1
|
Li X, Yuan SJ, Ren FF, Dong B, Xu ZX. A novelty strategy for AMD prevention by biogas slurry: Acetate acid inhibition effect on chalcopyrite biooxidation and leachate. ENVIRONMENTAL RESEARCH 2024; 261:119687. [PMID: 39068972 DOI: 10.1016/j.envres.2024.119687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/20/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
With the widespread application of anaerobic digestion technology, biogas slurry become the main source of organic amendments in practice. Comprehensive studies into the inhibitory effects of low molecular weight (LMW) organic acids, essential components in biogas slurry, on the sulfide minerals biooxidation and its bioleaching (AMD) have been lacking. In this study, acetic acid (AA) served as a representative of LMW organic acids in biogas slurry to investigate its impact on the inhibition of chalcopyrite biooxidation by Acidithiobacillus ferrooxidans (A. ferrooxidans). It was shown that AA could slow down the chalcopyrite biooxidation and inhibit the jarosite formation on the mineral surface. Compared with the control group (0 ppm AA), the sulfate increment in the leachate of the 50 ppm, 100 ppm, and 200 ppm AA-treated groups decreased by 36.4%, 66.8%, and 69.0%, respectively. AA treatment (≥50 ppm) could reduce the oxidation of ferrous ions in the leachate by one order of magnitude. At the same time, the bacterial concentration of the leachate in the 50 ppm, 100 ppm, and 200 ppm AA-treated groups decreased by 70%, 93%, and 94%, respectively. These findings provide a scientific basis for new strategies to utilize biogas slurry for mine remediation and contribute to an enhanced comprehension of organic amendments to prevent AMD in situ in mining soil remediation.
Collapse
Affiliation(s)
- Xin Li
- School of Environmental Science and Engineering. Tongji University, Shanghai, 200092, PR China
| | - Shi-Jie Yuan
- School of Environmental Science and Engineering. Tongji University, Shanghai, 200092, PR China
| | - Fei-Fan Ren
- Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, Shanghai, 200092, PR China
| | - Bin Dong
- School of Environmental Science and Engineering. Tongji University, Shanghai, 200092, PR China; YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing, 100038, PR China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, PR China.
| | - Zu-Xin Xu
- School of Environmental Science and Engineering. Tongji University, Shanghai, 200092, PR China
| |
Collapse
|
2
|
Jiang Y, Di J, Gao M, Dong Y. Study on the new slow-release carbon source biochemistry and its improvement of SRB on the acid mine drainage treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122860. [PMID: 39423619 DOI: 10.1016/j.jenvman.2024.122860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/26/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
The content of sulfate and heavy metals in acidic mine drainage (AMD) exceeds the standard severely, and the acidity is extremely high, causing serious harm to the environment. SRB can efficiently remove sulfates through its own metabolism. The treatment of AMD by SRB faces problems such as carbon source scarcity and heavy metal ion toxicity to SRB. In this study, corn cob and polycaprolactone were embedded to prepare a novel slow-release carbon source (PSCL), which simultaneously achieves carbon source supply and metal ion removal. Through adsorption isotherms, kinetics, thermodynamics studies, and various characterization analyses, it is known that PSCL removes Cu2+ and Zn2+ through ion exchange, physical and chemical adsorption, electrostatic attraction, and surface complexation. PSCL carbon release experiments and characterization results confirm that its surface carbon distribution is dense, the molecular weight of DOM in the leachate is small, the degree of humification is low, and it has a porous structure, making it a good carbon release material and biological attachment. The experimental results of PSCL enhanced SRB treatment of AMD showed that the removal rates of SO42-, Cu2+ and Zn2+ could be increased to 97.48%, 98.11% and 90.42%, respectively, with a effluent pH of 7.05, effectively improving the water quality of AMD. This study provides new materials and methods to address the limitations of SRB in treating actual AMD.
Collapse
Affiliation(s)
- Yangyang Jiang
- School of Civil Engineering, Liaoning University of Engineering and Technology, Liaoning Province, Fuxin, 123000, China
| | - Junzhen Di
- School of Civil Engineering, Liaoning University of Engineering and Technology, Liaoning Province, Fuxin, 123000, China.
| | - Mengqing Gao
- School of Civil Engineering, Liaoning University of Engineering and Technology, Liaoning Province, Fuxin, 123000, China
| | - Yanrong Dong
- School of Civil Engineering, Liaoning University of Engineering and Technology, Liaoning Province, Fuxin, 123000, China
| |
Collapse
|
3
|
Yin C, Zhang Y, Tao Y, Zhu X. Competitive adsorption behavior and adsorption mechanism of limestone and activated carbon in polymetallic acid mine water treatment. Sci Rep 2024; 14:23561. [PMID: 39384806 PMCID: PMC11464747 DOI: 10.1038/s41598-024-74240-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/24/2024] [Indexed: 10/11/2024] Open
Abstract
Acid mine water (AMD) can cause significant environmental hazards due to its high concentration of metal ions, so the development of effective treatment methods is essential to mitigate its impact. In this study, adsorption experiments were conducted using limestone (LS) and activated carbon (AC) to explore the adsorption efficiency for different concentrations of metal ions. Adsorption was evaluated by static and competitive batch tests. The adsorbent mechanism was investigated using analytical techniques such as SEM, FTIR and XRD. The efficacy of LS and AC for competitive adsorption of Fe, Mn, Zn and Cu ions from AMD was evaluated. The study analyzed the effect of environmental conditions such as initial concentration and ionic strength on the adsorption efficiency. The results showed that LS showed high adsorption capacity for Fe and Cu, but was less effective in competitive adsorption of Mn. AC showed superior adsorption performance for Fe and Cu under competitive conditions due to its high surface area and functional groups. Both adsorbents showed selective efficacy influenced by the physicochemical properties of metal ions. This study helps to guide the optimization of adsorbents in AMD treatment and highlights the importance of selecting suitable materials based on specific metal ion properties.
Collapse
Affiliation(s)
- Chang Yin
- Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yongbo Zhang
- Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Yongjiang Tao
- Taiyuan University of Technology, Taiyuan, 030024, China
| | - Xueping Zhu
- Taiyuan University of Technology, Taiyuan, 030024, China
| |
Collapse
|
4
|
Dube V, Phiri Z, Kuvarega AT, Mamba BB, de Kock LA. Exploring acid mine drainage treatment through adsorption: a bibliometric analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59659-59680. [PMID: 39352638 PMCID: PMC11519127 DOI: 10.1007/s11356-024-35047-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 09/13/2024] [Indexed: 10/29/2024]
Abstract
Discharge of acidic wastewater from mining activities (acid mine drainage (AMD)) is a major global environmental and public health issue. Although several approaches, including chemical precipitation and membrane technology, have been developed to treat AMD, adsorption has emerged as the most promising technology due to its cost-effectiveness and efficacy. Despite the wide adoption of adsorption in treating AMD, the evolution of research in this area remains poorly understood. To address this gap, a bibliometric analysis of the most recent literature involving the application of adsorption in AMD remediation was conducted by merging datasets of articles from Scopus (1127) and the Web of Science Core Collection (1422), over the past decade (2013-2022). This analysis revealed a yearly increase of 11% in research publications, primarily contributed by China, the United States, and South Africa. Keyword analysis revealed that natural schwertmannites and their transformations, activated carbon, zeolites, and clay minerals, are the most extensively employed adsorbents for the removal of common metals (arsenic, chromium, iron, manganese, among others). The findings underscore the need for future focuses on recovering rare earth elements, using nanoparticles and modified materials, pursuing low-cost, sustainable solutions, integrating hybrid technologies, pilot-scale studies, exploring circular economic applications of AMD sludges, and inter-continental collaborations. These insights hold significant future implications, serving as a valuable reference to stakeholders in the mining industry.
Collapse
Affiliation(s)
- Vuyiswa Dube
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science Engineering and Technology, University of South Africa, Florida Campus, Roodepoort, 1709, Gauteng, South Africa
| | - Zebron Phiri
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science Engineering and Technology, University of South Africa, Florida Campus, Roodepoort, 1709, Gauteng, South Africa.
| | - Alex Tawanda Kuvarega
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science Engineering and Technology, University of South Africa, Florida Campus, Roodepoort, 1709, Gauteng, South Africa
| | - Bhekie Brilliance Mamba
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science Engineering and Technology, University of South Africa, Florida Campus, Roodepoort, 1709, Gauteng, South Africa
| | - Lueta-Ann de Kock
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science Engineering and Technology, University of South Africa, Florida Campus, Roodepoort, 1709, Gauteng, South Africa
| |
Collapse
|
5
|
Ma H, Zhu S, Huang Z, Zheng W, Liu C, Meng F, Chen JL, Lin YJ, Dang Z, Feng C. Photochemical Origins of Iron Flocculation in Acid Mine Drainage. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39271452 DOI: 10.1021/acs.est.4c06699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Acid mine drainage (AMD) raises a global environmental concern impacting the iron cycle. Although the formation of Fe(III) minerals in AMD-impacted waters has previously been reported to be regulated by biological processes, the role of abiotic processes remains largely unknown. This study first reported that a photochemical reaction coupled with O2 significantly accelerated the formation of Fe(III) flocculates (i.e., schwertmannite) in the AMD, as evidenced by the comparison of samples from contaminated sites across different natural conditions at latitudes 24-29° N. Combined with experimental and modeling results, it is further discovered that the intramolecular oxidation of photogenerated Fe(II) with a five-coordinative pyramidal configuration (i.e., [(H2O)5Fe]2+) by O2 was the key in enhancing the photooxidation of Fe(II) in the simulated AMD. The in situ attenuated total reflectance-Fourier transform infrared spectrometry (ATR-FTIR), UV-vis spectroscopy, solvent substitution, and quantum yield analyses indicated that, acting as a precursor for flocculation, [(H2O)5Fe]2+ likely originated from both the dissolved and colloidal forms of Fe(III) through homogeneous and surface ligand-to-metal charge transfers. Density functional theory calculations and X-ray absorption spectroscopy results further suggested that the specific oxidation pathways of Fe(II) produced the highly reactive iron species and triggered the hydrolysis and formation of transient dihydroxo dimers. The proposed new pathways of Fe cycle are crucial in controlling the mobility of heavy metal anions in acidic waters and enhance the understanding of complicated iron biochemistry that is related to the fate of contaminants and nutrients.
Collapse
Affiliation(s)
- Huanxin Ma
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Shishu Zhu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Ziyuan Huang
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Wenxiao Zheng
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Chengshuai Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, P.R. China
| | - Fangyuan Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, P.R. China
| | - Jeng-Lung Chen
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan R.O.C
| | - Yu-Jung Lin
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan R.O.C
| | - Zhi Dang
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Chunhua Feng
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
6
|
Martins GC, Choo Y, Park MJ, Shon HK, Naidu G. Rare earth europium recovery using selective metal-organic framework incorporated mixed-matrix membrane. CHEMOSPHERE 2024; 364:143272. [PMID: 39243905 DOI: 10.1016/j.chemosphere.2024.143272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Rare-earth elements (REEs) play a crucial role in state-of-the-art technologies and sustainable energy generation. However, conventional production methods of REE often instigate detrimental impacts on environment. Hence, the development of efficient and sustainable hydrometallurgical methods for REE recovery from complex solution has become a crucial research focus. This study investigates a mixed-matrix membrane composed of a highly europium selective metal-organic framework-based adsorbent, Cr-MIL-PMIDA, embedded in sulfonated poly(ether ketone) (SPEK) polymer membrane matrix to preferentially concentrate europium (Eu3+) ions in the presence of other competing cations. The activated membrane notably reduced ionic conductivity for Eu3+ compared to other multivalent ions. Membrane extraction experiments further confirmed the selective behavior, demonstrating slower diffusion for Eu3+ compared to Mg2+ and Zn2+ cations. Especially, at pH 5, Mg2⁺ and Zn2⁺ recovery was greater than 30%, whereas Eu³⁺ recovery remained lower than 4%. We propose that the strong chemical affinity between the phosphate group and Eu3+ help partition of the Eu3+ ions in the membrane phase and inhibit the diffusion and further partitioning of the Eu3+ ion from bulk solution. Furthermore, we demonstrate the stability of the composite membrane and the embedded MOF particles in aqueous solution for up to 12 days without degradation, attributing it to the robust chemical stability of the MOF structure.
Collapse
Affiliation(s)
- Gabriela C Martins
- School of Civil and Environmental Engineering, University of Technology Sydney (UTS), City Campus, Broadway, NSW, 2007, Australia.
| | - Youngwoo Choo
- School of Civil and Environmental Engineering, University of Technology Sydney (UTS), City Campus, Broadway, NSW, 2007, Australia.
| | - Myoung Jun Park
- School of Civil and Environmental Engineering, University of Technology Sydney (UTS), City Campus, Broadway, NSW, 2007, Australia.
| | - Ho Kyong Shon
- School of Civil and Environmental Engineering, University of Technology Sydney (UTS), City Campus, Broadway, NSW, 2007, Australia.
| | - Gayathri Naidu
- School of Civil and Environmental Engineering, University of Technology Sydney (UTS), City Campus, Broadway, NSW, 2007, Australia.
| |
Collapse
|
7
|
Gonçalves NPF, Almeida MM, Labrincha JA, Novais RM. Effective acid mine drainage remediation in fixed bed column using porous red mud/fly ash-containing geopolymer spheres. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173633. [PMID: 38823716 DOI: 10.1016/j.scitotenv.2024.173633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
Acid mine drainage (AMD) poses a significant threat to water quality worldwide, being amongst the most problematic environmental concerns of the millennium. This work reports for the first time the remediation of real AMD, from a Portuguese abandoned mine, in fixed bed column using porous red mud/fly ash-based geopolymeric spheres. Porous waste-based spheres (2.6 ± 0.2 mm) were obtained by a suspension-solidification method through the addition of optimum foaming agent dosage. The sorbent capacity in removing cations from AMD was evaluated by targeting selected hazardous elements: Zn, Cu, Co, Pb and Ni, based on their occurrence in the effluent and potential hazard. The spheres exhibited a dual mechanism of action, simultaneously neutralizing the acidic sample while removing cations through adsorption achieving removal efficiencies between 51 % and 80 %. Other elements present in high levels, such as iron were efficiently removed (>96 %). The role of precipitation, due to the pH neutralization, and adsorption was determined. The sorbent regeneration and reusability were evaluated for up to five cycles. Moreover, the effectiveness of waste-based geopolymers treating distinct AMD waters due to seasonal variations was also evaluated, further demonstrating the effectiveness of the proposed strategy to address environmental concerns stemming from mining activities.
