1
|
Yin F, Zhou Y, Xie D, Liang Y, Luo X. Evaluating the adverse effects and mechanisms of nanomaterial exposure on longevity of C. elegans: A literature meta-analysis and bioinformatics analysis of multi-transcriptome data. ENVIRONMENTAL RESEARCH 2024; 247:118106. [PMID: 38224941 DOI: 10.1016/j.envres.2024.118106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/17/2024]
Abstract
Exposure to large-size particulate air pollution (PM2.5 or PM10) has been reported to increase risks of aging-related diseases and human death, indicating the potential pro-aging effects of airborne nanomaterials with ultra-fine particle size (which have been widely applied in various fields). However, this hypothesis remains inconclusive. Here, a meta-analysis of 99 published literatures collected from electronic databases (PubMed, EMBASE and Cochrane Library; from inception to June 2023) was performed to confirm the effects of nanomaterial exposure on aging-related indicators and molecular mechanisms in model animal C. elegans. The pooled analysis by Stata software showed that compared with the control, nanomaterial exposure significantly shortened the mean lifespan [standardized mean difference (SMD) = -2.30], reduced the survival rate (SMD = -4.57) and increased the death risk (hazard ratio = 1.36) accompanied by upregulation of ced-3, ced-4 and cep-1, while downregulation of ctl-2, ape-1, aak-2 and pmk-1. Furthermore, multi-transcriptome data associated with nanomaterial exposure were retrieved from Gene Expression Omnibus (GSE32521, GSE41486, GSE24847, GSE59470, GSE70509, GSE14932, GSE93187, GSE114881, and GSE122728) and bioinformatics analyses showed that pseudogene prg-2, mRNAs of abu, car-1, gipc-1, gsp-3, kat-1, pod-2, acdh-8, hsp-60 and egrh-2 were downregulated, while R04A9.7 was upregulated after exposure to at least two types of nanomaterials. Resveratrol (abu, hsp-60, pod-2, egrh-2, acdh-8, gsp-3, car-1, kat-1, gipc-1), naringenin (kat-1, egrh-2), coumestrol (egrh-2) or swainsonine/niacin/ferulic acid (R04A9.7) exerted therapeutic effects by reversing the expression levels of target genes. In conclusion, our study demonstrates the necessity to use phytomedicines that target hub genes to delay aging for populations with nanomaterial exposure.
Collapse
Affiliation(s)
- Fei Yin
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou, 215123, China
| | - Yang Zhou
- School of Textile Science and Engineering/National Engineering Laboratory for Advanced Yarn and Clean Production, Wuhan Textile University, Wuhan, 430200, China.
| | - Dongli Xie
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou, 215123, China
| | - Yunxia Liang
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou, 215123, China.
| | - Xiaogang Luo
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou, 215123, China.
| |
Collapse
|
2
|
Schröter L, Jentsch L, Maglioni S, Muñoz-Juan A, Wahle T, Limke A, von Mikecz A, Laromaine A, Ventura N. A Multisystemic Approach Revealed Aminated Polystyrene Nanoparticles-Induced Neurotoxicity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2302907. [PMID: 37899301 DOI: 10.1002/smll.202302907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 10/12/2023] [Indexed: 10/31/2023]
Abstract
Exposure to plastic nanoparticles has dramatically increased in the last 50 years, and there is evidence that plastic nanoparticles can be absorbed by organisms and cross the blood-brain-barrier (BBB). However, their toxic effects, especially on the nervous system, have not yet been extensively investigated, and most of the knowledge is based on studies using different conditions and systems, thus hard to compare. In this work, physicochemical properties of non-modified polystyrene (PS) and amine-functionalized PS (PS-NH2 ) nanoparticles are initially characterized. Advantage of a multisystemic approach is then taken to compare plastic nanoparticles effects in vitro, through cytotoxic readouts in mammalian cell culture, and in vivo, through behavioral readouts in the nematode Caenorhabditis elegans (C. elegans), a powerful 3R-complying model organism for toxicology studies. In vitro experiments in neuroblastoma cells indicate a specific cytotoxic effect of PS-NH2 particles, including a decreased neuronal differentiation and an increased Amyloid β (Aβ) secretion, a sensitive readout correlating with Alzheimer's disease pathology. In parallel, only in vivo treatments with PS-NH2 particles affect C. elegans development, decrease lifespan, and reveal higher sensitivity of animals expressing human Aβ compared to wild-type animals. In summary, the multisystemic approach discloses a neurotoxic effect induced by aminated polystyrene nanoparticles.
Collapse
Affiliation(s)
- Laura Schröter
- IUF-Leibniz Research Institute for Environmental Medicine, 40225, Duesseldorf, Germany
- Institute for Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University, 40225, Duesseldorf, Germany
| | - Lena Jentsch
- IUF-Leibniz Research Institute for Environmental Medicine, 40225, Duesseldorf, Germany
- Institute for Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University, 40225, Duesseldorf, Germany
| | - Silvia Maglioni
- IUF-Leibniz Research Institute for Environmental Medicine, 40225, Duesseldorf, Germany
- Institute for Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University, 40225, Duesseldorf, Germany
| | - Amanda Muñoz-Juan
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Tina Wahle
- IUF-Leibniz Research Institute for Environmental Medicine, 40225, Duesseldorf, Germany
| | - Annette Limke
- IUF-Leibniz Research Institute for Environmental Medicine, 40225, Duesseldorf, Germany
| | - Anna von Mikecz
- IUF-Leibniz Research Institute for Environmental Medicine, 40225, Duesseldorf, Germany
| | - Anna Laromaine
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Natascia Ventura
- IUF-Leibniz Research Institute for Environmental Medicine, 40225, Duesseldorf, Germany
- Institute for Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University, 40225, Duesseldorf, Germany
| |
Collapse
|
3
|
Limke A, Poschmann G, Stühler K, Petzsch P, Wachtmeister T, von Mikecz A. Silica Nanoparticles Disclose a Detailed Neurodegeneration Profile throughout the Life Span of a Model Organism. J Xenobiot 2024; 14:135-153. [PMID: 38249105 PMCID: PMC10801581 DOI: 10.3390/jox14010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
The incidence of age-related neurodegenerative diseases is rising globally. However, the temporal sequence of neurodegeneration throughout adult life is poorly understood. To identify the starting points and schedule of neurodegenerative events, serotonergic and dopaminergic neurons were monitored in the model organism C. elegans, which has a life span of 2-3 weeks. Neural morphology was examined from young to old nematodes that were exposed to silica nanoparticles. Young nematodes showed phenotypes such as dendritic beading of serotonergic and dopaminergic neurons that are normally not seen until late life. During aging, neurodegeneration spreads from specifically susceptible ADF and PDE neurons in young C. elegans to other more resilient neurons, such as dopaminergic CEP in middle-aged worms. Investigation of neurodegenerative hallmarks and animal behavior revealed a temporal correlation with the acceleration of neuromuscular defects, such as internal hatch in 2-day-old C. elegans. Transcriptomics and proteomics of young worms exposed to nano silica showed a change in gene expression concerning the gene ontology groups serotonergic and dopaminergic signaling as well as neuropeptide signaling. Consistent with this, reporter strains for nlp-3, nlp-14 and nlp-21 confirmed premature degeneration of the serotonergic neuron HSN and other neurons in young C. elegans. The results identify young nematodes as a vulnerable age group for nano silica-induced neural defects with a significantly reduced health span. Neurodegeneration of specific neurons impairs signaling by classical neurotransmitters as well as neuropeptides and compromises related neuromuscular behaviors in critical phases of life, such as the reproductive phase.
