1
|
Harikrishnan T, Paramasivam P, Sankar A, Sakthivel M, Sanniyasi E, Raman T, Thangavelu M, Singaram G, Muthusamy G. Weathered polyethylene microplastics induced immunomodulation in zebrafish. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 109:104478. [PMID: 38801845 DOI: 10.1016/j.etap.2024.104478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Microplastics are pollutants of emerging concern and the aquatic biota consumes microplastics (MPs), which has a range of toxicological and environmental effects on aquatic organisms that are not the intended targets. The current study looked into how weathered polyethylene (wPE) MPs affected Danio albolineatus immunological and haematological markers. In this experiment, fish of both sexes were placed in control and exposure groups, and they were exposed for 40 d at the sublethal level (1 μg L-1) of fragmented wPE, which contained 1074 ± 52 MPs per litre. Similarly, fish exposed to wPE MPs showed significant modifications in lysozyme, antimicrobial, and antiprotease activity, as well as differential counts. Results of the present study show that the male fish were more susceptible than female fish after 40 d of chronic exposure. Further studies are needed to ascertain how the innate and humoral immune systems of the fish respond to MPs exposure.
Collapse
Affiliation(s)
- Thilagam Harikrishnan
- Postgraduate and Research Department of Zoology, Pachaiyappa's College for Men, Chennai 600 030, India.
| | - Pandi Paramasivam
- Postgraduate and Research Department of Zoology, Pachaiyappa's College for Men, Chennai 600 030, India
| | - Anusuya Sankar
- Postgraduate and Research Department of Zoology, Pachaiyappa's College for Men, Chennai 600 030, India
| | - Madhavan Sakthivel
- Postgraduate and Research Department of Zoology, Pachaiyappa's College for Men, Chennai 600 030, India
| | - Elumalai Sanniyasi
- Department of Biotechnology, University of Madras, Chennai 600 035, India
| | - Thiagarajan Raman
- Department of Zoology, Ramakrishna Mission Vivekananda College (Autonomous), Chennai 600 004, India
| | - Muthukumar Thangavelu
- Dept BIN Convergence Tech & Dept Polymer Nano Sci & Tech, Jeonbuk National University, 567 Baekje-dearo, Deokjin, Jeonju, Jeollabuk-do 54896, Republic of Korea
| | - Gopalakrishnan Singaram
- Department of Biotechnology, Dwaraka Doss Goverdhan Doss Vaishnav College, Chennai, Tamil Nadu 600106, India; INTI International University, Putra Nilai, Nilai, Negeri Sembilan 71800, Malaysia
| | - Govarthanan Muthusamy
- Department of Environmental Engineering, Kyungpook National University, Daegu, Republic of Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu 600077, India.
| |
Collapse
|
2
|
Liu X, Pu Q, Cheng Y, Wu J, Yan J, Wang Z, Wang X, Wang H, Qian Q. Comparative impact of pristine and aged microplastics with triclosan on lipid metabolism in larval zebrafish: Unveiling the regulatory role of miR-217. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172580. [PMID: 38657822 DOI: 10.1016/j.scitotenv.2024.172580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
The prevalence of microplastics (MPs), especially aged particles, interacting with contaminants like triclosan (TCS), raises concerns about their toxicological effects on aquatic life. This study focused on the impact of aged polyamide (APA) MPs and TCS on zebrafish lipid metabolism. APA MPs, with rougher surfaces and lower hydrophobicity, exhibited reduced TCS adsorption than unaged polyamide (PA) MPs. Co-exposure to PA/APA MPs and TCS resulted in higher TCS accumulation in zebrafish larvae, notably more with PA than APA. Larvae exposed to PA + TCS exhibited greater oxidative stress, disrupted lipid metabolism, and altered insulin pathway genes than those exposed to TCS. However, these negative effects were lessened in the APA + TCS group. Through miRNA-seq and miR-217 microinjection, it was revealed that PA + TCS co-exposure upregulated miR-217, linked to lipid metabolic disorders in zebrafish. Moreover, molecular docking showed stable interactions formed between PA, TCS, and the insulin signaling protein Pik3r2. This study demonstrated that PA and TCS co-exposure significantly inhibited the insulin signaling in zebrafish, triggering lipid metabolism dysregulation mediated by miR-217 upregulation, while APA and TCS co-exposure alleviated these disruptions. This research underscored the ecological and toxicological risks of aged MPs and pollutants in aquatic environments, providing crucial insights into the wider implications of MPs pollution.
Collapse
Affiliation(s)
- Xingcheng Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Qian Pu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Ying Cheng
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Ji Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jin Yan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zejun Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xuedong Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Huili Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Qiuhui Qian
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
3
|
Meador JP, Ball SC, James CA, McIntyre JK. Using the fish plasma model to evaluate potential effects of pharmaceuticals in effluent from a large urban wastewater treatment plant. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123842. [PMID: 38554836 DOI: 10.1016/j.envpol.2024.123842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024]
Abstract
Several pharmaceuticals and personal care products (PPCPs) were evaluated using the fish plasma model (FPM) for juvenile Chinook salmon exposed to effluent from a large urban wastewater treatment plant. The FPM compares fish plasma concentrations to therapeutic values determined in human plasma as an indication of potential adverse effects. We used human Cmax values, which are the maximum plasma concentration for a minimum therapeutic dose. Observed and predicted plasma concentrations from juvenile Chinook salmon exposed to a dilution series of whole wastewater effluent were compared to 1%Cmax values to determine Response Ratios (RR) ([plasma]/1%Cmax) for assessment of possible adverse effects. Several PPCPs were found to approach or exceed an RR of 1, indicating potential effects in fish. We also predicted plasma concentrations from measured water concentrations and determined that several of the values were close to or below the analytical reporting limit (RL) indicating potential plasma concentrations for a large number of PPCPs that were below detection. Additionally, the 1%Cmax was less than the RL for several analytes, which could impede predictions of possible effect concentrations. A comparison of observed and predicted plasma concentrations found that observed values were frequently much higher than values predicted with water concentrations, especially for low log10Dow compounds. The observed versus predicted values using the human volume of distribution (Vd), were generally much closer in agreement. These data appear to support the selection of whole-body concentrations to predict plasma values, which relies more on estimating simple partitioning within the fish instead of uptake via water. Overall, these observations highlight the frequently underestimated predicted plasma concentrations and potential to cause adverse effects in fish. Using measured plasma concentrations or predicted values from whole-body concentrations along with improved prediction models and reductions in analytical detection limits will foster more accurate risk assessments of pharmaceutical exposure for fish.
Collapse
Affiliation(s)
- James P Meador
- University of Washington, Dept. of Environmental and Occupational Health Sciences, School of Public Health, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98105-6099, USA.
| | - Suzanne C Ball
- Washington State University, School of the Environment, Puyallup Research and Extension Center, 2606 W Pioneer Ave, Puyallup, WA, 98371, USA.
| | - C Andrew James
- University of Washington Tacoma, Center for Urban Waters, 326 East D Street, Tacoma, WA, 98421-1801, USA.
| | - Jenifer K McIntyre
- Washington State University, School of the Environment, Puyallup Research and Extension Center, 2606 W Pioneer Ave, Puyallup, WA, 98371, USA.
| |
Collapse
|
4
|
Mehariya S, Das P, Thaher MI, Abdul Quadir M, Khan S, Sayadi S, Hawari AH, Verma P, Bhatia SK, Karthikeyan OP, Zuorro A, Al-Jabri H. Microalgae: A potential bioagent for treatment of emerging contaminants from domestic wastewater. CHEMOSPHERE 2024; 351:141245. [PMID: 38242513 DOI: 10.1016/j.chemosphere.2024.141245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/24/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Water crisis around the world leads to a growing interest in emerging contaminants (ECs) that can affect human health and the environment. Research showed that thousands of compounds from domestic consumers, such as endocrine disrupting chemicals (EDCs), personal care products (PCPs), and pharmaceuticals active compounds (PhAcs), could be found in wastewater in concentration mostly from ng L-1 to μg L-1. However, generally, wastewater treatment plants (WWTPs) are not designed to remove these ECs from wastewater to their discharge levels. Scientists are looking for economically feasible biotreatment options enabling the complete removal of ECs before discharge. Microalgae cultivation in domestic wastewater is likely a feasible approach for removing emerging contaminants and simultaneously removing any residual organic nutrients. Microalgal growth rate and contaminants removal efficiency could be affected by various factors, including light intensity, CO2 addition, presence of different nutrients, etc., and these parameters could greatly help make microalgae treatment more efficient. Furthermore, the algal biomass harvests could be repurposed to produce various bulk chemicals such as sustainable aviation fuel, biofuel, bioplastic, and biochar; this could significantly enhance the economic viability. Therefore, this review summarizes the microalgae-based bioprocess and their mechanisms for removing different ECs from different wastewaters and highlights the different strategies to improve the ECs removal efficiency. Furthermore, this review shows the role of different ECs in biomass profile and the relevance of using ECs-treated microalgae biomass to produce green products, as well as highlights the challenges and future research recommendations.
