1
|
Nguyen TPM, Bui TH, Nguyen MK, Nguyen TH, Tran TMH. Assessing the effect of COVID 19 lockdowns on the composition of organic compounds and potential source of PM 2.5 in Hanoi, Vietnam. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:34675-34688. [PMID: 38714614 DOI: 10.1007/s11356-024-33497-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 04/24/2024] [Indexed: 05/10/2024]
Abstract
The ambient air quality during COVID-19 lockdowns has been improved in many cities in the world. This study is to assess the changes in persistent organic pollutants in PM2.5 during the COVID-19 lockdown in Hanoi. Individual organic species in PM2.5 ((e.g., polycyclic aromatic hydrocarbons (PAHs), polychlorobiphenyls (PCBs), and organochlorine pesticides (OCPs)) were measured in an urban residential area in Hanoi from before the March 10th to April 22nd, 2020, including before the partial lockdown (BL) and the partial lockdown (PL) phases. During the PL phase, the concentration of Σ14PAHs and Σ28PCBs was reduced by 38 and 52% compared with the BL period, respectively. The diagnostic ratio method implied that the sources of PAHs within the PL phase had a less effect on traffic and industrial activities than in the BL phase. The characteristic ratio method indicated that PCBs were mixed by commercial product and combustion process in both the BL and the PL periods, however, the source of PCBs in the BL phase was influenced by municipal waste incineration more than those in the PL phase. The decreasing concentration of Σ20OCPs during the partial lockdown was attributed to the restriction of human activities during the quarantine period. The results suggested that the source of OCPs was probably derived from the usage of pesticides in current and, historical degradation or the transportation of pesticides from the soil to the atmosphere.
Collapse
Affiliation(s)
- Thi Phuong Mai Nguyen
- Faculty of Environmental Sciences, University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam.
| | - Thi Hieu Bui
- Faculty of Environmental Engineering, Hanoi University of Civil Engineering, 55 Giai Phong, Hanoi, Vietnam
| | - Manh Khai Nguyen
- Faculty of Environmental Sciences, University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam
- VNU Key Laboratory of Green Environment, Technology and Waste Utilization (GreenLab), University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam
| | - Thi Hue Nguyen
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
- Institute of Science and Technology for Energy and Environment, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Thi Minh Hang Tran
- Faculty of Environmental Sciences, University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam
| |
Collapse
|
2
|
Deabji N, Fomba KW, Dos Santos Souza EJ, Mellouki A, Herrmann H. Influence of anthropogenic activities on metals, sugars and PAHs in PM 10 in the city of Fez, Morocco: Implications on air quality. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:25238-25257. [PMID: 38468011 PMCID: PMC11024011 DOI: 10.1007/s11356-024-32740-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/28/2024] [Indexed: 03/13/2024]
Abstract
Particulate matter (PM) is an important component in the atmosphere, affecting air quality, health, radiation balance, and global climate. To assess regional air quality in the city of Fez, an intensive field campaign was carried out in the autumn of 2019 in the Middle Atlas region of Morocco. Aerosol sampling was performed simultaneously at two urban sites in the city of Fez: (1) Fez University (FU), a sub-urban site, and (2) Fez Parc (FP), an urban site located in the city center of Fez, using PM10 collectors. Various laboratory analyses were carried out, including PM mass, trace metals, inorganic ions, OC/EC, sugar compounds, and PAHs. The results indicate that the PM10 mass (61 ng m-3) was comparable at both sites, with a 37-107 ng m-3 range. Most of the 19 investigated PAHs at the FU site (10.2 ± 6.2 ng m-3) were low-molecular-weight PAHs, while the most abundant PAHs at the FP site (6.9 ± 3.8 ng m-3) were mainly higher-molecular-weight PAHs. A diagnostic ratio analysis at both sites indicated that PAHs originated from fossil fuel combustion and traffic emissions from diesel engines, with Ant/(Ant + Phe) and Flu/(Flu + Pyr) ratios averaging 0.22 and 0.84, respectively. PMF analysis identified traffic emissions as a major source (30%), with secondary inorganic aerosols (20%) and biomass burning (14%). Polar plots highlight the dominance of local anthropogenic activities in PM pollution, with vehicular emissions, industrial activities, and biomass burning. This study shows that local sources and combustion processes significantly contribute to PM10 sources in Morocco, providing insights into air pollution mitigation in North Africa.
Collapse
Affiliation(s)
- Nabil Deabji
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318, Leipzig, Germany
| | - Khanneh Wadinga Fomba
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318, Leipzig, Germany
| | - Eduardo José Dos Santos Souza
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318, Leipzig, Germany
| | - Abdelwahid Mellouki
- Université Mohammed VI Polytechnique (UM6P), Lot 660 Hay Moulay Rachid, 43150, Ben Guerir, Morocco
- Institut de Combustion Aérothermique Réactivité Et Environnement, OSUC-CNRS, 1C Avenue de La Recherche Scientifique, 45071, CEDEX 2, Orléans, France
| | - Hartmut Herrmann
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318, Leipzig, Germany.
| |
Collapse
|
3
|
Barhoumi B, Metian M, Zaghden H, Derouiche A, Ben Ameur W, Ben Hassine S, Oberhaensli F, Mora J, Mourgkogiannis N, Al-Rawabdeh AM, Chouba L, Alonso-Hernández CM, Karapanagioti HK, Driss MR, Mliki A, Touil S. Microplastic-sorbed persistent organic pollutants in coastal Mediterranean Sea areas of Tunisia. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:1347-1364. [PMID: 37401332 DOI: 10.1039/d3em00169e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Microplastics (MPs) are emerging pollutants of global concern due to their pervasiveness, high sorption ability for persistent organic pollutants (POPs) and direct and indirect toxicity to marine organisms, ecosystems, as well as humans. As one of the major coastal interfaces, beaches are considered among the most affected ecosystems by MPs pollution. The morphological characteristics of MPs (pellets and fragments) collected from four beaches along the Tunisian coast and sorbed POPs, including polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs), were investigated in this study. The results showed that the MPs varied greatly in color, polymer composition and degradation degree. The color varied from colored to transparent and the most prevalent polymer identified using Raman spectroscopy was polyethylene. Scanning electron microscope (SEM) images exhibited various surface degradation features including cavities, cracks, attached diatom remains, etc. The concentrations of Σ12PCBs over all beaches ranged from 14 to 632 ng g-1 and 26 to 112 ng g-1 in the pellets and fragments, respectively, with a notable presence and dominance of highly-chlorinated PCBs such as CB-153 and -138. Among the OCPs, γ-HCH is the only compound detected with concentrations ranging from 0.4 to 9.7 ng g-1 and 0.7 to 4.2 ng g-1 in the pellets and fragments, respectively. Our findings indicate that MPs found on the Tunisian coast may pose a chemical risk to marine organisms as the concentrations of PCBs and γ-HCH in most of the analysed samples exceeded the sediment-quality guidelines (SQG), especially the effects range medium (ERM) and the probable effects level (PEL). As the first report of its kind, the information gathered in this study can serve as the baseline and starting point for future monitoring work for Tunisia and neighbouring countries, as well as for stakeholders and coastal managers in decision-making processes.
Collapse
Affiliation(s)
- Badreddine Barhoumi
- Laboratory of Hetero-Organic Compounds and Nanostructured Materials (LR18ES11), Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021 Zarzouna, Tunisia.
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cédria, 2050 Hammam-Lif, Tunisia
| | - Marc Metian
- International Atomic Energy Agency, Marine Environment Laboratories, Radioecology Laboratory, 4a, Quai Antoine 1er, MC-98000 Monaco, Principality of Monaco
| | - Hatem Zaghden
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cédria, 2050 Hammam-Lif, Tunisia
| | - Abdelkader Derouiche
- Laboratory of Hetero-Organic Compounds and Nanostructured Materials (LR18ES11), Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021 Zarzouna, Tunisia.
| | - Walid Ben Ameur
- Laboratory of Hetero-Organic Compounds and Nanostructured Materials (LR18ES11), Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021 Zarzouna, Tunisia.