Collapse
Affiliation(s)
- Nuno P F Gonçalves
- Dept. of Chemistry/CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Mariana M Almeida
- Dept. of Materials and Ceramic Engineering/CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - João A Labrincha
- Dept. of Materials and Ceramic Engineering/CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Rui M Novais
- Dept. of Materials and Ceramic Engineering/CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
8
|
Shi J, Qian W, Zhou Z, Jin Z, Gao X, Fan J, Wang X. Effects of acid mine drainage and sediment contamination on soil bacterial communities, interaction patterns, and functions in alkaline desert grassland. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134832. [PMID: 38852245 DOI: 10.1016/j.jhazmat.2024.134832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/22/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Acid mine drainage and sediments (AMD-Sed) contamination pose serious ecological and environmental problems. This study investigated the geochemical parameters and bacterial communities in the sediment layer (A) and buried soil layer (B) of desert grassland contaminated with AMD-Sed and compared them to an uncontaminated control soil layer (CK). The results showed that soil pH was significantly lower and iron, sulfur, and electroconductivity levels were significantly higher in the B layer compared to CK. A and B were dominated by Proteobacteria and Actinobacteriota, while CK was dominated by Firmicutes and Bacteroidota. The pH, Fe, S, and potentially toxic elements (PTEs) gradients were key influences on bacterial community variability, with AMD contamination characterization factors (pH, Fe, and S) explaining 48.6 % of bacterial community variation. A bacterial co-occurrence network analysis showed that AMD-Sed contamination significantly affected topological properties, reduced network complexity and stability, and increased the vulnerability of desert grassland soil ecosystems. In addition, AMD-Sed contamination reduced C/N-cycle functioning in B, but increased S-cycle functioning. The results highlight the effects of AMD-Sed contamination on soil bacterial communities and ecological functions in desert grassland and provide a reference basis for the management and restoration of desert grassland ecosystems in their later stages.
Collapse
Affiliation(s)
- Jianfei Shi
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China; University of Chinese Academy of Sciences, Beijing 100049, China; National Engineering Technology Research Center for Desert-Oasis Ecological Construction, Urumqi, Xinjiang 830011, China
| | - Wenting Qian
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China; Public Technology Service Center, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China
| | - Zhibin Zhou
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China; National Engineering Technology Research Center for Desert-Oasis Ecological Construction, Urumqi, Xinjiang 830011, China; Taklimakan Station for Desert Research, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Zhengzhong Jin
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China; National Engineering Technology Research Center for Desert-Oasis Ecological Construction, Urumqi, Xinjiang 830011, China; Taklimakan Station for Desert Research, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China.
| | - Xin Gao
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China; National Engineering Technology Research Center for Desert-Oasis Ecological Construction, Urumqi, Xinjiang 830011, China; Taklimakan Station for Desert Research, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Jinglong Fan
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China; National Engineering Technology Research Center for Desert-Oasis Ecological Construction, Urumqi, Xinjiang 830011, China; Taklimakan Station for Desert Research, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Xin Wang
- Shaanxi Forestry Survey and Planning Institute, Xi'an, Shaanxi 710082, China
| |
Collapse
|
9
|
Fonseka C, Ryu S, Choo Y, Kandasamy J, Foseid L, Ratnaweera H, Vigneswaran S. Selective recovery of europium from real acid mine drainage using modified Cr-MIL and SBA15 adsorbents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:51540-51550. [PMID: 39115731 PMCID: PMC11374818 DOI: 10.1007/s11356-024-34566-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/25/2024] [Indexed: 09/06/2024]
Abstract
The successful adoption and widespread implementation of innovative acid mine drainage treatment and resource recovery methods hinge on their capacity to demonstrate enhanced performance, economic viability, and environmental sustainability compared to conventional approaches. Here, an evaluation of the efficacy of chromium-based metal-organic frameworks and amine-grafted SBA15 materials in adsorbing europium (Eu) from actual mining wastewater was conducted. The adsorbents underwent comprehensive characterization and examination for their affinity for Eu. Cr-MIL-PMIDA and SBA15-NH-PMIDA had a highest Langmuir adsorption capacity of 69 mg/g and 86 mg/g, respectively, for an optimum level of pH 4.8. Preferential adsorption tests followed using real AMD collected at a disused mine in the north of Norway. A comparative study utilizing pH-adjusted real AMD revealed that Cr-MIL-PMIDA (88%) exhibited slightly higher selectivity towards Eu compared to SBA15-NH-PMIDA (81%) in real mining wastewater. While Cr-MIL-PMIDA displays excellent properties for the selective recovery of REEs, practical challenges related to production costs and potential susceptibility to chromium leaching make it less appealing for widespread applications. A cost-benefit analysis was then undertaken to quantify the advantages of employing SBA15-NH-PMIDA material. The study disclosed that 193.2 g of EuCl3 with 99% purity can be recovered by treating 1000 m3 of AMD.
Collapse
Affiliation(s)
- Charith Fonseka
- Department of Civil and Environmental Engineering, Faculty of Engineering and IT, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, Ultimo, NSW, 2007, Australia
| | - Seongchul Ryu
- Department of Civil and Environmental Engineering, Faculty of Engineering and IT, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, Ultimo, NSW, 2007, Australia
| | - Youngwoo Choo
- Department of Civil and Environmental Engineering, Faculty of Engineering and IT, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, Ultimo, NSW, 2007, Australia
| | - Jaya Kandasamy
- Department of Civil and Environmental Engineering, Faculty of Engineering and IT, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, Ultimo, NSW, 2007, Australia
| | - Lena Foseid
- Department of Building and Environmental Technology, Faculty of Sciences & Technology (RealTek), Norwegian University of Life Sciences, P.O. Box N-1432, Oslo, Norway
| | - Harsha Ratnaweera
- Department of Building and Environmental Technology, Faculty of Sciences & Technology (RealTek), Norwegian University of Life Sciences, P.O. Box N-1432, Oslo, Norway
| | - Saravanamuthu Vigneswaran
- Department of Civil and Environmental Engineering, Faculty of Engineering and IT, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, Ultimo, NSW, 2007, Australia.
- Department of Building and Environmental Technology, Faculty of Sciences & Technology (RealTek), Norwegian University of Life Sciences, P.O. Box N-1432, Oslo, Norway.
| |
Collapse
|
10
|
Oliveira MSF, Assila O, Fonseca AM, Parpot P, Valente T, Rombi E, Neves IC. Acid Mine Drainage Precipitates from Mining Effluents as Adsorbents of Organic Pollutants for Water Treatment. Molecules 2024; 29:3521. [PMID: 39124926 PMCID: PMC11314495 DOI: 10.3390/molecules29153521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Acid mine drainage (AMD) is one of the main environmental problems associated with mining activity, whether the mine is operational or abandoned. In this work, several precipitates from this mine drainage generated by the oxidation of sulfide minerals, when exposed to weathering, were used as adsorbents. Such AMD precipitates from abandoned Portuguese mines (AGO, AGO-1, CF, and V9) were compared with two raw materials from Morocco (ClayMA and pyrophyllite) in terms of their efficiency in wastewater treatment. Different analytical techniques, such as XRD diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR), N2 adsorption isotherms, and Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray (EDX) were used to characterize these natural materials. The adsorption properties were studied by optimizing different experimental factors, such as type of adsorbent, adsorbent mass, and dye concentration by the Box-Behnken Design model, using methylene blue (MB) and crystal violet (CV) compounds as organic pollutants. The obtained kinetic data were examined using the pseudo-first and pseudo-second order equations, and the equilibrium adsorption data were studied using the Freundlich and Langmuir models. The adsorption behavior of the different adsorbents was perfectly fitted by the pseudo-second order kinetic model and the Langmuir isotherm. The most efficient adsorbent for both dyes was AGO-1 due to the presence of the cellulose molecules, with qm equal to 40.5 and 16.0 mg/g for CV and MB, respectively. This study confirms the possibility of employing AMD precipitates to adsorb organic pollutants in water, providing valuable information for developing future affordable solutions to reduce the wastes associated with mining activity.
Collapse
Affiliation(s)
- Marta S. F. Oliveira
- CQUM, Chemistry Department, Centre of Chemistry, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (M.S.F.O.); (O.A.); (A.M.F.); (P.P.)
| | - Ouissal Assila
- CQUM, Chemistry Department, Centre of Chemistry, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (M.S.F.O.); (O.A.); (A.M.F.); (P.P.)
| | - António M. Fonseca
- CQUM, Chemistry Department, Centre of Chemistry, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (M.S.F.O.); (O.A.); (A.M.F.); (P.P.)
- CEB, Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Pier Parpot
- CQUM, Chemistry Department, Centre of Chemistry, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (M.S.F.O.); (O.A.); (A.M.F.); (P.P.)
- CEB, Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Teresa Valente
- ICT, Institute of Earth Sciences, Pole of the University of Minho, 4710-057 Braga, Portugal;
| | - Elisabetta Rombi
- Department of Chemical and Geological Sciences, University of Cagliari, 09042 Monserrato, Italy;
| | - Isabel C. Neves
- CQUM, Chemistry Department, Centre of Chemistry, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (M.S.F.O.); (O.A.); (A.M.F.); (P.P.)
- CEB, Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
11
|
Kotte-Hewa DJ, Durce D, Salah S, Vantelon D, Smolders E. Association of rare earth elements with secondary mineral phases formed during alkalinization of acid mine drainage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174895. [PMID: 39032740 DOI: 10.1016/j.scitotenv.2024.174895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/17/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Rare Earth Elements (REE) are present in acid mine drainage (AMD) in micromolar concentrations and AMD discharge may lead to an environmental risk. Alkaline Passive Treatment Systems (PTS) are often used to treat AMD and trap toxic trace elements. This study was set up to identify mechanisms by which REE are trapped in or on secondary phases formed in a PTS. Batch alkalinization experiments were performed to simulate PTS by sequentially increasing the pH of AMD collected from the Tharsis mining area inside the Iberian Pyrite Belt and synthetic AMD water samples via CaCO3 addition. The solids that precipitated up to pH ~4 and between pH 4-6 were collected and characterized by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) in combination with Scanning Electron Microscope/Energy Dispersive X-ray spectroscopy (SEM/EDX) and synchrotron-based X-ray Absorption Spectroscopy (XAS) and synchrotron-based Micro-X-ray Fluorescence (μ-XRF). Results reveal that REE are mostly scavenged between pH 4-6 in association with Al and Fe phases, whereas a smaller fraction is scavenged at pH ~4 by association with gypsum. Synchrotron-based analysis evidences the incorporation of La3+ into the gypsum structure by substituting Ca2+, indicating a co-precipitation mechanism with gypsum occurring mainly at low pH. Results from parallel adsorption and co-precipitation tests suggest that the REE scavenging between pH 4-6 could be due to a combination of adsorption and co-precipitation on Al(OH)3 and ferrihydrite. This implies that in PTS, REE would be mainly found in Al- (and Fe-) oxyhydroxides occurring in deeper layers of the PTS, i.e., where higher pH-values occur, though a small fraction, especially the light REE, could also be found incorporated into gypsum in the upper layers.
Collapse
Affiliation(s)
- Dileesha Jayahansani Kotte-Hewa
- Belgian Nuclear Research Centre, SCK CEN, Boeretang 200, Mol 2400, Belgium; KU Leuven, Department of Soil and Water Management, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium.
| | - Delphine Durce
- Belgian Nuclear Research Centre, SCK CEN, Boeretang 200, Mol 2400, Belgium
| | - Sonia Salah
- Belgian Nuclear Research Centre, SCK CEN, Boeretang 200, Mol 2400, Belgium
| | - Delphine Vantelon
- LUCIA Beamline, SOLEIL Synchrotron, L'Orme des Merisiers, Départementale 128, 91190 Saint-Aubin, France
| | - Erik Smolders
- KU Leuven, Department of Soil and Water Management, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium
| |
Collapse
|
12
|
Myagkaya IN, Saryg-Ool BOY, Kirichenko IS, Gustaytis MA, Lazareva EV. Environmental and human health risk assessment of soils in areas of ore mineralization and past gold-mining activity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:47923-47945. [PMID: 39012531 DOI: 10.1007/s11356-024-34242-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/01/2024] [Indexed: 07/17/2024]
Abstract
The patterns of the potentially toxic elements (PTEs: Cr, Fe, Ni, Cu, Zn, As, Mo, Pb, Hg) distribution in soils were studied together with the health risk assessment in the area of ore mineralization, past gold activity, and tailing effects of the Sarala gold-ore group located in the Republic of Khakassia, Russia. High PTE concentrations were found in soils with the presence of potential negative impact on human health based on the following: local background investigation, according to statistics; geochemical, environmental, and human health risk calculations; and comparative analysis using international and local reference, such as continental crust, clarke, and permissible concentrations. Sources of PTE soil enrichment and pollution were statistically identified in ascending order of degree: geogenic (local background) < geogenic-technogenic (sites with geological exploration traces - trenches) < technogenic (waste tailings). The main pollutants are Hg and As which showed moderate to significant ecological risk. Negative impact of Cr on soils was found. The pollution degree and toxicity (moderate to significant) of other PTEs increase in the location of ore mineralization zone with exploration trenches and waste tailings. Arsenic poses a carcinogenic risk to adults and children upon contact with polluted soils and non-carcinogenic effect on children in areas affected by tailings and ore mineralization zone. The non-carcinogenic effect of Fe on children was found in soils of all sites. The results provide useful information regarding the studied PTEs and their impact on the environment and human health. Such information can be helpful for the state-level decision-making process when addressing solutions for contaminated areas.
Collapse
Affiliation(s)
- Irina Nikolayevna Myagkaya
- V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, 3 Koptyug Ave, Novosibirsk, 630090, Russia.
| | - Bagai-Ool Yurevich Saryg-Ool
- V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, 3 Koptyug Ave, Novosibirsk, 630090, Russia
| | - Ivan Sergeevich Kirichenko
- V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, 3 Koptyug Ave, Novosibirsk, 630090, Russia
| | - Mariya Alekseevna Gustaytis
- V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, 3 Koptyug Ave, Novosibirsk, 630090, Russia
| | - Elena Vladimirovna Lazareva
- V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, 3 Koptyug Ave, Novosibirsk, 630090, Russia
| |
Collapse
|
13
|
Tang H, Chen M, Wu P, Li Y, Wang T, Wu J, Sun L, Shang Z. The influence of Mn(II) on transformation of Cr-absorbed Schwertmannite: Mineral phase transition and elemental fate. WATER RESEARCH 2024; 257:121656. [PMID: 38677110 DOI: 10.1016/j.watres.2024.121656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 04/14/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
Schwertmannite (Sch) is considered as an effective remover of Chromium (Cr) due to its strong affinity for toxic Cr species. Since the instability of Sch, the environmental fate of Cr deserves attention during the transformation of Sch into a more stable crystalline phase. The ubiquitous manganese(II) (Mn(II)) probably affects the transformation of Sch and thus the environmental fate of Cr. Therefore, this study investigated the impact of Mn(II) on the transformation of Cr-absorbed Sch (Cr-Sch) and the associated behavior of SO42- and Cr. We revealed that the transformation products of Cr-Sch at pH 3.0 and 7.0 were goethite and Sch, respectively. The presence of Mn(II) weakened the crystallinity of the transformation products, and the trend was positively correlated with the concentration of Mn(II). However, Mn(II) changed the transformation products of Cr-Sch from hematite to goethite at pH 10.0. Mn(II) replaced Fe(III) in the mineral structures or formed Mn-O complexes with surface hydroxyl groups (-OH), thereby affecting the transformation pathways of Sch. The presence of Mn(II) enhanced the immobilization of Cr on minerals at pH 3.0 and 7.0. Sch is likely to provide an channel for electron transfer between Mn(II) and Cr(VI), which promotes the reduction of Cr(VI). Meanwhile, Mn(Ⅱ) induced more -OH production on the surface of secondary minerals, which played an important role in increasing the Cr fixation. In addition, part of the Mn(Ⅱ) was oxidized to Mn(Ⅲ)/Mn(Ⅳ) at pH 3.0 and pH 7.0. This study helps to predict the role of Mn(II) in the transformations of Cr-Sch in environments and design remediation strategies for Cr contamination.