Collapse
Affiliation(s)
- Sanjeet Mehariya
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar.
| | - Probir Das
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar.
| | - Mahmoud Ibrahim Thaher
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Mohammed Abdul Quadir
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Shoyeb Khan
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Sami Sayadi
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Alaa H Hawari
- Department of Civil and Environmental Engineering, College of Engineering, Qatar University, 2713, Doha, Qatar
| | - Pradeep Verma
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, Ajmer, India
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | | | | | - Hareb Al-Jabri
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar; Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| |
Collapse
|
5
|
Battaglin W, Bradley P, Weissinger R, Blackwell B, Cavallin J, Villeneuve D, DeCicco L, Kinsey J. Changes in chemical occurrence, concentration, and bioactivity in the Colorado River before and after replacement of the Moab, Utah wastewater treatment plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166231. [PMID: 37586530 DOI: 10.1016/j.scitotenv.2023.166231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023]
Abstract
Long-term (2010-19) water-quality monitoring on the Colorado River downstream from Moab Utah indicated the persistent presence of Bioactive Chemicals (BC), such as pesticides and pharmaceuticals. This stream reach near Canyonlands National Park provides critical habitat for federally endangered species. The Moab wastewater treatment plant (WWTP) outfall discharges to the Colorado River and is the nearest potential point-source to this reach. The original WWTP was replaced in 2018. In 2016-19, a study was completed to determine if the new plant reduced BC input to the Colorado River at, and downstream from, the outfall. Water samples were collected before and after the plant replacement at sites upstream and downstream from the outfall. Samples were analyzed for as many as 243 pesticides, 109 pharmaceuticals, 20 hormones, 51 wastewater indicator chemicals, 20 metals, and 8 nutrients. BC concentrations, hazard quotients (HQs), and exposure activity ratios (EARs) were used to identify and prioritize contaminants for their potential to have adverse biological effects on the health of native and endangered wildlife. There were 22 BC with HQs >1, mostly metals and hormones; and 23 BC with EARs >0.1, mostly hormones and pharmaceuticals. Most high HQs or EARs were associated with samples collected at the WWTP outfall site prior to its replacement. Discharge from the new plant had reduced concentrations of nutrients, hormones, pharmaceuticals, and other BC. For example, all 16 of the hormones detected at the WWTP outfall site had maximum concentrations in samples collected prior to the WWTP replacement. The WWTP replacement had less effect on instream concentrations of metals and pesticides, BC whose sources are less directly tied to domestic wastewater. Study results indicate that improved WWTP technology can create substantial reductions in concentrations of non-regulated BC such as pharmaceuticals, in addition to regulated contaminants such as nutrients.
Collapse
|
6
|
Baby JN, Akila B, Chiu TW, Sakthinathan S, V AS, Zealma B A, George M. Deep Eutectic Solvent-Assisted Synthesis of a Strontium Tungstate Bifunctional Catalyst: Investigation on the Electrocatalytic Determination and Photocatalytic Degradation of Acetaminophen and Metformin Drugs. Inorg Chem 2023; 62:8249-8260. [PMID: 37202345 DOI: 10.1021/acs.inorgchem.3c00676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In this work, we propose a modified solid-state approach for the sustainable preparation of a SrWO4 bifunctional catalyst using thymol-menthol-based natural deep eutectic green solvents (NADESs). Various spectroscopic and morphological techniques analyzed the as-synthesized SrWO4 particles. Acetaminophen (ATP) and metformin (MTF) were selected as the model drug compounds. The electrochemical detection and photocatalytic degradation of ATP and MTF upon ultraviolet-visible (UV-vis) light irradiation in the presence of as-prepared SrWO4 particles as an active catalyst are examined. The present study displayed that the proposed catalyst SrWO4 has enhanced catalytic activity in achieving the optimum experimental conditions, and linear ranges of ATP = 0.01-25.90 μM and MTF = 0.01-25.90 μM, a lower limit of detection (LOD) value (ATP = 0.0031 μM and MTF = 0.008 μM), and higher sensitivity toward ATP and MTF determination were obtained. Similarly, the rate constant was found to be k = ATP = 0.0082 min-1 and MTF = 0.0296 min-1 according to the Langmuir-Hinshelwood model, benefitting from the excellent synergistic impact of the SrWO4 catalyst toward the photocatalytic degradation of the drug molecule. Hence, this work offers innovative insights into the applicability of the as-prepared SrWO4 bifunctional catalyst as an excellent functional material for the remediation of emerging pollutants in water bodies with a recovery range of 98.2-99.75%.
Collapse
Affiliation(s)
- Jeena N Baby
- Department of Chemistry, Stella Maris College, Affiliated to the University of Madras, Chennai, Tamil Nadu 600086, India
- Department of Chemistry, St. Mary's College, Sulthan Bathery, Wayanad, Kerala 673592, India
| | - Balasubramanian Akila
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Te-Wei Chiu
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Subramanian Sakthinathan
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Abhikha Sherlin V
- Department of Chemistry, Stella Maris College, Affiliated to the University of Madras, Chennai, Tamil Nadu 600086, India
| | - Annie Zealma B
- Department of Chemistry, Stella Maris College, Affiliated to the University of Madras, Chennai, Tamil Nadu 600086, India
| | - Mary George
- Department of Chemistry, Stella Maris College, Affiliated to the University of Madras, Chennai, Tamil Nadu 600086, India
| |
Collapse
|
7
|
de Sousa A, Wilhelm CM, da Silva CEM, Goldoni A, Rodrigues MAS, da Silva LB. Treated tannery effluent and its impact on the receiving stream water: physicochemical characterization and cytogenotoxic evaluation using the Allium cepa test. PROTOPLASMA 2023; 260:949-954. [PMID: 36454318 DOI: 10.1007/s00709-022-01825-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Tanneries are considered some of the most polluting industries due to the heavy use of toxic compounds, most of which are released into water bodies, thus exerting adverse effects on aquatic biota. However, the effects on organisms of treated effluents when released into the natural environment are rarely evaluated. This study aims to assess the physicochemical parameters of a tannery effluent after treatment (TE) at a Common Effluent Treatment Plant as well as the water of the receiving stream and to evaluate cytogenotoxic effects in Allium cepa. Three sampling sites (A: TE discharge point; B: 100 m downstream from site A along the receiving stream; C: 100 m upstream from site A along the stream) were selected. Onion bulbs were exposed to TE (100%, 80%, 60% v/v), water samples from sites B and C, and tap water for 72 h. Chromosomal aberration and mitotic index were analyzed on the root cells of A. cepa. The TE was above the standard limits for ammoniacal nitrogen, COD, and total nitrogen. No cytogenotoxicity was observed in A. cepa exposed to samples from sites A and C. However, the stream water sampled downstream from the TE discharge site significantly reduced the mitotic index, indicating a cytotoxic effect. Therefore, this demonstrates the effects of interactions between the receiving water and the complex chemical mixtures in the TE. The findings thus showed that the toxicity assessment of treated effluents along with the receiving water body would provide valuable and more realistic information about the joint toxicity of chemical pollutants in aquatic environments.