- Ecologie de La Faune Terrestre UR17ES44, Département des Sciences de La Vie, Faculté Des Sciences de Gabès, Université de Gabès, Tunisia
| | - Sihem Ben Hassine
- Laboratory of Hetero-Organic Compounds and Nanostructured Materials (LR18ES11), Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021 Zarzouna, Tunisia.
| | - François Oberhaensli
- International Atomic Energy Agency, Marine Environment Laboratories, Radioecology Laboratory, 4a, Quai Antoine 1er, MC-98000 Monaco, Principality of Monaco
| | - Janeth Mora
- International Atomic Energy Agency, Marine Environment Laboratories, Radioecology Laboratory, 4a, Quai Antoine 1er, MC-98000 Monaco, Principality of Monaco
| | | | - Abdulla M Al-Rawabdeh
- Department of Earth and Environmental Science, Yarmouk University, Irbid 21163, Jordan
| | - Lassaad Chouba
- Laboratory of Marine Environment, National Institute of Marine Science and Technology (INSTM), Goulette, Tunisia
| | - Carlos M Alonso-Hernández
- International Atomic Energy Agency, Marine Environment Laboratories, Radioecology Laboratory, 4a, Quai Antoine 1er, MC-98000 Monaco, Principality of Monaco
| | | | - Mohamed Ridha Driss
- Laboratory of Hetero-Organic Compounds and Nanostructured Materials (LR18ES11), Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021 Zarzouna, Tunisia.
| | - Ahmed Mliki
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cédria, 2050 Hammam-Lif, Tunisia
| | - Soufiane Touil
- Laboratory of Hetero-Organic Compounds and Nanostructured Materials (LR18ES11), Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021 Zarzouna, Tunisia.
| |
Collapse
|
4
|
Barhoumi B, Guigue C, Touil S, Johnson-Restrepo B, Driss MR, Tedetti M. Hydrocarbons in the atmospheric gas phase of a coastal city in Tunisia: Levels, gas-particle partitioning, and health risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:162986. [PMID: 36958548 DOI: 10.1016/j.scitotenv.2023.162986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 05/17/2023]
Abstract
Many studies have focused on aliphatic hydrocarbons and polycyclic aromatic hydrocarbons (AHs and PAHs) in different environmental compartments, especially atmospheric particles (aerosols), due to their adverse effects on the environment and human health. However, much less information is currently available on the content of AHs and PAHs in the atmospheric gas phase, which is a major reservoir of volatile and photoreactive compounds. Here, for the first time, we assessed the levels, gas-particle partitioning, human health risks and seasonal variations of AHs and PAHs in the atmospheric gas-phase of Bizerte city (Tunisia, North Africa) over a one-year period (March 2015-January 2016). Σ34PAH concentration in the gas phase over the period ranged from 6.7 to 90.6 ng m-3 and on average was 2.5 times higher in the cold season than in the warm season. Σ28AH concentration in the gas phase over the period ranged from 14.0 to 35.9 ng m-3, with no clear seasonal variations. In the gas phase, hydrocarbons were dominated by low-molecular-weight (LMW) compounds, i.e. 3- and 4-ring for PAHs and < n-C24 for AHs. Gas-phase concentrations of PAHs and AHs accounted for up to 80 % of the total (gas + particle phases) atmospheric concentrations of PAHs and AHs. Further analysis of gas-particle partitioning showed that LMW hydrocarbons preferential accumulated in the gas phase, and that gas-particle partitioning was not in equilibrium but dominated by absorption processes into the aerosol organic matter. Benzo[a]pyrene toxic equivalency quotient (BaP-TEQ) in the gas phase represented on average 37 % of the total atmospheric BaP-TEQ concentration, which was always higher in the cold season. Atmospheric gas is a significant factor in the risks of cancer associated with inhalation of ambient air. The Monte Carlo simulation-based exposure assessment model predicted that outdoor air exposure to PAHs does not pose a cancer risk to infants, but the children, adolescent, and adult populations may face a lower cancer risk during the warm season and a higher risk in the cold season.
Collapse
Affiliation(s)
- Badreddine Barhoumi
- Laboratory of Hetero-Organic Compounds and Nanostructured Materials (LR18ES11), Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021 Zarzouna, Tunisia; Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, France.
| | - Catherine Guigue
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, France
| | - Soufiane Touil
- Laboratory of Hetero-Organic Compounds and Nanostructured Materials (LR18ES11), Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021 Zarzouna, Tunisia
| | - Boris Johnson-Restrepo
- Environmental Chemistry Research Group, School of Exact and Natural Sciences, University Campus of San Pablo, University of Cartagena, Zaragocilla, Carrera 50 No. 24-99, Cartagena, 130015, Colombia
| | - Mohamed Ridha Driss
- Laboratory of Hetero-Organic Compounds and Nanostructured Materials (LR18ES11), Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021 Zarzouna, Tunisia
| | - Marc Tedetti
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, France
| |
Collapse
|
5
|
Derouiche A, Achour A, Driss MR. Organochlorine pesticides and polychlorinated biphenyls in raw bovine milk from various dairy farms in Beja, Tunisia: contamination status, dietary intake, and health risk assessment for the consumers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:65427-65439. [PMID: 37084058 DOI: 10.1007/s11356-023-26976-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/09/2023] [Indexed: 05/03/2023]
Abstract
We determined organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in raw bovine milk taken directly from the milking equipment for different animals and various farms in Béja region, which is one of the largest milk producing areas in Tunisia. All milk samples were contaminated with one or more pesticides and exhibited measurable concentrations of some PCB congeners. The residue levels are generally marked by the predominance of dichlorodiphenyltrichloroethanes (DDTs) (median: 17.60 ng g-1 fat), followed by hexachlorobenzene (HCB) (median: 14.31 ng g-1 fat), PCBs (median: 4.71 ng g-1 fat), and hexachlorocyclohexanes (HCHs) (median: 0.77 ng g-1 fat). DDT/DDE ratios across the samples vary between 0.09 to 32.24 and exhibit the hypothesis of sustaining illegal use of the banned pesticide. The historical or recent use of OCPs and possible emission sources of PCBs identified near studied farms may lead to increased levels of these contaminants in produced milk. The estimated daily intake (EDI) values were several orders of magnitude below the tolerable daily intake (TDI) fixed by FAO/WHO, though recorded concentration in some samples exceeded the maximum residue limits (MRLs) fixed by the EU, especially for OCPs. According to health risk assessments, consumption of raw milk did not pose an obvious cancer risk or other health problems for local inhabitants.
