1
|
Hernández M, Fernández J, Fontecha G, Gómez J. Spatial dynamics of lindane concentration in a soil-plant system at the Bailín landfill site (Sabiñánigo, Huesca, Spain). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125198. [PMID: 39490511 DOI: 10.1016/j.envpol.2024.125198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/08/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Hexachlorocyclohexane (HCH) is an organochlorine synthetic substance composed of different isomers (α-, β-, γ-, δ-, and ε-HCH), but only γ-HCH isomer or lindane has insecticidal properties. From 1984 to 1992, INQUINOSA Company dumped HCH wastes in the Bailín landfill (Sabiñánigo, Spain), and in 2014 these HCH residuals were transferred to a secure landfill, dispersing a small amount of HCH-isomers in the surrounding area. To explore the spatial distribution of this pollution, we evaluated HCH concentration in the soil-vegetation system around the Bailín landfill site. Physicochemical properties showed a greater percentage of organic matter, cation exchange capacity, carbon content, and conductivity in soil samples, while only pH increased in subsoil samples. Our findings also revealed that the concentration of HCH-isomers is very heterogeneous in topsoil samples from <1 μg/kg to 780 μg/kg, whereas in subsoil samples fluctuated from <1 μg/kg to 70 μg/kg. Moreover, the accumulated HCH-isomers among species and plant tissues displayed large variations, with pine needles showing the greatest values. Interestingly, spatial distribution of HCH contamination was mainly concentrated close to the old landfill and secure landfill, suggesting that the removal processes largely influence soil contamination. Correlation of HCH levels in soil and plant material suggests that HCH uptake onto plants was accomplished either by translocation from soil via the root system or by deposition from air into the above-ground parts of the plants. As HCH-isomers are hydrophobic compounds that tend to be adsorbed by soil organic matter, HCH probably do not leach into groundwater, and the main sinks are surface runoff, volatilization, and degradation. However, more studies would be required to assess the potential sinks of HCH wastes in the Bailín landfill site.
Collapse
Affiliation(s)
- Mauricio Hernández
- Departamento de Biología Celular y Genética, Escuela de Biología, Facultad de Ciencias, Universidad Nacional Autónoma de Honduras, Tegucigalpa 11101, Honduras; Instituto de Investigaciones en Microbiología, Facultad de Ciencias, Universidad Nacional Autónoma de Honduras, Tegucigalpa 11101, Honduras.
| | - Jesús Fernández
- Department of Agriculture, Livestock and Environment, Government of Aragón, San Pedro Nolasco Square, 50071 Zaragoza, Spain
| | - Gustavo Fontecha
- Instituto de Investigaciones en Microbiología, Facultad de Ciencias, Universidad Nacional Autónoma de Honduras, Tegucigalpa 11101, Honduras
| | - Javier Gómez
- Earth Sciences Department, University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain.
| |
Collapse
|
2
|
Bernabei G, De Simone G, Becarelli S, Di Mambro R, Gentini A, Di Gregorio S. Co-metabolic growth and microbial diversity: Keys for the depletion of the α, δ, β and γ-HCH isomers. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135963. [PMID: 39341188 DOI: 10.1016/j.jhazmat.2024.135963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 09/30/2024]
Abstract
The objective of this study was the isolation and enrichment of microbiomes capable of degrading the main hexachlorocyclohexane isomers quantified in environmental matrices, e.g.: the α, δ, β and γ-HCH isomers. Four microbiomes were isolated and enriched from an HCH-contaminated dumpsite in Italy, both in the presence of HCH isomers (1:1:1:1) as the sole carbon sources and under co-metabolic growth conditions in presence of glucose (0.1 % v/v). The microbiomes were assessed for their relevant metabolic capabilities. A quantitative metabarcoding approach was employed to analyze the compositional evolution of the four microbiomes during the enrichment phase and the phase of testing of the HCH isomers degradation kinetics. The use of a co-metabolic substrate during enrichment process was essential for selecting microbiomes with higher biodiversity. All microbiomes efficiently degraded the α, δ, and γ-HCH isomers. The highest efficiency in the β-HCH degradation capacity was positively correlated to the highest biodiversity of the microbiome, and the involvement of Chryseobacterium and Asinibacterium sps. have been proposed for a recorded increment in bacterial load during the HCH degradation process.