Collapse
Affiliation(s)
- Annette Limke
- IUF–Leibniz Research Institute of Environmental Medicine GmbH, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany
| | - Gereon Poschmann
- Institute of Molecular Medicine, Proteome Research, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, BMFZ, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Patrick Petzsch
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Thorsten Wachtmeister
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Anna von Mikecz
- IUF–Leibniz Research Institute of Environmental Medicine GmbH, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany
| |
Collapse
|
4
|
von Mikecz A. Elegant Nematodes Improve Our Understanding of Human Neuronal Diseases, the Role of Pollutants and Strategies of Resilience. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16755-16763. [PMID: 37874738 PMCID: PMC10634345 DOI: 10.1021/acs.est.3c04580] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/26/2023]
Abstract
The prevalence of neurodegenerative disorders such as Alzheimer's and Parkinson's disease are rising globally. The role of environmental pollution in neurodegeneration is largely unknown. Thus, this perspective advocates exposome research in C. elegans models of human diseases. The models express amyloid proteins such as Aβ, recapitulate the degeneration of specifically vulnerable neurons and allow for correlated neurobehavioral phenotyping throughout the entire life span of the nematode. Neurobehavioral traits like locomotion gaits, rigidity, or cognitive decline are quantifiable and carefully mimic key aspects of the human diseases. Underlying molecular pathways of neurodegeneration are elucidated in pollutant-exposed C. elegans Alzheimer's or Parkinson's models by transcriptomics (RNA-seq), mass spectrometry-based proteomics and omics addressing other biochemical traits. Validation of the identified disease pathways can be achieved by genome-wide association studies in matching human cohorts. A consistent One Health approach includes isolation of nematodes from contaminated sites and their comparative investigation by imaging, neurobehavioral profiling and single worm proteomics. C. elegans models of neurodegenerative diseases are likewise well-suited for high throughput methods that provide a promising strategy to identify resilience pathways of neurosafety and keep up with the number of pollutants, nonchemical exposome factors, and their interactions.
Collapse
Affiliation(s)
- Anna von Mikecz
- IUF − Leibniz Research Institute
of Environmental Medicine GmbH, Auf’m Hennekamp 50, 40225 Duesseldorf, Germany
| |
Collapse
|
5
|
Limke A, Scharpf I, Blesing F, von Mikecz A. Tire components, age and temperature accelerate neurodegeneration in C. elegans models of Alzheimer's and Parkinson's disease. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 328:121660. [PMID: 37080524 DOI: 10.1016/j.envpol.2023.121660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/12/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
Abstract
Increasingly, traffic-related air pollution is linked with Alzheimer's disease, Parkinson's disease and other neurodegenerative conditions. The molecular pathways underlying the epidemiologic observations are unknown. In this study, models of neurodegenerative disorders in the nematode Caenorhabditis elegans were used to investigate effects of the tire wear component nano silica. Life span-resolved exposition of reporter strain GRU102 that expresses the Alzheimer's peptide amyloid beta1-42 with silica nanoparticles significantly reduced locomotory fitness in middle-aged nematodes. A specific vulnerability of 10-day-old nematodes was identified in GRU102 cultivated at ambient temperatures of 15 and 20 °C. Reduction of locomotory fitness was corroborated in the Parkinson's disease model BZ555. Nano silica from different sources, including genuine tire components, accelerated the neurodegeneration of dopaminergic neurons in BZ555 nematodes. Dendritic beading was observed in single PDE neurons along the lateral side of the posterior body. In both, the Alzheimer's disease model GRU102 and the Parkinson's disease model BZ555 increased age and the non-chemical exposome factor temperature aggravated nano silica-induced neurodegeneration. Middle-aged cohorts were defined as the most vulnerable age-group. The results suggest C. elegans disease models as a platform to elucidate the relationships between neurodegeneration, age and the environmental factor ambient temperature after exposition with defined components of non-exhaust emissions or sampled urban aerosols.
Collapse
Affiliation(s)
- Annette Limke
- IUF - Leibniz Research Institute of Environmental Medicine GmbH, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| | - Inge Scharpf
- IUF - Leibniz Research Institute of Environmental Medicine GmbH, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| | - Fabienne Blesing
- IUF - Leibniz Research Institute of Environmental Medicine GmbH, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| | - Anna von Mikecz
- IUF - Leibniz Research Institute of Environmental Medicine GmbH, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany.
| |
Collapse
|
6
|
How CM, Huang CW. Dietary Transfer of Zinc Oxide Nanoparticles Induces Locomotive Defects Associated with GABAergic Motor Neuron Damage in Caenorhabditis elegans. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:289. [PMID: 36678041 PMCID: PMC9866546 DOI: 10.3390/nano13020289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
The widespread use of zinc oxide nanoparticles (ZnO-NPs) and their release into the environment have raised concerns about the potential toxicity caused by dietary transfer. However, the toxic effects and the mechanisms of dietary transfer of ZnO-NPs have rarely been investigated. We employed the bacteria-feeding nematode Caenorhabditis elegans as the model organism to investigate the neurotoxicity induced by exposure to ZnO-NPs via trophic transfer. Our results showed that ZnO-NPs accumulated in the intestine of C. elegans and also in Escherichia coli OP50 that they ingested. Additionally, impairment of locomotive behaviors, including decreased body bending and head thrashing frequencies, were observed in C. elegans that were fed E. coli pre-treated with ZnO-NPs, which might have occurred because of damage to the D-type GABAergic motor neurons. However, these toxic effects were not apparent in C. elegans that were fed E. coli pre-treated with zinc chloride (ZnCl2). Therefore, ZnO-NPs particulates, rather than released Zn ions, damage the D-type GABAergic motor neurons and adversely affect the locomotive behaviors of C. elegans via dietary transfer.