Collapse
Affiliation(s)
- Abdelkader Derouiche
- Laboratory of Hetero-Organic Compounds and Nanostructural Materials (LR18ES11), Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021, Bizerte, Zarzouna, Tunisia.
| | - Amani Achour
- Laboratory of Integrated Physiology, Faculty of Science of Bizerte, University of Carthage Tunisia, 7021, Bizerte, Jarzouna, Tunisia
| | - Mohamed Ridha Driss
- Laboratory of Hetero-Organic Compounds and Nanostructural Materials (LR18ES11), Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021, Bizerte, Zarzouna, Tunisia
| |
Collapse
|
6
|
Mahfoudhi G, Ameur WB, Malysheva SV, Szternfeld P, Touil S, Driss MR, Joly L. First study of bromophenols and hexabromocyclododecanes in seafood from North Africa (case of Bizerte Lagoon, Tunisia): occurrence and human health risk. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:64499-64516. [PMID: 37071363 DOI: 10.1007/s11356-023-26901-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
In spite of the fact that bromophenols (BPs) and hexabromocyclododecanes (HBCDs) are widely used as flame retardants, no data was available until now on the levels of these two chemicals in North Africa biota. Seafood products might represent one of the main sources of dietary exposure to persistent organic pollutants such as non-dioxin-like polychlorinated biphenyls (ndl-PCBs), brominated flame retardants (BFRs), and polycyclic aromatic hydrocarbons (PAHs). In this study, the concentrations of the ndl-PCBs, PAH4, and BFRs were determined in seafood products from a North African lagoon (Bizerte lagoon). Almost all the compounds were detected (15 out of 18) in the analyzed marine organisms. The accumulation of the contaminants followed the order BFRs > ndl-PCB > PAH4. Mean contaminants concentrations ranged from 0.35 to 28.7 ng g-1 ww for ∑ndl-PCBs; from below limit of quantification to 476 ng g-1 ww for ∑BFRs and from below limit of quantification to 5.30 ng g-1 ww for ∑PAH4. PCB 138, 153, and 180 were the most frequently detected ndl-PCB congeners due to their high resistance to metabolic degradation. 2,4-dibromophenol (2,4-DBP) was the predominant BFR. Chrysene (Chr) was found to be the main contributor to the total PAH4 concentration. Contaminant profiles varied significantly among seafood which may be due to the difference in lipid content, trophic level, feeding behavior, and metabolism. To assess the human health risks, the average daily dose exposure of ndl-PCBs, the dietary daily intake of PAHs and the estimated dietary intake of 3,3-,5,5-tetrabromobisphenol A (TBBPA) and HBCD from seafood were estimated. Findings indicated no adverse effects for human health from any of the analyzed contaminants, except for ndl-PCBs in eel.
Collapse
Affiliation(s)
- Ghzela Mahfoudhi
- Laboratory of Hetero-Organic Compounds and Nanostructured Materials (LR18ES11), Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021, Zarzouna, Tunisia
- Sciensano, Scientific Direction Chemical and Physical Health Risks, Rue Juliette Wytsman 14, 1050, Brussels, Belgium
| | - Walid Ben Ameur
- Laboratory of Hetero-Organic Compounds and Nanostructured Materials (LR18ES11), Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021, Zarzouna, Tunisia.
- Ecologie de La Faune Terrestre UR17ES44, Département Des Sciences de La Vie, Faculté Des Sciences de Gabès, Université de Gabès, Gabès, Tunisia.
| | - Svetlana V Malysheva
- Sciensano, Scientific Direction Chemical and Physical Health Risks, Rue Juliette Wytsman 14, 1050, Brussels, Belgium
| | - Philippe Szternfeld
- Sciensano, Scientific Direction Chemical and Physical Health Risks, Rue Juliette Wytsman 14, 1050, Brussels, Belgium
| | - Soufiane Touil
- Laboratory of Hetero-Organic Compounds and Nanostructured Materials (LR18ES11), Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021, Zarzouna, Tunisia
| | - Mohamed Ridha Driss
- Laboratory of Hetero-Organic Compounds and Nanostructured Materials (LR18ES11), Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021, Zarzouna, Tunisia
| | - Laure Joly
- Sciensano, Scientific Direction Chemical and Physical Health Risks, Rue Juliette Wytsman 14, 1050, Brussels, Belgium
| |
Collapse
|
7
|
Tedetti M, Tronczynski J, Carlotti F, Pagano M, Ismail SB, Sammari C, Hassen MB, Desboeufs K, Poindron C, Chifflet S, Zouari AB, Abdennadher M, Amri S, Bănaru D, Abdallah LB, Bhairy N, Boudriga I, Bourin A, Brach-Papa C, Briant N, Cabrol L, Chevalier C, Chouba L, Coudray S, Yahia MND, de Garidel-Thoron T, Dufour A, Dutay JC, Espinasse B, Fierro-González P, Fornier M, Garcia N, Giner F, Guigue C, Guilloux L, Hamza A, Heimbürger-Boavida LE, Jacquet S, Knoery J, Lajnef R, Belkahia NM, Malengros D, Martinot PL, Bosse A, Mazur JC, Meddeb M, Misson B, Pringault O, Quéméneur M, Radakovitch O, Raimbault P, Ravel C, Rossi V, Rwawi C, Hlaili AS, Tesán-Onrubia JA, Thomas B, Thyssen M, Zaaboub N, Garnier C. Contamination of planktonic food webs in the Mediterranean Sea: Setting the frame for the MERITE-HIPPOCAMPE oceanographic cruise (spring 2019). MARINE POLLUTION BULLETIN 2023; 189:114765. [PMID: 36898272 DOI: 10.1016/j.marpolbul.2023.114765] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 02/09/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
This paper looks at experiential feedback and the technical and scientific challenges tied to the MERITE-HIPPOCAMPE cruise that took place in the Mediterranean Sea in spring 2019. This cruise proposes an innovative approach to investigate the accumulation and transfer of inorganic and organic contaminants within the planktonic food webs. We present detailed information on how the cruise worked, including 1) the cruise track and sampling stations, 2) the overall strategy, based mainly on the collection of plankton, suspended particles and water at the deep chlorophyll maximum, and the separation of these particles and planktonic organisms into various size fractions, as well as the collection of atmospheric deposition, 3) the operations performed and material used at each station, and 4) the sequence of operations and main parameters analysed. The paper also provides the main environmental conditions that were prevailing during the campaign. Lastly, we present the types of articles produced based on work completed by the cruise that are part of this special issue.
Collapse
Affiliation(s)
- Marc Tedetti
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France.