Collapse
|
3
|
Zhu M, Liu Y, He Y, Kuemmel S, Wu L, Shen D, Richnow HH. Multi-element ( 2H, 13C, 37Cl) isotope analysis to characterize reductive transformation of α-, β-, γ-, and δ-HCH isomers by cobalamin and Fe 0 nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135932. [PMID: 39388861 DOI: 10.1016/j.jhazmat.2024.135932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/23/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024]
Abstract
Hexachlorocyclohexane (HCH), a typical persistent organic pollutant, poses a serious threat to both human health and the environment. The degradability of HCH isomers (α, β, γ, and δ) varies significantly under anoxic aqueous conditions and the corresponding reductive transformation mechanisms remain elusive. This work employed multi-element (2H, 13C, 37Cl) stable isotope analysis to characterize the reductive dehalogenation mechanisms of HCH isomers using cobalamin (vitamin B₁₂) reduced with Ti3+ and Fe0 nanoparticles. The isotopic fractionation of HCH isomers varied from -2.8 ± 0.5 to -7.0 ± 0.7 ‰ for carbon (εC), from not significant to -62.4 ± 5.2 ‰ for hydrogen (εH), and from -1.4 ± 0.2 to -4.7 ± 0.5 ‰ for chlorine (εCl), respectively. Dual C-Cl isotopic fractionation values (ΛC/Cl) for α-, β-, γ- and δ-HCH during the transformation by B12 were determined to be 2.0 ± 0.2, 1.5 ± 0.2, 1.1 ± 0.1, and 1.9 ± 0.3, respectively. The ΛC/Cl values of β- and δ-HCH in the reaction with Fe0 nanoparticles were found to be similar (1.9 ± 0.3 and 1.9 ± 0.2). However, the apparent kinetic isotope effect AKIEC/AKIECl values suggested that the bond cleavage mechanism of δ-HCH may differ from that of other isomers. The comparison of the angles θ by multi-element isotope plot showed a distinct differentiation between the pathways of anaerobic transformation of HCH isomers and aerobic pathways reported in the literature. Therefore, multi-element isotope analysis could offer a new perspective for characterizing the fate of HCH isomers.
Collapse
Affiliation(s)
- Min Zhu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Hangzhou 310058, China
| | - Yaqing Liu
- Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany; College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Yan He
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Hangzhou 310058, China.
| | - Steffen Kuemmel
- Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Langping Wu
- Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany; Ecometrix Incorporated, 6800 Campobello Road, Mississauga, ON L5N 2L8, Canada
| | - Dongsheng Shen
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Hans H Richnow
- Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany; Isodetect GmbH, Deutscher Platz 5b, 04103 Leipzig, Germany.