Collapse
Affiliation(s)
- Chun Ming How
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Chi-Wei Huang
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| |
Collapse
|
7
|
Scharpf I, Cichocka S, Le DT, von Mikecz A. Peripheral neuropathy, protein aggregation and serotonergic neurotransmission: Distinctive bio-interactions of thiacloprid and thiamethoxam in the nematode Caenorhabditis elegans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120253. [PMID: 36155223 DOI: 10.1016/j.envpol.2022.120253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Due to worldwide production, sales and application, neonicotinoids dominate the global use of insecticides. While, neonicotinoids are considered as pinpoint neurotoxicants that impair cholinergic neurotransmission in pest insects, the sublethal effects on nontarget organisms and other neurotransmitters remain poorly understood. Thus, we investigated long-term neurological outcomes in the decomposer nematode Caenorhabditis elegans. In the adult roundworm the neonicotinoid thiacloprid impaired serotonergic and dopaminergic neuromuscular behaviors, while respective exposures to thiamethoxam showed no effects. Thiacloprid caused a concentration-dependent delay of the transition between swimming and crawling locomotion that is controlled by dopaminergic and serotonergic neurotransmission. Age-resolved analyses revealed that impairment of locomotion occurred in young as well as middle-aged worms. Treatment with exogenous serotonin rescued thiacloprid-induced swimming deficits in young worms, whereas additional exposure with silica nanoparticles enhanced the reduction of swimming behavior. Delay of forward locomotion was partly caused by a new paralysis pattern that identified thiacloprid as an agent promoting a specific rigidity of posterior body wall muscle cells and peripheral neuropathy in the nematode (lowest-observed-effect-level 10 ng/ml). On the molecular level exposure with thiacloprid accelerated protein aggregation in body wall muscle cells of polyglutamine disease reporter worms indicating proteotoxic stress. The results from the soil nematode Caenorhabditis elegans show that assessment of neurotoxicity by neonicotinoids requires acknowledgment and deeper research into dopaminergic and serotonergic neurochemistry of nontarget organisms. Likewise, it has to be considered more that different neonicotinoids may promote diverse neural end points.
Collapse
Affiliation(s)
- Inge Scharpf
- IUF - Leibniz Research Institute for Environmental Medicine GmbH, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| | - Sylwia Cichocka
- IUF - Leibniz Research Institute for Environmental Medicine GmbH, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| | - Dang Tri Le
- IUF - Leibniz Research Institute for Environmental Medicine GmbH, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| | - Anna von Mikecz
- IUF - Leibniz Research Institute for Environmental Medicine GmbH, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany.
| |
Collapse
|
8
|
Tubatsi G, Kebaabetswe LP, Musee N. Proteomic evaluation of nanotoxicity in aquatic organisms: A review. Proteomics 2022; 22:e2200008. [PMID: 36107811 DOI: 10.1002/pmic.202200008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 12/29/2022]
Abstract
The alteration of organisms protein functions by engineered nanoparticles (ENPs) is dependent on the complex interplay between their inherent physicochemical properties (e.g., size, surface coating, shape) and environmental conditions (e.g., pH, organic matter). To date, there is increasing interest on the use of 'omics' approaches, such as proteomics, genomics, and others, to study ENPs-biomolecules interactions in aquatic organisms. However, although proteomics has recently been applied to investigate effects of ENPs and associated mechanisms in aquatic organisms, its use remain limited. Herein, proteomics techniques widely applied to investigate ENPs-protein interactions in aquatic organisms are reviewed. Data demonstrates that 2DE and mass spectrometry and/or their combination, thereof, are the most suitable techniques to elucidate ENPs-protein interactions. Furthermore, current status on ENPs and protein interactions, and possible mechanisms of nanotoxicity with emphasis on those that exert influence at protein expression levels, and key influencing factors on ENPs-proteins interactions are outlined. Most reported studies were done using synthetic media and essay protocols and had wide variability (not standardized); this may consequently limit data application in actual environmental systems. Therefore, there is a need for studies using realistic environmental concentrations of ENPs, and actual environmental matrixes (e.g., surface water) to aid better model development of ENPs-proteins interactions in aquatic systems.
Collapse
Affiliation(s)
- Gosaitse Tubatsi
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology (BIUST), Palapye, Botswana
| | - Lemme Prica Kebaabetswe
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology (BIUST), Palapye, Botswana
| | - Ndeke Musee
- Emerging Contaminants Ecological and Risk Assessment (ECERA) Research Group, Department of Chemical Engineering, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
9
|
Scharf A, Limke A, Guehrs KH, von Mikecz A. Pollutants corrupt resilience pathways of aging in the nematode C. elegans. iScience 2022; 25:105027. [PMID: 36117993 PMCID: PMC9475316 DOI: 10.1016/j.isci.2022.105027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/06/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Delaying aging while prolonging health and lifespan is a major goal in aging research. One promising strategy is to focus on reducing negative interventions such as pollution and their accelerating effect on age-related degeneration and disease. Here, we used the short-lived model organism C. elegans to analyze whether two candidate pollutants corrupt general aging pathways. We show that the emergent pollutant silica nanoparticles (NPs) and the classic xenobiotic inorganic mercury reduce lifespan and cause a premature protein aggregation phenotype. Comparative mass spectrometry revealed that increased insolubility of proteins with important functions in proteostasis is a shared phenotype of intrinsic- and pollution-induced aging supporting the hypothesis that proteostasis is a central resilience pathway controlling lifespan and aging. The presented data demonstrate that pollutants corrupt intrinsic aging pathways. Reducing pollution is, therefore, an important step to increasing healthy aging and prolonging life expectancies on a population level in humans and animals.
Collapse
Affiliation(s)
- Andrea Scharf
- IUF - Leibniz Research Institute for Environmental Medicine GmbH, Duesseldorf 40225, Germany
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | - Annette Limke
- IUF - Leibniz Research Institute for Environmental Medicine GmbH, Duesseldorf 40225, Germany
| | - Karl-Heinz Guehrs
- CF Proteomics, FLI-Leibniz-Institute on Aging -Fritz-Lipman-Institute (FLI), Jena 07745, Germany
| | - Anna von Mikecz
- IUF - Leibniz Research Institute for Environmental Medicine GmbH, Duesseldorf 40225, Germany
| |
Collapse
|
10
|
von Mikecz A. Exposome, Molecular Pathways and One Health: The Invertebrate Caenorhabditis elegans. Int J Mol Sci 2022; 23:9084. [PMID: 36012346 PMCID: PMC9409025 DOI: 10.3390/ijms23169084] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 12/04/2022] Open
Abstract
Due to its preferred habitats in the environment, the free-living nematode Caenorhabditis elegans has become a realistic target organism for pollutants, including manufactured nanoparticles. In the laboratory, the invertebrate animal model represents a cost-effective tool to investigate the molecular mechanisms of the biological response to nanomaterials. With an estimated number of 22,000 coding genes and short life span of 2-3 weeks, the small worm is a giant when it comes to characterization of molecular pathways, long-term low dose pollutant effects and vulnerable age-groups. Here, we review (i) flows of manufactured nanomaterials and exposition of C. elegans in the environment, (ii) the track record of C. elegans in biomedical research, and (iii) its potential to contribute to the investigation of the exposome and bridge nanotoxicology between higher organisms, including humans. The role of C. elegans in the one health concept is taken one step further by proposing methods to sample wild nematodes and their molecular characterization by single worm proteomics.