| | - Jacek Tronczynski
- Ifremer, CCEM Contamination Chimique des Ecosystèmes Marins, F-44311 Nantes, France
| | - François Carlotti
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Marc Pagano
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Sana Ben Ismail
- Institut National des Sciences et Technologies de la Mer (INSTM), 28, rue 2 mars 1934, Salammbô 2025, Tunisia
| | - Cherif Sammari
- Institut National des Sciences et Technologies de la Mer (INSTM), 28, rue 2 mars 1934, Salammbô 2025, Tunisia
| | - Malika Bel Hassen
- Institut National des Sciences et Technologies de la Mer (INSTM), 28, rue 2 mars 1934, Salammbô 2025, Tunisia
| | - Karine Desboeufs
- Université Paris Cité et Université Paris-Est Creteil, CNRS, LISA, F-75013 Paris, France
| | - Charlotte Poindron
- Université Paris Cité et Université Paris-Est Creteil, CNRS, LISA, F-75013 Paris, France
| | - Sandrine Chifflet
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Amel Bellaaj Zouari
- Institut National des Sciences et Technologies de la Mer (INSTM), 28, rue 2 mars 1934, Salammbô 2025, Tunisia
| | - Moufida Abdennadher
- Institut National des Sciences et Technologies de la Mer (INSTM), 28, rue 2 mars 1934, Salammbô 2025, Tunisia
| | - Sirine Amri
- Institut National des Sciences et Technologies de la Mer (INSTM), 28, rue 2 mars 1934, Salammbô 2025, Tunisia
| | - Daniela Bănaru
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Lotfi Ben Abdallah
- Institut National des Sciences et Technologies de la Mer (INSTM), 28, rue 2 mars 1934, Salammbô 2025, Tunisia
| | - Nagib Bhairy
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Ismail Boudriga
- Institut National des Sciences et Technologies de la Mer (INSTM), 28, rue 2 mars 1934, Salammbô 2025, Tunisia
| | - Aude Bourin
- IMT Nord Europe, Institut Mines-Télécom, Univ. Lille, Centre for Energy and Environment, F-59000 Lille, France
| | - Christophe Brach-Papa
- Ifremer, Unité Littoral, Laboratoire Environnement Ressources Provence Azur Corse, Zone portuaire de Brégaillon, CS 20330, 83507 La Seyne-sur-Mer Cedex, France
| | - Nicolas Briant
- Ifremer, CCEM Contamination Chimique des Ecosystèmes Marins, F-44311 Nantes, France
| | - Léa Cabrol
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Cristele Chevalier
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Lassaad Chouba
- Institut National des Sciences et Technologies de la Mer (INSTM), 28, rue 2 mars 1934, Salammbô 2025, Tunisia
| | - Sylvain Coudray
- Ifremer, Unité Littoral, Laboratoire Environnement Ressources Provence Azur Corse, Zone portuaire de Brégaillon, CS 20330, 83507 La Seyne-sur-Mer Cedex, France
| | - Mohamed Nejib Daly Yahia
- Environmental Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, PO Box 2713, Doha, Qatar
| | | | - Aurélie Dufour
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Jean-Claude Dutay
- Laboratoire des Sciences du Climat et de l'Environnement LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Boris Espinasse
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | | | - Michel Fornier
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Nicole Garcia
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Franck Giner
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SRTE-LRTA, Cadarache, France
| | - Catherine Guigue
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Loïc Guilloux
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Asma Hamza
- Institut National des Sciences et Technologies de la Mer (INSTM), 28, rue 2 mars 1934, Salammbô 2025, Tunisia
| | | | - Stéphanie Jacquet
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Joel Knoery
- Ifremer, CCEM Contamination Chimique des Ecosystèmes Marins, F-44311 Nantes, France
| | - Rim Lajnef
- Institut National des Sciences et Technologies de la Mer (INSTM), 28, rue 2 mars 1934, Salammbô 2025, Tunisia
| | - Nouha Makhlouf Belkahia
- Université de Carthage, Faculté des Sciences de Bizerte, Bizerte, Tunisia; Université de Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire des Sciences de l'Environnement, Biologie et Physiologie des Organismes Aquatiques LR18ES41, Tunis, Tunisia
| | - Deny Malengros
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Pauline L Martinot
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Anthony Bosse
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Jean-Charles Mazur
- Aix Marseille Univ., CNRS, IRD, Collège de France, INRAE, CEREGE, 13545 Aix-en-Provence Cedex 4, France
| | - Marouan Meddeb
- Université de Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire des Sciences de l'Environnement, Biologie et Physiologie des Organismes Aquatiques LR18ES41, Tunis, Tunisia; Université de Carthage, Faculté des Sciences de Bizerte, Laboratoire de Biologie Végétale et Phytoplanctonologie, Bizerte, Tunisia
| | - Benjamin Misson
- Université de Toulon, Aix Marseille Univ., CNRS, IRD, MIO, Toulon, France
| | - Olivier Pringault
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Marianne Quéméneur
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Olivier Radakovitch
- Aix Marseille Univ., CNRS, IRD, Collège de France, INRAE, CEREGE, 13545 Aix-en-Provence Cedex 4, France; Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SRTE-LRTA, Cadarache, France
| | - Patrick Raimbault
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Christophe Ravel
- Ifremer, Unité Littoral, Laboratoire Environnement Ressources Provence Azur Corse, Zone portuaire de Brégaillon, CS 20330, 83507 La Seyne-sur-Mer Cedex, France
| | - Vincent Rossi
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Chaimaa Rwawi
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Asma Sakka Hlaili
- Université de Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire des Sciences de l'Environnement, Biologie et Physiologie des Organismes Aquatiques LR18ES41, Tunis, Tunisia; Université de Carthage, Faculté des Sciences de Bizerte, Laboratoire de Biologie Végétale et Phytoplanctonologie, Bizerte, Tunisia
| | | | - Bastien Thomas
- Ifremer, CCEM Contamination Chimique des Ecosystèmes Marins, F-44311 Nantes, France
| | - Melilotus Thyssen
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Noureddine Zaaboub
- Institut National des Sciences et Technologies de la Mer (INSTM), 28, rue 2 mars 1934, Salammbô 2025, Tunisia
| | - Cédric Garnier
- Université de Toulon, Aix Marseille Univ., CNRS, IRD, MIO, Toulon, France
| |
Collapse
|
8
|
Iakovides M, Oikonomou K, Sciare J, Mihalopoulos N. Evidence of stockpile contamination for legacy polychlorinated biphenyls and organochlorine pesticides in the urban environment of Cyprus (Eastern Mediterranean): Influence of meteorology on air level variability and gas/particle partitioning based on equilibrium and steady-state models. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129544. [PMID: 35908394 DOI: 10.1016/j.jhazmat.2022.129544] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
The present study investigated comprehensively the atmospheric occurrence and fate of an extensive range of polychlorinated biphenyls (PCBs; forty-two congeners), organochlorine pesticides (OCPs; twenty-seven emerging and legacy agrochemicals) and polycyclic aromatic hydrocarbons (PAHs; fifty parent and alkylated members, including the non USEPA-16 listed toxic ones), in both gas and particulate phase of the scarcely monitored atmosphere over Cyprus for the first time. Parent-metabolite concentration ratios suggested fresh application for dichlorodiphenyl-trichloroethanes (DDTs), dicofol, hexachlorocyclohexanes, endosulfan and chlorothalonil, particularly during spring (April-May). Regressions of logarithms of partial pressure against ambient temperature revealed that secondary recycling from contaminated terrestrial surfaces regulates the atmospheric level variability of PCBs, DDTs, aldrin, chlordane, dicofol, heptachlor and endosulfan. Enthalpies of surface-air exchange (∆HSA) calculated from Clausius-Clapeyron equations were significantly correlated to vaporization enthalpies (∆HV) determined by chromatographic techniques, corroborating presence of potential stockpile-contaminated sites around the study area. The Harner-Bidleman equilibrium model simulating urban areas, and the Li-Jia empirical model, predicted better the partitioning behavior of PAHs (<four-ring parent and alkylated members), PCBs (<hexa-chlorobiphenyls), and OCPs, respectively. For heavier PAHs and PCBs, partitioning coefficients (KP) were inadequately predicted by the Li-Ma-Yang steady-state model, probably due to local human activities and regional transport in the study area.
Collapse
Affiliation(s)
- Minas Iakovides
- Climate and Atmosphere Research Center, The Cyprus Institute, 20, Konstantinou Kavafi Street, 2121 Aglantzia, Cyprus.
| | - Konstantina Oikonomou
- Climate and Atmosphere Research Center, The Cyprus Institute, 20, Konstantinou Kavafi Street, 2121 Aglantzia, Cyprus
| | - Jean Sciare
- Climate and Atmosphere Research Center, The Cyprus Institute, 20, Konstantinou Kavafi Street, 2121 Aglantzia, Cyprus
| | - Nikos Mihalopoulos
- Climate and Atmosphere Research Center, The Cyprus Institute, 20, Konstantinou Kavafi Street, 2121 Aglantzia, Cyprus; Chemistry Department, University of Crete, 71003 Heraklion, Crete, Greece; Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Palaia Penteli, 15236 Athens, Greece
| |
Collapse
|
9
|
Zaghden H, Barhoumi B, Jlaiel L, Guigue C, Chouba L, Touil S, Sayadi S, Tedetti M. Occurrence, origin and potential ecological risk of dissolved polycyclic aromatic hydrocarbons and organochlorines in surface waters of the Gulf of Gabès (Tunisia, Southern Mediterranean Sea). MARINE POLLUTION BULLETIN 2022; 180:113737. [PMID: 35597001 DOI: 10.1016/j.marpolbul.2022.113737] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/30/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
We investigated the occurrence, origin, and potential ecological risk of dissolved polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyl (PCBs) and organochlorine pesticides (OCPs) in 27 surface water samples collected from a highly anthropized and industrialized area in the Gulf of Gabès (Tunisia, Southern Mediterranean Sea) in October-November 2017. The results demonstrated a wide range of concentrations (ng L-1) with the following decreasing order: Ʃ16 PAHs (17.6-71.2) > Ʃ20 PCBs (2.9-33.7) > Ʃ6 DDTs (1.1-12.1) > Ʃ4 HCHs (1.1-14.8). Selected diagnostic ratios indicated a mixture of both pyrolytic and petrogenic sources of PAHs, with a predominance of petrogenic sources. PCB compositions showed distinct contamination signatures for tetra- to hepta-chlorinated PCBs, characteristic of contamination by commercial (Aroclor) PCB mixtures. The dominant OCP congeners were γ-HCH, 2,4'-DDD and 2,4'-DDE, reflecting past use of Lindane and DDTs in the study area. Agricultural, industrial and domestic activities, as well as atmospheric transport are identified as potential sources of PAHs, PCBs and OCPs in surface waters of the Gulf of Gabès. Toxic equivalents (TEQs) suggested a low carcinogenic potential for PAHs in seawater samples (mean of 0.14 ng TEQ L-1). Evaluation of risk coefficients revealed low risk for PAHs and PCBs, and moderate to severe risk for OCPs.