Collapse
Affiliation(s)
- Hongmei Tang
- School of Environment and Energy, Guangzhou Higher Education Mega Centre, South China University of Technology, Guangzhou 510006, PR China
| | - Meiqing Chen
- School of Environment and Energy, Guangzhou Higher Education Mega Centre, South China University of Technology, Guangzhou 510006, PR China; School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Pingxiao Wu
- School of Environment and Energy, Guangzhou Higher Education Mega Centre, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, PR China; Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou 510006, PR China.
| | - Yihao Li
- South China Institute of Environmental Science, Ministry of Ecological Environment, Guangzhou 510655, PR China
| | - Tianming Wang
- School of Environment and Energy, Guangzhou Higher Education Mega Centre, South China University of Technology, Guangzhou 510006, PR China
| | - Jiayan Wu
- School of Environment and Energy, Guangzhou Higher Education Mega Centre, South China University of Technology, Guangzhou 510006, PR China
| | - Leiye Sun
- School of Environment and Energy, Guangzhou Higher Education Mega Centre, South China University of Technology, Guangzhou 510006, PR China
| | - Zhongbo Shang
- School of Environment and Energy, Guangzhou Higher Education Mega Centre, South China University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
14
|
Folifac L, Ameh AE, Broadhurst J, Petrik LF, Ojumu TV. Iron nanoparticles prepared from South African acid mine drainage for the treatment of methylene blue in wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:38310-38322. [PMID: 38797758 PMCID: PMC11189348 DOI: 10.1007/s11356-024-33739-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
In this study, three acid mine drainage (AMD) sources were investigated as potential sources of iron for the synthesis of iron nanoparticles using green tea extract (an environmentally friendly reductant) or sodium borohydride (a chemical reductant). Electrical conductivity (EC), total dissolved solids (TDS), dissolved oxygen (DO), oxidation-reduction potential (ORP), ion chromatography (IC), and inductively coupled plasma-mass spectroscopy (ICP-MS) techniques were used to characterize the AMD, and the most suitable AMD sample was selected based on availability. Additionally, three tea extracts were characterized using ferric-reducing antioxidant power (FRAP) and 2,2-diphenyl-1-picryl-hydrazine-hydrate (DPPH), and the most suitable environmentally friendly reductant was selected based on the highest FRAP (1152 µmol FeII/g) and DPPH (71%) values. The synthesized iron nanoparticles were characterized and compared using XRD, STEM, Image J, EDS, and FTIR analytical techniques. The study shows that the novel iron nanoparticles produced using the selected green tea (57 nm) and AMD were stable under air due to the surface modification by polyphenols contained in green tea extract, whereas the nanoparticles produced using sodium borohydride (67 nm) were unstable under air and produced a toxic supernatant. Both the AMD-based iron nanoparticles can be used as Fenton-like catalysts for the decoloration of methylene blue solution. While 99% decoloration was achieved by the borohydride-synthesized nanoparticles, 81% decoloration was achieved using green tea-synthesized nanoparticles.
Collapse
Affiliation(s)
- Leo Folifac
- Department of Chemical Engineering, Cape Peninsula University of Technology, Symphony Way, Bellville 7535, PO Box 1906, Bellville 7535, Cape Town, South Africa.
| | - Alechine E Ameh
- Department of Chemical Engineering, Cape Peninsula University of Technology, Symphony Way, Bellville 7535, PO Box 1906, Bellville 7535, Cape Town, South Africa
| | - Jennifer Broadhurst
- Minerals to Metals, Department of Chemical Engineering, University of Cape Town, Woolsack Drive, Rondebosch 7701, PO Box X3, Rondebosch 7701, Cape Town, South Africa
| | - Leslie F Petrik
- Department of Chemical Engineering, Cape Peninsula University of Technology, Symphony Way, Bellville 7535, PO Box 1906, Bellville 7535, Cape Town, South Africa
| | - Tunde V Ojumu
- Department of Chemical Engineering, Cape Peninsula University of Technology, Symphony Way, Bellville 7535, PO Box 1906, Bellville 7535, Cape Town, South Africa
| |
Collapse
|
15
|
Lu Y, Liu X, Zhang H, Li J. Purification of acidic wastewater containing Cd(II) using a red mud-loess mixture: Column test, breakthrough curve, and speciation of Cd. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:3252-3269. [PMID: 39150424 DOI: 10.2166/wst.2024.187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/26/2024] [Indexed: 08/17/2024]
Abstract
In this study, the safety of a red mud-loess mixture (RM-L) for the remediation of groundwater polluted by acid mine drainage (AMD) containing Cd(II) in mining areas was systematically analyzed and clarified. The effects of the initial concentration, flow rate, and packing height on the breakthrough performance and longevity of RM-L as a permeable reactive barrier (PRB) packing material were explored by column tests. The results show that the breakthrough time, saturation time, and adsorption capacity of Cd(II) in RM-L increased with decreasing initial concentration and flow rate, as well as increasing packing height. Moreover, RM-L had a long-term effective acid buffering capacity for acidic wastewater containing Cd(II). An increase in the packing height led to a longer longevity of the PRB than the theoretical value. In addition, the speciation of Cd on RM-L was dominated by carbonate form and iron-manganese oxide form. The surface of the RM-L particles evolved from a dense lamellar structure to small globular clusters after purifying the acidic wastewater containing Cd(II), due to the corrosion of H+ and the reoccupation and coverage by increasingly enriched adsorbates and precipitates of heavy metal ions.
Collapse
Affiliation(s)
- Yisi Lu
- Yellow River Engineering Consulting Co., Ltd, Zhengzhou 450003, China; College of Civil Engineering, Taiyuan University of Technology, No. 79 West Yingze Street, Taiyuan 030024, China E-mail:
| | - Xiaofeng Liu
- College of Civil Engineering, Taiyuan University of Technology, No. 79 West Yingze Street, Taiyuan 030024, China
| | - Hao Zhang
- Tianjin Port Engineering Institute Co., Ltd. of CCCC First Harbor Engineering Co., Ltd, Tianjin 300222, China
| | - Jiashi Li
- College of Civil Engineering, Taiyuan University of Technology, No. 79 West Yingze Street, Taiyuan 030024, China
| |
Collapse
|
16
|
Elsayed NH, Alamrani NA, Alatawi RAS, Al-Anazi M, Alenazi DAK, Alhawiti AS, Almutairi AM, Al-Anazi W, Monier M. Ion-imprinted aminoguanidine-chitosan for selective recognition of lanthanum (III) from wastewater. Int J Biol Macromol 2024; 270:132193. [PMID: 38723816 DOI: 10.1016/j.ijbiomac.2024.132193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
Developing a sorbent for the removal of La3+ ions from wastewater offers significant environmental and economic advantages. This study employed an ion-imprinting process to integrate La3+ ions into a newly developed derivative of aminoguanidine-chitosan (AGCS), synthesized via an innovative method. The process initiated with the modification of chitosan by attaching cyanoacetyl groups through amide bonds, yielding cyanoacetyl chitosan (CAC). This derivative underwent further modification with aminoguanidine to produce the chelating AGCS biopolymer. The binding of La3+ ions to AGCS occurred through imprinting and cross-linking with epichlorohydrin (ECH), followed by the extraction of La3+, resulting in the La3+ ion-imprinted sorbent (La-AGCS). Structural confirmation of these chitosan derivatives was established through elemental analysis, FTIR, and NMR. SEM analysis revealed that La-AGCS exhibited a more porous structure compared to the smoother non-imprinted polymer (NIP). La-AGCS demonstrated superior La3+ capture capability, with a maximum capacity of 286 ± 1 mg/g. The adsorption process, fitting the Langmuir and pseudo-second-order models, indicated a primary chemisorption mechanism. Moreover, La-AGCS displayed excellent selectivity for La3+, exhibiting selectivity coefficients ranging from 4 to 13 against other metals. This study underscores a strategic approach in designing advanced materials tailored for La3+ removal, capitalizing on specific chelator properties and ion-imprinting technology.
Collapse
Affiliation(s)
- Nadia H Elsayed
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71421, Saudi Arabia; Center for Renewable Energy and Environmental Technologies, University of Tabuk, Tabuk Saudi Arabia.
| | - Nasser A Alamrani
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71421, Saudi Arabia
| | - Raedah A S Alatawi
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71421, Saudi Arabia
| | - Menier Al-Anazi
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71421, Saudi Arabia
| | - Duna A K Alenazi
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71421, Saudi Arabia
| | - Aliyah S Alhawiti
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71421, Saudi Arabia
| | - Abeer M Almutairi
- Physics Department, Faculty of Science, University of Tabuk, 71421, Saudi Arabia
| | - Wejdan Al-Anazi
- Department of Computer of Science, Faculty of computers and information technology, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - M Monier
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
17
|
Wang Y, Yang Y, Zhou Y, Jiang F, Zheng Y, Tan W, Yi X, Dang Z. Turning harmful Mn 2+ to treasure: In-situ formed ε-MnO 2 for removing heavy metals from acid mine drainage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171709. [PMID: 38494016 DOI: 10.1016/j.scitotenv.2024.171709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/02/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
Acid mine drainage (AMD) contains high concentrations of heavy metals, causing serious environmental pollution. Current neutralization techniques fail to recover and utilize valuable heavy metals, and generate large quantities of hazardous sludge. Manganese (Mn) is generally present at high levels in AMD. Therefore, this paper proposed a technology to recover Mn from AMD, by adding KMnO4 to converting Mn into ε-MnO2. Ultra-Violet C (UVC) was used to photolyze the residual KMnO4. The study then evaluated the processes and mechanisms involved in the technology. The photolysis of KMnO4 in strong acidic conditions was determined, and new mechanisms were proposed. MnO2 produced by the photolysis process was formed through the reaction between Mn(III) and KMnO4. In the absence of KMnO4, Mn(III) underwent further photolysis and was reduced to Mn2+. The maximum adsorption capacities of in-situ formed ε-MnO2 for Pb2+, Cd2+, and Fe3+ were 449.80, 122.05, and 779.88 mg/g, respectively. Higher Mn-OH levels and MnO2 regeneration were crucial in improving adsorption performance. Proton exchange and inner-circle complexation were the main pathways for Pb2+ and Cd2+ adsorption by in-situ formed ε-MnO2. A phase transformation occurred when a substantial amount of Fe3+ was adsorbed, leading to the gradual transformation to MnFe binary oxides. When applying in-situ formed ε-MnO2 technology for actual AMD treatment, 98.62 % of Mn in AMD was recovered within 24 h in the presence of ε-MnO2 for possible further reuse in industries, with a final recovery of 0.76 kg/m3. Further, this technique removed other heavy metals and reduced the sludge volume by 20.99 % when used as a pre-treatment step for neutralization. These results demonstrated the broad potential of this treatment technology.
Collapse
Affiliation(s)
- Yaozhong Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yuebei Yang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yuting Zhou
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Feng Jiang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yanjie Zheng
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Wei Tan
- Department of Landscape Architecture, Faculty of Architecture, South China University of Technology, Guangzhou, 510640, China
| | - Xiaoyun Yi
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China.
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
18
|
Zhou S, Mei Y, Yang W, Jiang C, Guo H, Feng SP, Tang CY. Energy harvesting from acid mine drainage using a highly proton/ion-selective thin polyamide film. WATER RESEARCH 2024; 255:121530. [PMID: 38564897 DOI: 10.1016/j.watres.2024.121530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
A huge chemical potential difference exists between the acid mine drainage (AMD) and the alkaline neutralization solution, which is wasted in the traditional AMD neutralization process. This study reports, for the first time, the harvest of this chemical potential energy through a controlled neutralization of AMD using H+-conductive films. Polyamide films with controllable thickness achieved much higher H+ conductance than a commercially available cation exchange membrane (CEM). Meanwhile, the optimal polyamide film had an excellent H+/Ca2+ selectivity of 63.7, over two orders of magnitude higher than that of the CEM (0.3). The combined advantages of fast proton transport and high proton/ion selectivity greatly enhanced the power generation of the AMD battery. The power density was 3.1 W m-2, which is over one order of magnitude higher than that of the commercial CEM (0.2 W m-2). Our study provides a new sustainable solution to address the environmental issues of AMD while simultaneously enabling clean energy production.
Collapse
Affiliation(s)
- Shenghua Zhou
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, PR China
| | - Ying Mei
- Research and Development Center for Watershed Environmental Eco-Engineering, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, PR China.
| | - Wulin Yang
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Chenxiao Jiang
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230052, PR China
| | - Hao Guo
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, PR China; Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Shien-Ping Feng
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, PR China; Department of Advanced Design and Systems Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, PR China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, PR China.
| |
Collapse
|
19
|
Chen H, Jia Y, Li J, Ai Y, Zhang W, Han L, Chen M. Enhanced efficiencies on purifying acid mine drainage in constructed wetlands based on synergistic adsorption of attapulgite-soda residue composites and microbial sulfate reduction. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134221. [PMID: 38615651 DOI: 10.1016/j.jhazmat.2024.134221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/28/2024] [Accepted: 04/04/2024] [Indexed: 04/16/2024]
Abstract
Constructed wetlands (CWs) are a promising approach for treating acid mine drainage (AMD). However, the extreme acidity and high loads of heavy metals in AMD can easily lead to the collapse of CWs without proper pre-treatment. Therefore, it is considered essential to maintain efficient and stable performance for AMD treatment in CWs. In this study, pre-prepared attapulgite-soda residue (ASR) composites were used to improve the substrate of CWs. Compared with CWs filled with gravel (CWs-G), the removal efficiencies of sulfate and Fe, Mn, Cu, Zn Cd and Pb in CWs filled with ASR composites (CWs-ASR) were increased by 30% and 10-70%, respectively. These metals were mainly retained in the substrate in stable forms, such as carbonate-, Fe/Mn (oxide)hydroxide-, and sulfide-bound forms. Additionally, higher levels of photosynthetic pigments and antioxidant enzyme activities in plants, along with a richer microbial community, were observed in CWs-ASR than in CWs-G. The application of ASR composites alleviated the adverse effects of AMD stresses on wetland plants and microorganisms. In return, the increased bacteria abundance, particularly SRB genera (e.g., Thermodesulfovibrionia and Desulfobacca), promoted the formation of metal sulfides, enabling the saturated ASR adsorbed with metals to regenerate and continuously capture heavy metals. The synergistic adsorption of ASR composites and microbial sulfate reduction maintained the stable and efficient operation of CWs. This study contributes to the resource utilization of industrial alkaline by-products and promotes the breakthrough of new techniques for low-cost and passive treatment systems such as CWs.