Collapse
Affiliation(s)
- Anna von Mikecz
- IUF-Leibniz Research Institute for Environmental Medicine GmbH, Auf'm Hennekamp 50, 40225 Duesseldorf, Germany
| |
Collapse
|
11
|
Zheng F, Chen C, Aschner M. Neurotoxicity Evaluation of Nanomaterials Using C. elegans: Survival, Locomotion Behaviors, and Oxidative Stress. Curr Protoc 2022; 2:e496. [PMID: 35849041 PMCID: PMC9299521 DOI: 10.1002/cpz1.496] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanomaterials are broadly used in a variety of industries and consumer products. However, studies have demonstrated that many nanomaterials, including metal-containing nanoparticles and nanoplastics, have neurotoxic effects. Caenorhabditis elegans (C. elegans) is a widely used model organism with numerous advantages for research, including transparency, short life span, well-characterized nervous system, complete connectome, available genome, and numerous genetic tools. C. elegans has been extensively used to assess the neurotoxicity of multiple chemicals via survival assays, behavioral tests, neuronal morphology studies, and various molecular and mechanistic analyses. However, detailed protocols describing general assays in C. elegans to examine the neurotoxic effects of nanomaterials are limited. Here, we describe protocols for assessing nanomaterial neurotoxicity in C. elegans. We describe the steps for exposure and subsequent evaluation of survival, locomotion behavior, and oxidative stress. Survival and locomotion behavior are measured in wild-type N2 strains to assess acute neurotoxicity. Oxidative stress is used as an endpoint here since it is one of the most predominant and common changes induced by nanomaterials. VP596 nematodes, which express GFP upon activation of skn-1 (the worm homolog of Nrf2), are evaluated for assays of oxidative stress in response to test nanomaterials. These assays can be readily used to quickly examine the neurotoxicity of nanomaterials in vivo, laying the foundation for mechanistic studies of nanomaterials and their impacts on health and physiology. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Exposure of C. elegans to nanomaterials Basic Protocol 2: Survival assessment Basic Protocol 3: Assessment of locomotion behavior Basic Protocol 4: Analysis of oxidative stress.
Collapse
Affiliation(s)
- Fuli Zheng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, 1 Xueyuan Road, University Town, Fuzhou, Fujian, P. R. China
| | - Cheng Chen
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY 10461 Bronx, NY, USA
| |
Collapse
|
12
|
Hering I, Le DT, von Mikecz A. How to keep up with the analysis of classic and emerging neurotoxins: Age-resolved fitness tests in the animal model Caenorhabditis elegans - a step-by-step protocol. EXCLI JOURNAL 2022; 21:344-353. [PMID: 35391920 PMCID: PMC8983854 DOI: 10.17179/excli2021-4626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/19/2022] [Indexed: 12/30/2022]
Abstract
The global chemical inventory includes neurotoxins that are mostly interrogated concerning the biological response in developing organisms. Effects of pollutants on adults receive less attention, although vulnerabilities can be expected throughout the entire life span in young, middle-aged and old individuals. We use the animal model Caenorhabditis elegans to systematically quantify neurological outcomes by application of an age-resolved method. Adult hermaphrodite worms were exposed to pollutants or non-chemical stressors such as temperature in liquid culture on microtiter plates and locomotion fitness was analyzed in a whole-life approach. Cultivation at 15, 20 or 25 °C showed that worms held at 15 °C displayed an enhanced level of fitness concerning swimming movements until middle age (11-days-old) and then a decline. In contrast, C. elegans cultivated at ≥ 20 °C continually reduced their swimming movements with increasing age. Here, we provide a step-by-step protocol to investigate the health span of adult C. elegans that may serve as a platform for automation and data collection. Consistent with this, more neurotoxins can be investigated with respect to vulnerable age-groups as well as contributing non-chemical environmental factors such as temperature.
Collapse
Affiliation(s)
- Indra Hering
- IUF - Leibniz Research Institute for Environmental Medicine
| | - Dang Tri Le
- IUF - Leibniz Research Institute for Environmental Medicine
| | | |
Collapse
|
13
|
Xu H, Wang X, Zhang X, Cheng J, Zhang J, Chen M, Wu T. A Deep Learning Analysis Reveals Nitrogen-Doped Graphene Quantum Dots Damage Neurons of Nematode Caenorhabditis elegans. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3314. [PMID: 34947663 PMCID: PMC8703693 DOI: 10.3390/nano11123314] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/09/2021] [Accepted: 12/03/2021] [Indexed: 11/16/2022]
Abstract
Along with the rapidly increasing applications of nitrogen-doped graphene quantum dots (N-GQDs) in the field of biomedicine, the exposure of N-GQDs undoubtedly pose a risk to the health of human beings, especially in the nervous system. In view of the lack of data from in vivo studies, this study used the nematode Caenorhabditis elegans (C. elegans), which has become a valuable animal model in nanotoxicological studies due to its multiple advantages, to undertake a bio-safety assessment of N-GQDs in the nervous system with the assistance of a deep learning model. The findings suggested that accumulated N-GQDs in the nematodes' bodies damaged their normal behavior in a dose- and time-dependent manner, and the impairments of the nervous system were obviously severe when the exposure dosages were above 100 μg/mL. When assessing the morphological changes of neurons caused by N-GQDs, a quantitative image-based analysis based on a deep neural network algorithm (YOLACT) was used because traditional image-based analysis is labor-intensive and limited to qualitative evaluation. The quantitative results indicated that N-GQDs damaged dopaminergic and glutamatergic neurons, which are involved in the neurotoxic effects of N-GQDs in the nematode C. elegans. This study not only suggests a fast and economic C. elegans model to undertake the risk assessment of nanomaterials in the nervous system, but also provides a valuable deep learning approach to quantitatively track subtle morphological changes of neurons at an unbiased level in a nanotoxicological study using C. elegans.