Collapse
Affiliation(s)
- Hatem Zaghden
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018 Sfax, Tunisia; Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cédria, 2050 Hammam-Lif, Tunisia.
| | - Badreddine Barhoumi
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018 Sfax, Tunisia; Laboratory of Hetero-Organic Compounds and Nanostructured Materials (LR18ES11), Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021 Zarzouna, Tunisia.
| | - Lobna Jlaiel
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018 Sfax, Tunisia
| | - Catherine Guigue
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France
| | - Lassaad Chouba
- Laboratory of Marine Environment, National Institute of Marine Science and Technology (INSTM), Goulette, Tunisia
| | - Soufiane Touil
- Laboratory of Hetero-Organic Compounds and Nanostructured Materials (LR18ES11), Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021 Zarzouna, Tunisia
| | - Sami Sayadi
- Biotechnology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar.
| | - Marc Tedetti
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018 Sfax, Tunisia; Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France.
| |
Collapse
|
10
|
Iakovides M, Tsiamis G, Tziaras T, Stathopoulou P, Nikolaki S, Iakovides G, Stephanou EG. Two-year systematic investigation reveals alterations induced on chemical and bacteriome profile of PM 2.5 by African dust incursions to the Mediterranean atmosphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:151976. [PMID: 34843760 DOI: 10.1016/j.scitotenv.2021.151976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
PM2.5 atmospheric samples were regularly collected between January 2013 and March 2015 at a central location of Eastern Mediterranean (Island of Crete) during African dust events (DES) and periods of absence of such episodes as controls (CS). The elemental composition and microbiome DES and CS were thoroughly investigated. Fifty-six major and trace elements were determined by inductively coupled plasma-mass spectrometry. Relative mass abundances (RMA) of major crustal elements and lanthanoids were higher in DES than in CS. Conversely in CS, RMAs were higher for most anthropogenic transition metals. Lanthanum-to-other lanthanoids concentration ratios for DES approached the corresponding reference values for continental crust and several African dust source regions, while in CS they exceeded these values. USEPA's UNMIX receptor model, applied in all PM2.5 samples, established that African dust is the dominant contributing source (by 80%) followed by road dust/fuel oil emissions (17%) in the receptor area. Potential source contribution function (PSCF) identified dust hotspots in Tunisia, Libya and Egypt. The application of 16S rRNA gene amplicon sequencing revealed high variation of bacterial composition and diversity between DES and CS samples. Proteobacteria, Actinobacteria and Bacteroides were the most dominant in both DES and CS samples, representing ~88% of the total bacterial diversity. Cutibacterium, Tumebacillus and Sphingomonas dominated the CS samples, while Rhizobium and Brevundimonas were the most prevalent genera in DES. Mutual exclusion/co-occurrence network analysis indicated that Sphingomonas and Chryseobacterium exhibited the highest degrees of mutual exclusion in CS, while in DES the corresponding species were Brevundimonas, Delftia, Rubellimicrobium, Flavobacterium, Blastococcus, and Pseudarthrobacter. Some of these microorganisms are emerging global opportunistic pathogens and an increase in human exposure to them as a result of environmental changes, is inevitable.
Collapse
Affiliation(s)
- Minas Iakovides
- Department of Chemistry, University of Crete, 71003 Heraklion, Greece
| | - George Tsiamis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, 2 Seferi St, 30100 Agrinio, Greece
| | | | - Panagiota Stathopoulou
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, 2 Seferi St, 30100 Agrinio, Greece
| | - Sofia Nikolaki
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, 2 Seferi St, 30100 Agrinio, Greece
| | - Giannis Iakovides
- Department of Mathematics and Applied Mathematics, University of Crete, 71003 Heraklion, Greece
| | | |
Collapse
|
11
|
Barhoumi B, Sander SG, Driss MR, Tolosa I. Survey of legacy and emerging per- and polyfluorinated alkyl substances in Mediterranean seafood from a North African ecosystem. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118398. [PMID: 34695516 DOI: 10.1016/j.envpol.2021.118398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/25/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Despite the ubiquity of per- and polyfluorinated alkyl substances (PFAS) in all environmental compartments, little is known about the pollution they cause on the African continent, neither on levels, nor effects. Here we examined the occurrence and levels of 21 legacy and emerging PFAS in 9 marine species (3 fish, 2 crustaceans and 4 mollusks) collected from Bizerte lagoon, Northern Tunisia. Furthermore, assessment of potential human health risks through consumption of contaminated seafood was examined. This is the first study assessing PFAS in Mediterranean coastal areas of North Africa. Twelve out of the 21 targeted PFAS were detected, evidencing the occurrence of PFAS in seafood from North Africa, albeit at low levels. The Ʃ21PFAS concentrations in all seafood samples ranged from 0.202 ng g-1 dry weight (dw) to 2.89 ng g-1 dw, with a mean value of 1.10 ± 0.89 ng g-1 dw. The profiles of PFAS varied significantly among different species, which might be related to their different trophic level, protein content, feeding behaviour and metabolism. Generally, current exposure to PFAS through seafood consumption indicates that it should not be of concern to the local consumers, at least for those PFAS for which information is available.
Collapse
Affiliation(s)
- Badreddine Barhoumi
- IAEA Environment Laboratories, 4a Quai Antoine 1er, 98000, Monaco, Principality of Monaco, Monaco.
| | - Sylvia G Sander
- IAEA Environment Laboratories, 4a Quai Antoine 1er, 98000, Monaco, Principality of Monaco, Monaco; GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1-3, 24148, Kiel, Germany
| | - Mohamed Ridha Driss
- Laboratory of Hetero-Organic Compounds and Nanostructured Materials (LR18ES11), Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021, Zarzouna, Tunisia
| | - Imma Tolosa
- IAEA Environment Laboratories, 4a Quai Antoine 1er, 98000, Monaco, Principality of Monaco, Monaco.
| |
Collapse
|
12
|
Melliti Ben Garali S, Sahraoui I, Ben Othman H, Kouki A, de la Iglesia P, Diogène J, Lafabrie C, Andree KB, Fernández-Tejedor M, Mejri K, Meddeb M, Pringault O, Hlaili AS. Capacity of the potentially toxic diatoms Pseudo-nitzschia mannii and Pseudo-nitzschia hasleana to tolerate polycyclic aromatic hydrocarbons. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 214:112082. [PMID: 33721579 DOI: 10.1016/j.ecoenv.2021.112082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
This study investigates the effects of polycyclic aromatic hydrocarbons (PAHs) on two potentially toxic Pseudo-nitzschia hasleana and P. mannii, isolated from a PAH contaminated marine environment. Both species, maintained in non-axenic cultures, have been exposed during 144 h to increasing concentrations of a 15 PAHs mixture. Analysis of the domoic acid, showed very low concentrations. Dose-response curves for growth and photosynthesis inhibition were determined. Both species have maintained their growth until the end of incubation even at the highest concentration tested (120 µg l-1), Nevertheless, P mannii showed faster growth and seemed to be more tolerant than P. hasleana. To reduce PAH toxicity, both species have enhanced their biovolume, with a higher increase for P. mannii relative to P hasleana. Both species were also capable of bio-concentrating PAHs and were able to degrade them probably in synergy with their associated bacteria. The highest biodegradation was observed for P. mannii, which could harbored more efficient hydrocarbon-degrading bacteria. This study provides the first evidence that PAHs can control the growth and physiology of potentially toxic diatoms. Future studies should investigate the bacterial community associated with Pseudo-nitzschia species, as responses to pollutants or to other environmental stressors could be strongly influence by associated bacteria.