Collapse
Affiliation(s)
- Hongping Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Engineering Laboratory for Soil and Groundwater Remediation of Contaminated Sites, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yufei Jia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Nanjing Jinghongze Environmental Technology Co Ltd, Nanjing 210000, China
| | - Yulu Ai
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenying Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Engineering Laboratory for Soil and Groundwater Remediation of Contaminated Sites, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Lu Han
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Engineering Laboratory for Soil and Groundwater Remediation of Contaminated Sites, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Mengfang Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China; Jiangsu Engineering Laboratory for Soil and Groundwater Remediation of Contaminated Sites, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
20
|
Salih WT, Xiao Z, Dong X. Research Enhancing Acidic Mine Wastewater Purification: Innovations in Red Mud-Loess. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2050. [PMID: 38730857 PMCID: PMC11084642 DOI: 10.3390/ma17092050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024]
Abstract
This study investigates the adsorption of cadmium (Cd) by red mud-loess mixed materials and assesses the influence of quartz sand content on permeability. Shear tests are conducted using various pore solutions to analyze shear strength parameters. The research validates solidification methods for cadmium-contaminated soils and utilizes SEM-EDS, FTIR, and XRD analysis to elucidate remediation mechanisms. The findings suggest that the quartz sand content crucially affects the permeability of fine-grained red mud-loess mixtures. The optimal proportion of quartz sand is over 80%, significantly enhancing permeability, reaching a coefficient of 6.7 × 10-4 cm/s. Insufficient quartz sand content of less than 80% fails to meet the barrier permeability standards, leading to a reduced service life of the engineered barrier. Adsorption tests were conducted using various pore solutions, including distilled water, acidic solutions, and solutions containing Cd, to evaluate the adsorption capacity and shear characteristics of the red mud-loess mixture. Additionally, the study examines the behavior of Cd-loaded red mud-loess mixtures in various pore solutions, revealing strain-hardening trends and alterations in cohesiveness and internal friction angle with increasing Cd concentrations. The analysis of cement-red mud-loess-solidified soil demonstrates enhancements in soil structure and strength over time, attributed to the formation of crystalline structures and mineral formations induced by the curing agent. These findings provide valuable insights into the remediation of cadmium-contaminated soils.
Collapse
Affiliation(s)
| | | | - Xiaoqiang Dong
- College of Civil Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (W.T.S.); (Z.X.)
| |
Collapse
|
21
|
Wang P, Li J, Hu Y, Cheng H. Environmental performance of unfired bricks produced from co-disposal of mine tailings and municipal solid waste incineration fly ash based on comprehensive leaching tests. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123795. [PMID: 38490524 DOI: 10.1016/j.envpol.2024.123795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/23/2024] [Accepted: 03/13/2024] [Indexed: 03/17/2024]
Abstract
The potential leaching of heavy metals is a crucial concern for construction materials produced from solidification/stabilization (S/S) treatment of wastes. This study comprehensively evaluated the leaching characteristics of heavy metals from the unfired bricks produced from co-disposal of Pb-Zn mine tailings and municipal solid waste incineration fly ash using batch, sequential, and semi-dynamic leaching tests. The results show that S/S treatment drastically reduced the leachability of heavy metals from the unfired bricks through lowering their distribution in the acid-soluble fraction. The effective diffusion coefficients of heavy metals within unfired bricks were all below 1.55 × 10-13 cm2/s, which is indicative of low mobility in the environment. The release of heavy metals from the unfired bricks was primarily governed by diffusion and dissolution. Slaking treatment of fly ash significantly reduced the leaching of heavy metals from the unfired bricks due to their improved structural integrity and compactness, which minimizes the surface area in the solid matrix accessible by the leaching medium. The leachability indices of heavy metals within the unfired bricks ranged from 13.12 to 18.10, suggesting that they are suitable for "controlled utilization" in specific scenarios. Compared to untreated mine tailings, converting them into unfired bricks could reduce the releases of heavy metals by several to hundreds of folds. These findings demonstrate that S/S can be an effective and sustainable strategy for co-disposal of mining tailings and incineration fly ash to produce construction materials with sound long-term environmental performance.
Collapse
Affiliation(s)
- Ping Wang
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, 430071, China; MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Jiangshan Li
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yuanan Hu
- MOE Laboratory of Groundwater Circulation and Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Hefa Cheng
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
22
|
Fargher HA, Delmau LH, Bryantsev VS, Haley MM, Johnson DW, Moyer BA. Disrupting the Hofmeister bias in salt liquid-liquid extraction with an arylethynyl bisurea anion receptor. Chem Sci 2024; 15:5311-5318. [PMID: 38577371 PMCID: PMC10988605 DOI: 10.1039/d3sc05922g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/04/2024] [Indexed: 04/06/2024] Open
Abstract
Host-mediated liquid-liquid extraction is a convenient method for the separation of inorganic salts. However, selective extraction of an anion, regardless of its hydrophilicity or lipophilicity as qualitatively described by its place in the Hofmeister series, remains challenging. Herein we report the complete disruption of the Hofmeister-based ordering of anions in host-mediated extraction by a rigidified tweezer-type receptor possessing remarkably strong anion-binding affinity under the conditions examined. Experiments introduce a convenient new method for determination of anion binding using phosphorus inductively coupled plasma mass spectrometry (ICP-MS) to measure extraction of tetra-n-butylphosphonium (TBP+) salts from water into nitrobenzene, specifically examining the disrupting effect of the added arylethynyl bisurea anion receptor. In the absence of the receptor, the salt partitioning follows the expected Hofmeister-type ordering favoring the larger, less hydrated anions; the analysis yields the value -24 kJ mol-1 for the standard Gibbs energy of partitioning of TBP+ cation from water into nitrobenzene at 25 °C. Selectivity is markedly changed by the addition of receptor to the nitrobenzene and is concentration dependent, giving rise to three selectivity regimes. We then used SXLSQI liquid-liquid equilibrium analysis software developed at Oak Ridge National Laboratory to fit host-mediated extraction equilibria for TBP+ salts of Cl-, Br-, I-, and NO3- to the distribution data. While the reverse-Hofmeister 1 : 1 binding of the anions by the receptor effectively cancels the Hofmeister selectivity of the TBPX partitioning into nitrobenzene, formation of unexpected 2 : 1 receptor : anion complexes favoring Cl- and Br- dominates the selectivity at elevated receptor concentrations, producing the unusual order Br- > Cl- > NO3- > I- in anion distribution wherein a middle member of the series is selected and the most lipophilic anion is disfavored. Density functional theory calculations confirmed the likelihood of forming 2 : 1 complexes, where Cl- and Br- are encapsulated by two receptors adopting energetically competitive single or double helix structures. The calculations explain the rare non-Hofmeister preference for Br-. This example shows that anion receptors can be used to control the selectivity and efficiency of salt extraction regardless of the position of the anion in the Hofmeister series.
Collapse
Affiliation(s)
- Hazel A Fargher
- Department of Chemistry and Biochemistry, Materials Science Institute, University of Oregon Eugene OR 97403-1253 USA
| | - Lætitia H Delmau
- Radioisotope Science and Technology Division, Oak Ridge National Laboratory Oak Ridge TN 37831-6384 USA
| | | | - Michael M Haley
- Department of Chemistry and Biochemistry, Materials Science Institute, University of Oregon Eugene OR 97403-1253 USA
| | - Darren W Johnson
- Department of Chemistry and Biochemistry, Materials Science Institute, University of Oregon Eugene OR 97403-1253 USA
| | - Bruce A Moyer
- Chemical Sciences Division, Oak Ridge National Laboratory Oak Ridge TN 37831-6119 USA
| |
Collapse
|
23
|
Jia Q, Sun J, Gan Q, Shi NN, Fu S. Zea mays cultivation, biochar, and arbuscular mycorrhizal fungal inoculation influenced lead immobilization. Microbiol Spectr 2024; 12:e0342723. [PMID: 38393320 PMCID: PMC10986566 DOI: 10.1128/spectrum.03427-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Plant cultivation can influence the immobilization of heavy metals in soil. However, the roles of soil amendments and microorganisms in crop-based phytoremediation require further exploration. In this study, we evaluated the impact of Zea mays L. cultivation, biochar application, and arbuscular mycorrhizal fungi (AMF) inoculation on soil lead (Pb) immobilization. Our results indicated that biochar addition resulted in a significant, 42.00%, reduction in AMF colonization. Plant cultivation, AMF inoculation, and biochar addition all contributed to enhanced Pb immobilization, as evidenced by decreased levels of diethylenetriaminepentaacetic acid- and CaCl2-extractable Pb in the soil. Furthermore, soil subjected to plant cultivation with AMF and biochar displayed reduced concentrations of bioavailable Pb. Biochar addition altered the distribution of Pb fractions in the soil, transforming the acid-soluble form into the relatively inert reducible and oxidizable forms. Additionally, biochar, AMF, and their combined use promoted maize growth parameters, including height, stem diameter, shoot and root biomass, and phosphorus uptake, while simultaneously reducing the shoot Pb concentration. These findings suggest a synergistic effect in Pb phytostabilization. In summary, despite the adverse impact of biochar on mycorrhizal growth, cultivating maize with the concurrent use of biochar and AMF emerges as a recommended and effective strategy for Pb phytoremediation.IMPORTANCEHeavy metal contamination in soil is a pressing environmental issue, and phytoremediation has emerged as a sustainable approach for mitigating this problem. This study sheds light on the potential of maize cultivation, biochar application, and arbuscular mycorrhizal fungi (AMF) inoculation to enhance the immobilization of Pb in contaminated soil. The findings demonstrate that the combined use of biochar and AMF during maize cultivation can significantly improve Pb immobilization and simultaneously enhance maize growth, offering a promising strategy for sustainable and effective Pb phytoremediation practices. This research contributes valuable insights into the field of phytoremediation and its potential to address heavy metal pollution in agricultural soils.
Collapse
Affiliation(s)
- Qiong Jia
- College of Geography and Environmental Science, Henan University, Kaifeng, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Henan University, Ministry of Education, Kaifeng, China
| | - Jiahua Sun
- College of Geography and Environmental Science, Henan University, Kaifeng, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Henan University, Ministry of Education, Kaifeng, China
| | - Qiuyu Gan
- Miami College of Henan University, Kaifeng, China
| | - Nan-Nan Shi
- College of Geography and Environmental Science, Henan University, Kaifeng, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Henan University, Ministry of Education, Kaifeng, China
| | - Shenglei Fu
- College of Geography and Environmental Science, Henan University, Kaifeng, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Henan University, Ministry of Education, Kaifeng, China
| |
Collapse
|
24
|
Deng R, Yue Z, Wang X, Xu Q, Wang J. Innovative recovery of matrix layered double hydroxide from simulated acid mine wastewater for the removal of copper and cadmium from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:30196-30211. [PMID: 38600374 DOI: 10.1007/s11356-024-33262-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
This study innovatively added biochar to optimize regulation in the neutralization process of simulated acid mine drainage (AMD) and recovered a new type of matrix layered double hydroxides (MLDH), which can be used to remove copper (Cu(II)) and cadmium (Cd(II)) from wastewater. A series of batch experiments show that MLDH with strong selective removal ability of Cu(II) and Cd(II) can be successfully obtained by adding biochar (BC) at pH = 5 end in the neutralization process. Kinetic and isotherm modeling studies indicated that the removal of Cu(II) and Cd(II) by the MLDH was a chemical multilayer adsorption process. The removal mechanism of Cu(II) and Cd(II) was further analyzed through related characterization analysis with contribution rate calculation: the removal rates of Cu(II) and Cd(II) by ion exchange were 42.7% and 26%, while that by precipitation were 34.5% and 49.9%, respectively. This study can provide a theoretical reference and experimental basis for the recovery and utilization of valuable by-products in AMD and the treatment of heavy metal wastewater.
Collapse
Affiliation(s)
- Rui Deng
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, Anhui, China
- Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Zhengbo Yue
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, Anhui, China
- Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Xinquan Wang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Qingsheng Xu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Jin Wang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China.
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, Anhui, China.
- Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, Anhui, China.
| |
Collapse
|
25
|
Hong M, Wang J, Yang B, Liu Y, Sun X, Li L, Yu S, Liu S, Kang Y, Wang W, Qiu G. Inhibition of pyrite oxidation through forming biogenic K-jarosite coatings to prevent acid mine drainage production. WATER RESEARCH 2024; 252:121221. [PMID: 38324985 DOI: 10.1016/j.watres.2024.121221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/23/2023] [Accepted: 01/28/2024] [Indexed: 02/09/2024]
Abstract
This study proposes a novel method by forming biogenic K-jarosite coatings on pyrite surfaces driven by Acidithiobacillus ferrooxidans (A. ferrooxidans) to reduce heavy metal release and prevent acid mine drainage (AMD) production. Different thicknesses of K-jarosite coatings (0.7 to 1.1 μm) were able to form on pyrite surfaces in the presence of A. ferrooxidans, which positively correlated with the initial addition of Fe2+ and K+ concentrations. The inhibiting effect of K-jarosite coatings on pyrite oxidation was studied by electrochemical measurements, chemical oxidation tests, and bio-oxidation tests. The experimental results showed that the best passivation performance was achieved when 20 mM Fe2+ and 6.7 mM K+ were initially introduced with a bacterial concentration of 4 × 108 cells·mL-1, reducing chemical and biological oxidation by 70 % and 98 %, respectively (based on the concentration of total iron dissolved into the solution by pyrite oxidation). Similarly, bio-oxidation tests of two mine waste samples also showed sound inhibition effects, which offers a preliminary demonstration of the potential applicability of this method to actual waste rock. This study presents a new perspective on passivating the oxidation of metal sulfide tailings or waste and preventing AMD.