| |
Collapse
|
4
|
Odongo S, Ssebugere P, Spencer PS, Palmer VS, Angues RV, Mwaka AD, Wasswa J. Organochlorine pesticides and their markers of exposure in serum and urine of children from a nodding syndrome hotspot in northern Uganda, east Africa. CHEMOSPHERE 2024; 364:143191. [PMID: 39214405 DOI: 10.1016/j.chemosphere.2024.143191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/14/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Nodding syndrome (NS) is a neurologic disorder of unknown etiology characterized by vertical head nodding that has affected children aged 5-18 years in East Africa. Previous studies have examined relationships with biological agents (e.g., nematodes, measles, and fungi), but there is limited data on the possible contributions of neurotoxic environmental chemicals frequently used as pesticides/insecticides to the development and progression of this disorder. We examined the levels of persistent organochlorine pesticides (OCPs) in children (5-18 years old) from Kitgum District, Northern Uganda. These children previously lived in internally displaced people's (IDP) camps, where they were exposed to various health risks, including contaminated food and water. Exposure to OCPs through contaminated food and water is postulated here as a potential contributor to NS etiology. We analyzed serum (n = 75) and urine (n = 150) samples from children diagnosed with NS, and from seizure-free household controls (HC), and community controls (CC). Samples were extracted using solid-phase extraction (SPE) and extracts were analyzed for OCPs using gas chromatography with a triple quadrupole mass spectrometry (GC-MS/MS). Mean levels of total (∑) ∑OCPs in serum samples from NS, HC and CC subjects were 23.3 ± 2.82, 21.1 ± 3.40 and 20.9 ± 4.24 ng/mL, respectively, while in urine samples were 1.86 ± 1.03, 2.83 ± 1.42, and 2.14 ± 0.94 ng/mL, respectively. Correlation and linear regression analysis indicated that potential markers for ∑hexachlorocyclohexanes (HCHs), ∑chlordane compounds (CHLs), ∑endosulfan and ∑dichlorodiphenyltrichloroethanes (DDTs) were γ-HCH, heptachlor-exo-epoxide, endosulfan-α and p,p'-DDD in NS cases while in controls were α -HCH, heptachlor, endosulfan-α and p,p'-DDE, respectively. Since, in some instances, higher OCP levels were found in controls vs. NS cases, we conclude that exposure to organochlorine pesticides is unlikely to be associated with the etiology of NS.
Collapse
Affiliation(s)
- Silver Odongo
- Department of Chemistry, College of Natural Sciences, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Patrick Ssebugere
- Department of Chemistry, College of Natural Sciences, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Peter S Spencer
- Department of Neurology, School of Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Valerie S Palmer
- Department of Neurology, School of Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Raquel Valdes Angues
- Department of Neurology, School of Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Amos Deogratius Mwaka
- Department of Internal Medicine, School of Medicine, College of Health Sciences, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - John Wasswa
- Department of Chemistry, College of Natural Sciences, Makerere University, P. O. Box 7062, Kampala, Uganda.
| |
Collapse
|
5
|
Chaos Z, Fernández JA, Balseiro-Romero M, Celeiro M, García-Jares C, Méndez A, Pérez-Alonso P, Estébanez B, Kaal J, Nierop KGJ, Aboal JR, Monterroso C. What potential do mosses have as biomonitors of POPs? A comparative study of hexachlorocyclohexane sorption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173021. [PMID: 38740203 DOI: 10.1016/j.scitotenv.2024.173021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/16/2024]
Abstract
Persistent organic pollutants (POPs) pose a significant global threat to human health and the environment, and require continuous monitoring due to their ability to migrate long distances. Active biomonitoring using cloned mosses is an inexpensive but underexplored method to assess POPs, mainly due to the poor understanding of the loading mechanisms of these pollutants in mosses. In this work, Fontinalis antipyretica (aquatic moss) and Sphagnum palustre (terrestrial moss) were evaluated as potential biomonitors of hexachlorocyclohexanes (HCHs: α-, β-, γ-, δ-HCH), crucial POPs. Moss clones, grown in photobioreactors and subsequently oven-dried, were used. Their lipid composition and distribution were characterized through molecular and histochemical studies. Adsorption experiments were carried out in the aqueous phase using the repeated additions method and in the gas phase using an active air sampling technique based on solid-phase extraction, a pioneering approach in moss research. F. antipyretica exhibited greater lipid content in the walls of most cells and higher adsorption capacity for all HCH isomers in both gaseous and liquid environments. These findings highlight the need for further investigation of POP loading mechanisms in mosses and open the door to explore other species based on their lipid content.