Collapse
Affiliation(s)
- Sondes Melliti Ben Garali
- Laboratoire de Biologie Végétale et Phytoplanctonologie, Faculté des Sciences de Bizerte, Université de Carthage, Bizerte, Tunisia; Université de Tunis El Manar, Faculté des Sciences de Tunis, LR18ES41 Sciences de l'Environnement, Biologie et Physiologie des Organismes Aquatiques, Tunis, Tunisia.
| | - Inès Sahraoui
- Laboratoire de Biologie Végétale et Phytoplanctonologie, Faculté des Sciences de Bizerte, Université de Carthage, Bizerte, Tunisia; Université de Tunis El Manar, Faculté des Sciences de Tunis, LR18ES41 Sciences de l'Environnement, Biologie et Physiologie des Organismes Aquatiques, Tunis, Tunisia
| | - Hiba Ben Othman
- Laboratoire de Biologie Végétale et Phytoplanctonologie, Faculté des Sciences de Bizerte, Université de Carthage, Bizerte, Tunisia
| | - Abdessalem Kouki
- Laboratoire de Microscopie électronique et de Microanalyse, Faculté des Sciences de Bizerte, Université de Carthage, Bizerte, Tunisia
| | - Pablo de la Iglesia
- Institut de Recherche et Technologie Agroalimentaire (IRTA), Ctra. Poble Nou, Km 5.5, Sant Carles de la Rapita, 43540 Tarragona, Spain
| | - Jorge Diogène
- Institut de Recherche et Technologie Agroalimentaire (IRTA), Ctra. Poble Nou, Km 5.5, Sant Carles de la Rapita, 43540 Tarragona, Spain
| | - Céline Lafabrie
- UMR 9190 MARBEC IRD-Ifremer-CNRS-Université de Montpellier, Place Eugéne Bataillon, Case 093, 34095 Montpellier Cedex 5, France
| | - Karl B Andree
- Institut de Recherche et Technologie Agroalimentaire (IRTA), Ctra. Poble Nou, Km 5.5, Sant Carles de la Rapita, 43540 Tarragona, Spain
| | - Margarita Fernández-Tejedor
- Institut de Recherche et Technologie Agroalimentaire (IRTA), Ctra. Poble Nou, Km 5.5, Sant Carles de la Rapita, 43540 Tarragona, Spain
| | - Kaouther Mejri
- Laboratoire de Biologie Végétale et Phytoplanctonologie, Faculté des Sciences de Bizerte, Université de Carthage, Bizerte, Tunisia; Université de Tunis El Manar, Faculté des Sciences de Tunis, LR18ES41 Sciences de l'Environnement, Biologie et Physiologie des Organismes Aquatiques, Tunis, Tunisia
| | - Marouan Meddeb
- Laboratoire de Biologie Végétale et Phytoplanctonologie, Faculté des Sciences de Bizerte, Université de Carthage, Bizerte, Tunisia; Université de Tunis El Manar, Faculté des Sciences de Tunis, LR18ES41 Sciences de l'Environnement, Biologie et Physiologie des Organismes Aquatiques, Tunis, Tunisia
| | - Olivier Pringault
- UMR 9190 MARBEC IRD-Ifremer-CNRS-Université de Montpellier, Place Eugéne Bataillon, Case 093, 34095 Montpellier Cedex 5, France; UMR 110 MOI Institut Méditerranéen d'Océanologie, UniversitéAix Marseille, Université de Toulon, CNRS, IRD, Marseille, France
| | - Asma Sakka Hlaili
- Laboratoire de Biologie Végétale et Phytoplanctonologie, Faculté des Sciences de Bizerte, Université de Carthage, Bizerte, Tunisia; Université de Tunis El Manar, Faculté des Sciences de Tunis, LR18ES41 Sciences de l'Environnement, Biologie et Physiologie des Organismes Aquatiques, Tunis, Tunisia
| |
Collapse
|
13
|
Teffahi A, Kerchich Y, Moussaoui Y, Romagnoli P, Balducci C, Malherbe C, Kerbachi R, Eppe G, Cecinato A. Exposure levels and health risk of PAHs associated with fine and ultrafine aerosols in an urban site in northern Algeria. AIR QUALITY, ATMOSPHERE, & HEALTH 2021; 14:1375-1391. [PMID: 33880133 PMCID: PMC8050985 DOI: 10.1007/s11869-021-01028-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Size distribution of toxicants in airborne particulates remains insufficiently investigated in Algeria. A 1-year campaign was performed at Bab Ezzouar, Algiers (Algeria), aimed at characterizing particulates for their physical and chemical features. For this purpose, scanning electronic microscopy (SEM), Raman spectroscopy (RaS), and GC-MS methodologies were applied. The samples were collected on daily basis by means of a high-volume sampling (HVS) system equipped with cascade impactor separating three size fractions, i.e., particles with aerodynamic diameters d < 1.0 μm (PM1), 1.0 μm <d<2.5 μm (PM2.5), and 2.5 μm <d<10 μm (PM10), respectively. The organic fraction was recovered from substrate through solvent extraction in an ultrasonic bath, separated and purified by column chromatography, then analyzed by gas chromatography coupled with mass spectrometry (GC-MS). Investigation was focused on polycyclic aromatic hydrocarbons (PAHs) and the concentration ratios suitable to investigate the source nature. Further information was drawn from SEM and Raman analyses. Total PAH concentrations ranged broadly throughout the study period (namely, from 4.1 to 59.7 ng m-3 for PM1, from 2.72 to 32.3 ng m-3 for PM2.5 and from 3.30 to 32.7 ng m-3 for PM10). Both approaches and principal component analysis (PCA) of data revealed that emission from vehicles was the most important PAH source, while tobacco smoke provided an additional contribution.