Collapse
Affiliation(s)
- Maoxin Hong
- School of Minerals Processing & Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Central South University, Changsha 410083, China
| | - Jun Wang
- School of Minerals Processing & Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Central South University, Changsha 410083, China.
| | - Baojun Yang
- School of Minerals Processing & Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Central South University, Changsha 410083, China.
| | - Yang Liu
- School of Minerals Processing & Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Central South University, Changsha 410083, China
| | - Xin Sun
- School of Minerals Processing & Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Central South University, Changsha 410083, China
| | - Laishun Li
- School of Minerals Processing & Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Central South University, Changsha 410083, China
| | - Shichao Yu
- School of Minerals Processing & Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Central South University, Changsha 410083, China
| | - Shitong Liu
- School of Minerals Processing & Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Central South University, Changsha 410083, China
| | - Yang Kang
- School of Minerals Processing & Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Central South University, Changsha 410083, China
| | - Wei Wang
- School of Minerals Processing & Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Central South University, Changsha 410083, China
| | - Guanzhou Qiu
- School of Minerals Processing & Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Central South University, Changsha 410083, China
| |
Collapse
|
26
|
Ma L, Banda JF, Wang Y, Yang Q, Zhao L, Hao C, Dong H. Metagenomic insight into the acidophilic functional communities driving elemental geochemical cycles in an acid mine drainage lake. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133070. [PMID: 38278071 DOI: 10.1016/j.jhazmat.2023.133070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/06/2023] [Accepted: 11/21/2023] [Indexed: 01/28/2024]
Abstract
Acidophiles play a key role in the generation, evolution and attenuation of acid mine drainage (AMD), which is characterized by strong acidity (pH<3.5) and high metal concentrations. In this study, the seasonal changes of acidophilic communities and their roles in elemental cycling in an AMD lake (pH∼3.0) in China were analyzed through metagenomics. The results showed eukaryotic algae thrived in the lake, and Coccomyxa was dominant in January (38.1%) and May (33.9%), while Chlorella in July (9.5%). The extensive growth of Chlamydomonas in December (22.7%) resulted in an ultrahigh chlorophyll a concentration (587 μg/L), providing abundant organic carbon for the ecosystem. In addition, the iron-oxidizing and nitrogen-fixing bacterium Ferrovum contributed to carbon fixation. Ammonia oxidation likely occurred in the acidic lake, as was revealed by archaea Ca. Nitrosotalea. To gain a competitive advantage in the nutrient-poor environment, some acidophiles exhibited facultative characteristics, e.g. the most abundant bacterium Acidiphilium utilized both organic and inorganic carbon, and obtained energy from organic matter, inorganic sulfur, and sunlight simultaneously. It was suggested that sunlight, rather than chemical energy of reduced iron-sulfur was the major driver of elemental cycling in the AMD lake. The results are beneficial to the development of bioremediation strategies for AMD.
Collapse
Affiliation(s)
- Linqiang Ma
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| | - Joseph Frazer Banda
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| | - Yikai Wang
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| | - Qingwei Yang
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| | - Linting Zhao
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| | - Chunbo Hao
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China.
| | - Hailiang Dong
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| |
Collapse
|
27
|
Zhan W, Zhang X, Yuan Y, Weng Q, Song S, Martínez-López MDJ, Arauz-Lara JL, Jia F. Regulating Chemisorption and Electrosorption Activity for Efficient Uptake of Rare Earth Elements in Low Concentration on Oxygen-Doped Molybdenum Disulfide. ACS NANO 2024; 18:7298-7310. [PMID: 38375824 DOI: 10.1021/acsnano.4c00691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Recovery of rare earth elements (REEs) with trace amount in environmental applications and nuclear energy is becoming an increasingly urgent issue due to their genotoxicity and important role in society. Here, highly efficient recovery of low-concentration REEs from aqueous solutions by an enhanced chemisorption and electrosorption process of oxygen-doped molybdenum disulfide (O-doped MoS2) electrodes is performed. All REEs could be extremely recovered through a chemisorption and electrosorption coupling (CEC) method, and sorption behaviors were related with their outer-shell electrons. Light, medium, and heavy ((La(III), Gd(III), and Y(III)) rare earth elements were chosen for further investigating the adsorption and recovery performances under low-concentration conditions. Recovery of REEs could approach 100% under a low initial concentration condition where different recovery behaviors occurred with variable chemisorption interactions between REEs and O-doped MoS2. Experimental and theoretical results proved that doping O in MoS2 not only reduced the transfer resistance and improved the electrical double layer thickness of ion storage but also enhanced the chemical interaction of REEs and MoS2. Various outer-shell electrons of REEs performed different surficial chemisorption interactions with exposed sulfur and oxygen atoms of O-doped MoS2. Effects of variants including environmental conditions and operating parameters, such as applied voltage, initial concentration, pH condition, and electrode distance on adsorption capacity and recovery of REEs were examined to optimize the recovery process in order to achieve an ideal selective recovery of REEs. The total desorption of REEs from the O-doped MoS2 electrode was realized within 120 min while the electrode demonstrated a good cycling performance. This work presented a prospective way in establishing a CEC process with a two-dimensional metal sulfide electrode through structure engineering for efficient recovery of REEs within a low concentration range.
Collapse
Affiliation(s)
- Weiquan Zhan
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources of Ministry of Education, Wuhan, Hubei 430070, People's Republic of China
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Wenzhi Street 34, Wuhan, Hubei 430070, People's Republic of China
- Instituto de Fisica, Universidad Autonoma de San Luis Potosi, Av. Manuel Nava 6, Zona Universitaria, C.P. 78290, San Luis Potosi, S.L.P. Mexico
| | - Xuan Zhang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources of Ministry of Education, Wuhan, Hubei 430070, People's Republic of China
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Wenzhi Street 34, Wuhan, Hubei 430070, People's Republic of China
| | - Yuan Yuan
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources of Ministry of Education, Wuhan, Hubei 430070, People's Republic of China
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Wenzhi Street 34, Wuhan, Hubei 430070, People's Republic of China
- Doctorado Institucional de Ingeniería y Ciencia de Materiales, Universidad Autonoma de San Luis Potosi, Av. Sierra Leona 530, San Luis Potosi 78210, Mexico
| | - Qizheng Weng
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources of Ministry of Education, Wuhan, Hubei 430070, People's Republic of China
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Wenzhi Street 34, Wuhan, Hubei 430070, People's Republic of China
| | - Shaoxian Song
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources of Ministry of Education, Wuhan, Hubei 430070, People's Republic of China
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Wenzhi Street 34, Wuhan, Hubei 430070, People's Republic of China
| | - María de Jesús Martínez-López
- Universidad de la Costa, Carretera al Libramiento Paraje de Las Pulgas, C.P. 71600, Santiago Pinotepa Nacional, Distrito Jamiltepec, Mexico
| | - José Luis Arauz-Lara
- Instituto de Fisica, Universidad Autonoma de San Luis Potosi, Av. Manuel Nava 6, Zona Universitaria, C.P. 78290, San Luis Potosi, S.L.P. Mexico
| | - Feifei Jia
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources of Ministry of Education, Wuhan, Hubei 430070, People's Republic of China
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Wenzhi Street 34, Wuhan, Hubei 430070, People's Republic of China
| |
Collapse
|
28
|
Hasrod T, Nuapia YB, Tutu H. Comparison of individual and ensemble machine learning models for prediction of sulphate levels in untreated and treated Acid Mine Drainage. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:332. [PMID: 38429461 PMCID: PMC10907470 DOI: 10.1007/s10661-024-12467-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 02/17/2024] [Indexed: 03/03/2024]
Abstract
Machine learning was used to provide data for further evaluation of potential extraction of octathiocane (S8), a commercially useful by-product, from Acid Mine Drainage (AMD) by predicting sulphate levels in an AMD water quality dataset. Individual ML regressor models, namely: Linear Regression (LR), Least Absolute Shrinkage and Selection Operator (LASSO), Ridge (RD), Elastic Net (EN), K-Nearest Neighbours (KNN), Support Vector Regression (SVR), Decision Tree (DT), Extreme Gradient Boosting (XGBoost), Random Forest (RF), Multi-Layer Perceptron Artificial Neural Network (MLP) and Stacking Ensemble (SE-ML) combinations of these models were successfully used to predict sulphate levels. A SE-ML regressor trained on untreated AMD which stacked seven of the best-performing individual models and fed them to a LR meta-learner model was found to be the best-performing model with a Mean Squared Error (MSE) of 0.000011, Mean Absolute Error (MAE) of 0.002617 and R2 of 0.9997. Temperature (°C), Total Dissolved Solids (mg/L) and, importantly, iron (mg/L) were highly correlated to sulphate (mg/L) with iron showing a strong positive linear correlation that indicated dissolved products from pyrite oxidation. Ensemble learning (bagging, boosting and stacking) outperformed individual methods due to their combined predictive accuracies. Surprisingly, when comparing SE-ML that combined all models with SE-ML that combined only the best-performing models, there was only a slight difference in model accuracies which indicated that including bad-performing models in the stack had no adverse effect on its predictive performance.
Collapse
Affiliation(s)
- Taskeen Hasrod
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag X3, Johannesburg, 2050, South Africa
| | - Yannick B Nuapia
- Pharmacy Department, School of Healthcare Sciences, University of Limpopo, Turfloop Campus, Polokwane, 0727, South Africa
| | - Hlanganani Tutu
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag X3, Johannesburg, 2050, South Africa.
| |
Collapse
|
29
|
Zhou YH, Huang WX, Nie ZY, Liu HC, Liu Y, Wang C, Xia JL, Shu WS. Fe/S oxidation-coupled arsenic speciation transformation mediated by AMD enrichment culture under different pH conditions. J Environ Sci (China) 2024; 137:681-700. [PMID: 37980051 DOI: 10.1016/j.jes.2023.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 11/20/2023]
Abstract
Arsenic (As) speciation transformation in acid mine drainage (AMD) is comprehensively affected by biological and abiotic factors, such as microbially mediated Fe/S redox reactions and changes in environmental conditions (pH and oxidation-reduction potential). However, their combined impacts on arsenic speciation transformation remain poorly studied. Therefore, we explored arsenic transformation and immobilization during pyrite dissolution mediated by AMD enrichment culture under different acidic pH conditions. The results for incubation and mineralogical transformation of solid residues show that in the presence of AMD enrichment culture, pH 2.0, 2.5, and 3.0 are more conducive to the formation of jarosites and ferric arsenate, which could immobilize high quantities of dissolved arsenic by adsorption and coprecipitation. The pH conditions significantly affect the initial adsorption of microbial cells to the minerals and the evolution of microbial community structure, further influencing the biodissolution of pyrite and the release and oxidation process of Fe/S. The results of Fe/S/As speciation transformation of the solid residues show that the transformation of Fe, S, and As in solution is mainly regulated by pH and potential values, which imposed significantly different effects on the formation of secondary minerals and thus arsenic oxidation and immobilization. The above results indicated that arsenic transformation is closely related to the Fe/S oxidation associated with pyrite bio-oxidation, and this correlation is critically regulated by the pH conditions of the system.
Collapse
Affiliation(s)
- Yu-Hang Zhou
- Key Lab of Biometallurgy of Ministry of Education of China, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Wei-Xi Huang
- Key Lab of Biometallurgy of Ministry of Education of China, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Zhen-Yuan Nie
- Key Lab of Biometallurgy of Ministry of Education of China, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Hong-Chang Liu
- Key Lab of Biometallurgy of Ministry of Education of China, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.
| | - Yue Liu
- Key Lab of Biometallurgy of Ministry of Education of China, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Can Wang
- Key Lab of Biometallurgy of Ministry of Education of China, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Jin-Lan Xia
- Key Lab of Biometallurgy of Ministry of Education of China, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.
| | - Wen-Sheng Shu
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
30
|
He X, Tang C, Wang H, Yan H, Jin H. Chemical Mineralization of AMD into Schwertmannite Fixing Iron and Sulfate Ions by Structure and Adsorption: Paving the Way for Enhanced Mineralization Capacity. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 112:33. [PMID: 38342847 DOI: 10.1007/s00128-024-03856-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/05/2024] [Indexed: 02/13/2024]
Abstract
Abundant iron and sulfate resources are present in acid mine drainage. The synthesis of schwertmannite from AMD rich in iron and sulfate could achieve the dual objectives of resource recovery and wastewater purification. However, schwertmannite cannot emerge spontaneously due to the Gibbs free energy greater than 0. This results in the iron and sulfate in AMD only being able to use the energy generated by oxidation in the coupling reaction to promote the formation of minerals, but this only achieved partial mineralization, which limited the remediation of AMD through mineralization. In order to clarify the mechanism of iron and sulfate removal by the formation of schwertmannite in AMD, kinetic and thermodynamic parameters were crucial. This work used H2O2 oxidation of Fe2+ as a coupling reaction to promote the formation of schwertmannite from 64.4% of iron and 15.7% of sulfate in AMD, and determined that 99.7% of the iron and 89.9% of sulfate were immobilized in the schwertmannite structural, and only a small fraction was immobilized by the adsorption of schwertmannite, both of which were consistent with second-order kinetics models. The thermodynamic data suggested that reducing the concentration of excess sulfate ions or increasing the energy of the system may allow more iron and sulfate to be immobilized by forming schwertmannite. Experimental verification using the reaction of potassium bicarbonate with the acidity in solution to increase the energy in the system showed that the addition of potassium bicarbonate effectively promoted the formation of schwertmannite from Fe3+ and SO42-. It provided a theoretical and research basis for the direct synthesis of schwertmannite from Fe3+ and SO42- rich AMD for the removal of contaminants from water and the recovery of valuable resources.
Collapse
Affiliation(s)
- Xin He
- College of Water Resources Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Chunlei Tang
- Key Laboratory of Karst Dynamics, Guangxi Zhuang Autonomous Region, Ministry of Land and Resources, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin, 541004, PR China.