Collapse
Affiliation(s)
- Z Chaos
- CRETUS, Dept. Edafoloxía e Química Agrícola, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - J A Fernández
- CRETUS, Ecology Unit, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - M Balseiro-Romero
- CRETUS, Dept. Edafoloxía e Química Agrícola, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - M Celeiro
- CRETUS, Dept. Química Analítica, Nutrición e Bromatoloxía, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - C García-Jares
- CRETUS, Dept. Química Analítica, Nutrición e Bromatoloxía, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - A Méndez
- CRETUS, Dept. Edafoloxía e Química Agrícola, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - P Pérez-Alonso
- CRETUS, Dept. Edafoloxía e Química Agrícola, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - B Estébanez
- Dept. Biología, Unidad de Botánica, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - J Kaal
- Pyrolyscience, 15707 Santiago de Compostela, Spain
| | - K G J Nierop
- Geolab, Faculty of Geosciences, Utrecht University, Princetonlaan 8, 3584 CB Utrecht, the Netherlands
| | - J R Aboal
- CRETUS, Ecology Unit, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - C Monterroso
- CRETUS, Dept. Edafoloxía e Química Agrícola, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
6
|
Fernández J, Lorenzo D, Net J, Cano E, Saez P, Herranz C, Domínguez CM, Cotillas S, Santos A. Sustainable lindane waste remediation: Surfactant-driven residual DNAPL extraction and oxidation in a real landfill (LIFE SURFING). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173260. [PMID: 38761933 DOI: 10.1016/j.scitotenv.2024.173260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
The LIFE SURFING Project was carried out at the Bailin Landfill in Sabiñánigo, Spain (2020-2022), applying Surfactant Enhanced Aquifer Remediation (SEAR) and In Situ Chemical Oxidation (S-ISCO) in a 60-meter test cell beneath the old landfill, to remediate a contaminated aquifer with dense non-aqueous phase liquid (DNAPL) from nearby lindane production. The project overcame traditional extraction limitations, successfully preventing groundwater pollution from reaching the river. In spring 2022, two SEAR interventions involved the injection of 9.3 m3 (SEAR-1) and 6 m3 (SEAR-2) of aqueous solutions containing 20 g/L of the non-ionic surfactant E-Mulse 3®, with bromide (around 150 mg/L) serving as a conservative tracer. 7.1 and 6.0 m3 were extracted in SEAR-1 and SEAR-2, respectively, recovered 60-70 % of the injected bromide and 30-40 % of the surfactant, confirming surfactant adsorption by the soil. Approximately 130 kg of DNAPL were removed, with over 90 % mobilized and 10 % solubilized. A surfactant-to-DNAPL recovery mass ratio of 2.6 was obtained, a successful value for a fractured aquifer. In September 2022, the S-ISCO phase entailed injecting 22 m3 of a solution containing persulfate (40 g/L), E-Mulse 3® (4 g/L), and NaOH (8.75 g/L) in pulses over 48 h, oxidizing around 20 kg of DNAPL and ensuring low toxicity levels after that. Preceding the SEAR and S-ISCO trials, 2020 and 2021 were dedicated to detailed groundwater flow characterizations, including hydrological and tracer studies. These preliminary investigations allowed the design of a barrier zone between 317 and 557 m from the test cell and the river, situated 900 m away. This zone, integrating alkali dosing, aeration, vapor extraction, and oxidant injection, effectively prevented the escape of fluids to the river. Neither surfactants nor contaminants were detected in river waters post-treatment. The absence of residual phase in test cell wells and reduction of chlorinated compound levels in groundwater were noticed till one year after S-ISCO.
Collapse
Affiliation(s)
- Jesús Fernández
- Department of Environment and Tourism, Government of Aragon, Spain
| | - David Lorenzo
- Chemical Engineering and Materials Department, University Complutense of Madrid, Spain
| | - Jorge Net
- Department of Environment and Tourism, Government of Aragon, Spain
| | - Elena Cano
- Department of Environment and Tourism, Government of Aragon, Spain
| | - Patricia Saez
- Chemical Engineering and Materials Department, University Complutense of Madrid, Spain
| | - Carlos Herranz
- Sociedad Aragonesa de Gestión Agroambiental SARGA, Zaragoza, Spain
| | - Carmen M Domínguez
- Chemical Engineering and Materials Department, University Complutense of Madrid, Spain
| | - Salvador Cotillas
- Chemical Engineering and Materials Department, University Complutense of Madrid, Spain
| | - Aurora Santos
- Chemical Engineering and Materials Department, University Complutense of Madrid, Spain.
