environment Change, Nanjing University of Information Science and Technology, Nanjing 210044, China; Key Laboratory Meteorological Disaster, Ministry of Education & Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disaster, Nanjing University of Information Science and Technology, Nanjing 210044, China; Jiangsu Provincial Key Laboratory of Agricultural Meteorology, College of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yu-Chi Lin
- Yale-NUIST Center on Atmospheric Environment, International Joint Laboratory on Climate and Environment Change, Nanjing University of Information Science and Technology, Nanjing 210044, China; Key Laboratory Meteorological Disaster, Ministry of Education & Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disaster, Nanjing University of Information Science and Technology, Nanjing 210044, China; Jiangsu Provincial Key Laboratory of Agricultural Meteorology, College of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Chaman Gul
- Reading Academy, Nanjing University of Information Science and Technology, Nanjing, Jiangsu 210044, China
| | - Mingyuan Yu
- Yale-NUIST Center on Atmospheric Environment, International Joint Laboratory on Climate and Environment Change, Nanjing University of Information Science and Technology, Nanjing 210044, China; Key Laboratory Meteorological Disaster, Ministry of Education & Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disaster, Nanjing University of Information Science and Technology, Nanjing 210044, China; Jiangsu Provincial Key Laboratory of Agricultural Meteorology, College of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xia Wu
- Yale-NUIST Center on Atmospheric Environment, International Joint Laboratory on Climate and Environment Change, Nanjing University of Information Science and Technology, Nanjing 210044, China; Key Laboratory Meteorological Disaster, Ministry of Education & Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disaster, Nanjing University of Information Science and Technology, Nanjing 210044, China; Jiangsu Provincial Key Laboratory of Agricultural Meteorology, College of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xiaoyao Zhai
- Yale-NUIST Center on Atmospheric Environment, International Joint Laboratory on Climate and Environment Change, Nanjing University of Information Science and Technology, Nanjing 210044, China; Key Laboratory Meteorological Disaster, Ministry of Education & Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disaster, Nanjing University of Information Science and Technology, Nanjing 210044, China; Jiangsu Provincial Key Laboratory of Agricultural Meteorology, College of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yan-Lin Zhang
- Yale-NUIST Center on Atmospheric Environment, International Joint Laboratory on Climate and Environment Change, Nanjing University of Information Science and Technology, Nanjing 210044, China; Key Laboratory Meteorological Disaster, Ministry of Education & Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disaster, Nanjing University of Information Science and Technology, Nanjing 210044, China; Jiangsu Provincial Key Laboratory of Agricultural Meteorology, College of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| |
Collapse
|
13
|
A Comprehensive Study of a Winter Haze Episode over the Area around Bohai Bay in Northeast China: Insights from Meteorological Elements Observations of Boundary Layer. SUSTAINABILITY 2022. [DOI: 10.3390/su14095424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Based on wind profile radar observations, along with high-frequency wave radar data, meteorological data, and air quality monitoring data, we studied a haze episode in Panjin—a coastal city around Bohai Bay in Northeast China—that occurred from 8 to 13 February 2020. The results show that this persistent pollution event was dominated by PM10 and PM2.5 and their mass concentrations were both ~120 μg/m3 in the mature stage. In the early stage, the southerly sea breeze of ~4.5 m/s brought a large amount of moist air from the sea, which provided sufficient water vapor for the condensation and nucleation of pollutants, and thus accelerated the formation of haze. In the whole haze process, a weak updraft first appeared in the boundary layer, according to the vertical profile, contributing to the collision and growth of particulate matter. Vertical turbulence was barely observed in the mature stage, with the haze layer reaching 900 m in its peak, suggesting stable stratification conditions of the atmospheric boundary layer. The explosive growth of pollutant concentrations was about 10 h later than the formation of the stable stratification condition of the boundary layer. The potential source areas of air pollutants were identified by the WRF-FLEXPART model, which showed the significant contribution of local emissions and the transport effect of sea breeze. This study provides insights into the formation mechanism of haze pollution in this area, but the data observed in this campaign are also valuable for numerical modeling.
Collapse
|
14
|
Li W, Duan F, Zhao Q, Song W, Cheng Y, Wang X, Li L, He K. Investigating the effect of sources and meteorological conditions on wintertime haze formation in Northeast China: A case study in Harbin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149631. [PMID: 34467910 DOI: 10.1016/j.scitotenv.2021.149631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Heavy haze pollution has occurred frequently in the past few years in Northeast China during winters, which was distinct from other regions in China because of the particular meteorological conditions. In this study, we analyzed the temporal variation, source appointment, and influencing factors of PM2.5 from December 1, 2018 to February 28, 2019 in Harbin. The results showed obvious differences between the non-haze and haze periods. The source appointment based on a single-particle aerosol mass spectrometer showed that coal combustion, vehicle emissions, biomass burning, and secondary inorganic aerosols (SIAs) were the major contributors of PM2.5. It is interesting that from the non-haze to the haze period, contributions of coal combustion and SIAs increased (from 20.2% to 27.3%, and from 17.3% to 18.9%, respectively) while other sources decreased or increased little. It indicated the primary pollutants from heating supply were the most important contributor to haze formation due to the low temperature. Furthermore, from levels I (0 < PM2.5 ≤ 75 μg m-3) to III (115 < PM2.5 ≤ 150 μg m-3), SIAs increased from 15.3% to 19.4% (increased 4.1%), while coal combustion from 23.7% to 27.1% and increased 3.4%. It implied clearly that SIAs played a comparable role in the early stage of the evolution of haze episode as that of coal combustion. Combining data on prevailing winds and results of potential source contribution function indicated that PM2.5 during the haze period was primarily influenced by the air masses originating from the southwestern areas via regional transport. A positive correlation was observed between relative humidity (RH) and haze pollution when RH ≥ 60%, indicating that hygroscopic growth may be the principal factor promoting secondary formation. CAPSULE: Coal combustion was the most important source in Harbin due to the low temperature, and secondary aerosols promoted the early stage of the haze evolution.
Collapse
Affiliation(s)
- Wenguang Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Tsinghua University, Beijing 100084, China
| | - Fengkui Duan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Tsinghua University, Beijing 100084, China.
| | - Qing Zhao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Tsinghua University, Beijing 100084, China; Tsing-huan smart source (Beijing) Technology Co., Ltd., Beijing 100084, China.
| | - Weiwei Song
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yuan Cheng
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiaoyan Wang
- Environment Monitoring Center, Harbin 150090, China
| | - Lei Li
- Environment Monitoring Center, Harbin 150090, China
| | - Kebin He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Tsinghua University, Beijing 100084, China
| |
Collapse
|
15
|
Wang Y, Sun Y, Zhao G, Cheng Y. Air Quality in the Harbin-Changchun Metropolitan Area in Northeast China: Unique Episodes and New Trends. TOXICS 2021; 9:357. [PMID: 34941791 PMCID: PMC8707320 DOI: 10.3390/toxics9120357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022]
Abstract
Because of the unique geographical, climate, and anthropogenic emission characteristics, it is meaningful to explore the air pollution in the Harbin-Changchun (HC) metropolitan area. In this study, the Air Quality Index (AQI) and the corresponding major pollutant were investigated for the HC cities, based on the air quality data derived from the China National Environmental Monitoring Center. The number of days with the air quality level of "good" gradually increased during recent years, pointing to an improvement of the air quality in HC. It was also found that ozone, a typical secondary pollutant, exhibited stronger inter-city correlations compared to typical primary pollutants such as carbon monoxide and nitrogen dioxide. In addition, for nearly all the HC cities, the concentrations of fine particulate matter (PM2.5) decreased substantially in 2020 compared to 2015. However, this was not the case for ozone, with the most significant increase of ozone observed for HC's central city, Harbin. This study highlights the importance of ozone reduction for further improving HC's air quality, and the importance of agricultural fire control for eliminating heavily-polluted and even off-the-charts PM2.5 episodes.
Collapse
Affiliation(s)
- Yulong Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; (Y.W.); (G.Z.)
| | - Youwen Sun
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
| | - Gerong Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; (Y.W.); (G.Z.)
| | - Yuan Cheng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; (Y.W.); (G.Z.)
| |
Collapse
|
16
|
Yin Y, Qi J, Gong J, Gao D. Distribution of bacterial concentration and viability in atmospheric aerosols under various weather conditions in the coastal region of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148713. [PMID: 34247090 DOI: 10.1016/j.scitotenv.2021.148713] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 05/13/2023]
Abstract
Airborne bacteria have an important role in atmospheric processes and human health. However, there is still little information on the transmission and distribution of bacteria via the airborne route. To characterize the impact of foggy, haze, haze-fog (HF) and dust days on the concentration and viability of bacteria in atmospheric aerosols, size-segregated bioaerosol samples were collected in the Qingdao coastal region from March 2018 to February 2019. The total airborne microbes and viable/non-viable bacteria in the bioaerosol samples were measured using an epifluorescence microscope after staining with DAPI (4', 6-diamidino-2-phenylindole) and a LIVE/DEAD® BacLight Bacterial Viability Kit. The average concentrations of total airborne microbes on haze and dust days were 6.75 × 105 and 1.03 × 106 cells/m3, respectively, which increased by a factor of 1.3 and 2.5 (on average), respectively, relative to those on sunny days. The concentrations of non-viable bacteria on haze and dust days increased by a factor of 1.2 and 3.6 (on average), respectively, relative to those on sunny days. In contrast, the concentrations of viable bacteria on foggy and HF days were 7.13 × 103 and 5.74 × 103 cells/m3, decreases of 38% and 50%, respectively, compared with those on sunny days. Foggy, haze, dust and HF days had a significant effect on the trend of the seasonal variation in the total airborne microbes and non-viable bacteria. Bacterial viability was 20.8% on sunny days and significantly higher than the 14.1% on foggy days, 11.2% on haze days, 8.6% during the HF phenomenon and 6.1% on dust days, indicating that special weather is harmful to some bacterial species. Correlation analysis showed that the factors that influenced the bacterial concentration and viability depended on different weather conditions. The main influential factors were temperature, NO2 and SO2 concentrations on haze days, and temperature, particulate matter (PM2.5) and NO2 concentrations on foggy days. The median size of particles containing viable bacteria was 1.94 μm on sunny days and decreased to 1.88 μm and 1.74 μm on foggy and haze days, respectively, but increased to 2.18 μm and 2.37 μm on dust and HF days, respectively.