Collapse
Affiliation(s)
- Andréa de Sousa
- Feevale University, ERS-239, Novo Hamburgo, Rio Grande do Sul, 2755, Brazil
| | | | | | - Angélica Goldoni
- Feevale University, ERS-239, Novo Hamburgo, Rio Grande do Sul, 2755, Brazil
| | | | | |
Collapse
|
8
|
Cao Q, Zhang H, Li T, He L, Zong J, Shan H, Huang L, Zhang Y, Liu H, Jiang J. Profiling miRNAs of Teleost Fish in Responses to Environmental Stress: A Review. BIOLOGY 2023; 12:biology12030388. [PMID: 36979079 PMCID: PMC10045198 DOI: 10.3390/biology12030388] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/11/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023]
Abstract
miRNAs are a class of endogenous and evolutionarily conserved noncoding short RNA molecules that post-transcriptionally regulate gene expression through sequence-specific interactions with mRNAs and are capable of controlling gene expression by binding to miRNA targets and interfering with the final protein output. The miRNAs of teleost were firstly reported in zebrafish development, but there are recent studies on the characteristics and functions of miRNAs in fish, especially when compared with mammals. Environmental factors including salinity, oxygen concentration, temperature, feed, pH, environmental chemicals and seawater metal elements may affect the transcriptional and posttranscriptional regulators of miRNAs, contributing to nearly all biological processes. The survival of aquatic fish is constantly challenged by the changes in these environmental factors. Environmental factors can influence miRNA expression, the functions of miRNAs and their target mRNAs. Progress of available information is reported on the environmental effects of the identified miRNAs, miRNA targets and the use of miRNAs in fish.
Collapse
Affiliation(s)
- Quanquan Cao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- MARBEC, University Montpellier, CNRS, IFREMER, IRD, 34090 Montpellier, France
- Correspondence: or (Q.C.); (H.L.); (J.J.); Tel./Fax: +86-28-86291010 (J.J.)
| | - Hailong Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Tong Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Lingjie He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiali Zong
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongying Shan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Lishi Huang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yupeng Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Haifeng Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: or (Q.C.); (H.L.); (J.J.); Tel./Fax: +86-28-86291010 (J.J.)
| | - Jun Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: or (Q.C.); (H.L.); (J.J.); Tel./Fax: +86-28-86291010 (J.J.)
| |
Collapse
|
9
|
Taher H, Sabra MS, Salah El-Din AED, Sayed AEDH. Hemato-biochemical indices alteration, oxidative stress, and immune suppression in the African catfish (Clarias gariepinus) exposed to metformin. TOXICOLOGY AND ENVIRONMENTAL HEALTH SCIENCES 2022; 14:361-369. [DOI: 10.1007/s13530-022-00150-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/20/2022] [Indexed: 12/09/2024]
|
10
|
An Overview of the Impact of Pharmaceuticals on Aquatic Microbial Communities. Antibiotics (Basel) 2022; 11:antibiotics11121700. [PMID: 36551357 PMCID: PMC9774725 DOI: 10.3390/antibiotics11121700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Pharmaceuticals are present as pollutants in several ecosystems worldwide. Despite the reduced concentrations at which they are detected, their negative impact on natural biota constitutes a global concern. The consequences of pharmaceuticals' presence in water sources and food have been evaluated with a higher detail for human health. However, although most of the pharmaceuticals detected in the environment had not been designed to act against microorganisms, it is of utmost importance to understand their impact on the environmental native microbiota. Microbial communities can suffer serious consequences from the presence of pharmaceuticals as pollutants in the environment, which may directly impact public health and ecosystem equilibrium. Among this class of pollutants, the ones that have been studied in more detail are antibiotics. This work aims to provide an overview of the impacts of different pharmaceuticals on environmental biofilms, more specifically in biofilms from aquatic ecosystems and engineered water systems. The alterations caused in the biofilm function and characteristics, as well as bacteria antimicrobial tolerance and consequently the associated risks for public health, are also reviewed. Despite the information already available on this topic, the need for additional data urges the assessment of emerging pollutants on microbial communities and the potential public health impacts.
Collapse
|
11
|
Barbieri PA, Mari-Ribeiro IP, Lupepsa L, Gigliolli AAS, Paupitz BR, de Melo RF, de Souza Leite Mello EV, de Brito Portela-Castro AL, Borin-Carvalho LA. Metformin-induced alterations in gills of the freshwater fish Astyanax lacustris (Lütken, 1875) detected by histological and scanning electron microscopy. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:1205-1216. [PMID: 36042120 DOI: 10.1007/s10646-022-02580-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
The antidiabetic drug metformin is widely prescribed and found in different concentrations in the environment around the world, raising concern about potential impacts on aquatic life. Analyses of the effects of exposure of biological models to aquatic contaminants are important for assessing pollution effects on fish health. The gills of fishes represent primary targets of disturbance by pollutants, mainly because of the large surface of the respiratory epithelium and the high perfusion rate, which both help the entry of pollutants into this tissue. In this context, the aim of this work was to use gill histological analyses biomarkers to evaluate the toxicity of metformin on aquatic environmental systems, by means of chronic exposure for 90 days of Astyanax lacustris (lambari), an ecologically important neotropical species that can be used as an environmental bioindicator. Histopathological analyses were performed using Light and Scanning Electron Microscopy. The main changes were lamellar fusion, telangiectasia hyperplasia and disappearance of microridges. The morphological changes observed possibly interfere with the gill physiology, indicating an unfavorable situation to the presence of metformin in the water, pointing to a concern that metformin may pose a risk to Astyanax lacustris and likely to other fish species, compromising the dynamics of the aquatic ecosystem as a whole. Graphical abstract.
Collapse
Affiliation(s)
- Pablo Americo Barbieri
- Pós-graduação em Genética e Melhoramento, Universidade Estadual de Maringá, Av. Colombo, 5790, Maringá, Paraná, 87020-900, Brazil.
| | - Isabelle Pereira Mari-Ribeiro
- Pós-graduação em Ciências Biológicas, Universidade Estadual de Maringá, Av. Colombo, 5790, Maringá, Paraná, 87020-900, Brazil
| | - Luara Lupepsa
- Pós-graduação em Ciências Biológicas, Universidade Estadual de Maringá, Av. Colombo, 5790, Maringá, Paraná, 87020-900, Brazil
| | | | - Brennda Ribeiro Paupitz
- Pós-graduação em Ciências Biológicas, Universidade Estadual de Maringá, Av. Colombo, 5790, Maringá, Paraná, 87020-900, Brazil
| | - Rafael Fernando de Melo
- Pós-graduação em Genética e Melhoramento, Universidade Estadual de Maringá, Av. Colombo, 5790, Maringá, Paraná, 87020-900, Brazil
| | | | - Ana Luiza de Brito Portela-Castro
- Departamento de Biotecnologia, Genética e Biologia Celular, Av. Colombo, 5790, Maringá, Paraná, 87020-900, Brazil
- Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura (Nupélia), Universidade Estadual de Maringá, Av. Colombo, 5790, Maringá, Paraná, 87020-900, Brazil
| | | |
Collapse
|
12
|
Zicarelli G, Multisanti CR, Falco F, Faggio C. Evaluation of toxicity of Personal Care Products (PCPs) in freshwaters: Zebrafish as a model. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 94:103923. [PMID: 35772612 DOI: 10.1016/j.etap.2022.103923] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/19/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Personal care products (PCPs) are part of the large and growing family of emerging contaminants (ECs). Many daily products such as sunscreens, toothpaste, make-up products, perfume, and others, fall under this definition, and their use is increasing exponentially. Furthermore, the degradation of some components of these products is limited. Indeed, they are able to easily reach and accumulate in aquatic systems, representing a new class of contaminants. Moreover, due to their chemical properties, they can interfere at different biological levels, and for this reason, they need to be thoroughly investigated. We have reviewed the literature on PCPs, with a special focus on the adverse effects on the freshwater zebrafish (Danio rerio). The aim of this work is to provide a careful assessment of the toxicity of these compounds, in order to raise awareness for more conscious and responsible use.