| |
Collapse
|
7
|
Sobral B, Samper J, Montenegro L, Mon A, Guadaño J, Gómez J, San Román J, Delgado F, Fernández J. 2D model of groundwater flow and total dissolved HCH transport through the Gállego alluvial aquifer downstream the Sardas landfill (Huesca, Spain). JOURNAL OF CONTAMINANT HYDROLOGY 2024; 265:104370. [PMID: 38851128 DOI: 10.1016/j.jconhyd.2024.104370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/15/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
The organic pollutants disposed at the Sardas landfill in Sabiñánigo (Huesca, northeastern Spain) by the INQUINOSA lindane factory have reached the Gállego alluvial aquifer and could affect the Sabiñánigo reservoir. The daily oscillations of the reservoir water level produce a tidal effect on the piezometric heads of the aquifer. These oscillations are transmitted in a damped way with a time lag, thus attesting that the silting sediments of the reservoir and the natural silts of the Gállego alluvial are interposed between the reservoir water and the layer of sands and gravels. A 2D finite element groundwater flow and total dissolved hexachlorocyclohexane (HCH) transport model through the Gállego alluvial aquifer is presented here. The flow model was constructed to: (1) Quantify the tidal effect, produced by the daily fluctuations of the reservoir water level on the aquifer; (2) Estimate the hydrodynamic parameters of the layer of sands and gravels; and 3) Estimate the vertical hydraulic conductivity of the silting sediments and silts; and (4) Quantify aquifer/reservoir interactions. The flow model reproduces the dynamics of the tidal effect and attests that groundwater velocity and flow direction changes daily in response to the oscillations of the reservoir level. Model results reproduce the measured well hydrographs and the Darcy velocity derived from tracer tests and confirm the validity of the conceptual model. The transport model of total dissolved HCH simulates the time evolution of the contaminant plume. The computed concentrations of total dissolved HCH and the contaminant mass outflux are very sensitive to changes in the source terms and the distribution coefficient, Kd of HCH. The best fit to the measured HCH plumes in September 2010 and December 2020 is obtained with a Kd ranging from 1 to 3 L/kg. The computed flux of dissolved HCH leaving the Sardas site in 2020 towards the Sabiñánigo reservoir ranges from 0.6 kg/year for Kd = 3 L/kg to 3.1 kg/year for Kd = 1 L/kg. The findings of this study will be most useful for planning and designing remedial and containment actions at the Sardas site and other similar lindane-affected sites.
Collapse
Affiliation(s)
- Brais Sobral
- Civil Engineering Department & School, Interdisciplinar Center for Biology and Chemistry (CICA), Universidade da Coruña, Campus de Elviña, A Coruña 15071, Spain
| | - Javier Samper
- Civil Engineering Department & School, Interdisciplinar Center for Biology and Chemistry (CICA), Universidade da Coruña, Campus de Elviña, A Coruña 15071, Spain.
| | - Luis Montenegro
- Civil Engineering Department & School, Interdisciplinar Center for Biology and Chemistry (CICA), Universidade da Coruña, Campus de Elviña, A Coruña 15071, Spain
| | - Alba Mon
- Civil Engineering Department & School, Interdisciplinar Center for Biology and Chemistry (CICA), Universidade da Coruña, Campus de Elviña, A Coruña 15071, Spain
| | - Joaquín Guadaño
- Empresa Para la Gestión de Residuos Industriales, S.A., S.M.E., M.P., EMGRISA, C/ Santiago Rusiñol 12, 28040 Madrid, Spain
| | - Jorge Gómez
- Empresa Para la Gestión de Residuos Industriales, S.A., S.M.E., M.P., EMGRISA, C/ Santiago Rusiñol 12, 28040 Madrid, Spain
| | - Javier San Román
- Ebro Water District, Paseo Sagasta, 24-26, Zaragoza 50071, Spain
| | - Felipe Delgado
- Ebro Water District, Paseo Sagasta, 24-26, Zaragoza 50071, Spain
| | - Jesús Fernández
- Servicio de Prevención y Corrección de la Contaminación del Suelo, Dirección General de Calidad Ambiental, Departamento de Medio Ambiente y Turismo, Gobierno de Aragón. San pedro Nolasco, 7, 50071 Zaragoza, Spain
| |
Collapse
|
8
|