Collapse
Affiliation(s)
- Yidan Yin
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
| | - Jianhua Qi
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China.
| | - Jing Gong
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Dongmei Gao
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
17
|
Abstract
Air pollution with fluidity can influence a large area for a long time and can be harmful to the ecological environment and human health. Haze, one form of air pollution, has been a critical problem since the industrial revolution. Though the actual cause of haze could be various and complicated, in this paper, we have found out that many gases’ distributions and wind power or temperature are related to PM2.5/10’s concentration. Thus, based on the correlation between PM2.5/PM10 and other gaseous pollutants and the timing continuity of PM2.5/PM10, we propose a multilayer long short-term memory haze prediction model. This model utilizes the concentration of O3, CO, NO2, SO2, and PM2.5/PM10 in the last 24 h as inputs to predict PM2.5/PM10 concentrations in the future. Besides pre-processing the data, the primary approach to boost the prediction performance is adding layers above a single-layer long short-term memory model. Moreover, it is proved that by doing so, we could let the network make predictions more accurately and efficiently. Furthermore, by comparison, in general, we have obtained a more accurate prediction.
Collapse
|
18
|
Qi L, Zhang Z, Wang X, Deng F, Zhao J, Liu H. Molecular characterization of atmospheric particulate organosulfates in a port environment using ultrahigh resolution mass spectrometry: Identification of traffic emissions. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126431. [PMID: 34186426 DOI: 10.1016/j.jhazmat.2021.126431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/28/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Organosulfates (OSs) are an important component of atmospheric organic aerosol (OA) and are widespread in various environments. However, the OSs generated from anthropogenic emissions are poorly understood. In this study, the molecular compositions of OSs from atmospheric PM2.5 samples collected during a winter measurement campaign (SEISO-Bohai) at Jingtang Harbor were characterized via ultrahigh resolution mass spectrometry (UHRMS). The changes of port OS compositions were observed in episodes of complete haze pollution. As the pollution aggravated, the relative abundances of OSs were apparently increased, and the molecule compositions became more complex, primarily driven by the oxidation and fragmentation processes. Potential OS precursors from traffic emissions were identified based on an optimized "OS precursor map" developed in the previous study. OSs characterized by high molecular weights and low degrees of both unsaturation and oxidization were suggested to mainly derive from secondary reactions of intermediate volatile organic compounds (IVOCs) emitted by traffic sources. These OSs were primarily detected in clean-day samples, followed by decreasing with the pollution process. In addition, our study also finds that ship emissions may further facilitated OS productions under haze pollution conditions.
Collapse
Affiliation(s)
- Lijuan Qi
- State Key Laboratory of Plateau Ecology and Agriculture, College of Eco-environmental Engineering, Qinghai University, Xining 810016, China; State Key Joint Laboratory of ESPC, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, School of the Environment, Tsinghua University, Beijing 100084, China
| | - Zhining Zhang
- State Key Joint Laboratory of ESPC, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, School of the Environment, Tsinghua University, Beijing 100084, China
| | - Xiaotong Wang
- State Key Joint Laboratory of ESPC, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, School of the Environment, Tsinghua University, Beijing 100084, China
| | - Fanyuan Deng
- State Key Joint Laboratory of ESPC, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, School of the Environment, Tsinghua University, Beijing 100084, China
| | - Junchao Zhao
- State Key Joint Laboratory of ESPC, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, School of the Environment, Tsinghua University, Beijing 100084, China
| | - Huan Liu
- State Key Joint Laboratory of ESPC, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, School of the Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
19
|
Wang Y, Sun Y, Zhang Z, Cheng Y. Spatiotemporal variation and source analysis of air pollutants in the Harbin-Changchun (HC) region of China during 2014-2020. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2021; 8:100126. [PMID: 36157001 PMCID: PMC9488001 DOI: 10.1016/j.ese.2021.100126] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 06/16/2023]
Abstract
This study analyzed the characteristics of air pollution and specific pollution periods within the Harbin-Changchun (HC) metropolitan area during 2014-2020. Regarding annual, seasonal, and monthly variations of the six pollutants, the change trend in 11 cities of HC showed strong consistency in spatial distribution. The western cities (Songyuan, Daqing, and Siping) were vulnerable to dust storms from Inner Mongolia. The concentrations of all air pollutants, except O3-8h, showed downward fluctuation trends from 2014 to 2018 and remained stable from 2018 to 2020 in terms of annual variations. The inter-annual trend of significant reductions in SO2 and SO2/PM2.5 during the heating period indicated that strict emission reduction measures posed by the government were highly successful. The ratio of PM2.5/SO2 was used to identify open biomass burning (OBB), which showed a double peak (October-November (Oct-Nov), March-April (Mar-Apr)). The burning prohibition shifted the OBB from Oct-Nov to Mar-Apr.
Collapse
Affiliation(s)
- Yulong Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Youwen Sun
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, 230031, China
| | - Zhiqing Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yuan Cheng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
20
|
Crop Residue Burning in Northeast China and Its Impact on PM2.5 Concentrations in South Korea. ATMOSPHERE 2021. [DOI: 10.3390/atmos12091212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The impact of crop residue burning in northeastern China on South Korean PM2.5 concentrations was assessed via weather conditions, air quality modeling (AQM), and PM2.5 composition data during two cases exceeding 35 µg·m−3 in November 2015. PM2.5 concentration simulations of Case 1 differed from observations by 3.7–17.6 µg·m−3, overestimating the levels by 6–36%; however, Case 2 varied by 20.0–59.8 µg·m−3 from observations, with a 53–91% underestimation. Case 1 was generally well simulated, whereas the Case 2 simulation failed because the emissions of crop residue burning in northeastern China, as confirmed through satellite analysis (MODIS fires and thermal anomalies) and previous research, were not considered. The portion of organic/elemental carbon ratio during Case 2 was 1.6–2.3 times higher than that of Case 1. These results suggest that it is necessary to consider the effects of crop residue burning in northeast China to establish countermeasures to improve air quality and air quality forecasting in South Korea.
Collapse
|
21
|
Luo Y, Liu S, Che L, Yu Y. Analysis of temporal spatial distribution characteristics of PM 2.5 pollution and the influential meteorological factors using Big Data in Harbin, China. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2021; 71:964-973. [PMID: 33705269 DOI: 10.1080/10962247.2021.1902423] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/04/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
Based on the monitoring data of atmospheric pollutants and the meteorological data in Harbin in 2017, the temporal spatial distribution characteristics of PM2.5 pollution and the relationships between PM2.5 concentration and meteorological factors in this region were analyzed. The PM2.5 concentration data and the meteorological data in 2017 were comprehensively analyzed by using ArcGIS and R. The results show that spatially, the PM2.5 concentration in the central districts of Harbin are high in the southeast and low in the northwest; temporally, PM2.5 pollution is most serious in autumn and winter, with multiple spells of heavy pollution and an obvious "weekend effect", while the air quality is better in spring and summer; overall, relative humidity is positively correlated to PM2.5 concentration, while temperature, wind direction, and wind speed are negatively correlated to PM2.5 mass concentration, and low wind speed and high relative humidity are major contributors to increase of PM2.5 concentration.Implications: Highlight: The use of big data to deal with the data of air pollution and meteorology.Key points: The air pollution data of Harbin in autumn and winter is more serious than that in spring and summer, and is closely related to meteorological factors. Attraction: Big data is used to process air pollution data and meteorological data, and R language is used to describe the relationship between them.
Collapse
Affiliation(s)
- Yao Luo
- Departments of Geographical Science, Harbin Normal University, Harbin, Heilongjiang, People's Republic of China
| | - Shuo Liu
- Departments of Geographical Science, Harbin Normal University, Harbin, Heilongjiang, People's Republic of China
| | - Lina Che
- Departments of Geographical Science, Harbin Normal University, Harbin, Heilongjiang, People's Republic of China
| | - Yi Yu
- Departments of Geographical Science, Harbin Normal University, Harbin, Heilongjiang, People's Republic of China
| |
Collapse
|
22
|
Ravindra K, Singh T, Sinha V, Sinha B, Paul S, Attri SD, Mor S. Appraisal of regional haze event and its relationship with PM 2.5 concentration, crop residue burning and meteorology in Chandigarh, India. CHEMOSPHERE 2021; 273:128562. [PMID: 33131738 DOI: 10.1016/j.chemosphere.2020.128562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/04/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Air pollution affects not only the air quality in megacities but also in medium and small-sized cities due to rapid urbanization, industrialization, and other anthropogenic activities. From October 28, 2015 to November 3, 2015, the Indo-Gangetic Plains region, including Chandigarh encountered an episode of poor visibility during the daytime. The daily average PM2.5 concentration reached 191 μg/m3, and visibility reduced by ∼2.2 times in the Chandigarh region. PM2.5 concentration was found around 4 times higher than a non-haze day and more than 3 times higher than National Ambient Air Quality Standards for 24 h. A significant correlation between PM2.5 and CO (r: 0.87) during the haze period indicated similarity in their emission sources; which was attributed to the burning of solid organic matter. Further, satellite data and back-trajectory analysis of air masses showed large-scale rice stubble burning in the agricultural fields, adjoining to the city areas. The transboundary movement of air masses below 500 m and meteorological conditions played a major role in building the pollution load in the Chandigarh region. Moreover, the enhanced concentration of biomass burning tracers, i.e., organic carbon (∼3.8 times) and K+ ions (2∼ times) in PM2.5 and acetonitrile (∼2.3 times) in ambient air was observed during the haze event. The study demonstrates how regional emissions and meteorological conditions can affect the air quality in a city; which can be useful for proper planning and mitigation policies to minimize high air pollution episodes.