Collapse
Affiliation(s)
- Giorgia Zicarelli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98166S Agata-Messina, Italy.
| | - Cristiana Roberta Multisanti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98166S Agata-Messina, Italy.
| | - Francesca Falco
- Institute of Marine Biological Resources and Biotechnologies, National Research Council (CNR), Mazara del Vallo, Italy.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98166S Agata-Messina, Italy.
| |
Collapse
|
13
|
Bencheikh Z, Refes W, Brito PM, Prodocimo MM, Gusso-Choueri PK, Choueri RB, de Oliveira Ribeiro CA. Chemical pollution impairs the health of fish species and fishery activities along the Algeria coastline, Mediterranean Sea. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:497. [PMID: 35695983 DOI: 10.1007/s10661-022-10059-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
Chronic exposure to multiple pollutants affects aquatic organisms, even at low concentrations, and can impair fishery activities along marine coastlines. The bioavailability of toxic metals and the presence of metals and polycyclic aromatic hydrocarbons (PAHs) in both water and sediment can explain the worst-case scenario of fish health and fishery production decline along the Algeria coastline. The hepatosomatic index (HIS), gonadosomatic index (GSI), and condition factor (K) in the studied species from the Algiers, Bou Ismail, and Zemmouri bays are the first indicators of the poor environmental health along the studied region. These findings could be explained by the bioavailability of Zn, Cu, Cr, Mn, Hg, and Ni and the detection of PAHs in the water and sediment of these bays. Additionally, histopathological damage in the liver is described in sardine (Sardina pilchardus), anchovy (Engraulis encrasicolus), and sardinelle (Sardinella aurita) highlights the current study in the investigation of the risk of exposure to biota or human populations. The occurrence of permanent lesions in the livers of fish impairs organ function and increases the incidence of diseases affecting the fish community. Furthermore, the factor analysis with principal component analysis (FA/PCA) dataset explains the physiological disturbances described in all studied species. These findings revealed that Zemmouri bay is the most affected by chemicals, suggesting that S. pilchardus is the most sensitive species. Finally, the results showed that the bioavailability of chemicals present in the studied bays confirms poor water quality, which can explain the decrease in fishery production along the Algerian Coastline.
Collapse
Affiliation(s)
- Zina Bencheikh
- Laboratoire des Ecosystèmes Marin et Littoraux, Ecole Nationale Supérieure Des Sciences de La Mer Et de L'Aménagement du Littoral (ENSSMAL), BP, 19, Campus Universitaire de Dely Ibrahim, Bois des Cars, Alger, Algeria
| | - Wahid Refes
- Laboratoire des Ecosystèmes Marin et Littoraux, Ecole Nationale Supérieure Des Sciences de La Mer Et de L'Aménagement du Littoral (ENSSMAL), BP, 19, Campus Universitaire de Dely Ibrahim, Bois des Cars, Alger, Algeria
| | - Patricia Manuitt Brito
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, Caixa Postal 19031, Curitiba, Paraná, CEP 81531-970, Brazil
| | - Maritana Mela Prodocimo
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, Caixa Postal 19031, Curitiba, Paraná, CEP 81531-970, Brazil
| | - Paloma Kachel Gusso-Choueri
- Laboratório de Ecotoxicologia - Unisanta, Universidade Santa Cecília, R. Oswaldo Cruz, 277 - CP 11045-907 - Boqueirão, Santos, São Paulo, Brazil
| | - Rodrigo Brasil Choueri
- Departamento de Ciências Do Mar, Universidade Federal de São Paulo, Campus Baixada Santista. Rua Maria Máximo, 168 - Ponta da Praia - Santos, CEP: 11030-100, São Paulo, Brazil
| | - Ciro Alberto de Oliveira Ribeiro
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, Caixa Postal 19031, Curitiba, Paraná, CEP 81531-970, Brazil.
| |
Collapse
|
14
|
He Y, Jin H, Gao H, Zhang G, Ju F. Prevalence, production, and ecotoxicity of chlorination-derived metformin byproducts in Chinese urban water systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151665. [PMID: 34785232 DOI: 10.1016/j.scitotenv.2021.151665] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
The widely used antidiabetic drug metformin has become an emerging contaminant of water systems. In a prior study, we demonstrated the marked mammalian toxicity of the disinfection-derived byproducts (DBPs) Y (yellow, C4H6ClN5) and C (colorless, C4H6ClN3), and here assess the distribution, formation, and ecotoxicity of these in Chinese urban water systems. A national tap water assessment showed that metformin and C concentrations were higher in large, dense urban areas and surface water sources than in sparsely populated areas and groundwater sources. Water types' analysis clearly showed that C derived from chlorination of metformin-contaminated water (up to 4308.5 ng/L) circulated from domestic water (0.7-9.7 ng/L) via sewage (2.3 ng/L in effluent) to surface water (0.6-3.5 ng/L). Simulated disinfection and aqueous stability results systematically showed rapid formation and 24 h stability of both byproducts, indicating high exposure odds for water users. Both byproducts showed clear but distinct toxic effects on the growth (72 h IC50, 0.6 mg/L for Y and 4.4 mg/L for C) and photosynthesis of the microalgae Pseudokirchneriella subcapitata at milligram levels. Combinedly, our work reveals that metformin byproducts have been disseminated to urban water cycle and contaminated tap water, increasing potential toxic risk for drinking water. Its outcomes provide a preliminary reference for future studies on the environmental fate and ecotoxicological effects of unintended DBPs formed in the chlorination of metformin-contaminated water.
Collapse
Affiliation(s)
- Yuanzhen He
- Fudan University, 220 Handan Road, Shanghai 200433, China; Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang Province, China
| | - Hui Jin
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang Province, China
| | - Han Gao
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang Province, China
| | - Guoqing Zhang
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang Province, China
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang Province, China.
| |
Collapse
|
15
|
Waldman JR, Quinn TP. North American diadromous fishes: Drivers of decline and potential for recovery in the Anthropocene. SCIENCE ADVANCES 2022; 8:eabl5486. [PMID: 35089793 PMCID: PMC8797777 DOI: 10.1126/sciadv.abl5486] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Diadromous fishes migrate between freshwater and marine habitats to complete their life cycle, a complexity that makes them vulnerable to the adverse effects of current and past human activities on land and in the oceans. Many North American species are critically endangered, and entire populations have been lost. Major factors driving declines include overfishing, pollution, water withdrawals, aquaculture, non-native species, habitat degradation, over-zealous application of hatcheries designed to mitigate effects of other factors, and effects of climate change. Perhaps, the most broadly tractable and effective factors affecting diadromous fishes are removals of the dams that prevent or hinder their migrations, alter their environment, and often favor non-native biotic communities. Future survival of many diadromous fish populations may depend on this.
Collapse
Affiliation(s)
- John R. Waldman
- Queens College and Graduate School, City University of New York, New York, NY, USA
- Corresponding author.
| | | |
Collapse
|
16
|
Hidrovo A, Luek JL, Antonellis C, Malley JP, Mouser PJ. The fate and removal of pharmaceuticals and personal care products within wastewater treatment facilities discharging to the Great Bay Estuary. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e1680. [PMID: 35075725 DOI: 10.1002/wer.1680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) are contaminants of emerging concern that derive primarily in the water environment from combined sewer overflows and discharges from industrial and municipal wastewater treatment facilities (WWTFs). Due to incomplete removal during wastewater treatment, PPCP impacts to aquatic ecosystems are a major concern. The Great Bay Estuary (New Hampshire, USA) is an important ecological, commercial, and recreational resource where upstream WWTFs have recently been under pressure to reduce nitrogen loading to the estuary and consequently upgrade treatment systems. Therefore, we investigated the distribution and abundance of 18 PPCPs and three flame retardants within the Great Bay Estuary and WWTFs discharging to the estuary to examine how WWTF type influenced PPCP removal. All 21 analytes were frequently detected at μg/L to ng/L concentrations in influent and effluent and ng/kg in sludge. WWTFs with enhanced nutrient removal and longer solids retention times correlated to higher PPCP removal, indicating facility upgrades may have benefits related to PPCP removal. Understanding PPCP fate during treatment and in downstream waters informs our ability to assess the environmental and ecological impacts of PPCPs on estuarine resources and develop mitigation strategies to better protect marine ecosystems from emerging contaminant exposure. PRACTITIONER POINTS: PPCP removal positively correlated with solids retention time and varied by treatment facility and compound. Upgrade of WWTFs for biological nitrogen removal may also increase PPCP removal. Surface water fluoxetine concentrations may present an ecological risk to the Great Bay Estuary.