Černík M, Němeček J, Štrojsová M, Švermová P, Sázavská T, Brůček P. Wetland technology for the treatment of HCH-contaminated water - Case study at Hajek site. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172660. [PMID: 38649037 DOI: 10.1016/j.scitotenv.2024.172660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/10/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Hexachlorocyclohexanes (HCH) isomers and their transformation products, such as chlorobenzenes (ClB), generate severe and persistent environmental problems at many sites worldwide. The Wetland technology employing oxidation-reduction, biosorption, biodegradation and phytoremediation methods can sufficiently treat HCH-contaminated water. The treatment process is inherently natural and requires no supplementary chemicals or energy. The prototype with a capacity of 3 L/s was installed at Hajek quarry spoil heap (CZ), to optimize the technology on a full scale. The system is fed by drainage water with an average concentration of HCH 129 μg/L, ClB 640 μg/L and chlorophenols (ClPh) of 16 μg/L. The system was tested in two years of operation, regularly monitored for HCH, ClB and ClPh, and maintained to improve its efficiency. The assessment was not only for environmental effects but also for socio and economic indicators. During the operation, the removal efficiency of HCH ranged from 53.5 % to 96.9 % (83.9 % on average) depending on the flow rate. Removal efficiency was not uniform for individual HCH isomers but exhibited the trend: α = γ = δ > β = ε. The improved water quality was reflected in a biodiversity increase expressed by a number of phytobenthos (diatoms) species, a common biomarker of aquatic environment quality. The Wetland outranked the conventional WWTP in 10 out of the 15 general categories, and it is the most relevant scenario from the socio, environmental, and economic aspects.
Collapse
Affiliation(s)
- Miroslav Černík
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, 461 17 Liberec, Czech Republic.
| | - Jan Němeček
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, 461 17 Liberec, Czech Republic
| | - Martina Štrojsová
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, 461 17 Liberec, Czech Republic; Faculty of Science, Humanities and Education, Technical University of Liberec, Studentská 2, 461 17 Liberec, Czech Republic
| | - Pavla Švermová
- Faculty of Economics; Technical University of Liberec, Studentská 2, 461 17 Liberec, Czech Republic
| | - Tereza Sázavská
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, 461 17 Liberec, Czech Republic
| | - Petr Brůček
- DIAMO s.p., Správa uranových ložisek, 28. října 184, 261 01 Příbram, Czech Republic
| |
Collapse
|
9
|
Amirbekov A, Vrchovecka S, Riha J, Petrik I, Friedecky D, Novak O, Cernik M, Hrabak P, Sevcu A. Assessing HCH isomer uptake in Alnus glutinosa: implications for phytoremediation and microbial response. Sci Rep 2024; 14:4187. [PMID: 38378833 PMCID: PMC10879209 DOI: 10.1038/s41598-024-54235-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/10/2024] [Indexed: 02/22/2024] Open
Abstract
Although the pesticide hexachlorocyclohexane (HCH) and its isomers have long been banned, their presence in the environment is still reported worldwide. In this study, we investigated the bioaccumulation potential of α, β, and δ hexachlorocyclohexane (HCH) isomers in black alder saplings (Alnus glutinosa) to assess their environmental impact. Each isomer, at a concentration of 50 mg/kg, was individually mixed with soil, and triplicate setups, including a control without HCH, were monitored for three months with access to water. Gas chromatography-mass spectrometry revealed the highest concentrations of HCH isomers in roots, decreasing towards branches and leaves, with δ-HCH exhibiting the highest uptake (roots-14.7 µg/g, trunk-7.2 µg/g, branches-1.53 µg/g, leaves-1.88 µg/g). Interestingly, α-HCH was detected in high concentrations in β-HCH polluted soil. Phytohormone analysis indicated altered cytokinin, jasmonate, abscisate, and gibberellin levels in A. glutinosa in response to HCH contamination. In addition, amplicon 16S rRNA sequencing was used to study the rhizosphere and soil microbial community. While rhizosphere microbial populations were generally similar in all HCH isomer samples, Pseudomonas spp. decreased across all HCH-amended samples, and Tomentella dominated in β-HCH and control rhizosphere samples but was lowest in δ-HCH samples.