Collapse
Affiliation(s)
- Khaiwal Ravindra
- Department of Community Medicine, School of Public Health, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India.
| | - Tanbir Singh
- Department of Environment Studies, Panjab University, Chandigarh, 160014, India
| | - Vinayak Sinha
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali, Sector 81 S.A.S. Nagar Manauli PO, Punjab, 140306, India
| | - Baerbel Sinha
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali, Sector 81 S.A.S. Nagar Manauli PO, Punjab, 140306, India
| | - Surender Paul
- Indian Meteorological Department, Ministry of Earth Sciences, Chandigarh, 160037, India
| | - S D Attri
- Indian Meteorological Department, Ministry of Earth Sciences, New Delhi, 110003, India
| | - Suman Mor
- Department of Environment Studies, Panjab University, Chandigarh, 160014, India
| |
Collapse
|
23
|
Zhao H, Gui K, Ma Y, Wang Y, Wang Y, Wang H, Zheng Y, Li L, Zhang L, Che H, Zhang X. Climatology and trends of aerosol optical depth with different particle size and shape in northeast China from 2001 to 2018. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:142979. [PMID: 33498120 DOI: 10.1016/j.scitotenv.2020.142979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/17/2020] [Accepted: 10/05/2020] [Indexed: 06/12/2023]
Abstract
Aerosol generated from the economic development and extensive urbanization in northeast China (NEC) could influence aerosol optical properties and affect the regional air quality. The level 3 aerosol optical depth (AOD) of different particle size and shape (spherical or nonspherical) obtained by Multiangle Imaging Spectroradiometer (MISR) version 23 were used to estimate their seasonal, annual, and decadal distribution and contribution in NEC from 2001 to 2018. The highest AOD of approximately 0.3 was found in the central Liaoning urban agglomeration, and the lowest AOD occurred in the mountainous area of NEC; the proportion of spherical AOD in NEC region was more than 90%. The contribution of large AOD was higher in spring, ranging from 28.8% to 29.8%. In spring and summer, small and medium AODs were concentrated in central Liaoning (approximately 0.2-0.3 and 0.06-0.08, respectively). The annual variation in the AOD of different particle size was significantly higher in Liaoning than in Jilin and Heilongjiang. The annual proportions of small and spherical AODs were approximately 60% and 90%, respectively. The annual occurrence of clean conditions with AOD < 0.05 was most common in northern Heilongjiang (approximately 20%). In NEC, the annual occurrence frequencies of 0.05 < AOD < 0.15 and AOD > 0.6 were the highest (approximately 50%) and the lowest (less than 1%), respectively. Interdecadal AOD revealed a positive trend from 2001 to 2008 and a negative trend from 2009 to 2018. The frequency of occurrence trend at different AOD levels also changed from positive to negative between these two periods. The findings in this study are based on the first aerosol retrieval of the newly released MISR in NEC. The results provide a comprehensive understanding of the regional and climatological aerosol extinction with different AOD of size and shape as well as various level bins in NEC.
Collapse
Affiliation(s)
- Hujia Zhao
- Institute of Atmospheric Environment, China Meteorological Administration, Shenyang 110166, China.
| | - Ke Gui
- State Key Laboratory of Severe Weather (LASW) and Key Laboratory for Atmospheric Chemistry (LAC), Institute of Atmospheric Composition and Environmental Meteorology, Chinese Academy of Meteorological Sciences (CAMS), CMA, Beijing 100081, China
| | - Yanjun Ma
- Institute of Atmospheric Environment, China Meteorological Administration, Shenyang 110166, China
| | - Yangfeng Wang
- State Key Laboratory of Severe Weather (LASW) and Key Laboratory for Atmospheric Chemistry (LAC), Institute of Atmospheric Composition and Environmental Meteorology, Chinese Academy of Meteorological Sciences (CAMS), CMA, Beijing 100081, China
| | - Yaqiang Wang
- State Key Laboratory of Severe Weather (LASW) and Key Laboratory for Atmospheric Chemistry (LAC), Institute of Atmospheric Composition and Environmental Meteorology, Chinese Academy of Meteorological Sciences (CAMS), CMA, Beijing 100081, China
| | - Hong Wang
- State Key Laboratory of Severe Weather (LASW) and Key Laboratory for Atmospheric Chemistry (LAC), Institute of Atmospheric Composition and Environmental Meteorology, Chinese Academy of Meteorological Sciences (CAMS), CMA, Beijing 100081, China
| | - Yu Zheng
- State Key Laboratory of Severe Weather (LASW) and Key Laboratory for Atmospheric Chemistry (LAC), Institute of Atmospheric Composition and Environmental Meteorology, Chinese Academy of Meteorological Sciences (CAMS), CMA, Beijing 100081, China
| | - Lei Li
- State Key Laboratory of Severe Weather (LASW) and Key Laboratory for Atmospheric Chemistry (LAC), Institute of Atmospheric Composition and Environmental Meteorology, Chinese Academy of Meteorological Sciences (CAMS), CMA, Beijing 100081, China
| | - Lei Zhang
- State Key Laboratory of Severe Weather (LASW) and Key Laboratory for Atmospheric Chemistry (LAC), Institute of Atmospheric Composition and Environmental Meteorology, Chinese Academy of Meteorological Sciences (CAMS), CMA, Beijing 100081, China
| | - Huizheng Che
- State Key Laboratory of Severe Weather (LASW) and Key Laboratory for Atmospheric Chemistry (LAC), Institute of Atmospheric Composition and Environmental Meteorology, Chinese Academy of Meteorological Sciences (CAMS), CMA, Beijing 100081, China
| | - Xiaoye Zhang
- State Key Laboratory of Severe Weather (LASW) and Key Laboratory for Atmospheric Chemistry (LAC), Institute of Atmospheric Composition and Environmental Meteorology, Chinese Academy of Meteorological Sciences (CAMS), CMA, Beijing 100081, China
| |
Collapse
|
24
|
Wang Z, Hu W, Niu H, Hu W, Wu Y, Wu L, Ren L, Deng J, Guo S, Wu Z, Zhang D, Fu P, Hu M. Variations in physicochemical properties of airborne particles during a heavy haze-to-dust episode in Beijing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:143081. [PMID: 33190904 DOI: 10.1016/j.scitotenv.2020.143081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
The variations in physicochemical properties of airborne particles collected during a typical transition from haze to dust were investigated using single particle analysis with transmission and scanning electron microscopes combined with online measurement of chemical compositions of airborne particles in Beijing in February 2013. The transition was divided into three phases based on the weather condition. During haze pollution (Phase 1), gaseous and particle pollutants enhanced gradually. Results from single particle analysis showed that more coatings and more anthropogenic elements (e.g., S) appeared on the surface of fine and coarse particles, which was probably caused by efficient aqueous-phase reactions under high humidity (70%) condition. Phase 2 was dust intrusion episode. PM10 reached over 1000 μg m-3. Larger fractions of mineral particles and bare-like soot particles were observed in fine particles, while the fraction of secondary particles with coatings decreased. The proportion of black carbon in submicron particles also increased. Photochemical oxidation in gas phase likely dominated in secondary formation under high O3 concentration. After the dust episode (Phase 3), secondary formation enhanced obviously. Soot aged quickly and had a larger mode of 0.45 μm than the other phases. The size modes of airborne fine particles during Phases 1 and 3 were 0.35 μm, which were a bit larger than that during Phase 2 (0.24 μm). These results indicate that dust plumes accompanied with strong wind brought mineral particles in both fine and coarse modes and freshly emitted particles with smaller sizes, and swept away pre-presence air pollutants. This study could provide detailed information on the physicochemical properties of airborne particles during typical severe pollution processes in a short time. Such short-term change should be taken into account in order to more accurately assess the environmental, climatic and health-related effects of airborne particles.