Collapse
Affiliation(s)
- Alexandria Hidrovo
- Department of Civil and Environmental Engineering, University of New Hampshire, Durham, New Hampshire, USA
- Weston & Sampson, Portsmouth, New Hampshire, USA
| | - Jenna L Luek
- Department of Civil and Environmental Engineering, University of New Hampshire, Durham, New Hampshire, USA
| | - Carmela Antonellis
- Department of Civil and Environmental Engineering, University of New Hampshire, Durham, New Hampshire, USA
| | - James P Malley
- Department of Civil and Environmental Engineering, University of New Hampshire, Durham, New Hampshire, USA
| | - Paula J Mouser
- Department of Civil and Environmental Engineering, University of New Hampshire, Durham, New Hampshire, USA
| |
Collapse
|
17
|
Lin W, Yan Y, Ping S, Li P, Li D, Hu J, Liu W, Wen X, Ren Y. Metformin-Induced Epigenetic Toxicity in Zebrafish: Experimental and Molecular Dynamics Simulation Studies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1672-1681. [PMID: 33332093 DOI: 10.1021/acs.est.0c06052] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The increased detection of many prescription drugs in aquatic environments has heightened concerns of their potential ecotoxicological effects. In this study, the effects of metformin (MEF) exposure on tissue accumulation, gene expression, and global DNA methylation (GDM) in zebrafish were investigated. The toxic mechanism of MEF exposure was simulated by molecular dynamics (MD) to reveal any conformational changes to DNA methyltransferase 1 (DNMT1). The results showed MEF accumulation in the gills, gut, and liver of zebrafish after 30 days of exposure, and the bioaccumulation capacity was in the order of gut > liver > gills. After a 30 day recovery period, MEF could still be detected in zebrafish tissues in groups exposed to MEF concentrations ≥ 10 μg/L. Moreover, the liver was the main site of GDM, and the restoration of GDM in the liver was slower than that in the gut and gills during the recovery period. Furthermore, MEF could induce the abnormal expression of CYP3A65, GSTM1, p53, and DNMT1 genes in the liver due to the formation of hydrogen bonds between MEF and the protein residues of those genes. The MD simulation allowed for the mechanistic determination of MEF-induced three-dimensional (3D) conformational changes and changes to the catalytic activity of DNMT1.
Collapse
Affiliation(s)
- Wenting Lin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Yuanyang Yan
- School of Chemical and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Senwen Ping
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Ping Li
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Diandi Li
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Junjie Hu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, P. R. China
| | - Wei Liu
- School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China
| | - Xiufang Wen
- School of Chemical and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Yuan Ren
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
- The Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institutions, Guangzhou 510006, China
| |
Collapse
|
18
|
Meador JP, Bettcher LF, Ellenberger MC, Senn TD. Metabolomic profiling for juvenile Chinook salmon exposed to contaminants of emerging concern. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 747:141097. [PMID: 32781313 DOI: 10.1016/j.scitotenv.2020.141097] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 06/11/2023]
Abstract
Both targeted and non-targeted metabolomic analyses were conducted on juvenile ocean-type fall Chinook salmon (Oncorhynchus tshawytscha) residing in two estuaries receiving wastewater treatment plant (WWTP) effluent and one reference estuary. The data show that the metabolome patterns for fish from the two WWTP-receiving estuaries were more similar to each other compared to that for the reference site fish. Also, a comparison of the metabolome for fish from the reference site and fish from a hatchery upstream of one of the effluent-receiving estuaries indicated no differences, implying that residency for fish in the contaminated estuary resulted in major changes to the metabolome. Based on general health parameters including whole-body lipid content and condition factor, plus the availability of prey for these fish, we conclude that juvenile Chinook salmon in these contaminated estuaries may have been experiencing metabolic disruption without any overt signs of impairment. Additionally, a non-targeted analysis was performed on hatchery summer Chinook salmon from a laboratory study where fish were dosed for 32 days with feed containing 16 of the most common contaminants of emerging concern (CECs) detected in wild fish. In the laboratory experiment a relationship was observed between dose and the number of liver metabolites that were different between control and treatment fish. Laboratory fish were exposed to only 16 CECs, but are generally exposed to hundreds of these compounds in contaminated aquatic environments. These results have implications for the health of juvenile Chinook salmon and the likelihood of a successful life cycle when exposed to effluent-related chemicals.
Collapse
Affiliation(s)
- James P Meador
- Ecotoxicology Program, Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, Seattle, WA 98112, USA; Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA 98195, USA.
| | - Lisa F Bettcher
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, School of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Mathew C Ellenberger
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, School of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Taurence D Senn
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
19
|
Abd El-Aziz HM, Farag RS, Abdel-Gawad SA. Removal of contaminant metformin from water by using Ficus benjamina zero-valent iron/copper nanoparticles. NANOTECHNOLOGY FOR ENVIRONMENTAL ENGINEERING 2020; 5:23. [DOI: 10.1007/s41204-020-00086-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/08/2020] [Indexed: 09/02/2023]
|
20
|
Wang D, Zhang Y, Li J, Dahlgren RA, Wang X, Huang H, Wang H. Risk assessment of cardiotoxicity to zebrafish (Danio rerio) by environmental exposure to triclosan and its derivatives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114995. [PMID: 32554097 DOI: 10.1016/j.envpol.2020.114995] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/02/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
Triclosan (TCS) and its two derivatives (2,4-dichlorophenol and 2,4,6-trichlorophenol) are priority pollutants that coexist in aquatic environments. Joint exposure of TCS, 2,4-dichlorophenol and 2,4,6-trichlorophenol, hereafter referred to as TCS-DT, contributes severe toxicity to aquatic organisms. There is currently a paucity of data regarding TCS-DT molecular toxicity, especially on cardiac diseases. We used zebrafish (Danio rerio) as a model organism, and evaluated the molecular-level cardiotoxicity induced by TCS-DT from embryonic to adult stages. TCS-DT exposure prominently led to phenotypic malformations, such as pericardial cysts, cardiac bleeding, increased SV-BA distance, decreased heart rate and reduced ejection fraction, as well as abnormal swimming behavior. Analyses of the GO and KEGG pathways revealed enrichment pathways related to cardiac development and screened for significantly down-regulated adrenaline signaling in cardiomyocytes. The cardiac marker genes (amhc, cmlc2, vmhc, and nkx2.5) were obtained through protein-protein interaction (PPI) networks, and expressed as down-regulation by WISH. After chronic exposure to TCS-DT from 30 to 90-dpf, both body mass and heart indexes prominently increased, showing myocardial hypertrophy, abnormal heart rate and histopathological injury. Heart tissue damage included disordered and ruptured myocardial fibers, broken and dissolved myofilaments, nuclear pyknosis, mitochondrial injury and inflammatory cell infiltration. Further, abnormal changes in a series of cardiac functions-related biomarkers, including superoxide dismutase, triglyceride, lactate dehydrogenase and creatinine kinase MB, provided evidence for cardiac pathological responses. These results highlight the molecular mechanisms involving TCS-DT induced cardiac toxicity, and provide theoretical data to guide prevention and treatment of pollutant-induced cardiac diseases.