Collapse
Affiliation(s)
- Amira Teffahi
- Laboratory of Sciences and Techniques of Environment, National Polytechnic School, El-Harrach, BP 132 Algiers, Algeria
| | - Yacine Kerchich
- Laboratory of Sciences and Techniques of Environment, National Polytechnic School, El-Harrach, BP 132 Algiers, Algeria
| | - Yacine Moussaoui
- Faculté des Mathématiques et Sciences de la Matière, Université Kasdi Merbah (UKMO), Ouargla, Algeria
| | - Paola Romagnoli
- Institute of Atmospheric Pollution Research (CNR-IIA), National Research Council of Italy, Via Salaria Km 29.3, Monterotondo Scalo, P.O. Box 10, 00015 Rome, Italy
| | - Catia Balducci
- Institute of Atmospheric Pollution Research (CNR-IIA), National Research Council of Italy, Via Salaria Km 29.3, Monterotondo Scalo, P.O. Box 10, 00015 Rome, Italy
| | - Cedric Malherbe
- CART, Mass Spectrometry Laboratory, UR MolSys, University of Liège, B4000, Liège, Belgium
| | - Rabah Kerbachi
- Laboratory of Sciences and Techniques of Environment, National Polytechnic School, El-Harrach, BP 132 Algiers, Algeria
| | - Gauthier Eppe
- CART, Mass Spectrometry Laboratory, UR MolSys, University of Liège, B4000, Liège, Belgium
| | - Angelo Cecinato
- Institute of Atmospheric Pollution Research (CNR-IIA), National Research Council of Italy, Via Salaria Km 29.3, Monterotondo Scalo, P.O. Box 10, 00015 Rome, Italy
- Dept. of Chemistry, University “Sapienza – Roma 1”, Rome, Italy
| |
Collapse
|
14
|
Barhoumi B, Tedetti M, Heimbürger-Boavida LE, Tesán Onrubia JA, Dufour A, Doan QT, Boutaleb S, Touil S, Scippo ML. Chemical composition and in vitro aryl hydrocarbon receptor-mediated activity of atmospheric particulate matter at an urban, agricultural and industrial site in North Africa (Bizerte, Tunisia). CHEMOSPHERE 2020; 258:127312. [PMID: 32947663 DOI: 10.1016/j.chemosphere.2020.127312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/17/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
As recognized risk factor to pose a health threat to humans and wildlife globally, atmospheric particulate matter (PM) were collected from a North African coastal city (Bizerte, Tunisia) for one year, and were characterized for their chemical compositions, including mercury (HgPM), as well as organic contaminants (polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs)), organic carbon (OC) and organic nitrogen (ON), determined in a previous study. Then, we applied an in vitro reporter gene assay (DR-CALUX) to detect and quantify the dioxin-like activity of PM-associated organic contaminants. Results showed that average HgPM concentration over the entire sampling period was found to be 13.4 ± 12 pg m-3. Seasonal variation in the HgPM concentration was observed with lower values in spring and summer and higher values in winter and autumn due to the variation of meteorological conditions together with the emission sources. Principal component analysis suggested that fossil fuel combustion and a nearby cement factory were the dominant anthropogenic HgPM sources. Aryl hydrocarbon receptor (AhR)-mediated activities were observed in all organic extracts of atmospheric PM from Bizerte city (388.3-1543.6 fg m-3), and shows significant positive correlations with all PM-associated organic contaminants. A significant proportion of dioxin-like activity of PM was related to PAHs. The dioxin-like activity followed the same trend as PM-associated organic contaminants, with higher dioxin-like activity in the cold season than in the warm season, indicating the advantage and utility of the use of bioassays in risk assessment of complex environmental samples.
Collapse
Affiliation(s)
- Badreddine Barhoumi
- Laboratory of Hetero-Organic Compounds and Nanostructured Materials (LR18ES11), Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021, Zarzouna, Tunisia.
| | - Marc Tedetti
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France
| | | | - Javier A Tesán Onrubia
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France
| | - Aurélie Dufour
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France
| | - Que Thi Doan
- Laboratory of Food Analysis, FARAH-Veterinary Public Health, University of Liège, Liège, 4000, Belgium
| | - Samiha Boutaleb
- Laboratory of Food Analysis, FARAH-Veterinary Public Health, University of Liège, Liège, 4000, Belgium
| | - Soufiane Touil
- Laboratory of Hetero-Organic Compounds and Nanostructured Materials (LR18ES11), Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021, Zarzouna, Tunisia
| | - Marie-Louise Scippo
- Laboratory of Food Analysis, FARAH-Veterinary Public Health, University of Liège, Liège, 4000, Belgium
| |
Collapse
|
15
|
Ofori SA, Cobbina SJ, Doke DA. The occurrence and levels of polycyclic aromatic hydrocarbons (PAHs) in African environments-a systematic review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:32389-32431. [PMID: 32557045 DOI: 10.1007/s11356-020-09428-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/22/2020] [Indexed: 05/22/2023]
Abstract
In the African continent, several studies have been conducted to determine PAH pollution levels with their associated health risks in the environment. However, these studies are very much disconnected. The objective of this study is to conduct a systematic review that serves as a comprehensive report on the PAH-related studies conducted in the African continent. Data sources are from Google Scholar and PubMed. English language studies that reported on PAH levels in smoked fish and meat, soils and dust, aquatic environments, indoor and outdoor air, and ready-to-eat food items were selected. Specific PAHs included the following: 33 PAHs comprising of the 16 USEPA PAHs, non-alkylated PAHs, non-alkylated PAHs, oxygenated PAHs (OPAHs), and azaarenes (AZAs). Study appraisal and synthesis methods: The Newcastle-Ottawa Scale (NOS) was adapted to assess the quality of the selected studies basing on their sampling methods, analytical techniques, and results. A total of 121 studies were reviewed, with the majority (56) being from Nigeria. PAH levels in smoked fish and meat, soils and dust, aquatic environments, indoor and outdoor air, and ready-to-eat food items recorded total concentrations of PAHs ranging from 5 to 3585 μg/kg, BDL to 6,950,000 μg/kg, 0 to 10,469,000 μg/kg, 0 to 7.82 ± 0.85 μg/m3, and 2.5 to 7889 ± 730 μg/kg respectively. Carcinogenic risk assessment for children and adults ranged from very low to very high levels when compared to the ILCR range (10-6 to 10-4) defined by the USEPA. Out of 54 African countries, only 19 were represented. The majority of selected studies failed to apply any standard protocols for sample collection and analysis. The low to very high PAH levels reported in studies calls for effective actions on environmental health. Similar systematic reviews are expected to be performed in other continents for a global assessment of PAH pollution.
Collapse
Affiliation(s)
- Samuel Appiah Ofori
- Department of Ecotourism and Environmental Management, Faculty of Natural Resources and Environment, University for Development Studies, Tamale, Ghana.
- Department of Biology of Organisms, Faculty of Science, Université Libre de Bruxelles, Brussels, Belgium.
- Department of Biology, Faculty of Science and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
- Department of Botany, Faculty of Science, University of Ruhuna, Matara, Sri Lanka.
| | - Samuel Jerry Cobbina
- Department of Ecotourism and Environmental Management, Faculty of Natural Resources and Environment, University for Development Studies, Tamale, Ghana
| | - Dzigbodi Adzo Doke
- Department of Ecotourism and Environmental Management, Faculty of Natural Resources and Environment, University for Development Studies, Tamale, Ghana
| |
Collapse
|
16
|
Sun H, Chen H, Yao L, Chen J, Zhu Z, Wei Y, Ding X, Chen J. Sources and health risks of PM 2.5-bound polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) in a North China rural area. J Environ Sci (China) 2020; 95:240-247. [PMID: 32653186 DOI: 10.1016/j.jes.2020.03.051] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/21/2020] [Accepted: 03/22/2020] [Indexed: 06/11/2023]
Abstract
Polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) are typical persistent organic pollutants (POPs), which have high toxicity, bioaccumulation and long-distance transfer capability. Daily variation, sources of PCBs and OCPs in PM2.5 are rarely explored in polluted rural area. Here, the sources and health risks of the PCBs and OCPs were evaluated for 48 PM2.5 samples collected in winter 2017 in Wangdu, a heavy polluted rural area in the North China Plain. The average diurnal and nocturnal concentrations of Σ18PCBs and Σ15OCPs were 1.74-24.37 and 1.77-100.49, 11.67-408.81 and 16.89-865.60 pg/m3, respectively. Hexa-CBs and penta-CBs accounted for higher proportions (29.0% and 33.6%) of clean and polluted samples, respectively. Hexachlorobenzene (HCB) was the dominant contributor to OCPs with an average concentration of 116.17 pg/m3. Hexachlorocyclohexane (ΣHCHs) and dichlorodiphenyltrichloroethane (ΣDDTs) were the other two main classes in OCPs with the average concentrations of 4.33 and 15.89 pg/m3, respectively. β-HCH and p,p'-DDE were the main degradation products of HCHs and DDTs, respectively. The principal component analysis and characteristic ratio method indicated both waste incineration and industrial activities were the main sources of PCBs, contributing 76.8% and 12.7%, respectively. The loadings of OCPs were attributed to their application characteristics and the characteristic ratio method reflected a current or past use of OCPs. Health risk assessment showed that the respiratory exposure quantity of doxin-like PCBs (DL-PCBs) and the lifetime cancer risk from airborne OCPs exposure was negligible, while the other exposure modes may pose a risk to human bodies.