Collapse
Affiliation(s)
- Zihan Wang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Wei Hu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Hongya Niu
- Key Laboratory of Resource Exploration Research of Hebei Province, Hebei University of Engineering, Handan 056038, China
| | - Weiwei Hu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yusheng Wu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Libin Wu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Lujie Ren
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Junjun Deng
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Song Guo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Zhijun Wu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Daizhou Zhang
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto 862-8502, Japan
| | - Pingqing Fu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Min Hu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| |
Collapse
|
25
|
Zhong J, Zhang X, Zhang Y, Wang Y, Zhang Z, Shen X, Sun J, Zhang L, Gui K, Ren S, Zhao H, Li Y, Gao Z. Drivers of the rapid rise and daily-based accumulation in PM 1. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:143394. [PMID: 33221018 DOI: 10.1016/j.scitotenv.2020.143394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/21/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
Submicron particle matter (PM1) that rapidly reaches exceedingly high levels in several or more hours in the North China Plain (NCP) has been threating~400 million individuals' health for decades. The precise cause of the rapid rise in PM1 remains uncertain. Based on sophisticated measurements in PM1 characterizations and corresponding boundary-layer (BL) meteorology in the NCP, it demonstrates that this rising is mainly driven by BL meteorological variability. Large increases in near-ground inversions and decreases in vertical heat/momentum fluxes during the day-night transition result in a significant reduction in mixing space. The PM1 that is vertically distributed before accumulates at the near-ground and then experiences a rapid rise. Besides meteorological variability, a part of the rise in organics is ascribed to an increase of coal combustion at midnight. The daily-based accumulation of PM1 is attributed to day-to-day vertical meteorological variability, particularly diminishing mixing layer height exacerbated by aerosol-radiation feedback. Resolved by a multiple linear regression model, BL meteorological variability can explain 71% variances of PM1. In contrast, secondary chemical reactions facilitate the daily-based accumulation of PM1 rather than the rapid rise. Our results show that BL meteorological variability plays a dominant role in PM1 rising and day-to-day accumulation, which is crucial for understanding the mechanism of heavy pollution formation.
Collapse
Affiliation(s)
- Junting Zhong
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoye Zhang
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China; Center for Excellence in Regional Atmospheric Environment, IUE, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Yangmei Zhang
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China.
| | - Yaqiang Wang
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Zhouxiang Zhang
- Hubei Ecological Environment Monitoring Center Station, Wuhan 430070, China
| | - Xiaojing Shen
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Junying Sun
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Lei Zhang
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Ke Gui
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Sanxue Ren
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Huarong Zhao
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Yubin Li
- Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Zhiqiu Gao
- Nanjing University of Information Science & Technology, Nanjing 210044, China; Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| |
Collapse
|
26
|
Zhang Y, Shi Z, Wang Y, Liu L, Zhang J, Li J, Xia Y, Ding X, Liu D, Kong S, Niu H, Fu P, Zhang X, Li W. Fine particles from village air in northern China in winter: Large contribution of primary organic aerosols from residential solid fuel burning. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:116420. [PMID: 33433345 DOI: 10.1016/j.envpol.2020.116420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/24/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
Rural residential emissions contribute significantly to regional air pollution in China, but our understanding on how residential solid fuel burning influences the village outdoor air quality is limited. In this study, we compared the fine particulate matter (PM2.5) composition and individual particle characteristics from 11 to 18 January 2017 at a village and an urban site in northern China. At the village site, each day was divided into four periods: cooking (07:30-10:00; 16:00-17:00), daytime (10:00-16:00), heating (17:00-24:00), and midnight (00:00-07:30) periods. The highest PM2.5 concentration occurred during the cooking period (236 ± 88 μg m-3), which was characterized by high concentrations of K+ and abundant primary OM-K particles (i.e., organic matter mixed with K-salts) emitted from residential biomass burning. The second highest PM2.5 concentration was found during the heating period (161 ± 97 μg m-3), and the PM2.5 contained abundant spherical primary OM particles (i.e., tarballs) emitted from residential coal burning. The primary emissions from residential solid fuel burning resulted in 75% of the village OM by mass consisting of primary OM and 67% of the village aerosol particles by number internally mixing with primary OM particles. The village PM2.5 composition was different from that of the urban PM2.5, with the former containing more OM (47% vs 32%) and less secondary inorganic ions (30% vs 46%). Individual primary OM-K and tarballs were abundant in the village air. These results suggest a large contribution of village residential emissions in the winter to village air pollution. Our study highlights that the residential health in villages of northern China should be paid more attention because of high PM2.5 concentrations and abundant toxic particles during the cooking and heating periods per day in winter.
Collapse
Affiliation(s)
- Yinxiao Zhang
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou, 310027, China
| | - Zongbo Shi
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Yuanyuan Wang
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou, 310027, China
| | - Lei Liu
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou, 310027, China
| | - Jian Zhang
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou, 310027, China
| | - Jiefeng Li
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou, 310027, China
| | - Yi Xia
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou, 310027, China
| | - Xiaokun Ding
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Dantong Liu
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou, 310027, China
| | - Shaofei Kong
- Department of Atmospheric Sciences, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Hongya Niu
- Key Laboratory of Resource Exploration Research of Hebei Province, Hebei University of Engineering, Handan, 056038, China
| | - Pingqing Fu
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Xiaoye Zhang
- Key Laboratory of Atmospheric Chemistry of CMA, Institute of Atmospheric Composition, Chinese Academy of Meteorological Sciences, Beijing, 100081, China
| | - Weijun Li
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
27
|
Zhang X, Ding X, Talifu D, Wang X, Abulizi A, Maihemuti M, Rekefu S. Humidity and PM 2.5 composition determine atmospheric light extinction in the arid region of northwest China. J Environ Sci (China) 2021; 100:279-286. [PMID: 33279040 DOI: 10.1016/j.jes.2020.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 06/12/2023]
Abstract
Atmospheric visibility can directly reflect the air quality. In this study, we measured water-soluble ions (WSIs), organic and element carbon (OC and EC) in PM2.5 from September 2017 to August 2018 in Urumqi, NW China. The results show that SO42-, NO3- and NH4+ were the major WSIs, together accounting for 7.32%-84.12% of PM2.5 mass. Total carbon (TC=OC+EC) accounted for 12.12% of PM2.5 mass on average. And OC/EC > 2 indicated the formation of secondary organic carbon (SOC). The levels of SO42-, NO3- and NH4+ in low visibility days were much higher than those in high visibility days. Relative humidity (RH) played a key role in affecting visibility. The extinction coefficient (bext) that estimated via Koschmieder formula with visibility was the highest in winter (1441.05 ± 739.95 Mm-1), and the lowest in summer (128.58 ± 58.00 Mm-1). The bext that estimated via IMPROVE formula with PM2.5 chemical component was mainly contributed by (NH4)2SO4 and NH4NO3. The bext values calculated by both approaches presented a good correlation with each other (R2 = 0.87). Multiple linear regression (MLR) method was further employed to reconstruct the empirical regression model of visibility as a function of PM2.5 chemical components, NO2 and RH. The results of source apportionment by Positive Matrix Factorization (PMF) model showed that residential coal combustion and vehicle emissions were the major sources of bext.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- Key Laboratory of Coal Clean Conversion and Chemical Engineering Process, Xinjiang Uyghur Autonomous Region, Xinjiang University, Urumqi 830046, China
| | - Xiang Ding
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou 510640, China
| | - Dilinuer Talifu
- Key Laboratory of Coal Clean Conversion and Chemical Engineering Process, Xinjiang Uyghur Autonomous Region, Xinjiang University, Urumqi 830046, China.
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou 510640, China
| | - Abulikemu Abulizi
- Key Laboratory of Coal Clean Conversion and Chemical Engineering Process, Xinjiang Uyghur Autonomous Region, Xinjiang University, Urumqi 830046, China
| | - Mailikezhati Maihemuti
- Key Laboratory of Coal Clean Conversion and Chemical Engineering Process, Xinjiang Uyghur Autonomous Region, Xinjiang University, Urumqi 830046, China
| | - Suwubinuer Rekefu
- Key Laboratory of Coal Clean Conversion and Chemical Engineering Process, Xinjiang Uyghur Autonomous Region, Xinjiang University, Urumqi 830046, China
| |
Collapse
|
28
|
Liu L, Zhang J, Du R, Teng X, Hu R, Yuan Q, Tang S, Ren C, Huang X, Xu L, Zhang Y, Zhang X, Song C, Liu B, Lu G, Shi Z, Li W. Chemistry of Atmospheric Fine Particles During the COVID-19 Pandemic in a Megacity of Eastern China. GEOPHYSICAL RESEARCH LETTERS 2021; 48:2020GL091611. [PMID: 33612876 PMCID: PMC7883225 DOI: 10.1029/2020gl091611] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/06/2020] [Accepted: 12/10/2020] [Indexed: 05/19/2023]
Abstract
Air pollution in megacities represents one of the greatest environmental challenges. Our observed results show that the dramatic NOx decrease (77%) led to significant O3 increases (a factor of 2) during the COVID-19 lockdown in megacity Hangzhou, China. Model simulations further demonstrate large increases of daytime OH and HO2 radicals and nighttime NO3 radical, which can promote the gas-phase reaction and nocturnal multiphase chemistry. Therefore, enhanced NO3 - and SO4 2- formation was observed during the COVID-19 lockdown because of the enhanced oxidizing capacity. The PM2.5 decrease was only partially offset by enhanced aerosol formation with its reduction reaching 50%. In particular, NO3 - decreased largely by 68%. PM2.5 chemical analysis reveals that vehicular emissions mainly contributed to PM2.5 under normal conditions in Hangzhou. Whereas, stationary sources dominated the residual PM2.5 during the COVID-19 lockdown. This study provides evidence that large reductions in vehicular emissions can effectively mitigate air pollution in megacities.