Collapse
Affiliation(s)
- Danting Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yuhuan Zhang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jieyi Li
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Randy A Dahlgren
- Department of Land, Air and Water Resources, University of California, Davis, CA, 95616, USA
| | - Xuedong Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, China
| | - Haishan Huang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Huili Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
21
|
Battaglin W, Duncker J, Terrio P, Bradley P, Barber L, DeCicco L. Evaluating the potential role of bioactive chemicals on the distribution of invasive Asian carp upstream and downstream from river mile 278 in the Illinois waterway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 735:139458. [PMID: 32470670 DOI: 10.1016/j.scitotenv.2020.139458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
Two non-native carp species have invaded the Illinois Waterway and are a threat to Great Lakes ecosystems. Poor water quality in the upper Illinois Waterway may be a factor contributing to the stalling of the carp population front near river mile 278. In 2015, the U.S. Geological Survey collected 4 sets of water samples from two sites upstream and 4 sites downstream from river mile 278, and one tributary. Each sample was analyzed for up to 649 unique constituents of which 287 were detected including 96 pesticides, 62 pharmaceuticals, 39 wastewater indicator chemicals, 29 metals, 19 volatile organic compounds (VOCs), 6 disinfection by-products (DBPs), 5 hormones, and 5 carboxylic acids. Potential for bioactivity was estimated by comparing chemical concentrations to aquatic life or human health criteria and to in-vitro bioactivity screening results in the U.S Environmental Protection Agency ToxCast™ database. The resulting hazard quotients and exposure-activity ratios (EARs) are toxicity indexes that can be used to rank potential bioactivity of individual chemicals and chemical mixtures. This analysis indicates that several bioactive chemicals (BCs) including: carbendazim, 2,4-D, metolachlor, terbuthylazine, and acetochlor (pesticides); 1,4-dioxane (VOC); metformin, diphenhydramine, sulfamethoxazole, tramadol, fexofenadine, and the anti-depressants (pharmaceuticals); bisphenol A, 4-nonylphenol, galaxolide, 4-tert-octylphenol (wastewater indicator chemical); lead and boron (metals); and estrone (hormone) all occur in the upper Illinois Waterway at concentrations that produce elevated EARs values and may be adversely affecting carp reproduction and health. The clear differences in water quality upstream and downstream from river mile 278 with higher contaminant concentrations and potential bioactivity upstream could represent a barrier to carp range expansion.
Collapse
Affiliation(s)
- William Battaglin
- U.S. Geological Survey, Colorado Water Science Center, Lakewood, CO, United States of America.
| | - James Duncker
- U.S. Geological Survey, Central Midwest Water Science Center, Urbana, IL, United States of America
| | - Paul Terrio
- U.S. Geological Survey, Central Midwest Water Science Center, Urbana, IL, United States of America
| | - Paul Bradley
- U.S. Geological Survey, South Atlantic Water Science Center, Columbia, SC, United States of America
| | - Larry Barber
- U.S. Geological Survey, Water Mission Area, Boulder, CO, United States of America
| | - Laura DeCicco
- U.S. Geological Survey, Upper Midwest Science Center, Middleton, WI, United States of America
| |
Collapse
|
22
|
Martín J, Hidalgo F, Alonso E, García-Corcoles MT, Vílchez JL, Zafra-Gómez A. Assessing bioaccumulation potential of personal care, household and industrial products in a marine echinoderm (Holothuria tubulosa). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137668. [PMID: 32325598 DOI: 10.1016/j.scitotenv.2020.137668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/28/2020] [Accepted: 03/01/2020] [Indexed: 06/11/2023]
Abstract
A bioaccumulation study of 16 emerging contaminants including preservatives, UV-filters, biocides, alkylphenols, anionic surfactants and plasticizers, in Holothuria tubulosa Gmelin, 1791 specimens was developed. Water and sediments from their coastal habitat were also analyzed. Sediment-water distribution coefficients (log Kd) were in the range 0.78 to 2.95. A rapid uptake and bioaccumulation of pollutants was found. Compounds were detected in intestine and gonads of H. tubulosa after only eight days of exposure. Field-based bioconcentration (BCF) and biota-sediment accumulation factors (BSAF) were calculated. Log BCF > 1 were obtained for most of the compounds studied, indicating their tendency to accumulate in tissue of H. Tubulosa. BCF values decrease as follow: Triclocarban > anionic surfactants > benzophenone 3 > non-ionic surfactants > bisphenol A > parabens. These data provide a detailed accounting of the distribution patterns of some emerging contaminants in organisms at the lower trophic level, representing a potential source of contaminants for organisms in higher levels of the food chain.
Collapse
Affiliation(s)
- Julia Martín
- Department of Analytical Chemistry, Escuela Politécnica Superior, University of Seville, C/ Virgen de África 7, E-41011 Seville, Spain.
| | - Felix Hidalgo
- Department of Zoology, University of Granada, Campus of Fuentenueva, E-18071 Granada, Spain
| | - Esteban Alonso
- Department of Analytical Chemistry, Escuela Politécnica Superior, University of Seville, C/ Virgen de África 7, E-41011 Seville, Spain
| | - María Teresa García-Corcoles
- Research Group of Analytical Chemistry and Life Sciences, Department of Analytical Chemistry, University of Granada, Campus of Fuentenueva, E-18071 Granada, Spain
| | - Jose Luis Vílchez
- Research Group of Analytical Chemistry and Life Sciences, Department of Analytical Chemistry, University of Granada, Campus of Fuentenueva, E-18071 Granada, Spain
| | - Alberto Zafra-Gómez
- Research Group of Analytical Chemistry and Life Sciences, Department of Analytical Chemistry, University of Granada, Campus of Fuentenueva, E-18071 Granada, Spain
| |
Collapse
|
23
|
O'Neill SM, Carey AJ, Harding LB, West JE, Ylitalo GM, Chamberlin JW. Chemical tracers guide identification of the location and source of persistent organic pollutants in juvenile Chinook salmon (Oncorhynchus tshawytscha), migrating seaward through an estuary with multiple contaminant inputs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 712:135516. [PMID: 31806347 DOI: 10.1016/j.scitotenv.2019.135516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/04/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
Understanding the spatial extent, magnitude, and source of contaminant exposure in biota is necessary to formulate appropriate conservation measures to reduce or remediate contaminant exposure. However, obtaining such information for migratory animals is challenging. Juvenile Chinook salmon (Oncorhynchus tshawytscha), a threatened species throughout the US Pacific Northwest, are exposed to persistent organic pollutants (POPs), including polybrominated diphenyl ether (PBDE) flame retardants and polychlorinated biphenyls (PCBs), in many developed rivers and estuaries. This study used three types of complementary chemical tracer data (contaminant concentrations, POP fingerprints, and stable isotopes), to determine the location and source of contaminant exposure for natural- and hatchery-origin Chinook salmon migrating seaward through a developed watershed with multiple contaminant sources. Concentration data revealed that salmon were exposed to and accumulated predominantly PBDEs and PCBs in the lower mainstem region of the river, with higher PBDEs in natural- than hatchery-origin fish but similar PCBs in both groups, associated with differences in contaminant inputs and/or habitat use. The POP fingerprints of the natural-origin-fish captured from this region were also distinct from other region and origin sample groups, with much higher proportions of PBDEs in the total POP concentration, indicating a different contaminant source or habitat use than the hatchery-origin fish. Stable isotopes, independent tracers of food sources and habitat use, revealed that natural-origin fish from this region also had depleted δ15N signatures compared to other sample groups, associated with exposure to nutrient-rich wastewater. The PBDE-enhanced POP fingerprints in these salmon were correlated with the degree of depletion in nitrogen stable isotopes of the fish, suggesting a common wastewater source for both the PBDEs and the nitrogen. Identification of the location and source of contaminant exposure allows environmental managers to establish conservation measures to control contaminant inputs, necessary steps to improve the health of Chinook salmon and enhance their marine survival.