Collapse
Affiliation(s)
- Hongsheng Xu
- College of Energy and Electrical Engineering, Hohai University, Nanjing 210098, China;
| | - Xinyu Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (X.W.); (X.Z.); (J.C.); (J.Z.); (M.C.)
| | - Xiaomeng Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (X.W.); (X.Z.); (J.C.); (J.Z.); (M.C.)
| | - Jin Cheng
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (X.W.); (X.Z.); (J.C.); (J.Z.); (M.C.)
| | - Jixiang Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (X.W.); (X.Z.); (J.C.); (J.Z.); (M.C.)
| | - Min Chen
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (X.W.); (X.Z.); (J.C.); (J.Z.); (M.C.)
| | - Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (X.W.); (X.Z.); (J.C.); (J.Z.); (M.C.)
| |
Collapse
|
14
|
Chen H, Hua X, Yang Y, Wang C, Jin L, Dong C, Chang Z, Ding P, Xiang M, Li H, Yu Y. Chronic exposure to UV-aged microplastics induces neurotoxicity by affecting dopamine, glutamate, and serotonin neurotransmission in Caenorhabditis elegans. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126482. [PMID: 34186424 DOI: 10.1016/j.jhazmat.2021.126482] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/06/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
Microplastics are ubiquitous in all environments and exert toxic effects in various organisms. However, the neurotoxicity and underlying mechanisms of long-term exposure to MPs aged under UV radiation remain largely unclear. In this study, Caenorhabditis elegans was treated with 0.1-100 μg/L virgin and aged polystyrene microplastics (PS-MPs) for 10 d, with locomotion behavior, neuronal development, neurotransmitter content, and neurotransmission-related to gene expression as endpoints. Using locomotion behavior as an endpoint, chronic exposure to aged PS-MPs at low concentrations (1 μg/L) caused more severe neurotoxicity than that to virgin PS-MPs. In transgenic nematodes, exposure to 10-100 μg/L aged PS-MPs significantly influenced the fluorescence intensity and percentage of worms with neurodegeneration of dopaminergic, glutamatergic, and serotonergic neurons compared with control. Further investigations showed that the content of glutamate, serotonin, and dopamine was significantly influenced in nematodes chronically exposed to 100 μg/L of aged PS-MPs. Similarly, neurotransmission-related gene (e.g., eat-4, dat-1, and tph-1) expression was also altered in nematodes. These results indicate that aged PS-MPs exert neurotoxicity owing to their effects on dopamine, glutamate, and serotonin neurotransmission. This study provides insights into the underlying mechanisms and potential risks of PS-MPs after UV radiation.
Collapse
Affiliation(s)
- Haibo Chen
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Xin Hua
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Yue Yang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; School of Public Health, China Medical University, Liaoning 110122, China
| | - Chen Wang
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Lide Jin
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Chenyin Dong
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Zhaofeng Chang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Ping Ding
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Mingdeng Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Hui Li
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| |
Collapse
|
15
|
Castro BMM, Santos-Rasera JR, Alves DS, Marucci RC, Carvalho GA, Carvalho HWP. Ingestion and effects of cerium oxide nanoparticles on Spodoptera frugiperda (Lepidoptera: Noctuidae). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 279:116905. [PMID: 33751949 DOI: 10.1016/j.envpol.2021.116905] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/17/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
The objective of this study was to evaluate the biological and nutritional characteristics of Spodoptera frugiperda (Lepidoptera: Noctuidae), an arthropod pest widely distributed in agricultural regions, after exposure to nano-CeO2 via an artificial diet and to investigate the presence of cerium in the body of this insect through X-ray fluorescence mapping. Nano-CeO2, micro-CeO2, and Ce(NO3)3 were incorporated into the diet (0.1, 1, 10, and 100 mg of Ce L-1). Cerium was detected in caterpillars fed with diets containing nano-CeO2 (1, 10 and 100 mg of Ce L-1), micro-CeO2 and Ce(NO3)3, and in feces of caterpillars from the first generation fed diets with nano-CeO2 at 100 mg of Ce L-1 as well. The results indicate that nano-CeO2 caused negative effects on S. frugiperda. After it was consumed by the caterpillars, the nano-CeO2 reduced up to 4.8% of the pupal weight and 60% of egg viability. Unlike what occurred with micro-CeO2 and Ce(NO3)3, nano-CeO2 negatively affected nutritional parameters of this insect, as consumption rate two times higher, increase of up to 80.8% of relative metabolic rate, reduction of up to 42.3% efficiency of conversion of ingested and 47.2% of digested food, and increase of up to 1.7% of metabolic cost and 8.7% of apparent digestibility. Cerium caused 6.8-16.9% pupal weight reduction in second generation specimens, even without the caterpillars having contact with the cerium via artificial diet. The results show the importance of new ecotoxicological studies with nano-CeO2 for S. frugiperda in semi-field and field conditions to confirm the toxicity.
Collapse
Affiliation(s)
- Bárbara M M Castro
- Departamento de Entomologia, Universidade Federal de Lavras, Campus Universitário, Caixa Postal 3037, Lavras, Minas Gerais, 37200-900, Brazil
| | - Joyce R Santos-Rasera
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário Nº 303, Piracicaba, São Paulo, 13416-000, Brazil
| | - Dejane S Alves
- Universidade Tecnológica Federal do Paraná, Campus Santa Helena, Prolongamento da Rua São Luis S/n, Santa Helena, Paraná, 85892-000, Brazil
| | - Rosangela C Marucci
- Departamento de Entomologia, Universidade Federal de Lavras, Campus Universitário, Caixa Postal 3037, Lavras, Minas Gerais, 37200-900, Brazil.
| | - Geraldo A Carvalho
- Departamento de Entomologia, Universidade Federal de Lavras, Campus Universitário, Caixa Postal 3037, Lavras, Minas Gerais, 37200-900, Brazil
| | - Hudson W P Carvalho
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário Nº 303, Piracicaba, São Paulo, 13416-000, Brazil
| |
Collapse
|
16
|
Hering I, Eilebrecht E, Parnham MJ, Weiler M, Günday-Türeli N, Türeli AE, Modh H, Heng PWS, Böhmer W, Schäfers C, Fenske M, Wacker MG. Microparticle formulations alter the toxicity of fenofibrate to the zebrafish Danio rerio embryo. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 234:105798. [PMID: 33799113 DOI: 10.1016/j.aquatox.2021.105798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 02/27/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
A wide variety of active pharmaceutical ingredients are released into the environment and pose a threat to aquatic organisms. Drug products using micro- and nanoparticle technology can lower these emissions into the environment by their increased bioavailability to the human patients. However, due to this enhanced efficacy, micro- and nanoscale drug delivery systems can potentially display an even higher toxicity, and thus also pose a risk to non-target organisms. Fenofibrate is a lipid-regulating agent and exhibits species-related hazards in fish. The ecotoxic effects of a fenofibrate formulation embedded into a hydroxypropyl methylcellulose microparticle matrix, as well as those of the excipients used in the formulation process, were evaluated. To compare the effects of fenofibrate without a formulation, fenofibrate was dispersed in diluted ISO water alone or dissolved in the solvent DMF and then added to diluted ISO water. The effects of these various treatments were assessed using the fish embryo toxicity test, acridine orange staining and gene expression analysis assessed by quantitative RT polymerase chain reaction. Exposure concentrations were assessed by chemical analysis. The effect threshold concentrations of fenofibrate microparticle precipitates were higher compared to the formulation. Fenofibrate dispersed in 20%-ISO-water displayed the lowest toxicity. For the fenofibrate formulation as well as for fenofibrate added as a DMF solution, greater ecotoxic effects were observed in the zebrafish embryos. The chemical analysis of the solutions revealed that more fenofibrate was present in the samples with the fenofibrate formulation as well as fenofibrate added as a DMF solution compared to fenofibrate dispersed in diluted ISO water. This could explain the higher ecotoxicity. The toxic effects on the zebrafish embryo thus suggested that the formulation as well as the solvent increased the bioavailability of fenofibrate.