Collapse
Affiliation(s)
- Lei Liu
- Key Laboratory of Geoscience Big Data and Deep Resource of Zhejiang ProvinceDepartment of Atmospheric SciencesSchool of Earth Sciences, Zhejiang UniversityHangzhouChina
| | - Jian Zhang
- Key Laboratory of Geoscience Big Data and Deep Resource of Zhejiang ProvinceDepartment of Atmospheric SciencesSchool of Earth Sciences, Zhejiang UniversityHangzhouChina
| | | | - Xiaomi Teng
- Key Laboratory of Geoscience Big Data and Deep Resource of Zhejiang ProvinceDepartment of Atmospheric SciencesSchool of Earth Sciences, Zhejiang UniversityHangzhouChina
| | - Rui Hu
- Hangzhou Meteorological BureauHangzhouChina
| | - Qi Yuan
- Key Laboratory of Geoscience Big Data and Deep Resource of Zhejiang ProvinceDepartment of Atmospheric SciencesSchool of Earth Sciences, Zhejiang UniversityHangzhouChina
| | - Shanshan Tang
- School of EnvironmentHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhouChina
| | - Chuanhua Ren
- School of Atmospheric SciencesNanjing UniversityNanjingChina
| | - Xin Huang
- School of Atmospheric SciencesNanjing UniversityNanjingChina
| | - Liang Xu
- Key Laboratory of Geoscience Big Data and Deep Resource of Zhejiang ProvinceDepartment of Atmospheric SciencesSchool of Earth Sciences, Zhejiang UniversityHangzhouChina
| | - Yinxiao Zhang
- Key Laboratory of Geoscience Big Data and Deep Resource of Zhejiang ProvinceDepartment of Atmospheric SciencesSchool of Earth Sciences, Zhejiang UniversityHangzhouChina
| | - Xiaoye Zhang
- State Key Laboratory of Severe Weather/Key Laboratory of Atmospheric Chemistry of China Meteorological AdministrationChinese Academy of Meteorological SciencesBeijingChina
| | - Congbo Song
- School of Geography, Earth and Environmental SciencesUniversity of BirminghamBirminghamUK
| | - Bowen Liu
- Department of EconomicsUniversity of BirminghamBirminghamUK
| | - Gongda Lu
- School of Geography, Earth and Environmental SciencesUniversity of BirminghamBirminghamUK
| | - Zongbo Shi
- School of Geography, Earth and Environmental SciencesUniversity of BirminghamBirminghamUK
| | - Weijun Li
- Key Laboratory of Geoscience Big Data and Deep Resource of Zhejiang ProvinceDepartment of Atmospheric SciencesSchool of Earth Sciences, Zhejiang UniversityHangzhouChina
| |
Collapse
|
29
|
Yuan Q, Teng X, Tu S, Feng B, Wu Z, Xiao H, Cai Q, Zhang Y, Lin Q, Liu Z, He M, Ding X, Li W. Atmospheric fine particles in a typical coastal port of Yangtze River Delta. J Environ Sci (China) 2020; 98:62-70. [PMID: 33097159 DOI: 10.1016/j.jes.2020.05.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/22/2020] [Accepted: 05/24/2020] [Indexed: 05/24/2023]
Abstract
In recent decades, coastal ports have experienced rapid development and become an important economic and ecological hub in China. Atmospheric particle is a research hotspot in atmospheric environmental sciences in inland regions. However, few studies on the atmospheric particle were conducted in coastal port areas in China, which indeed suffers atmospheric particle pollution. Lack of the physicochemical characteristics of fine particles serves as an obstacle toward the accurate control for air pollution in the coastal port area in China. Here, a field observation was conducted in an important coastal port city in Yangtze River Delta from March 6 to March 19, 2019. The average PM2.5 concentration was 63.7 ± 27.8 μg/m3 and NO3-, SO42-, NH4+, and organic matter accounted for ~60% of PM2.5. Fe was the most abundant trace metal element and V as the ship emission indicator was detected. Transmission electron microscopy images showed that SK-rich, soot, Fe, SK-soot and SK-Fe were the major individual particles in the coastal port. V and soluble Fe were detected in sulfate coating of SK-Fe particles. We found that anthropogenic emissions, marine sea salt, and secondary atmosphere process were the major sources of fine particles. Backward trajectory analysis indicated that the dominant air masses were marine air mass, inland air mass from northern Zhejiang and inland-marine mixed air mass from Shandong and Shanghai during the sampling period. The findings can help us better understand the physicochemical properties of atmospheric fine particles in the coastal port of Eastern China.
Collapse
Affiliation(s)
- Qi Yuan
- Key Laboratory of Geoscience Big Data and Deep Resource of Zhejiang Province, Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China.
| | - Xiaomi Teng
- Key Laboratory of Geoscience Big Data and Deep Resource of Zhejiang Province, Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
| | - Shaoxuan Tu
- Key Laboratory of Geoscience Big Data and Deep Resource of Zhejiang Province, Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
| | - Binxin Feng
- Key Laboratory of Geoscience Big Data and Deep Resource of Zhejiang Province, Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
| | - Zhiyu Wu
- Key Laboratory of Geoscience Big Data and Deep Resource of Zhejiang Province, Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
| | - Hang Xiao
- Center for Excellence in Regional Atmospheric Environment & Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Laboratory of Urban Environmental Processes and Pollution Control of Zhejiang Province, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo 315830, China
| | - Qiuliang Cai
- Key Laboratory of Urban Environmental Processes and Pollution Control of Zhejiang Province, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo 315830, China
| | - Yinxiao Zhang
- Key Laboratory of Geoscience Big Data and Deep Resource of Zhejiang Province, Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
| | - Qiuhan Lin
- Key Laboratory of Geoscience Big Data and Deep Resource of Zhejiang Province, Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
| | - Zhaoce Liu
- School of Earth Science and Engineering, Hebei University of Engineering, Handan 056038, China
| | - Mengmeng He
- Key Laboratory of Urban Environmental Processes and Pollution Control of Zhejiang Province, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo 315830, China
| | - Xiaokun Ding
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Weijun Li
- Key Laboratory of Geoscience Big Data and Deep Resource of Zhejiang Province, Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
30
|
Xia H, Huang D, Bao F, Li M, Zhang Y, Chen C, Zhao J. Photochemical aging of Beijing urban PM 2.5: Production of oxygenated volatile organic compounds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140751. [PMID: 32673920 DOI: 10.1016/j.scitotenv.2020.140751] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
PM2.5 has become the dominant atmospheric pollutant in many countries. Many components of PM2.5 are highly photoactive. However, the photochemical aging of PM2.5 remains poorly understood. In this study, the photoaging of real PM2.5 samples collected from 2017 to 2018 in Beijing under simulated solar radiation (λ ~ 340-850 nm) was investigated. Our study showed that large amounts of oxygenated volatile organic compounds (OVOCs), such as acetaldehyde, formic acid, acetone and acetic acid, were released during the photochemical aging of PM2.5. Furthermore, although a positive correlation between the OVOCs yield and the organic matter (OM) in PM2.5 was observed, the product distribution from the photoaging of PM2.5 was different from that in the direct photolysis of artificially synthesized SOA. Because of the release of OVOCs, the PM2.5 mass loss was evaluated to be ~1.80% per day under typical atmospheric conditions. The OVOCs released during the photoaging of PM2.5 may contribute substantially to the OVOCs sources omitted from troposphere chemistry models and may have a significant effect on the OVOCs distribution and oxidation capacity of the atmosphere.
Collapse
Affiliation(s)
- Hongling Xia
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Di Huang
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Fengxia Bao
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Meng Li
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yue Zhang
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Chuncheng Chen
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Jincai Zhao
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| |
Collapse
|
31
|
Li L, Wang K, Chen W, Zhao Q, Liu L, Liu W, Liu Y, Jiang J, Liu J, Zhang M. Atmospheric pollution of agriculture-oriented cities in Northeast China: A case in Suihua. J Environ Sci (China) 2020; 97:85-95. [PMID: 32933743 DOI: 10.1016/j.jes.2020.04.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
Agriculture-oriented cities in Northeastern China have experienced frequent atmospheric pollution events. Deeper understandings of the pollution characteristics, haze causes and effects of management on local air quality are crucial for conducting integrated management approaches for the sustainable development of agriculture-oriented cities. Taking a typical agriculture-dominant city (i.e., Suihua) in Northeast China, we analyzed in detail the characteristics and causes of atmospheric pollution and evaluated the straw-burning prohibition using multisource data. The results showed a clear temporal pattern of air quality index (AQI) on an annual scale (i.e., 2015-April 2019), with two typical pollution periods occurring in late autumn and early spring. The large areas of concentrated straw burning at local and regional scales accounted for the first period (i.e., October and November), while dust emissions and farming disturbances comprised the second period. The interannual variation in pollution periods among these years was large, showing similar trends from 2015 to 2017 and the postponed late-autumn pollution period in 2018. Our evaluation has shown that the prohibition effect of straw burning significantly improved air quality in 2018, with a reduction of 59% ± 88% in the PM2.5 concentrations in October and November compared to 2015-2017. However, From October to April of the following year, the improvement effect was not significant due to postponement of straw burning to February or March. Our analysis also highlighted the roles of meteorological conditions, Therefore, combined with the promotion of straw utilization, scientifically prescribed burning considering the burning amount and location, meteorological conditions and regional transportation should be implemented.
Collapse
Affiliation(s)
- Lili Li
- State Key Laboratory of Urban Water Resources and Environment,School of Environment, Harbin Institute of Technology, Harbin150090, China
| | - Kun Wang
- State Key Laboratory of Urban Water Resources and Environment,School of Environment, Harbin Institute of Technology, Harbin150090, China.
| | - Weiwei Chen
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun130102, China.