Collapse
Affiliation(s)
- Sandra M O'Neill
- Washington Department of Fish and Wildlife, PO Box 43200, Olympia, WA 98504-3200, USA.
| | - Andrea J Carey
- Washington Department of Fish and Wildlife, PO Box 43200, Olympia, WA 98504-3200, USA
| | - Louisa B Harding
- Washington Department of Fish and Wildlife, PO Box 43200, Olympia, WA 98504-3200, USA
| | - James E West
- Washington Department of Fish and Wildlife, PO Box 43200, Olympia, WA 98504-3200, USA
| | - Gina M Ylitalo
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Boulevard East, Seattle, WA 98112-2097, USA
| | - Joshua W Chamberlin
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Boulevard East, Seattle, WA 98112-2097, USA
| |
Collapse
|
24
|
Triclosan induces zebrafish neurotoxicity by abnormal expression of miR-219 targeting oligodendrocyte differentiation of central nervous system. Arch Toxicol 2020; 94:857-871. [PMID: 32060586 DOI: 10.1007/s00204-020-02661-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/03/2020] [Indexed: 12/21/2022]
Abstract
Triclosan (TCS) is ubiquitous in a wide range of personal care and consumer products, and it is acute/chronic exposure may result in several nervous system disorders. Previous studies demonstrated TCS-induced abnormal expression of miRNAs, but no investigations focused on upstream changes of miRNAs and associated molecular mechanisms. Herein, phenotype observation and behavioral analysis confirmed that TCS exposure (0, 62.5, 125, 250 μg/L) led to developmental neurotoxicity in zebrafish larvae, especially for oligodendrocyte precursor cells (OPCs). High-throughput sequencing demonstrated the critical role of miR-219 in the differentiation of OPCs. Larvae with miR-219 depletion showed the same phenotype caused by TCS. Functional tests with miR-219 knock-down and over-expression showed that miR-219 promoted differentiation of OPCs by acting on myelination inhibitors. The miR-219 also protected against TCS-induced inhibition of cell differentiation. Several epigenetic features were identified to reveal potential upstream regulatory mechanisms of miR-219. In particular, five CpG islands hyper-methylated with increasing TCS concentrations in the promoter region of miR-219. TCS inhibited OPC differentiation by influencing epigenetic effects on miR-219-related pathways, contributing to severe neurotoxicity. These findings enhance our understanding of epigenetic mechanisms affecting demyelination diseases due to TCS exposure, and also provide theoretical guidance for early intervention and gene therapy of environmentally induced diseases.
Collapse
|
25
|
Wang C, Huang W, Lin J, Fang F, Wang X, Wang H. Triclosan-induced liver and brain injury in zebrafish (Danio rerio) via abnormal expression of miR-125 regulated by PKCα/Nrf2/p53 signaling pathways. CHEMOSPHERE 2020; 241:125086. [PMID: 31627110 DOI: 10.1016/j.chemosphere.2019.125086] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/05/2019] [Accepted: 10/08/2019] [Indexed: 06/10/2023]
Abstract
Triclosan (TCS) is widely used in personal care products, and its chronic exposure leads to severely toxic effects in zebrafish (Danio rerio). PKCα, Nrf2 and p53 are three important signaling pathways concerned with cell development. Herein, we speculated on and verified a novel TCS regulatory pathway: (1) TCS acted on GPER (G-protein-coupled estrogen receptor) to activate MAPK/ERK pathway, further resulting in the expression changes of protein kinase C (PKC) family; (2) PKC participated in Nrf2 phosphorylation; (3) The expression of miR-125b was regulated by Nrf2; and (4) The expression changes of related genes in the PKCs-Nrf2-ARE pathway showed the specificity of zebrafish tissue and organ. TCS exposure led to down-regulation of the Nrf2 and phosphorylated Nrf2(Ser40) protein in diencephalon nucleus, stratum marginale and stratum centrale areas in adult zebrafish brain. The phosphorylated Nrf2(Ser40) was mainly expressed in PGz area, while it was not the case for Nrf2. Both Nrf2 and phosphorylated Nrf2 were activated by TCS exposure; however, the changing trend of PKCs was opposite to that of Nrf2 in the liver. Both DAPI staining and Merge images demonstrated that TCS induced oxidative phosphorylation, and phosphorylated Nrf2 is translocated into the nucleus as the transcription factor to regulate gene transcription in liver and brain. Nrf2 over-expression increased accumulation of lipid droplets in yolk, brain and liver, resulting from the upregulation of pri-miR-125b1, pri-miR-125b3, but not pri-miR-125b2. These findings reveal the upstream regulation mechanism of miR-125b for TCS-induced fat-metabolism disorder from the regulatory perspective of the pri-miR-125b promoter region.
Collapse
Affiliation(s)
- Caihong Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wenhao Huang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jiebo Lin
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Fang Fang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xuedong Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Huili Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
26
|
Elizalde-Velázquez GA, Gómez-Oliván LM. Occurrence, toxic effects and removal of metformin in the aquatic environments in the world: Recent trends and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 702:134924. [PMID: 31726346 DOI: 10.1016/j.scitotenv.2019.134924] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/09/2019] [Accepted: 10/09/2019] [Indexed: 05/20/2023]
Abstract
Metformin (MET) is the most common drug used to treat type 2 diabetes, but also it is used as an anticancer agent and as a treatment for polycystic ovary syndrome. This drug is not metabolized in the human body, and may enter into the environment through different pathways. In wastewater treatments plants (WWTPs), this contaminant is mainly transformed to guanylurea (GUA). However, three further transformation products (TPs): (a) 2,4- diamino-1,3,5-triazine, 4-DAT; (b) 2-amino-4-methylamino-1,3,5-triazine, 2,4-AMT; and (c) methylbiguanide, MBG; have also been associated with its metabolism. MET, GUA and MBG have been found in WWTPs influents, effluents and surface waters. Furthermore, MET and GUA bioaccumulate in edible plants species, fish and mussels potentially contaminating the human food web. MET is also a potential endocrine disruptor in fish. Phytoremediation, adsorption and biodegradation have shown a high removal efficiency of MET, in laboratory. Nonetheless, these removal methods had less efficiency when tried in WWTPs. Therefore, MET and its TPs are a threat to the human being as well as to our environment. This review comprehensively discuss the (1) pathways of MET to the environment and its life-cycle, (2) occurrence of MET and its transformation products (3) removal, (4) toxic effects and (5) future trends and perspectives of possible methods of elimination in water in order to provide potential options for managing these contaminants.
Collapse
Affiliation(s)
- Gustavo Axel Elizalde-Velázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico.
| |
Collapse
|
27
|
Tian Z, Peter KT, Gipe AD, Zhao H, Hou F, Wark DA, Khangaonkar T, Kolodziej EP, James CA. Suspect and Nontarget Screening for Contaminants of Emerging Concern in an Urban Estuary. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:889-901. [PMID: 31887037 DOI: 10.1021/acs.est.9b06126] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
This study used suspect and nontarget screening with high-resolution mass spectrometry to characterize the occurrence of contaminants of emerging concern (CECs) in the nearshore marine environment of Puget Sound (WA). In total, 87 non-polymeric CECs were identified; those confirmed with reference standards (45) included pharmaceuticals, herbicides, vehicle-related compounds, plasticizers, and flame retardants. Eight polyfluoroalkyl substances were detected; perfluorooctanesulfonic acid (PFOS) concentrations were as high as 72-140 ng/L at one location. Low levels of methamphetamine were detected in 41% of the samples. Transformation products of pesticides were tentatively identified, including two novel transformation products of tebuthiuron. While a hydrodynamic simulation, analytical results, and dilution calculations demonstrated the prevalence of wastewater effluent to nearshore marine environments, the identity and abundance of selected CECs revealed the additional contributions from stormwater and localized urban and industrial sources. For the confirmed CECs, risk quotients were calculated based on concentrations and predicted toxicities, and eight CECs had risk quotients >1. Dilution in the marine estuarine environment lowered the risks of most wastewater-derived CECs, but dilution alone is insufficient to mitigate risks of localized inputs. These findings highlighted the necessity of suspect and nontarget screening and revealed the importance of localized contamination sources in urban marine environments.