Collapse
Affiliation(s)
- Indra Hering
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, 60596, Frankfurt/Main, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Auf dem Aberg 1, 57392, Schmallenberg, Germany; Goethe University Frankfurt am Main, Department Aquatic Ecotoxicology, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany.
| | - Elke Eilebrecht
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Auf dem Aberg 1, 57392, Schmallenberg, Germany
| | - Michael J Parnham
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, 60596, Frankfurt/Main, Germany
| | - Marc Weiler
- MyBiotech GmbH, Industriestraße 1B, 66802, Überherrn, Germany
| | | | | | - Harshvardhan Modh
- National University of Singapore, Department of Pharmacy, Faculty of Science, Wet Science Building (S9), 5 Science Drive 2, 117546, Singapore, Singapore
| | - Paul W S Heng
- National University of Singapore, GEA-NUS Pharmaceutical Processing Research Laboratory, Department of Pharmacy, Faculty of Science, 18 Science Drive 4, 117543, Singapore, Singapore
| | - Walter Böhmer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Auf dem Aberg 1, 57392, Schmallenberg, Germany
| | - Christoph Schäfers
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Auf dem Aberg 1, 57392, Schmallenberg, Germany
| | - Martina Fenske
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, 60596, Frankfurt/Main, Germany.
| | - Matthias G Wacker
- National University of Singapore, Department of Pharmacy, Faculty of Science, Wet Science Building (S9), 5 Science Drive 2, 117546, Singapore, Singapore
| |
Collapse
|
17
|
Sandner G, König A, Wallner M, Weghuber J. Alternative model organisms for toxicological fingerprinting of relevant parameters in food and nutrition. Crit Rev Food Sci Nutr 2021; 62:5965-5982. [PMID: 33683153 DOI: 10.1080/10408398.2021.1895060] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In the field of (food) toxicology, there is a strong trend of replacing animal trials with alternative methods for the assessment of adverse health effects in humans. The replacement of animal trials is not only driven by ethical concerns but also by the number of potential testing substances (food additives, packaging material, contaminants, and toxicants), which is steadily increasing. In vitro 2D cell culture applications in combination with in silico modeling might provide an applicable first response. However, those systems lack accurate predictions of metabolic actions. Thus, alternative in vivo models could fill the gap between cell culture and animal trials. In this review, we highlight relevant studies in the field and spotlight the applicability of alternative models, including C. elegans, D. rerio, Drosophila, HET-CAM and Lab-on-a-chip.
Collapse
Affiliation(s)
- Georg Sandner
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Wels, Austria
| | - Alice König
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Wels, Austria.,FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Tulln, Austria
| | - Melanie Wallner
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Wels, Austria.,FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Tulln, Austria
| | - Julian Weghuber
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Wels, Austria.,FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Tulln, Austria
| |
Collapse
|
18
|
Hu C, Hou J, Zhu Y, Lin D. Multigenerational exposure to TiO 2 nanoparticles in soil stimulates stress resistance and longevity of survived C. elegans via activating insulin/IGF-like signaling. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114376. [PMID: 32203849 DOI: 10.1016/j.envpol.2020.114376] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/10/2020] [Accepted: 03/13/2020] [Indexed: 06/10/2023]
Abstract
With increasing release of nanoparticles (NPs) into the environment, soil organisms likely suffer from high dose and long duration of NPs contamination, while the effect of NPs across multiple generations in soil is rarely studied. Herein, we investigated how multigenerational exposure to different crystal forms (anatase, rutile, and their mixture) of TiO2 NPs (nTiO2) affected the survival, behavior, physiological and biochemical traits, and lifespan of nematodes (C. elegans) in a paddy soil. The soil property changed very slightly after being spiked with nTiO2, and the toxicities of three nTiO2 forms were largely comparable. The nTiO2 exposure adversely influenced the survival and locomotion of nematodes, and increased intracellular reactive oxygen species (ROS) generation. Interestingly, the toxic effect gradually attenuated and the lifespan of survived nematodes increased from the P0 to F3 generation, which was ascribed to the survivor selection and stimulatory effect. The lethal effect and the increased oxidative stress may continuously screen out offspring possessing stronger anti-stress capabilities. Moreover, key genes (daf-2, age-1, and skn-1) in the insulin/IGF-like signaling (IIS) pathway actively responded to the nTiO2 exposure, which further optimized the selective expression of downstream genes, increased the antioxidant enzyme activities and antioxidant contents, and thereby increased the stress resistance and longevity of survived nematodes across successive generations. Our findings highlight the crucial role of bio-responses in the progressively decreased toxicity of nTiO2, and add new knowledge on the long-term impact of soil nTiO2 contamination.
Collapse
Affiliation(s)
- Chao Hu
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Jie Hou
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Ya Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
19
|
Effects of Airborne Nanoparticles on the Nervous System: Amyloid Protein Aggregation, Neurodegeneration and Neurodegenerative Diseases. NANOMATERIALS 2020; 10:nano10071349. [PMID: 32664217 PMCID: PMC7407104 DOI: 10.3390/nano10071349] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 01/18/2023]
Abstract
How the environment contributes to neurodegenerative diseases such as Alzheimer’s is not well understood. In recent years, science has found augmenting evidence that nano-sized particles generated by transport (e.g., fuel combustion, tire wear and brake wear) may promote Alzheimer’s disease (AD). Individuals residing close to busy roads are at higher risk of developing AD, and nanomaterials that are specifically generated by traffic-related processes have been detected in human brains. Since AD represents a neurodegenerative disease characterized by amyloid protein aggregation, this review summarizes our current knowledge on the amyloid-generating propensity of traffic-related nanomaterials. Certain nanoparticles induce the amyloid aggregation of otherwise soluble proteins in in vitro laboratory settings, cultured neuronal cells and vertebrate or invertebrate animal models. We discuss the challenges for future studies, namely, strategies to connect the wet laboratory with the epidemiological data in order to elucidate the molecular bio-interactions of airborne nanomaterials and their effects on human health.