- International Research Center on Karst under the Auspices of United Nations Educational, Scientific and Cultural Organization, Guilin, 541004, PR China.
| | - Honghao Wang
- College of Water Resources Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Hong Yan
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China.
| | - Hua Jin
- College of Water Resources Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China.
| |
Collapse
|
31
|
Wang H, Zhang M, Dong P, Xue J, Liu L. Bioremediation of acid mine drainage using sulfate-reducing wetland bioreactor: Filling substrates influence, sulfide oxidation and microbial community. CHEMOSPHERE 2024; 349:140789. [PMID: 38013025 DOI: 10.1016/j.chemosphere.2023.140789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/10/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023]
Abstract
Two sulfate-reducing wetland bioreactors (SRB-1 filled with lignocellulosic wastes and SRB-2 with river sand) were applied for synthetic acid mine drainage treatment with bio-waste fermentation liquid as electron donor, and the influence of filling substrates on sulfate reduction, sulfur transformation and microbial community was studied. The presence of lignocellulosic wastes (mixture of cow manure, bark, sawdust, peanut shell and straw) in SRB-1 promoted sulfate reduction efficiency (68.9%), sulfate reduction rate (42.1 ± 11 mg S/(L·d)), dissolved sulfide production rate (27.4 ± 7 mg S/(L·d)), and particularly caused high conversion ratio of sulfate reduction into dissolved sulfide (66.4%). In comparison, the relatively low sulfate reduction efficiency (42.9%), sulfate reduction rate (27.0 ± 10 mg S/(L·d)), dissolved sulfide production rate (5.6 ± 3 mg S/(L·d)) and low dissolved sulfide conversion efficiency (21.2%) occurred in SRB-2. Mixed organic substrates including easily assimilated electron donors (in manure) and lignocellulosic matter were effective to promote quick start and long-term microbial sulfate reduction. More than 98% of produced dissolved sulfide was oxidized dominantly by photoautotrophic green sulfur bacteria (genera Chlorobium and Chlorobaculum), of which 64.6% and 54.5% was converted into elemental sulfur for SRB-1 and SRB-2. The oxidation of sulfide into elemental sulfur for potential recovery rather than sulfate is preferred. Diverse sulfate reducing bacteria and sulfide oxidizing bacteria co-existed in the treatment system, which led to a sustainable sulfur transformation. High metal removal efficiency for Fe (99.6%, 92.5%), Cd (99.9%, 99.9%), Zn (99.4%, 98.5%), Cu (94.5%, 94.6%) except for Mn (9.3%, 3.6%) was achieved, and effluent pH increased to 6.5-7.7 and 6.7-7.7 for SRB-1 and SRB-2, respectively. Microbial community was regulated by filling substrates. Synergism between lignocellulosic decomposing bacteria and sulfate reducing bacteria played a vital role in lignocellulosic bioreactor treating AMD, in addition to fermentation liquid serving as effective electron donor.
Collapse
Affiliation(s)
- Haixia Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China.
| | - Mingliang Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Peng Dong
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Junbing Xue
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Lele Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| |
Collapse
|
32
|
Chang W, Ke X, Wang W, Liu P. Identifying sources of acid mine drainage and major hydrogeochemical processes in abandoned mine adits (Southeast Shaanxi, China). ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:60. [PMID: 38280088 DOI: 10.1007/s10653-024-01858-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 01/03/2024] [Indexed: 01/29/2024]
Abstract
Acid mine drainage (AMD) has resulted in significant risks to both human health and the environment of the Han River watershed. In this study, water and sediment samples from typical mine adits were selected to investigate the hydrogeochemical characteristics and assess the environmental impacts of AMD. The interactions between coexisting chemical factors, geochemical processes in the mine adit, and the causes of AMD formation are discussed based on statistical analysis, mineralogical analysis, and geochemical modeling. The results showed that the hydrochemical types of AMD consisted of SO4-Ca-Mg, SO4-Ca, and SO4-Mg, with low pH and extremely high concentrations of Fe and SO42-. The release behaviors of most heavy metals are controlled by the oxidation of sulfide minerals (mainly pyrite) and the dissolution/precipitation of secondary minerals. Along the AMD pathway in the adit, the species of Fe-hydroxy secondary minerals tend to initially increase and later decrease. The inverse model results indicated that (1) oxidative dissolution of sulfide minerals, (2) interconversion of Fe-hydroxy secondary minerals, (3) precipitation of gypsum, and (4) neutralization by calcite are the main geochemical reactions in the adit, and chlorite might be the major neutralizing mineral of AMD with calcite. Furthermore, there were two sources of AMD in abandoned mine adits: oxidation of pyrite within the adits and infiltration of AMD from the overlying waste rock dumps. The findings can provide deeper insight into hydrogeochemical processes and the formation of AMD contamination produced in abandoned mine adits under similar mining and hydrogeological conditions.
Collapse
Affiliation(s)
- Wentong Chang
- School of Water and Environment, Chang'an University, Xi'an, 710054, Shaanxi, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, Shaanxi, China
| | - Xianmin Ke
- School of Water and Environment, Chang'an University, Xi'an, 710054, Shaanxi, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, Shaanxi, China
| | - Wei Wang
- School of Water and Environment, Chang'an University, Xi'an, 710054, Shaanxi, China.
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, Shaanxi, China.
| | - Peng Liu
- School of Water and Environment, Chang'an University, Xi'an, 710054, Shaanxi, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, Shaanxi, China
| |
Collapse
|
33
|
Wilcox SM, Mulligan CN, Neculita CM. Microbially Induced Calcium Carbonate Precipitation as a Bioremediation Technique for Mining Waste. TOXICS 2024; 12:107. [PMID: 38393202 PMCID: PMC10891697 DOI: 10.3390/toxics12020107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
Mining waste represents a global issue due to its potential of generating acidic or alkaline leachate with high concentrations of metals and metalloids (metal(loid)s). Microbial-induced calcium carbonate precipitation (MICP) is an engineering tool used for remediation. MICP, induced via biological activity, aims to precipitate calcium carbonate (CaCO3) or co-precipitate other metal carbonates (MCO3). MICP is a bio-geochemical remediation method that aims to immobilize or remove metal(loid)s via enzyme, redox, or photosynthetic metabolic pathways. Contaminants are removed directly through immobilization as mineral precipitates (CaCO3 or MCO3), or indirectly (via sorption, complexes, or inclusion into the crystal structure). Further, CaCO3 precipitates deposited on the surface or within the pore spaces of a solid matrix create a clogging effect to reduce contaminant leachate. Experimental research on MICP has shown its promise as a bioremediation technique for mining waste. Additional research is required to evaluate the long-term feasibility and potential by-products of MICP-treated/stabilized waste.
Collapse
Affiliation(s)
- Samantha M. Wilcox
- Department of Building, Civil and Environmental Engineering, Concordia University, Montréal, QC H3G IM8, Canada
| | - Catherine N. Mulligan
- Department of Building, Civil and Environmental Engineering, Concordia University, Montréal, QC H3G IM8, Canada
| | - Carmen Mihaela Neculita
- Research Institute on Mines and the Environment (RIME), University of Quebec in Abitibi-Témiscamingue, Rouyn-Noranda, QC J9X 5E4, Canada;
| |
Collapse
|
34
|
Wang H, Yang J, Zhang H, Zhao J, Liu H, Wang J, Li G, Liang H. Membrane-based technology in water and resources recovery from the perspective of water social circulation: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168277. [PMID: 37939956 DOI: 10.1016/j.scitotenv.2023.168277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/18/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023]
Abstract
In this review, the application of membrane-based technology in water social circulation was summarized. Water social circulation encompassed the entire process from the acquirement to discharge of water from natural environment for human living and development. The focus of this review was primarily on the membrane-based technology in recovery of water and other valuable resources such as mineral ions, nitrogen and phosphorus. The main text was divided into four main sections according to water flow in the social circulation: drinking water treatment, agricultural utilization, industrial waste recycling, and urban wastewater reuse. In drinking water treatment, the acquirement of water resources was of the most importance. Pressure-driven membranes, such as ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) were considered suitable in natural surface water treatment. Additionally, electrodialysis (ED) and membrane capacitive deionization (MCDI) were also effective in brackish water desalination. Agriculture required abundant water with relative low quality for irrigation. Therefore, the recovery of water from other stages of the social circulation has become a reasonable solution. Membrane bioreactor (MBR) was a typical technique attributed to low-toxicity effluent. In industrial waste reuse, the osmosis membranes (FO and PRO) were utilized due to the complex physical and chemical properties of industrial wastewater. Especially, membrane distillation (MD) might be promising when the wastewater was preheated. Resources recovery in urban wastewater was mainly divided into recovery of bioenergy (via anaerobic membrane bioreactors, AnMBR), nitrogen (utilizing MD and gas-permeable membrane), and phosphorus (through MBR with chemical precipitation). Furthermore, hybrid/integrated systems with membranes as the core component enhanced their performance and long-term working ability in utilization. Generally, concentrate management and energy consumption control might be the key areas for future advancements of membrane-based technology.
Collapse
Affiliation(s)
- Hesong Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Jiaxuan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Han Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Jing Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Hongzhi Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Jinlong Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
35
|
Jiang F, Lu X, Zeng L, Xue C, Yi X, Dang Z. The purification of acid mine drainage through the formation of schwertmannite with Fe(0) reduction and alkali-regulated biomineralization prior to lime neutralization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168291. [PMID: 37944602 DOI: 10.1016/j.scitotenv.2023.168291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
Acid mine drainage (AMD) contains abundant Fe (II), Fe(III), and SO42-, as well as a large amount of dissolved toxic metals and metalloids, posing a serious threat to the environment. In this study, an integrated technique for the treatment of AMD was proposed. The technique started with pre-oxidation followed by Fe(0) reduction and alkali-regulated biomineralization and then ended with lime neutralization. The technique removed toxic metal oxyanions in the pre-oxidation stage and recovered pure schwertmannite during the subsequent alkali-regulated biomineralization. Fe(III), which could not be directly biomineralized, was reduced to Fe(II) by Fe(0). A small amount of alkali was added to regulate the hydrolytic mineralization reaction after Fe(II) oxidation in AMD, which in a single biomineralization could remove in the form of schwertmannite >95 % of soluble Fe in the AMD. In the subsequent lime neutralization process, the amount of lime required and the sludge produced were reduced by 75.4 % and 84.9 %, respectively, compared to the raw AMD. Additionally, the content of non-ferrous metals in the sludge increased 5.6-fold. Compared with non-alkali-regulated biomineralization, the schwertmannite obtained by the alkali-regulated biomineralization had a higher adsorption capacity for oxyanions (e.g., arsenic, chromium, and antimony). The new approach should significantly reduce the treatment cost of AMD and recover Fe and S elements in the form of valuable secondary minerals, such that it is reasonable to expect that it will be widely adopted in practical applications.
Collapse
Affiliation(s)
- Feng Jiang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xinyang Lu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Lijuan Zeng
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Chao Xue
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xiaoyun Yi
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China.
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
36
|
Zhang J, Song Y, Chao J, Huang H, Liu D, Coulon F, Yang XJ. Rapid and effective removal of copper, nitrate and trichloromethane from aqueous media by aluminium alloys. Heliyon 2024; 10:e23422. [PMID: 38169809 PMCID: PMC10758792 DOI: 10.1016/j.heliyon.2023.e23422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Zero-valent iron (ZVI) has been extensively studied for its efficacy in removing heavy metals, nitrate, and chlorinated organic compounds from contaminated water. However, its limited effectiveness due to rapid passivation and poor selectivity is prompting for alternative solutions, such as the use of aluminium alloys. In this study, the efficacy of five distinct aluminium alloys, namely Al-Mg, Al-Fe, Al-Cu, and Al-Ni, each comprising 50 % Al by mass at a concentration of 10 g/L, was assessed using copper, nitrate and trichloromethane (TCM) as model contaminants. Results show that chemical pollutants reacted immediately with Al-Mg. On the contrary, the remaining three alloys exhibited a delay of 24 h before demonstrating significant reactivity. Remarkably, Al-Mg alloy reduced nitrate exclusively to ammonium, indicating minimal preference for nitrate reduction to N2. In contrast, the Al-Cu, Al-Ni, and Al-Fe alloys exhibited N2 selectivity of 3 %, 5 %, and 19 %, respectively. The removal efficiency of copper, nitrate and TCM reached 99 % within 24 h, 95 % within 48h and 48 % within 48h, respectively. Noteworthy findings included the correlation between Fe concentration within the Al-Fe alloy and an increased N2 selectivity from 9.3 % to 24.1 %. This resulted in an increase of Fe concentration from 10 % to 58 % albeit with a concurrent reduction in reactivity. Cu2+ removal by Al-Fe alloy occurred via direct electron transfer, while the removal of nitrate and TCM was facilitated by atomic hydrogen generated by the alloy's hydrolysis. Intriguingly, nitrate and TCM suppressed Cu2+ reduction, whereas Cu2+ improved nitrate reduction and TCM degradation. These findings demonstrate the great potential of Al-Mg and Al-Fe alloys as highly efficient agents for water remediation.
Collapse
Affiliation(s)
- Jingqi Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Research & Development Centre, China State Science Dingshi Environmental Engineering Co., Ltd, Beijing, 100102, China
| | - Ying Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jingbo Chao
- Chemical Metrology and Analytical Science Division, National Institute of Metrology, Beijing, 100029, China
| | - Hai Huang
- Research & Development Centre, China State Science Dingshi Environmental Engineering Co., Ltd, Beijing, 100102, China
| | - Dazhi Liu
- Tangshan Weihao Magnesium Powder Co., Ltd, Qianan, Hebei, 064406, China
| | - Frederic Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK
| | - Xiao Jin Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
37
|
Gonçalves NPF, da Silva EF, Tarelho LAC, Labrincha JA, Novais RM. Simultaneous removal of multiple metal(loid)s and neutralization of acid mine drainage using 3D-printed bauxite-containing geopolymers. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132718. [PMID: 37844497 DOI: 10.1016/j.jhazmat.2023.132718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/12/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023]
Abstract
The mining industry is one of the largest sources of environmental concern globally. Herein we report for the first time the application of highly porous 3D-printed sorbents containing high amounts (50 wt%) of red mud, a hazardous waste derived from the alumina industry, for the remediation of acid mine drainage (AMD). The sorption capacity of the inorganic polymers was initially evaluated for the simultaneous removal of five metal(loid) elements, namely Cu(II), Ni(II), Zn(II), Cd(II) and As(V) in synthetic wastewater. The effect of the initial concentration, pH and contact time were assessed, reaching removal efficiencies between 64% and 98%, at pH 4 and initial concentration of 50 mg L-1 of each cation, after 24 h of contact time. The 3D-printed lattices were then used for the remediation of the real AMD water samples, and the role of adsorption and acidic neutralization was investigated. Lattices were also successfully regenerated and reused up to five cycles without compromising their performance. This work paves the way for the use of an industrial waste derived from the production of alumina as raw material for the management of the hazardous AMD.