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment,School of Environment, Harbin Institute of Technology, Harbin150090, China
| | - Lijuan Liu
- Suihua Ecological Environment Monitoring Center, Suihua152000, China
| | - Wei Liu
- Heilongjiang Provincial Environmental Science Research Institute,Harbin150090, China
| | - Yang Liu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun130102, China
| | - Junqiu Jiang
- State Key Laboratory of Urban Water Resources and Environment,School of Environment, Harbin Institute of Technology, Harbin150090, China
| | - Jiumeng Liu
- State Key Laboratory of Urban Water Resources and Environment,School of Environment, Harbin Institute of Technology, Harbin150090, China
| | - Mengduo Zhang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun130102, China
| |
Collapse
|
32
|
Zhu Y, Li W, Lin Q, Yuan Q, Liu L, Zhang J, Zhang Y, Shao L, Niu H, Yang S, Shi Z. Iron solubility in fine particles associated with secondary acidic aerosols in east China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114769. [PMID: 32428816 DOI: 10.1016/j.envpol.2020.114769] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 05/24/2023]
Abstract
Soluble iron (FeS) in aerosols contributes to free oxygen radical generation with implications for human health, and potentially catalyzes sulfur dioxide oxidation. It is also an important external source of micronutrients for ocean ecosystems. However, factors controlling FeS concentration and its contribution to total iron (FeT) in aerosols remain poorly understand. Here, FeS and FeT in PM2.5 was studied at four urban sites in eastern China from 21 to 31 December, 2017. Average FeT (869-1490 ng m-3) and FeS (24-68 ng m-3) concentrations were higher in northern than southern China cities, but Fe solubility (%FeS, 2.7-5.0%) showed no spatial pattern. Correlation analyses suggested %FeS was strongly correlated with FeS and PM2.5 instead of FeT concentrations. Individual particle observations confirmed that more than 65% of nano-sized Fe-containing particles were internally mixed with sulfates and nitrates. Furthermore, there was a high correlation between sulfates or nitrates/FeT molar ratio and %FeS. We also found that the sulfates/nitrates had weaker effects on %FeS at RH < 50% than at RH > 50%, suggesting RH as indirect factor can influence %FeS in PM2.5. These results suggest an important role of chemical processing in enhancing %FeS in the polluted atmosphere.
Collapse
Affiliation(s)
- Yanhong Zhu
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Weijun Li
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou, Zhejiang, 310027, China.
| | - Qiuhan Lin
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Qi Yuan
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Lei Liu
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Jian Zhang
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Yinxiao Zhang
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Longyi Shao
- State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing, 100086, China
| | - Hongya Niu
- Key Laboratory of Resource Exploration Research of Hebei Province, Hebei University of Engineering, Handan, 056038, China
| | - Shushen Yang
- School of Energy and Environment, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Zongbo Shi
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
33
|
Ding S, He J, Liu D, Zhang R, Yu S. The spatially heterogeneous response of aerosol properties to anthropogenic activities and meteorology changes in China during 1980-2018 based on the singular value decomposition method. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:138135. [PMID: 32408438 DOI: 10.1016/j.scitotenv.2020.138135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/20/2020] [Accepted: 03/21/2020] [Indexed: 06/11/2023]
Abstract
The unsustainable and rapid economy development brings air pollution prominently in China. In the last decade, the haze weather and its influencing mechanism across China have received increasingly attention. Although previous research has extensively focused on the characteristics of aerosols, better understanding of long-term variation in aerosols and their determinants since the Reform and Opening-up still lack in China. Furthermore, the previous studies exploring the influencing mechanism behind haze episodes by using statistical method only reflect correlation between pollutant concentration and indicators at single station, which cannot consider the remote influences resulting from atmosphere transport. In this research, we investigated the spatiotemporal pattern of aerosol optical depth (AOD) and aerosol species in China during 1980-2018 and explored the spatially heterogeneous response of AOD and aerosol component to meteorological conditions and urbanization based on singular value decomposition (SVD) method. The results indicated that AOD exhibited an upward trend in nearly 40 years, especially in eastern China with the fastest growth of sulfate aerosol. The heterogeneity of determinants revealed a great gap in anthropogenic activities and meteorological influences on aerosol varing regions. In eastern China, anthropogenic activities should be closely monitored. Besides, scientific desert governance and urban construction exert positive impact on air pollution in Xinjiang province.
Collapse
Affiliation(s)
- Su Ding
- School of Resource and Environmental Sciences, Wuhan University, 129 Luoyu Road, Wuhan 430079, China.
| | - Jianhua He
- School of Resource and Environmental Sciences, Wuhan University, 129 Luoyu Road, Wuhan 430079, China; Key Laboratory of Geographic Information System, Ministry of Education, Wuhan University, 129 Luoyu Road, Wuhan 430079, China.
| | - Dianfeng Liu
- School of Resource and Environmental Sciences, Wuhan University, 129 Luoyu Road, Wuhan 430079, China; Key Laboratory of Geographic Information System, Ministry of Education, Wuhan University, 129 Luoyu Road, Wuhan 430079, China.
| | - Ruitian Zhang
- School of Resource and Environmental Sciences, Wuhan University, 129 Luoyu Road, Wuhan 430079, China.
| | - Shuying Yu
- School of Resource and Environmental Sciences, Wuhan University, 129 Luoyu Road, Wuhan 430079, China.
| |
Collapse
|
34
|
Yang G, Zhao H, Tong DQ, Xiu A, Zhang X, Gao C. Impacts of post-harvest open biomass burning and burning ban policy on severe haze in the Northeastern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:136517. [PMID: 32059315 DOI: 10.1016/j.scitotenv.2020.136517] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 06/10/2023]
Abstract
Open filed biomass burning is a major contributor to airborne particulate matter and reactive trace gases during the post-harvest season in the Northeastern China. Due to prevailing weather conditions and high emission density, this region is prone to the accumulation of air pollutants that often leads to severe haze events. In this study, we combined satellite and ground observations, and a regional air quality modeling system to quantify the contribution of open biomass burning to surface PM2.5 (particulate matter with diameter less than 2.5 µm) concentrations during a severe haze episode. During this period (November 1st - 4th, 2015), the average PM2.5 concentrations in Heilongjiang, Jilin, and Liaoning provinces reached 116.98 μg/m3, 98.60 μg/m3, and 70.17 μg/m3 respectively. Model simulations showed that open biomass burning contributed to 52.7% of PM2.5 concentrations over Northeast China. Using the differences in active fire spots as detected by the Visible Infrared Imaging Radiometer Suites (VIIRS) aboard the Suomi-NPP, we estimated that the burning ban enforced in 2018 have caused the PM2.5 concentrations to decrease from the 2015 level by 67.10%, 53.23%, and 10.06% in the Heilongjiang, Jilin, and Liaoning provinces respectively. Over the region, the burning ban proved to be effective in reducing fire emissions and lowering region-wide PM2.5 concentration by 48.1% during the post-harvest season.
Collapse
Affiliation(s)
- Guangyi Yang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Hongmei Zhao
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Daniel Q Tong
- Center for Spatial Information Science and Systems, George Mason University, VA 22030, USA; Department of Atmospheric, Oceanic and Earth Sciences, George Mason University, Fairfax, VA 22030, USA.
| | - Aijun Xiu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Xuelei Zhang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Chao Gao
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
35
|
Qu Y, Gong Y, Ma J, Wei H, Liu Q, Liu L, Wu H, Yang S, Chen Y. Potential sources, influencing factors, and health risks of polycyclic aromatic hydrocarbons (PAHs) in the surface soil of urban parks in Beijing, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:114016. [PMID: 32041009 DOI: 10.1016/j.envpol.2020.114016] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 05/27/2023]
Abstract
Urban parks are an important part of the urban ecological environment. The environmental quality of parks is related to human health. To evaluate sources of polycyclic aromatic hydrocarbons (PAHs) in soils of urban parks and their possible health risks, soil samples from 122 parks in Beijing, China, were collected and analyzed. The total content of 16 PAHs between 0.066 and 6.867 mg/kg. Four-ring PAHs were predominant, followed by 5-ring PAHs, while the fraction of 2-ring PAHs was the lowest. The dominant PAHs sources were found to be coal combustion and oil fuels such as gasoline and diesel. A conditional inference tree (CIT) was used to identify the key influencing factors for PAHs. Traffic emissions was the most important factor, followed by coal consumption, as well as the history and location of the park. Incremental lifetime cancer risk (ILCR) for urban park soil in Beijing were low under normal conditions. The soil PAHs exposure pathway risk for both children and adults decreased in the following order: ingestion > dermal contact > inhalation. The risk from soil in parks to children's health is slightly higher than that of adults, although the health risk due to exposure to PAHs was not extraordinary. Ecosystem risk was negligible.