Collapse
|
20
|
De la Parra-Guerra A, Stürzenbaum S, Olivero-Verbel J. Intergenerational toxicity of nonylphenol ethoxylate (NP-9) in Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 197:110588. [PMID: 32289633 DOI: 10.1016/j.ecoenv.2020.110588] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/22/2020] [Accepted: 04/01/2020] [Indexed: 05/24/2023]
Abstract
The ethoxylated isomers of nonylphenol (NPEs, NP-9) are one of the main active ingredients present in nonionic surfactants employed as herbicides, cosmetics, paints, plastics, disinfectants and detergents. These chemicals and their metabolites are commonly found in environmental matrices. The aim of this work was to evaluate the intergenerational toxicity of NP-9 in Caenorhabditis elegans. The lethality, length, width, locomotion and lifespan were investigated in the larval stage L4 of the wild strain N2. Transgenic green fluorescent protein (GFP) strains were employed to estimate changes in relative gene expression. RT-qPCR was utilized to measure mRNA expression for neurotoxicity-related genes (unc-30, unc-25, dop-3, dat-1, mgl-1, and eat-4). Data were obtained from parent worms (P0) and the first generation (F1). Lethality of the nematode was concentration-dependent, with 48 h-LC50 values of 3215 and 1983 μM in P0 and F1, respectively. Non-lethal concentrations of NP-9 reduced locomotion. Lifespan was also decreased by the xenobiotic, but the negative effect was greater in P0 than in F1. Non-monotonic concentration-response curves were observed for body length and width in both generations. The gene expression profile in P0 was different from that registered in F1, although the expression of sod-4, hsp-70, gpx-6 and mtl-2 increased with the surfactant concentration in both generations. None of the tested genes followed a classical concentration-neurotoxicity relationship. In P0, dopamine presented an inverted-U curve, while GABA and glutamate displayed a bimodal type. However, in F1, inverted U-shaped curves were revealed for these genes. In summary, NP-9 induced intergenerational responses in C. elegans through mechanisms involving ROS, and alterations of the GABA, glutamate, and dopamine pathways.
Collapse
Affiliation(s)
- Ana De la Parra-Guerra
- Environmental and Computational Chemistry Group, University of Cartagena, Cartagena, Colombia.
| | - Stephen Stürzenbaum
- School of Population Health & Environmental Sciences, Faculty of Life Science & Medicine, King's College London, London, UK.
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, University of Cartagena, Cartagena, Colombia.
| |
Collapse
|
21
|
Wu T, Liang X, He K, Liu X, Li Y, Wang Y, Kong L, Tang M. The NLRP3-Mediated Neuroinflammatory Responses to CdTe Quantum Dots and the Protection of ZnS Shell. Int J Nanomedicine 2020; 15:3217-3233. [PMID: 32440120 PMCID: PMC7212783 DOI: 10.2147/ijn.s246578] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/14/2020] [Indexed: 12/15/2022] Open
Abstract
Introduction Since CdTe quantum dots (QDs) are still widely considered as advanced fluorescent probes because of their far superior optical performance and fluorescence efficiency over non-cadmium QDs, it is important to find ways to control their toxicity. Methods In this study, the adverse effects of two cadmium-containing QDs, ie, CdTe QDs and CdTe@ZnS QDs, on the nervous system of nematode C. elegans, the hippocampus of mice, and cultured microglia were measured in order to evaluate the neuroinflammation caused by cadmium-containing QDs and the potential mechanisms. Results Firstly, we observed that cadmium-containing QD exposure-induced immune responses and neurobehavioral deficit in nematode C. elegans. In the mice treated with QDs, neuroinflammatory responses to QDs in the hippocampus, including microglial activation and IL-1ß release, occurred as well. When investigating the mechanisms of cadmium-containing QDs causing IL-1ß-mediated inflammation, the findings suggested that cadmium-containing QDs activated the NLRP3 inflammasome by causing excessive ROS generation, and resulted in IL-1ß release. Discussion Even though the milder immune responses and neurotoxicity of CdTe@ZnS QDs compared with CdTe QDs indicated the protective role of ZnS coating, the inhibitions of NLRP3 expression and ROS production completely reduced the IL-1ß-mediated inflammation. This provided valuable information that inhibiting target molecules is an effective and efficient way to alleviate the toxicity of cadmium-containing QDs, so it is important to evaluate QDs through a mechanism-based risk assessment.
Collapse
Affiliation(s)
- Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
| | - Xue Liang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
| | - Keyu He
- Blood Transfusion Department, Zhongda Hospital, Southeast University, Nanjing 210009, People's Republic of China
| | - Xi Liu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
| | - Yimeng Li
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
| | - Yutong Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
| | - Lu Kong
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
| |
Collapse
|
22
|
Viau C, Haçariz O, Karimian F, Xia J. Comprehensive phenotyping and transcriptome profiling to study nanotoxicity in C. elegans. PeerJ 2020; 8:e8684. [PMID: 32149031 PMCID: PMC7049462 DOI: 10.7717/peerj.8684] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/04/2020] [Indexed: 12/11/2022] Open
Abstract
Engineered nanoparticles are used at an increasing rate in both industry and medicine without fully understanding their impact on health and environment. The nematode Caenorhabditis elegans is a suitable model to study the toxic effects of nanoparticles as it is amenable to comprehensive phenotyping, such as locomotion, growth, neurotoxicity and reproduction. In this study, we systematically evaluated the effects of silver (Ag) and five metal oxide nanoparticles: SiO2, CeO2, CuO, Al2O3 and TiO2. The results showed that Ag and SiO2 exposures had the most toxic effects on locomotion velocity, growth and reproduction, whereas CeO2, Al2O3 and CuO exposures were mostly neurotoxic. We further performed RNAseq to compare the gene expression profiles underlying Ag and SiO2toxicities. Gene set enrichment analyses revealed that exposures to Ag and SiO2consistently downregulated several biological processes (regulations in locomotion, reproductive process and cell growth) and pathways (neuroactive ligand-receptor interaction, wnt and MAPK signaling, etc.), with opposite effects on genes involved in innate immunity. Our results contribute to mechanistic insights into toxicity of Ag and SiO2 nanoparticles and demonstrated that C. elegans as a valuable model for nanotoxicity assessment.