Collapse
Affiliation(s)
- Hao Sun
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Hui Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China.
| | - Lan Yao
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai 200234, China
| | - Jiping Chen
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhonghong Zhu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Yaqi Wei
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Xiang Ding
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China; Shanghai Institute of Eco-Chongming (SIEC), Shanghai 200062, China.
| |
Collapse
|
17
|
Ssebugere P, Sillanpää M, Matovu H, Mubiru E. Human and environmental exposure to PCDD/Fs and dioxin-like PCBs in Africa: A review. CHEMOSPHERE 2019; 223:483-493. [PMID: 30784755 DOI: 10.1016/j.chemosphere.2019.02.065] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/05/2019] [Accepted: 02/10/2019] [Indexed: 06/09/2023]
Abstract
This paper reviews literature for the last two decades with emphasis on levels, toxic equivalencies and sources of polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (dl-PCBs) in Africa. Further, we comprehensively analysed data, interpret differences and identify existing gaps with those from other continents. We observed that high levels of PCDD/Fs and dl-PCBs were reported in environmental and biological samples near densely populated urban and industrialised areas compared to those in rural settings. In general, the concentrations of PCDD/Fs and dl-PCBs in the blood samples from Africa were in the same range as those from Asia but lower than those from Europe. The concentrations of dioxins and dioxin-like compounds in the atmosphere in Africa were comparable to and/or higher than those in developed countries. The reported sources of PCDD/Fs and dl-PCBs in Africa were industrial emissions, obsolete pesticide stockpiles, household heating, recycling of electronic waste, and incineration and combustion of domestic waste. Regional and intercontinental transport of dioxins could not be confirmed because of the lack of sufficient literature on them. Further data about the levels and sources of PCDD/Fs and dl-PCBs in Africa need to be generated to complete the chemical inventories for the continent and to facilitate the implementation of the Stockholm Convention on persistent organic pollutants. The reviewed literature shows that most analyses have been carried out in laboratories outside Africa because of the limited institutional capacity in Africa. More support needs to be given to laboratories in Africa to develop the capacity to accurately quantify dioxins on routine basis.
Collapse
Affiliation(s)
- Patrick Ssebugere
- Department of Chemistry, Makerere University, P.O. Box 7062, Kampala, Uganda.
| | - Mika Sillanpää
- Laboratory of Green Chemistry, Lappeenranta University of Technology, Sammonkatu 12, 50130, Mikkeli, Finland
| | - Henry Matovu
- Department of Chemistry, Makerere University, P.O. Box 7062, Kampala, Uganda; Laboratory of Green Chemistry, Lappeenranta University of Technology, Sammonkatu 12, 50130, Mikkeli, Finland; Department of Chemistry, Gulu University, P. O. Box 166, Gulu, Uganda
| | - Edward Mubiru
- Department of Chemistry, Makerere University, P.O. Box 7062, Kampala, Uganda
| |
Collapse
|
18
|
Wang G, Liu Y, Tao W, Zhao X, Li X. Reflection of concentrations of polybrominated diphenyl ethers in health risk assessment: A case study in sediments from the metropolitan river, North China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 247:80-88. [PMID: 30665190 DOI: 10.1016/j.envpol.2019.01.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 06/09/2023]
Abstract
As a developed city in North China, Tsingtao is believed to be suffering from the pollution of polybrominated diphenyl ethers (PBDEs) due to the rapid industrialization and urbanization in recent years. In this work, 8 PBDE congeners were detected in sediments from Moshui River, Tsingtao. BDE-209 and sum of 7 low brominated PBDE congeners (∑7PBDEs, excluding BDE-209) ranged from 10.2 × 10-3 to 237 × 10-3 mg kg-1 and from 1.62 × 10-3 to 23.1 × 10-3 mg kg-1 d.w., respectively. PBDE concentrations decreased in the order of midstream > downstream > upstream, attributing to the discrepancies in anthropogenic activities among these areas. Principal component analysis coupled with multiple linear regression (PCA-MLR) revealed that 24.4% of PBDEs were derived from surface runoff of contaminated soils, 58.2% from direct discharge of local sources and 17.4% from atmospheric deposition. The probabilistic health risk assessment of PBDEs was performed by using Monte Carlo simulation. The carcinogenic and non-carcinogenic risks based on total PBDEs were low for children and teens, whilst severe for adults. However, based on bioaccessible PBDEs (in vitro gastrointestinal model), there was no obvious health risk for the three age groups. To the best of our knowledge, the present study was the first attempt to assess the health risk by using bioaccessible PBDEs in sediments.
Collapse
Affiliation(s)
- Guoguang Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, China; Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao, China
| | - Yu Liu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, China; Environmental Information Institute, Dalian Maritime University, Dalian, China
| | - Wei Tao
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, China
| | - Xinda Zhao
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, China
| | - Xianguo Li
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao, China.
| |
Collapse
|
19
|
Castro-Jiménez J, Sempéré R. Atmospheric particle-bound organophosphate ester flame retardants and plasticizers in a North African Mediterranean coastal city (Bizerte, Tunisia). THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 642:383-393. [PMID: 29906729 DOI: 10.1016/j.scitotenv.2018.06.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 06/08/2023]
Abstract
Organophosphate ester (OPE) flame retardants and plasticizers have been detected at generally high frequencies (70-98%) for the first time in the atmosphere over the NW African coastal Mediterranean. Results from sixty air samples (total suspended particles, TSP) collected between March 2015 and January 2016 in an urban coastal site (Bizerte, Tunisia) revealed ∑9OPE concentrations of ~100-1060 pg m-3 (470 pg m-3, median) with TCPPs, EHDPP and TiBP exhibiting the higher median concentrations (~110, 100 and 85 pg m-3, respectively). Spring generally exhibited the lowest concentrations, probably linked to the influence of local meteorological conditions and air mass trajectories to a lesser extent. Non-chlorinated OPEs generally predominated, in contrast to the most common reported situation in marine environments (i.e. higher abundance of chlorinated OPEs) pointing to the relevance of local OPE sources in the study area. TiBP levels were generally higher than those reported for other marine/coastal environments suggesting this OPE as a good tracer of local sources in Bizerte. Contrarily, the atmospheric levels of other abundant OPEs in the area (e.g. TCPP) seem to be in the range and/or lower than those reported for remote marine environments. These findings point to the interplay of different factors with solar irradiance (potentially enhancing atmospheric photochemical oxidation reactions) and meteorological conditions in the study area likely compensating potential local sources of some OPEs. Not all OPEs presented the same seasonality in terms of atmospheric concentrations and pattern. The estimated atmospheric dry deposition fluxes (∑9OPEs) were 18-180 ng m-2 d-1. Up to ~9 kg y-1 of OPEs (~1 kg y-1 of new organic anthropogenic phosphorus coming from OPEs) can be loaded to the shallow and enclosed Bizerte lagoon (~130 km2), considered as the most important aquaculture area in Tunisia, with yet unknown implications for the environmental exposure and impacts in the ecosystem functioning.
Collapse
Affiliation(s)
- Javier Castro-Jiménez
- Aix Marseille Univ., University of Toulon, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM 110, Marseille, France.
| | - Richard Sempéré
- Aix Marseille Univ., University of Toulon, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM 110, Marseille, France
| |
Collapse
|