Collapse
Affiliation(s)
- Yajing Qu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Environmental and Resource Sciences, Shanxi University, Taiyuan, 030006, China
| | - Yiwei Gong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jin Ma
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Haiying Wei
- College of Environmental and Resource Sciences, Shanxi University, Taiyuan, 030006, China
| | - Qiyuan Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; School of Earth Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Lingling Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Haiwen Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Shuhui Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yixiang Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
36
|
Yang S, Duan F, Ma Y, Li H, Ma T, Zhu L, Huang T, Kimoto T, He K. Mixed and intensive haze pollution during the transition period between autumn and winter in Beijing, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:134745. [PMID: 31822400 DOI: 10.1016/j.scitotenv.2019.134745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/24/2019] [Accepted: 09/29/2019] [Indexed: 05/13/2023]
Abstract
In the Northern China Plain (NCP), extreme haze events with high concentrations of fine particles occur frequently during the winter but rarely occur in autumn. In this study, we present a synthetic analysis of particulate constituents during the historically polluted transition period of autumn-winter in 2018, revealing that mixed-type haze episodes are the result of regional transport, homogeneous/heterogeneous conversion, and sandstorm influences. The hydrolysis process of N2O5 at higher relative humidity levels (>70%), which feature an enhanced nitrate oxidation ratio (0.30-0.70) and NO3- concentration (>60 μg m-3), was the driving factor for high PM2.5 mass concentrations during the observation periods. The long-distance transport of sandstorms, characterized by decreasing PM2.5/PM10 ratios (<30%) from the north/northwest, is the most important factor for the explosive growth of PM10 concentration. These results can help us gain a comprehensive understanding of haze formation and highlight the importance of nitrate chemistry in the aqueous phase. The results suggest that persistent NOx emission reduction measures must be made to better achieve air quality standards in Beijing and the NCP region.
Collapse
Affiliation(s)
- Shuo Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Tsinghua University, Beijing 100084, China
| | - Fengkui Duan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Tsinghua University, Beijing 100084, China.
| | - Yongliang Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Tsinghua University, Beijing 100084, China
| | - Hui Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Tsinghua University, Beijing 100084, China
| | - Tao Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Tsinghua University, Beijing 100084, China
| | - Lidan Zhu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Tsinghua University, Beijing 100084, China
| | - Tao Huang
- Kimoto Electric Co. Ltd, Funahashi-Cho, Tennouji-Ku, Osaka 543-0024, Japan
| | - Takashi Kimoto
- Kimoto Electric Co. Ltd, Funahashi-Cho, Tennouji-Ku, Osaka 543-0024, Japan
| | - Kebin He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Tsinghua University, Beijing 100084, China
| |
Collapse
|
37
|
Dong Z, Su F, Zhang Z, Wang S. Observation of chemical components of PM 2.5 and secondary inorganic aerosol formation during haze and sandy haze days in Zhengzhou, China. J Environ Sci (China) 2020; 88:316-325. [PMID: 31862073 DOI: 10.1016/j.jes.2019.09.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/06/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
Mineral dust particles play an important role in the formation of secondary inorganic aerosols, which largely contribute to haze pollution in China. During this study, a haze episode (haze days) and a typical haze process mixed with sandstorm (sandy haze days) were observed in Zhengzhou with a series of high-time-resolution monitoring instruments from November 22 to December 8, 2018. Concentrations of PM10 and crustal elements clearly increased in the sandy haze days. Concentrations of gaseous pollutants, metallic elements emitted from anthropogenic sources, nitrate, and ammonium during sandy haze days were slightly lower than those during the haze days but still obviously higher than those during the non-haze days. The sulfate concentrations, the sulfate fractions in PM2.5, and the sulfur oxidation ratios significantly increased in the sandy haze days. Heterogeneous reactions dominated the conversion of SO2 during the haze and sandy haze days. Enhanced SO2 conversion during the sandy haze days may be attributed to the high concentrations of transition metal ions from the sandstorm when the values of relative humidity (RH) were in 30%-70%, and high O3 at certain time points. Gas-phase NO2 oxidation reactions were the main pathways for nitrate formation. In the sandy haze days, higher nitrogen oxidation ratio (NOR) at daytime may be associated with higher RH and lower temperature than those in the haze days, which facilitate the gas-to-particle partitioning of nitrate; higher NOR values at night may be attributed to the higher O3 concentrations, which promoted the formation of N2O5.
Collapse
Affiliation(s)
- Zhangsen Dong
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Japan
| | - Fangcheng Su
- Research Institute of Environmental Science, College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Zhenya Zhang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Japan
| | - Shenbo Wang
- Research Institute of Environmental Science, College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
38
|
Wu Y, Li G, Yang Y, An T. Pollution evaluation and health risk assessment of airborne toxic metals in both indoors and outdoors of the Pearl River Delta, China. ENVIRONMENTAL RESEARCH 2019; 179:108793. [PMID: 31606616 DOI: 10.1016/j.envres.2019.108793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/01/2019] [Accepted: 10/02/2019] [Indexed: 05/16/2023]
Abstract
BACKGROUND Industries deveploped cities in the Pearl River Delta (PRD) are suffering serious atmospheric metals pollution, in which, people's health risks after inhaling particulate matter (PM) with airborne toxic metals might be rising. This study provides the latest and comprehensive pollution profiles of toxic metals both from indoors and outdoors in PRD. METHOD Total 22 pairs of indoor and outdoor total suspended particulates (TSP), PM10 and PM2.5 samples in residential area were synchronously sampled and investigated in detail within 9 main cities of the PRD, China. The concentrations of the Zn, Pb, Mn, Ni, As, V, Sb and Cd in the samples were measured by inductively coupled plasma mass spectrometry (ICP-MS). Health risk assessment via inhalation of residents was estimated by EPA recommended model with exposure parameters of Chinese population indoor and outdoor activity pattern. RESULTS The trends followed as Zn > Pb ≈ Mn > Ni > As > V > Sb ≈ Cd for both indoors and outdoors. Investigated metals were found to be dominantly distributed in PM2.5 for both indoors and outdoors. The concentrations of outdoor PM and the most of metals were significantly higher than those of indoors. The results concluded that toxic metals might be from regional emission, such as Pb from ceramic factory, Ni from motor factory and V from oil combustion of ship. In health risk assessments, LCR is higher than 1.00E-06 for adults, while contrary to children in the PRD. Among four carcinogenic metals, LCR of As and Cd are higher than 1.00E-06 in some cities. In addition, HI below one for both adults and children in the PRD. CONCLUSIONS Outdoor metals concentrations are related to local industry types, while indoor metals are mainly from outdoor. Health risk assessments indicated that adults suffered unsafe cancer risk from metals, especially As and Cd in some cities, while both adults and children did not suffer non-carcinogenic risks.
Collapse
Affiliation(s)
- Yingjun Wu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Yan Yang
- Synergy Innovation Institute of GDUT, Shantou, 515100, China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
39
|
Shen R, Wang Y, Gao W, Cong X, Cheng L, Li X. Size-segregated particulate matter bound polycyclic aromatic hydrocarbons (PAHs) over China: Size distribution, characteristics and health risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 685:116-123. [PMID: 31174111 DOI: 10.1016/j.scitotenv.2019.05.436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/23/2019] [Accepted: 05/29/2019] [Indexed: 06/09/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) associated with size-segregated particulate matter at 10 sampling sites over China which can be grouped into North China and South China, including urban site, sub-urban site, farmland site and background site, from January 2013 to December 2014 were analyzed by Gas Chromatography - Mass Spectrometry. This is the first time for comprehensive studies on the size-segregated PAHs at the national level. The spatial variations of particulate PAHs showed that Xinaghe (XH), Yucheng (YC) and Shenyang (SHY) in North China had higher particulate PAHs mass concentrations than other sampling sites. The seasonal variations of PAHs exhibited the highest mass concentrations in winter, which could be caused by the increase in emission, lower temperatures and weaker solar radiation. Particulate PAHs were found to be dominant in fine size range of <1.1 μm, the same as individual PAH compounds. The dominant species in particulate PAHs are benzo[b + k]fluoranthene (BBKF), indeno[1,2,3-cd]pyrene (IP) and benzo[g,h,i]perylene (BghiP), indicating that fossil fuel combustion could be an important source for PAHs over China. BaP, a carcinogen to humans, also had much higher mass concentrations at XH, SHY and YC in North China than other sites. Toxicity equivalent quantities (TEQ) and the lifetime excess cancer risk (ECR) analysis showed that XH, SHY and YC in North China suffered more serious health risk from PAHs than other sites. In addition, higher TEQ and higher ECR were found in the size range of <1.1 μm, indicating that finer particles are associated with higher toxicity.
Collapse
Affiliation(s)
- Rongrong Shen
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Yuesi Wang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wenkang Gao
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Xiaoguang Cong
- Department of Chemistry, Analytical and Testing Center, Capital Normal University, Beijing 100048, China
| | - Linglong Cheng
- Department of Chemistry, Analytical and Testing Center, Capital Normal University, Beijing 100048, China
| | - Xingru Li
- Department of Chemistry, Analytical and Testing Center, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
40
|
Si Y, Yu C, Zhang L, Zhu W, Cai K, Cheng L, Chen L, Li S. Assessment of satellite-estimated near-surface sulfate and nitrate concentrations and their precursor emissions over China from 2006 to 2014. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 669:362-376. [PMID: 30884261 DOI: 10.1016/j.scitotenv.2019.02.180] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/10/2019] [Accepted: 02/12/2019] [Indexed: 06/09/2023]
Abstract
China is the largest anthropogenic aerosol-generating country worldwide; however, few studies have analyzed the PM2.5 chemical components and their underlying precursor emissions over long periods and across the national domain. First, global 3-D tropospheric chemistry and transport model (GEOS-Chem)-integrated satellite-retrieved aerosol optical depth (AOD) and vertical profiles were used to estimate near-surface sulfate and nitrate levels at 10-km resolution over China from 2006 to 2014. Ground measurement validation of our satellite model yielded correlation coefficients (r) of 0.7 and 0.73 and normalized mean bias (NMB) values of -37.96% and - 32.73% for sulfate and nitrate, respectively. Second, analyses of the spatiotemporal distributions of sulfate and nitrate as well as the vertical density Ozone Monitoring Instrument (OMI)-measured SO2 (PBL_SO2) and NO2 (TVCD_NO2) indicated that the highest nitrate and sulfate levels occurred in the North China Plain (~25 μg/m3) and Sichuan Basin (SCB) (~30 μg/m3), respectively. The long-term variations in the estimated components and precursor gases indicated that the large sulfate decline was positively correlated with the SO2 emission reduction due to the mandatory desulfurization implemented in 2007. The annual growth rate of sulfate relative to the national mean was -6.19%/yr, and the concentration decreased by 17.10% from 2011 to 2014. Energy consumption increases and a lack of control measures for NO2 resulted in persistent increases in NO2 emissions and nitrate concentrations from 2006 to 2010, particularly in the SCB. With energy consumption structure advancements, reductions in NO2 emissions and corresponding nitrate levels over three typical regions were prominent after 2012. Third, the estimated national-scale uncertainties of satellite datasets at 0.1° × 0.1° were 26.88% for sulfate and 25.55% for nitrate. Differences in the spatial distributions and temporal trends between our estimated components and precursor gases were mainly attributed to the dataset accuracy, the data pre-processing strategy, inconsistent column density and near-surface mass concentration, meteorological variables and complex chemical reactions.