Collapse
Affiliation(s)
- Zhenyu Tian
- Center for Urban Waters , 326 East D Street , Tacoma , Washington 98421 , United States
- Interdisciplinary Arts and Sciences , University of Washington Tacoma , Tacoma , Washington 98421 , United States
| | - Katherine T Peter
- Center for Urban Waters , 326 East D Street , Tacoma , Washington 98421 , United States
- Interdisciplinary Arts and Sciences , University of Washington Tacoma , Tacoma , Washington 98421 , United States
| | - Alex D Gipe
- Center for Urban Waters , 326 East D Street , Tacoma , Washington 98421 , United States
- Interdisciplinary Arts and Sciences , University of Washington Tacoma , Tacoma , Washington 98421 , United States
| | - Haoqi Zhao
- Department of Civil and Environmental Engineering , University of Washington , Seattle , Washington 98195 , United States
| | - Fan Hou
- Department of Civil and Environmental Engineering , University of Washington , Seattle , Washington 98195 , United States
| | - David A Wark
- Center for Urban Waters , 326 East D Street , Tacoma , Washington 98421 , United States
- Interdisciplinary Arts and Sciences , University of Washington Tacoma , Tacoma , Washington 98421 , United States
| | - Tarang Khangaonkar
- Pacific Northwest National Laboratories , 1100 Dexter Avenue N , Seattle , Washington 98011 , United States
| | - Edward P Kolodziej
- Center for Urban Waters , 326 East D Street , Tacoma , Washington 98421 , United States
- Interdisciplinary Arts and Sciences , University of Washington Tacoma , Tacoma , Washington 98421 , United States
- Department of Civil and Environmental Engineering , University of Washington , Seattle , Washington 98195 , United States
| | - C Andrew James
- Center for Urban Waters , 326 East D Street , Tacoma , Washington 98421 , United States
- Interdisciplinary Arts and Sciences , University of Washington Tacoma , Tacoma , Washington 98421 , United States
| |
Collapse
|
28
|
Martínez R, Herrero-Nogareda L, Van Antro M, Campos MP, Casado M, Barata C, Piña B, Navarro-Martín L. Morphometric signatures of exposure to endocrine disrupting chemicals in zebrafish eleutheroembryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 214:105232. [PMID: 31271907 DOI: 10.1016/j.aquatox.2019.105232] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/21/2019] [Accepted: 06/21/2019] [Indexed: 06/09/2023]
Abstract
Understanding the mode of action of the different pollutants in human and wildlife health is a key step in environmental risk assessment. The aim of this study was to determine signatures that could link morphological phenotypes to the toxicity mechanisms of four Endocrine Disrupting Chemicals (EDCs): bisphenol A (BPA), perfluorooctanesulfonate potassium salt (PFOS), tributyltin chloride (TBT), and 17-ß-estradiol (E2). Zebrafish (Danio rerio) eleutheroembryos were exposed from 2 to 5 dpf to a wide range of BPA, PFOS, TBT and E2 concentrations. At the end of the exposures several morphometric features were assessed. Common and non-specific effects on larvae pigmentation or swim bladder area were observed after exposures to all compounds. BPA specifically induced yolk sac malabsorption syndrome and altered craniofacial parameters, whereas PFOS had specific effects on the notochord formation presenting higher rates of scoliosis and kyphosis. The main effect of E2 was an increase in the body length of the exposed eleutheroembryos. In the case of TBT, main alterations on the morphological traits were related to developmental delays. When integrating all morphometrical parameters, BPA showed the highest rates of malformations in terms of equilethality, followed by PFOS and, distantly, by TBT and E2. In the case of BPA and PFOS, we were able to relate our results with effects on the transcriptome and metabolome, previously reported. We propose that methodized morphometric analyses in zebrafish embryo model can be used as an inexpensive and easy screening tool to predict modes of action of a wide-range number of contaminants.
Collapse
Affiliation(s)
- Rubén Martínez
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain; Universitat de Barcelona (UB), Barcelona, Catalunya, 08007, Spain.
| | - Laia Herrero-Nogareda
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain.
| | - Morgane Van Antro
- Laboratory of Evolutionary and Adaptive Physiology, Institute of Life, Earth and Environment, University of Namur, 61 Rue de Bruxelles, B5000, Namur, Belgium.
| | - Maria Pilar Campos
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain.
| | - Marta Casado
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain.
| | - Carlos Barata
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain.
| | - Benjamin Piña
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain.
| | - Laia Navarro-Martín
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain.
| |
Collapse
|
29
|
Liu J, Xiang C, Huang W, Mei J, Sun L, Ling Y, Wang C, Wang X, Dahlgren RA, Wang H. Neurotoxicological effects induced by up-regulation of miR-137 following triclosan exposure to zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 206:176-185. [PMID: 30496951 DOI: 10.1016/j.aquatox.2018.11.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/18/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
Triclosan (TCS) is a prevalent anthropogenic contaminant in aquatic environments and its chronic exposure can lead to a series of neurotoxic effects in zebrafish. Both qRT-PCR and W-ISH identified that TCS exposure resulted in significant up-regulation of miR-137, but downregulation of its regulatory genes (bcl11aa, MAPK6 and Runx1). These target genes are mainly associated with neurodevelopment and the MAPK signaling pathway, and showed especially high expression in the brain. After overexpression or knockdown treatments by manual intervention of miR-137, a series of abnormalities were induced, such as ventricular abnormality, bent spine, yolk cyst, closure of swim sac and venous sinus hemorrhage. The most sensitive larval toxicological endpoint from intervened miR-137 expression was impairment of the central nervous system (CNS), ventricular abnormalities and notochord curvature. Microinjection of microRNA mimics or inhibitors of miR-137 both caused zebrafish malformations. The posterior lateral line neuromasts became obscured and decreased in number in intervened miR-137 groups and TCS-exposure groups. Up-regulation of miR-137 led to more severe neurotoxic effects than its down-regulation. Behavioral observations demonstrated that both TCS exposure and miR-137 over-expression led to inhibited hearing or vision sensitivity. HE staining indicated that hearing and vision abnormalities induced by long-term TCS exposure originated from CNS injury, such as reduced glial cells and loose and hollow fiber structures. The findings of this study enhance our mechanistic understanding of neurotoxicity in aquatic animals in response to TCS exposure. These observations provide theoretical guidance for development of early intervention treatments for nervous system diseases.
Collapse
Affiliation(s)
- Jinfeng Liu
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Chenyan Xiang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Wenhao Huang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jingyi Mei
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Limei Sun
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yuhang Ling
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Caihong Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xuedong Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Randy A Dahlgren
- Department of Land, Air and Water Resources, University of California, Davis, CA95616, USA
| | - Huili Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
30
|
Tao Y, Chen B, Zhang BH, Zhu ZJ, Cai Q. Occurrence, Impact, Analysis and Treatment of Metformin and Guanylurea in Coastal Aquatic Environments of Canada, USA and Europe. ADVANCES IN MARINE BIOLOGY 2018; 81:23-58. [PMID: 30471658 DOI: 10.1016/bs.amb.2018.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This review discusses the occurrence, impact, analysis and treatment of metformin and guanylurea in coastal aquatic environments of Canada, USA and Europe. Metformin, a biguanide in chemical classification, is widely used as one of the most effective first-line oral drugs for type 2 diabetes. It is difficult to be metabolized by the human body and exists in both urine and faeces samples in these regions. Guanylurea is metformin's biotransformation product. Consequently, significant concentrations of metformin and guanylurea have been reported in wastewater treatment plants (WWTPs) and coastal aquatic environments. The maximum concentrations of metformin and guanylurea in surface water samples were as high as 59,000 and 4502ngL-1, respectively. Metformin can be absorbed in non-target organisms by plants and in Atlantic salmon (Salmo salar). Guanylurea has a confirmed mitotic activity in plant cells. Analysis methods of metformin are currently developed based on high-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS). The removal of metformin from aquatic environments in the target regions is summarized. The review helps to fill a knowledge gap and provides insights for regulatory considerations. The potential options for managing these emerging pollutants are outlined too.
Collapse
Affiliation(s)
- Yunwen Tao
- The Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Bing Chen
- The Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, Canada.
| | - Baiyu Helen Zhang
- The Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Zhiwen Joy Zhu
- The Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Qinhong Cai
- The Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|