Collapse
Affiliation(s)
- Nuno P F Gonçalves
- Department of Chemistry/CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | | | - Luís A C Tarelho
- Department of Environment and Planning & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - João A Labrincha
- Dept. of Materials and Ceramic Engineering/CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Rui M Novais
- Dept. of Materials and Ceramic Engineering/CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
38
|
Yang Q, Su Y, Yan B, Lun L, Li D, Zheng L. Influence of natural cellulose on hydroxyl radical generation by abiotic oxidation of pyrite under acidic conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168143. [PMID: 37898214 DOI: 10.1016/j.scitotenv.2023.168143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/08/2023] [Accepted: 10/24/2023] [Indexed: 10/30/2023]
Abstract
Natural cellulose is one of the most important substances coexisting on the surface of pyrite. Oxidation of pyrite produces hydroxyl radicals (•OH). In this study, a pyrite-cellulose binary system was constructed with natural cellulose to investigate the effect of cellulose on the mechanism of •OH generation via oxidation of pyrite, and the mechanism for abiotic oxidative •OH production by pyrite under the influence of cellulose was investigated with oxidation and quenching experiments and characterization techniques. It was demonstrated that cellulose was chemisorbed onto the pyrite surface and some of the Fe(II) on the pyrite surface was masked, thus inhibiting the reaction between pyrite and O2 and decreasing the •OH production level from 33.54 to 22.48 μM under oxic conditions. In addition, the cellulose caused SS bond breakage, resulting in defects on the pyrite surface, which oxidized H2O to produce •OH in anoxic conditions. Therefore, under anoxic conditions, cellulose promoted the production of •OH and increased the •OH content from 11.85 to 14.78 μM. In addition to •OH, pyrite oxidation also produced SO42-. The amount of SO42- produced by a single pyrite crystal was less than that produced in the pyrite-cellulose system in all cases, and the amount produced under oxic conditions was approximately 10 times greater than that produced under anoxic conditions. More sulfate production indicated more sulfur intermediates during the reaction, such as S2O32-, which may decompose to produce S0 or Sn2- adsorbed on pyrite and decrease the amount of •OH produced. During the oxidation of pyrite by H2O2, cellulose competed with pyrite to react with H2O2, which inhibited the reaction between pyrite and H2O2 and decreased •OH production. Therefore, natural cellulose influenced the abiotic oxidation of pyrite to produce •OH.
Collapse
Affiliation(s)
- Qin Yang
- School of Environment, South China Normal University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Yaoming Su
- South China Institute of Environmental Sciences, Guangzhou 510655, PR China
| | - Bo Yan
- School of Environment, South China Normal University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China.
| | - Lehao Lun
- School of Environment, South China Normal University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Dianhui Li
- School of Environment, South China Normal University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Liuchun Zheng
- School of Environment, South China Normal University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China.
| |
Collapse
|
39
|
Wu Q, Li X, Feng Q, Li X. Source reduction and end treatment of acid mine drainage in closed coal mines of the Yudong River Basin. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:470-483. [PMID: 39219142 PMCID: wst_2024_002 DOI: 10.2166/wst.2024.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
After the closure of the Yudong coal mine, the pH value was approximately 3.0, and the Fe and Mn concentrations reached 380 and 69 mg/L, respectively, in the acid mine drainage (AMD), causing serious pollution to the water bodies in the nearby watershed. Combined with the formation conditions of AMD, the comprehensive treatment technology of source reduction-end treatment is adopted to treat the AMD. The treatment area of the goaf is 0.3 km3, the filling and grouting volume is about 6.7 m3, and the curtain grouting volume is 4,000 m3. Through the grouting and sealing treatment in the goaf, the water volume is reduced to less than 85% of the initial volume (100 m3/h). After the end treatment, the pH value of the effluent is around 7.0, the content of Fe and Mn is less than 0.1 mg/L, and the removal rate is above 99%. The project was subsequently operated at RMB 0.85 yuan/t. This project is aimed at the treatment of AMD from small coal mines in complex terrain conditions. It has the characteristics of low cost and high efficiency and can provide an effective treatment technology for AMD in southwestern China and areas with the same geological conditions.
Collapse
Affiliation(s)
- Quanjia Wu
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China E-mail:
| | - Xiangdong Li
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Qiyan Feng
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Xibin Li
- Hydrogeological Exploration Bureau, CNACG, Handan 056004, China
| |
Collapse
|
40
|
Yuan J, Ding Z, Li J, Yu A, Wen S, Bai S. An innovative method to degrade xanthate from flotation tailings wastewater in acid mine drainage (AMD) system: Performance, degradation mechanism and pathways. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119395. [PMID: 37879221 DOI: 10.1016/j.jenvman.2023.119395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/22/2023] [Accepted: 10/10/2023] [Indexed: 10/27/2023]
Abstract
This study objective is to degrade xanthate from flotation tailings wastewater by using a coagulation-flocculation co-Fenton oxidation process in an acid mine drainage (AMD)-H2O2 system. More than 98% sodium butyl xanthate (SBX) removal rate was achieved by the method under optimal conditions. The acids and Fe2+ in AMD were sufficient to initiate a Fenton reaction at the aid of H2O2. Furthermore, iron ions were reduced to an extremely low level (0.19 mg/L) by participating in an oxidation process. Meanwhile, the Cu2+ ions in AMD facilitated the coagulation-flocculation process. Comparison experiments confirmed that the method was superior to the AMD alone (54.26%) and H2O2 alone (32.23%) in terms of performance in degrading SBX. The kinetic results showed that SBX degradation followed a pseudo first-order kinetic model. Additionally, the electron paramagnetic resonance (EPR) and quenching results suggested that hydroxyl radicals (•OH) were the main active species in AMD-H2O2 system. Degradation products were analyzed, and two possible pathways of SBX degradation were proposed. One pathway displayed that the SBX was first transformed into butyl xanthate peroxide (BPX), CO32- and S2O32-, and then further decomposed into CO2, H2O and SO42- under the ongoing •OH attack. Another pathway showed that precipitates consisting of butyl copper xanthate and iron oxide species were generated during the SBX degradation. This study provides a novel perspective on the innovative application of AMD in Fenton oxidation and provides a strong basis for the green and sustainable treatment of xanthate wastewater in tailings.
Collapse
Affiliation(s)
- Jiaqiao Yuan
- Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming, 650093, Yunnan, China; State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, 650093, China
| | - Zhan Ding
- Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming, 650093, Yunnan, China; State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, 650093, China
| | - Jie Li
- Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming, 650093, Yunnan, China
| | - Anmei Yu
- Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming, 650093, Yunnan, China
| | - Shuming Wen
- Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming, 650093, Yunnan, China; State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, 650093, China; Yunnan Key Laboratory of Green Separation and Enrichment of Strategic Mineral Resources, Kunming, 650093, China
| | - Shaojun Bai
- Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming, 650093, Yunnan, China; State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, 650093, China; Yunnan Key Laboratory of Green Separation and Enrichment of Strategic Mineral Resources, Kunming, 650093, China.
| |
Collapse
|
41
|
Moreno-González R, Cánovas CR, Millán-Becerro R, León R, Olías M. High-resolution temporal monitoring of rare earth elements in acidic drainages from an abandoned sulphide mine (iberian pyrite belt, Spain). CHEMOSPHERE 2023; 344:140297. [PMID: 37783356 DOI: 10.1016/j.chemosphere.2023.140297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023]
Abstract
Rare earth elements (REE) are strategic elements due to their economic importance. However, the studies dedicated to the distribution and behaviour of REE in aquatic systems have been scarce until a few decades ago. This work studies the seasonal variations of REE concentrations in acid mine drainage (AMD) affected water courses and the factors controlling their mobility under different hydrological conditions. To address this issue, a high-resolution sampling was performed for two years in selected sampling sites. REE concentrations were very high (median values of 2.7-3.4 mg/L, maximum of 7.0 mg/L). These values are several orders of magnitude higher than those found in natural waters, highlighting the importance of AMD processes on the release of REE to the hydrosphere. No good correlations were found between pH and REE concentration, while REE correlated positively (r Spearman coefficient of 0.78-0.94) with EC and negatively (r -0.88 to -0.90) with discharge in AMD-affected streams. A conservative behaviour of REE was observed due to the strongly acidic conditions observed in the study area. The waters also showed an enrichment in MREEs over LREEs and HREEs (mean values of GdN/LaN>1.8 and YbN/GdN < 0.7), typical of AMD waters. An asymmetry in the content of LREE and HREE was observed in AMD samples studied, which could be explained by the preferential dissolution of LREE or HREE-enriched minerals within each waste heaps. Multivariate analysis suggests the influence of Mn-rich minerals existent in the study area as a potential source of LREE.
Collapse
Affiliation(s)
- Raúl Moreno-González
- Department of Earth Sciences, Drone Service, Institute for Marine Research (INMAR), University of Cadiz, Campus Rio San Pedro, S/n, 11510, Puerto Real, Spain.
| | - Carlos Ruiz Cánovas
- Department of Earth Sciences & Research Center on Natural Resources, Health and the Environment. University of Huelva, Campus "El Carmen", E-21071, Huelva, Spain
| | - Ricardo Millán-Becerro
- Department of Earth Sciences & Research Center on Natural Resources, Health and the Environment. University of Huelva, Campus "El Carmen", E-21071, Huelva, Spain
| | - Rafael León
- Department of Earth Sciences & Research Center on Natural Resources, Health and the Environment. University of Huelva, Campus "El Carmen", E-21071, Huelva, Spain
| | - Manuel Olías
- Department of Earth Sciences & Research Center on Natural Resources, Health and the Environment. University of Huelva, Campus "El Carmen", E-21071, Huelva, Spain
| |
Collapse
|
42
|
Wu ZH, Yang XD, Huang LY, Li SL, Xia FY, Qiu YZ, Yi XZ, Jia P, Liao B, Liang JL, Shu WS, Li JT. In situ enrichment of sulphate-reducing microbial communities with different carbon sources stimulating the acid mine drainage sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165584. [PMID: 37467988 DOI: 10.1016/j.scitotenv.2023.165584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/21/2023]
Abstract
The applications of sulphate-reducing microorganisms (SRMs) in acid mine drainage (AMD) treatment systems have received extensive attention due to their ability to reduce sulphate and stabilize metal(loid)s. Despite great phylogenetic diversity of SRMs, only a few have been used in AMD treatment bioreactors. In situ enrichment could be an efficient approach to select new effective SRMs for AMD treatment. Here, we performed in situ enrichment of SRMs in highly stratified AMD sediment cores using different kinds of carbon source mixture. The dsrAB (dissimilatory sulfite reductase) genes affiliated with nine phyla (two archaeal and seven bacterial phyla) and 26 genera were enriched. Remarkably, those genes affiliated with Aciduliprofundum and Vulcanisaeta were enriched in situ in AMD-related environments for the first time, and their relative abundances were negatively correlated with pH. Furthermore, 107 dsrAB-containing metagenome-assembled genomes (MAGs) were recovered from metagenomic datasets, with 14 phyla (two archaeal and 12 bacterial phyla) and 15 genera. The relative abundances of MAGs were positively correlated with total carbon and sulphate contents. Our findings expanded the diversity of SRMs that can be enriched in AMD sediment, and revealed the physiochemical properties that might affect the growth of SRMs, which provided guidance for AMD treatment bioreators.
Collapse
Affiliation(s)
- Zhuo-Hui Wu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Xiao-Dan Yang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Li-Ying Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Shi-Lin Li
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Fei-Yun Xia
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Yong-Zhi Qiu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Xin-Zhu Yi
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Pu Jia
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Bin Liao
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Jie-Liang Liang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China.
| | - Wen-Sheng Shu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Jin-Tian Li
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| |
Collapse
|
43
|
Pandey M, Shabuddhin S, Tsunoji N, Das S, Bandyopadhyay M. Extraction of heavy metals from wastewater using amine-modified mesoporous silica. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:113409-113423. [PMID: 37848788 DOI: 10.1007/s11356-023-30092-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2023]
Abstract
Presence of heavy metals in wastewater is a critical environmental issue, and efficient extraction of the metals remains a challenging task. In this study, the adsorption behavior of Ce(III), Hg(II), and Cu(II) metal ions using MCM-48 material modified with acid and base functional groups was examined. The modified materials were characterized using various techniques, including XRD, BET, FT-IR, NMR, and SEM, which revealed that the materials' properties remained unchanged after modification. The adsorption capacity of the modified materials for metal ions was then evaluated and was found that the amine-modified MCM-48 material exhibited the highest adsorption efficiency. Precisely, the amine-modified material achieved an adsorption capacity of 97% for Ce(III), 98% for Hg(II), and 90% for Cu(II) after 180 min of adsorption. These results highlight the effectiveness of amine functionalization in enhancing the adsorption capacity of silica material for heavy metals.
Collapse
Affiliation(s)
- Madhu Pandey
- Institute of Infrastructure, Technology, Research and Management, IITRAM, Maninagar, Ahmedabad, Gujarat, India
| | - Syed Shabuddhin
- Department of Chemistry, Pandit Deendayal Energy University, Gujarat, India
| | - Nao Tsunoji
- Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi‑Hiroshima, 739‑8527, Japan
| | - Sourav Das
- Institute of Infrastructure, Technology, Research and Management, IITRAM, Maninagar, Ahmedabad, Gujarat, India
| | - Mahuya Bandyopadhyay
- Institute of Infrastructure, Technology, Research and Management, IITRAM, Maninagar, Ahmedabad, Gujarat, India.
| |
Collapse
|
44
|
Sanchez-Ramos D, López-Bellido Garrido FJ, Acosta Hernández I, Rodríguez Romero L, Villaseñor Camacho J, Fernández-Morales FJ. Sustainable use of wastes as reactive material in permeable reactive barrier for remediation of acid mine drainage: Batch and continuous studies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118765. [PMID: 37604103 DOI: 10.1016/j.jenvman.2023.118765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/21/2023] [Accepted: 08/09/2023] [Indexed: 08/23/2023]
Abstract
The aim of this work was to evaluate the feasibility of the use of different industrial and agricultural wastes as reactive materials in Permeable Reactive Barriers (PRB) for Acid Mine Drainage (AMD) remediation. Sugar foam (SF), paper mill sludge (PMS), drinking water sludge (DWS) and olive mill waste (OMW) were evaluated in terms of pH neutralization and metal removal from AMD. Laboratory batch tests and continuous pilot scale up-flow columns containing 82% of Volcanic Slag (VS), as porous fill material, and 18% w/w of one of the industrial and agricultural wastes previously indicated, were tested. From the batch tests it was observed that the reactive material presenting the best results were the SF and the PMS. The results obtained in all the PRB were accurately described by a pseudo-first order model, presenting coefficient of determination higher than 0.96 in all the cases. During the continuous operation of the PRB, the porosity and hydraulic retention time (HRT) of most of the up-flow columns strongly decreased due to chemical precipitation and biofilm growth. The SF presented a significant number of fine particles that were washed out by the liquid flow, generating an effluent with very high total suspended solid concentration. Despite SF was the material with the highest alkalinity potential, the reduction of the HRT limited its neutralization and metal removal capacity. PMS and DWS presented the best pollutant removal yields in the continuous operation of the PRB, ranging from 55 to 99% and 55-95% (except in the case of the Mn), respectively. These results allowed the metal removal from the AMD. Additionally, these wastes presented very good biological sulphate reduction. Based on these results, the use of PMS and DWS as reactive material in PRB would allow to simultaneously valorise the industrial waste, which is very interesting within the circular economy framework, and to remove metals from the AMD by means of a low-cost and environmentally sustainable procedure.