Collapse
Affiliation(s)
- Charles Viau
- Institute of Parasitology, McGill University, Montreal, Canada
| | - Orçun Haçariz
- Institute of Parasitology, McGill University, Montreal, Canada
| | - Farial Karimian
- Institute of Parasitology, McGill University, Montreal, Canada
| | - Jianguo Xia
- Institute of Parasitology, McGill University, Montreal, Canada.,Department of Animal Science, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
23
|
Zhao X, Shan S, Li J, Cao L, Lv J, Tan M. Assessment of potential toxicity of foodborne fluorescent nanoparticles from roasted pork. Nanotoxicology 2019; 13:1310-1323. [DOI: 10.1080/17435390.2019.1652943] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Xue Zhao
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, People’s Republic of China
- National Engineering Research Center of Seafood, Dalian, Liaoning, People’s Republic of China
- Engineering Research Center of Seafood of Ministry of Education of China, Dalian, Liaoning, People’s Republic of China
| | - Shihui Shan
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, People’s Republic of China
- National Engineering Research Center of Seafood, Dalian, Liaoning, People’s Republic of China
- Engineering Research Center of Seafood of Ministry of Education of China, Dalian, Liaoning, People’s Republic of China
| | - Jiaqi Li
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, People’s Republic of China
- National Engineering Research Center of Seafood, Dalian, Liaoning, People’s Republic of China
- Engineering Research Center of Seafood of Ministry of Education of China, Dalian, Liaoning, People’s Republic of China
| | - Lin Cao
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, People’s Republic of China
- National Engineering Research Center of Seafood, Dalian, Liaoning, People’s Republic of China
- Engineering Research Center of Seafood of Ministry of Education of China, Dalian, Liaoning, People’s Republic of China
| | - Jing Lv
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, People’s Republic of China
- National Engineering Research Center of Seafood, Dalian, Liaoning, People’s Republic of China
- Engineering Research Center of Seafood of Ministry of Education of China, Dalian, Liaoning, People’s Republic of China
| | - Mingqian Tan
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, People’s Republic of China
- National Engineering Research Center of Seafood, Dalian, Liaoning, People’s Republic of China
- Engineering Research Center of Seafood of Ministry of Education of China, Dalian, Liaoning, People’s Republic of China
| |
Collapse
|
24
|
Piechulek A, Berwanger LC, von Mikecz A. Silica nanoparticles disrupt OPT-2/PEP-2-dependent trafficking of nutrient peptides in the intestinal epithelium. Nanotoxicology 2019; 13:1133-1148. [DOI: 10.1080/17435390.2019.1643048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Annette Piechulek
- IUF – Leibniz Research Institute for Environmental Medicine, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Lutz C. Berwanger
- IUF – Leibniz Research Institute for Environmental Medicine, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Anna von Mikecz
- IUF – Leibniz Research Institute for Environmental Medicine, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
25
|
Sinis SI, Gourgoulianis KI, Hatzoglou C, Zarogiannis SG. Mechanisms of engineered nanoparticle induced neurotoxicity in Caenorhabditis elegans. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 67:29-34. [PMID: 30710828 DOI: 10.1016/j.etap.2019.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/19/2018] [Accepted: 01/20/2019] [Indexed: 06/09/2023]
Abstract
The wide-spread implementation of nanoparticles poses a major health concern. Unique biokinetics allow them to transfer to neurons throughout the body and inflict neurotoxicity, which is challenging to evaluate solely in mammalian experimental models due to logistics, financial and ethical limitations. In recent years, the nematode Caenorhabditis elegans has emerged as a promising nanotoxicology experimental surrogate due to characteristics such as ease of culture, short life cycle and high number of progeny. Most importantly, this model organism has a well conserved and fully described nervous system rendering it ideal for use in neurotoxicity assessment of nanoparticles. In that context, this mini review aims to summarize the main mechanistic findings on nanoparticle related neurotoxicity in the setting of Caenorhabditis elegans screening. The injury pathway primarily involves changes in intestinal permeability and defecation frequency both of which facilitate translocation at the site of neurons, where toxicity formation is linked partly to oxidative stress and perturbed neurotransmission.
Collapse
Affiliation(s)
- Sotirios I Sinis
- Department of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, 41500, Greece
| | - Konstantinos I Gourgoulianis
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, 41500, Greece
| | - Chrissi Hatzoglou
- Department of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, 41500, Greece
| | - Sotirios G Zarogiannis
- Department of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, 41500, Greece.
| |
Collapse
|
26
|
Shao H, Han Z, Krasteva N, Wang D. Identification of signaling cascade in the insulin signaling pathway in response to nanopolystyrene particles. Nanotoxicology 2019; 13:174-188. [DOI: 10.1080/17435390.2018.1530395] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Huimin Shao
- Medical School, Southeast University, Nanjing, China
| | - Zhongyu Han
- Medical School, Southeast University, Nanjing, China
| | - Natalia Krasteva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Science, Sofia, Bulgaria
| | - Dayong Wang
- Medical School, Southeast University, Nanjing, China
| |
Collapse
|
27
|
Ma H, Lenz KA, Gao X, Li S, Wallis LK. Comparative toxicity of a food additive TiO 2, a bulk TiO 2, and a nano-sized P25 to a model organism the nematode C. elegans. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:3556-3568. [PMID: 30523524 DOI: 10.1007/s11356-018-3810-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
To help fill the knowledge gap regarding the potential human health impacts of food pigment TiO2, a comparative toxicity study was performed on a food-grade TiO2 (f-TiO2), a bulk TiO2 (b-TiO2), and a nano-sized TiO2 (Degussa P25), and in the nematode Caenorhabditis elegans. Acute phototoxicity and chronic toxicity effects including reproduction, lifespan, and vulval integrity were evaluated. The f-TiO2, b-TiO2, and P25 had a primary particle size (size range) of 149 (53-308) nm, 129 (64-259) nm, and 26 (11-52) nm, respectively. P25 showed the greatest phototoxicity with a 24-h LC50 of 6.0 mg/L (95% CI 5.95, 6.3), followed by the f-TiO2 (LC50 = 6.55 mg/L (95% CI 6.35, 6.75)), and b-TiO2 was the least toxic. All three TiO2 (1-10 mg/L) induced concentration-dependent effects on the worm's reproduction, with a reduction in brood size by 8.5 to 34%. They all caused a reduction of worm lifespan, accompanied by an increased frequency of age-associated vulval integrity defects (Avid). The impact on lifespan and Avid phenotype was more notable for P25 than the f-TiO2 or b-TiO2. Ingestion and accumulation of TiO2 particles in the worm intestine was observed for all three materials by light microscopy. These findings demonstrate that the food pigment TiO2 induces toxicity effects in the worm and further studies are needed to elucidate the human health implication of such toxicities.
Collapse
Affiliation(s)
- Hongbo Ma
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI, USA.
| | - Kade A Lenz
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Xianfeng Gao
- Department of Materials Science & Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Shibin Li
- Mid-Continent Ecology Division, United States Environmental Protection Agency, Duluth, MN, USA
| | - Lindsay K Wallis
- Mid-Continent Ecology Division, United States Environmental Protection Agency, Duluth, MN, USA
| |
Collapse
|