Collapse
Affiliation(s)
- Yidan Si
- State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Yu
- State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China
| | - Luo Zhang
- State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wende Zhu
- School of Computer and Information Engineering, Henan University, Kaifeng 475004, China
| | - Kun Cai
- School of Computer and Information Engineering, Henan University, Kaifeng 475004, China
| | - Liangxiao Cheng
- State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Liangfu Chen
- State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China.
| | - Shenshen Li
- State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
41
|
Shen R, Liu Z, Chen X, Wang Y, Wang L, Liu Y, Li X. Atmospheric levels, variations, sources and health risk of PM 2.5-bound polycyclic aromatic hydrocarbons during winter over the North China Plain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 655:581-590. [PMID: 30476838 DOI: 10.1016/j.scitotenv.2018.11.220] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/06/2018] [Accepted: 11/15/2018] [Indexed: 06/09/2023]
Abstract
PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) during winter 2015 at three urban sites, including Beijing, Tianjin and Shijiazhuang, and one background site (Xinglong) over the North China Plain (NCP) were investigated. The spatial variations of PAHs showed the same trends with PM2.5 mass concentrations, i.e. the highest PAHs concentrations was in Shijiazhuang, followed by Tianjin, Beijing and the lowest PAHs concentrations was in Xinglong. The diurnal variations of PAHs exhibited PAHs concentrations during nighttime were higher than those during daytime. The dominant species in PAHs were fluranthene and benzo[b + k]fluoranthene, indicating that diesel vehicle emission, coal combustion and biomass burning could be important and potential sources for PAHs over the NCP. There results were supported by diagnostic ratios analysis. But coefficient of divergence analysis showed that a high extent of spatial contrast among four sampling sites, except between Beijing and Tianjin. Analysis of toxicity equivalent quantities (TEQ) and the lifetime excess cancer risk (ECR) from inhalation exposure to PAHs showed that 818, 1517, 5129 and 182 cases per 100,000 people exposed in Beijing, Tianjin, Shijiazhuang and Xinglong, respectively, which were much higher than the threshold value suggested by US-EPA, i.e. 1 case per 100,000 people, and indicating that the NCP suffered from very serious health risk from PAHs, especially in Shijiazhuang.
Collapse
Affiliation(s)
- Rongrong Shen
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Zirui Liu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Xi Chen
- Department of Chemistry, Analytical and Testing Center, Capital Normal University, Beijing 100048, China
| | - Yuesi Wang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lili Wang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Yusi Liu
- Department of Chemistry, Analytical and Testing Center, Capital Normal University, Beijing 100048, China; State Key Laboratory of Severe Weather & Key Laboratory for Atmospheric Chemistry of China Meteorology Administration, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Xingru Li
- Department of Chemistry, Analytical and Testing Center, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
42
|
Xu L, Lingaswamy AP, Zhang Y, Liu L, Wang Y, Zhang J, Ma Q, Li W. Morphology, composition, and sources of individual aerosol particles at a regional background site of the YRD, China. J Environ Sci (China) 2019; 77:354-362. [PMID: 30573100 DOI: 10.1016/j.jes.2018.09.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 09/10/2018] [Accepted: 09/12/2018] [Indexed: 06/09/2023]
Abstract
Aerosol samples were collected at Lin'an, a background site of Yangtze River Delta (YRD). Morphology, size, composition, and mixing state of individual aerosol particles were characterized by transmission electron microscopy (TEM) coupled with energy dispersive X-ray spectroscopy (EDS), and the soluble ions of PM1.0 were studied by aerosol mass spectrometer (AMS). The daily average AMS mass concentrations of sulfate, nitrate, and ammonium were about 5.8, 8.6, and 5.6 μg/m3, respectively. Individual aerosol particles were classified into seven types: S-rich, K-rich, organic matter (OM), soot, fly ash, metal, and mineral. S-rich particles were dominant in all size bins, and 51% (by number) of S-rich particles were internally mixed with other particles. The fraction of organic coating particles was 13.7% in morning, 25.2% in afternoon, and 11% in evening, suggesting that the strong photochemical process during afternoon produced more secondary organic aerosols (SOA) on the surface of inorganic particles. Fly ash and metal particles were abundant during the day, suggesting the influence of emissions from coal-fired power plants and steel plants. The results indicate that the intense industrial emissions in the YRD significantly transported to the background areas. PM2.5 concentration may be lower in background air than in urban air but complex mixing state of aerosol particles indicates that the long-range transported particles substantially influenced the background air quality.
Collapse
Affiliation(s)
- Liang Xu
- Environment Research Institute, Shandong University, Jinan 250100, China
| | - A P Lingaswamy
- Environment Research Institute, Shandong University, Jinan 250100, China; Santhiram Engineering College, Nandyal 518501, Andhra Pradesh, India.
| | - Yinxiao Zhang
- Environment Research Institute, Shandong University, Jinan 250100, China
| | - Lei Liu
- Environment Research Institute, Shandong University, Jinan 250100, China
| | - Yuanyuan Wang
- Environment Research Institute, Shandong University, Jinan 250100, China
| | - Jian Zhang
- Environment Research Institute, Shandong University, Jinan 250100, China
| | - Qianli Ma
- Lin'an Air Background Station (LABS), Hangzhou 311307, China
| | - Weijun Li
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
43
|
Xing J, Shao L, Zhang W, Peng J, Wang W, Hou C, Shuai S, Hu M, Zhang D. Morphology and composition of particles emitted from a port fuel injection gasoline vehicle under real-world driving test cycles. J Environ Sci (China) 2019; 76:339-348. [PMID: 30528025 DOI: 10.1016/j.jes.2018.05.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 05/30/2018] [Accepted: 05/30/2018] [Indexed: 06/09/2023]
Abstract
Traffic vehicles, many of which are powered by port fuel injection (PFI) engines, are major sources of particulate matter in the urban atmosphere. We studied particles from the emission of a commercial PFI-engine vehicle when it was running under the states of cold start, hot start, hot stabilized running, idle and acceleration, using a transmission electron microscope and an energy-dispersive X-ray detector. Results showed that the particles were mainly composed of organic, soot, and Ca-rich particles, with a small amount of S-rich and metal-containing particles, and displayed a unimodal size distribution with the peak at 600 nm. The emissions were highest under the cold start running state, followed by the hot start, hot stabilized, acceleration, and idle running states. Organic particles under the hot start and hot stabilized running states were higher than those of other running states. Soot particles were highest under the cold start running state. Under the idle running state, the relative number fraction of Ca-rich particles was high although their absolute number was low. These results indicate that PFI-engine vehicles emit substantial primary particles, which favor the formation of secondary aerosols via providing reaction sites and reaction catalysts, as well as supplying soot, organic, mineral and metal particles in the size range of the accumulation mode. In addition, the contents of Ca, P, and Zn in organic particles may serve as fingerprints for source apportionment of particles from PFI-engine vehicles.
Collapse
Affiliation(s)
- Jiaoping Xing
- State Key Laboratory of Coal Resources and Safe Mining, School of Geoscience and Survey Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China.
| | - Longyi Shao
- State Key Laboratory of Coal Resources and Safe Mining, School of Geoscience and Survey Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China.
| | - Wenbin Zhang
- State Key Laboratory of Automotive Safety and Energy, Department of Automotive Engineering, Tsinghua University, Beijing 100084, China
| | - Jianfei Peng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Wenhua Wang
- State Key Laboratory of Coal Resources and Safe Mining, School of Geoscience and Survey Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Cong Hou
- State Key Laboratory of Coal Resources and Safe Mining, School of Geoscience and Survey Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Shijin Shuai
- State Key Laboratory of Automotive Safety and Energy, Department of Automotive Engineering, Tsinghua University, Beijing 100084, China
| | - Min Hu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Daizhou Zhang
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto 862-8502, Japan.
| |
Collapse
|
44
|
Bian W, Bao G, Qian H, Song Z, Qi Z, Zhang M, Chen W, Dong W. Physiological Response Characteristics in Medicago sativa Under Freeze-Thaw and Deicing Salt Stress. WATER, AIR, & SOIL POLLUTION 2018; 229:196. [PMID: 0 DOI: 10.1007/s11270-018-3850-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 05/25/2018] [Indexed: 05/21/2023]
|