Collapse
Affiliation(s)
- D Sanchez-Ramos
- Research Group on Hydroecology, School of Civil Engineering, University of Castilla-La Mancha, Avenida Camilo José Cela S/N 13071, Ciudad Real, Spain
| | - F J López-Bellido Garrido
- Department of Plant Production and Agricultural Technology, School of Agricultural Engineering, University of Castilla-La Mancha, Ronda de Calatrava, s/n, 13003, Ciudad Real, Spain
| | - I Acosta Hernández
- Chemical Engineering Department, Chemical and Environmental Technology Institute (ITQUIMA), University of Castilla-La Mancha, Avenida Camilo José Cela S/N 13071, Ciudad Real, Spain
| | - L Rodríguez Romero
- Chemical Engineering Department, Chemical and Environmental Technology Institute (ITQUIMA), University of Castilla-La Mancha, Avenida Camilo José Cela S/N 13071, Ciudad Real, Spain
| | - J Villaseñor Camacho
- Chemical Engineering Department, Chemical and Environmental Technology Institute (ITQUIMA), University of Castilla-La Mancha, Avenida Camilo José Cela S/N 13071, Ciudad Real, Spain
| | - F J Fernández-Morales
- Chemical Engineering Department, Chemical and Environmental Technology Institute (ITQUIMA), University of Castilla-La Mancha, Avenida Camilo José Cela S/N 13071, Ciudad Real, Spain.
| |
Collapse
|
45
|
Zhu Q, Ruan M, Hu Z, Miao K, Ye C. The Relationship between Acid Production and the Microbial Community of Newly Produced Coal Gangue in the Early Oxidation Stage. Microorganisms 2023; 11:2626. [PMID: 38004638 PMCID: PMC10673393 DOI: 10.3390/microorganisms11112626] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 11/26/2023] Open
Abstract
Coal gangue is a solid waste formed during coal production, and the acid mine drainage it generates during open-pit storage severely pollutes the ecological environment of mining areas. Microorganisms play a crucial catalytic role in acidification, and their species and gene functions change during the oxidation process of coal gangue. In this study, the changes in microbial community structure were investigated during the initial acidification process for newly produced gangue exposed to moisture by monitoring the changes in pH, EC, sulfate ion concentration, and the iron oxidation rate of gangue leaching solutions. Moreover, the composition and functional abundance of microbial communities on the surface of the gangue were analyzed with rainfall simulation experiments and 16S rRNA sequencing. The study yielded the following findings: (1) The critical period for newly produced gangue oxidation spanned from 0~15 d after its exposure to water; the pH of leaching solutions decreased from 4.65 to 4.09 during this time, and the concentration and oxidation rate of iron in the leaching solutions remained at low levels, indicating that iron oxidation was not the main driver for acidification during this stage. (2) When the gangue was kept dry, Burkholderia spp. dominated the gangue microbial community. When the gangue was exposed to moisture, the rate of acidification accelerated, and Pseudomonas replaced Burkholderia as the dominant genus in the community. (3) In terms of gene function, the microbial community of the acidified gangue had stronger nitrogen cycling functions, and an increase in the abundance of microorganisms related to the sulfur cycle occurred after day 15 of the experiment. The microbial community in the acidified gangue had more stress resistance than the community of the newly formed gangue, but its potential to decompose environmental pollutants decreased.
Collapse
Affiliation(s)
- Qi Zhu
- Chinese Research Academy of Environmental Sciences, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Beijing 100012, China; (K.M.); (C.Y.)
| | - Mengying Ruan
- Institute of Land Reclamation and Ecological Restoration, China University of Mining and Technology-Beijing, Beijing 100083, China;
| | - Zhenqi Hu
- Institute of Land Reclamation and Ecological Restoration, China University of Mining and Technology-Beijing, Beijing 100083, China;
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Kexin Miao
- Chinese Research Academy of Environmental Sciences, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Beijing 100012, China; (K.M.); (C.Y.)
| | - Chun Ye
- Chinese Research Academy of Environmental Sciences, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Beijing 100012, China; (K.M.); (C.Y.)
| |
Collapse
|
46
|
Jiménez Beltrán J, Marazuela MÁ, Baquedano C, Martínez-León J, Sanchez Navarro JÁ, Cruz-Pérez N, Santamarta JC, García-Gil A. The genesis of an extremely acidic perched aquifer within roasted pyrite waste in a fully urbanized area (Zaragoza, Spain). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165293. [PMID: 37414188 DOI: 10.1016/j.scitotenv.2023.165293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/01/2023] [Accepted: 07/01/2023] [Indexed: 07/08/2023]
Abstract
Contaminated groundwater is a serious problem in developed countries. The abandonment of industrial waste may lead to acid drainage affecting groundwater and severely impacting the environment and urban infrastructure. We examined the hydrogeology and hydrochemistry of an urban area in Almozara (Zaragoza, Spain); built over an old industrial zone, with pyrite roasting waste deposits, there were acid drainage problems in underground car parks. Drilling and piezometer construction, and groundwater samples revealed the existence of a perched aquifer within old sulfide mill tailings, where the building basements interrupted groundwater flow, leading to a water stagnation zone that reached extreme acidity values (pH < 2). A groundwater flow reactive transport model was developed using PHAST to reproduce flow and groundwater chemistry, in order to be used as a predictive tool for guiding remediation actions. The model reproduced the measured groundwater chemistry by simulating the kinetically controlled pyrite and portlandite dissolution. The model predicts that an extreme acidity front (pH < 2), coincident with the Fe (III) pyrite oxidation mechanism taking dominance, is propagating by 30 m/year if constant flow is assumed. The incomplete dissolution of residual pyrite (up to 18 % dissolved) predicted by the model indicates that the acid drainage is limited by the flow regime rather than sulfide availability. The installation of additional water collectors between the recharge source and the stagnation zone has been proposed, together with periodic pumping of the stagnation zone. The study findings are expected to serve as a useful background for the assessment of acid drainage in urban areas, since urbanization of old industrial land is rapidly increasing worldwide.
Collapse
Affiliation(s)
- Jon Jiménez Beltrán
- Geological and Mining Institute of Spain (IGME-CSIC), Spanish National Research Council, C/Ríos Rosas 23, 28003 Madrid. Spain; Department of Earth Sciences, University of Zaragoza, c/ Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Miguel Ángel Marazuela
- Geological and Mining Institute of Spain (IGME-CSIC), Spanish National Research Council, C/Ríos Rosas 23, 28003 Madrid. Spain
| | - Carlos Baquedano
- Geological and Mining Institute of Spain (IGME-CSIC), Spanish National Research Council, C/Ríos Rosas 23, 28003 Madrid. Spain
| | - Jorge Martínez-León
- Geological and Mining Institute of Spain (IGME-CSIC), Spanish National Research Council, C/Ríos Rosas 23, 28003 Madrid. Spain
| | | | - Noelia Cruz-Pérez
- Departamento de Ingeniería Agraria y del Medio Natural, Universidad de La Laguna (ULL), La Laguna (Tenerife), C/ Pedro Herrera, s/n, 38200 San Cristóbal de La Laguna, Spain
| | - Juan C Santamarta
- Departamento de Ingeniería Agraria y del Medio Natural, Universidad de La Laguna (ULL), La Laguna (Tenerife), C/ Pedro Herrera, s/n, 38200 San Cristóbal de La Laguna, Spain
| | - Alejandro García-Gil
- Geological and Mining Institute of Spain (IGME-CSIC), Spanish National Research Council, C/Ríos Rosas 23, 28003 Madrid. Spain.
| |
Collapse
|
47
|
Villa Gomez D, Hong P, Berry L, Liu D, Edraki M. Element distribution in electrochemically treated mine wastewater for efficient resource recovery and water treatment: A pilot study. CHEMOSPHERE 2023; 339:139536. [PMID: 37482318 DOI: 10.1016/j.chemosphere.2023.139536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/02/2023] [Accepted: 07/15/2023] [Indexed: 07/25/2023]
Abstract
The feasibility of recovering major and critical elements from acid mine drainage using a pilot-scale electrochemical reactor (ECR) was investigated by assessing elements concentration and species distribution in the liquid and solid phase (sludge) in multistage tests. These were carried out at different electrical currents (18-22 amps) and thus, pH (8-12). The results showed that major metals Al, Cu and Fe were removed from the liquid phase at pH 5.9 while remaining the majority of Zn (57.2 ppm). On the other hand, at pH 7, the effluent was mainly composed of Mn (7.3 ppm). These results were confirmed by the simulation results using the PHREEQC model, which also identified the main chemical species in solution and the precipitates formed after the treatment (oxyhydroxides/sulfates/oxides). The ECR treatment led to sludges with targeted critical elements, some up to 20 times (Co, Be and Sb) higher than their earth's crustal abundance. At pH 10, rare earth elements in the sludge targeted Ce, followed by Nd and La. This study is one of the few studies carrying a detailed analysis of the behavioural distribution pattern of these elements at each pH, which opens the door for the potential of recovering these elements.
Collapse
Affiliation(s)
- Denys Villa Gomez
- School of Civil Engineering, The University of Queensland, Brisbane, Australia
| | - Paul Hong
- Centre for Water in the Minerals Industry, Sustainable Minerals Institute, The University of Queensland, Australia
| | - Luke Berry
- Clean & Recover, 1015/80, Meiers Rd, Indooroopilly, QLD 4068, Australia
| | - Di Liu
- Clean & Recover, 1015/80, Meiers Rd, Indooroopilly, QLD 4068, Australia
| | - Mansour Edraki
- Centre for Water in the Minerals Industry, Sustainable Minerals Institute, The University of Queensland, Australia.
| |
Collapse
|
48
|
Cao Q, Yan R, Yang L, Takaoka M. Effects of water-coal interactions on coal mine water quality in China: a lixiviation experiment and actual water quality investigation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:107350-107364. [PMID: 36622596 DOI: 10.1007/s11356-022-25116-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/29/2022] [Indexed: 01/10/2023]
Abstract
Water-coal interactions are dominant factors that affect water quality in coal mines. Using lixiviation, the effects of water-coal interactions on pH, salinity, and hazardous elemental enrichment in coal mine water and associated trends were simulated and analyzed. The salinity and hazardous element contents were low in the alkaline solution filtrate. However, the salinity and contents of hazardous elements (As, Cr, Zn, Cu, Mn, Co, Ni, Cd, Pb, U, and Be) in acid solution filtrate increased significantly with a decrease in pH. The pH of the solution filtrate was affected by the mineral composition of the coal, wherein the pyrite content could generally determine the pH. In addition, the spatial distribution and utilization potential of coal mine water quality in China was determined based on water quality data surveys. For water-deficient regions in northern China, particularly in the northwest, the local mine water had high salinity, a high pH, and a low content of hazardous elements; therefore, the reuse of mine water for water consumption is feasible. Conversely, the mine water in the southwest region had high salinity and a low pH and was enriched in harmful elements with potential ecological and health risks. The actual water quality characteristics of the coal mine water matched the results of the laboratory simulation analysis, confirming the effect from water-coal interactions. This work provides a reference for understanding the determinants of coal mine water quality and the potential for water environment protection.
Collapse
Affiliation(s)
- Qingyi Cao
- College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Ruiwen Yan
- College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Liu Yang
- College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China.
| | - Masaki Takaoka
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, 615-8540, Japan
| |
Collapse
|
49
|
Kwak E, Kim JH, Lee S. Longevity evaluation of non-pumping reactive wells for control of groundwater contamination: Application of upscaling methods. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122136. [PMID: 37419206 DOI: 10.1016/j.envpol.2023.122136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/09/2023]
Abstract
Non-pumping reactive wells (NPRWs) are subsurface structures used for the passive treatment of contaminated groundwater using wells containing reactive media. In the vicinity of NPRWs, a combination of hydrogeological and chemical processes makes it difficult to predict their longevity. In this study, we evaluated the longevity of NPRWs using the upscaling methods. A horizontal two-dimensional sandbox was constructed to mimic the hydrogeological and chemical processes in a single unit of NPRW (unit NPRW). The groundwater flow and solute transport were simulated numerically to validate the processes of contaminant spreading prevention in the sandbox. Dye tracing and arsenic transport tests showed different performance of NPRW due to induced flow and uneven consumption of reactivity, which is dependent on the pathway length and residence time of the coal waste. Through numerical modeling of the experiments, the fate-related processes of contamination around NPRW were described in detail in both spatial and temporal terms. The stepwise approach of the upscaling methods was used to predict the contamination-blocking performance of the entire facility based on the reactivity of the materials and the contamination removal of the unit NPRW.
Collapse
Affiliation(s)
- Eunjie Kwak
- Department of Earth and Environmental Sciences, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jae-Hyun Kim
- Department of Earth and Environmental Sciences, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Soonjae Lee
- Department of Earth and Environmental Sciences, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
50
|
Zhang M, Huang C, Ni J, Yue S. Global trends and future prospects of acid mine drainage research. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:109233-109249. [PMID: 37770736 DOI: 10.1007/s11356-023-30059-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/20/2023] [Indexed: 09/30/2023]
Abstract
The uncontrolled release of acid mine drainage (AMD) results in the ongoing deterioration of groundwater and surface water, along with harmful impacts on aquatic ecosystems and surrounding habitats. This study employed a bibliometric analysis to examine research activities and trends related to AMD from 1991 to 2021. The analysis demonstrated a consistent growth in AMD research over the years, with a notable surge in the number of publications starting from 2014. Applied Geochemistry and Science of the Total Environment emerged as the top two extensively published journals in the field of AMD research. The USA held a prominent position, achieving the highest h-index (96) and central value (0.36) among 111 countries/territories, with China and Spain following closely behind. The author keyword analysis provides an overview of the main focuses in AMD research. Furthermore, the co-citation reference analysis reveals four primary domains of AMD research. Moreover, the prevention and remediation of AMD, including source prevention and migration control, as well as the hazards posed by heavy metals/metalloids and the mechanisms and techniques employed for their removal, are discussed in detail.
Collapse
Affiliation(s)
- Min Zhang
- Jiangxi Copper Technology Research Institute, Jiangxi Copper Corporation, Nanchang, 330096, Jiangxi Province, China
| | - Chang Huang
- Jiangxi Copper Technology Research Institute, Jiangxi Copper Corporation, Nanchang, 330096, Jiangxi Province, China
| | - Jin Ni
- Jiangxi Copper Technology Research Institute, Jiangxi Copper Corporation, Nanchang, 330096, Jiangxi Province, China
| | - Siyuan Yue
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, Jiangxi Province, China.
| |
Collapse
|