Collapse
Affiliation(s)
- Aday Amirbekov
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, 460 01, Liberec, Czech Republic
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, 461 17, Liberec, Czech Republic
| | - Stanislava Vrchovecka
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, 460 01, Liberec, Czech Republic
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, 461 17, Liberec, Czech Republic
| | - Jakub Riha
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, 460 01, Liberec, Czech Republic
| | - Ivan Petrik
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Faculty of Science, Palacký University Olomouc, 78371, Olomouc, Czech Republic
| | - David Friedecky
- Laboratory for Inherited Metabolic Disorders, Department of Clinical Biochemistry, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacký University Olomouc, 775 20, Olomouc, Czech Republic
| | - Ondrej Novak
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Faculty of Science, Palacký University Olomouc, 78371, Olomouc, Czech Republic
| | - Miroslav Cernik
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, 460 01, Liberec, Czech Republic
| | - Pavel Hrabak
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, 460 01, Liberec, Czech Republic.
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, 461 17, Liberec, Czech Republic.
| | - Alena Sevcu
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, 460 01, Liberec, Czech Republic.
- Faculty of Science, Humanities and Education, Technical University of Liberec, 460 01, Liberec, Czech Republic.
| |
Collapse
|
10
|
Conte LO, Cotillas S, Lorenzo D, Bahamonde A, Santos A. Solar-assisted oxidation of organochlorine pesticides in groundwater using persulfate and ferrioxalate. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123205. [PMID: 38142033 DOI: 10.1016/j.envpol.2023.123205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/07/2023] [Accepted: 12/20/2023] [Indexed: 12/25/2023]
Abstract
The oxidation of hexachlorocyclohexane isomers in the aqueous phase (Milli-Q and groundwater) was studied using persulfate activated by ferrioxalate and solar light at circumneutral pH. The experiments were conducted in a solar simulator reactor with local radiation fluxes qw= 1.12·10-7 E cm-2s-1 and in compound parabolic collectors with solar light (qw≈10-7 E cm-2s-1) for 390 min. The effect of activator dosage (18-125 μM ferrioxalate) and persulfate concentration (520-2600 μM) on hexachlorocyclohexane conversion and oxalate and oxidant consumption was analyzed. Conversion of about 95% of β isomer was achieved at 390 min using 1300 μM of initial persulfate and 63 μM of Fe3+ concentration despite this β isomer being the most recalcitrant to oxidation (XHexachlorocyclohexanes=0.98). Dechlorination above 80% was achieved under these conditions, analyzing the chlorides released into the water. The influence of chloride and bicarbonate on hexachlorocyclohexanes degradation was analyzed in milli-Q water and in groundwater. Hexachlorocyclohexane conversion at 390 min decreases from 98% to 83, 75 and 65% in the presence of chloride, bicarbonate or groundwater, respectively. Results obtained with compound parabolic collectors and solar light using 2600 μM Na2S2O8 and 63 μM Fe for removing hexachlorocyclohexanes agreed with those from the solar simulator reactor, supporting using solar light to activate persulfate for sustainable abatement of persistent organic pollutants in aqueous matrixes.
Collapse
Affiliation(s)
- Leandro O Conte
- Department of Chemical Engineering and Materials, Faculty of Chemical Sciences, Complutense University of Madrid, Avenida Complutense s/n, 28040, Madrid, Spain; Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional del Litoral (UNL), Ruta Nacional N 168, 3000, Santa Fe, Argentina
| | - Salvador Cotillas
- Department of Chemical Engineering and Materials, Faculty of Chemical Sciences, Complutense University of Madrid, Avenida Complutense s/n, 28040, Madrid, Spain
| | - David Lorenzo
- Department of Chemical Engineering and Materials, Faculty of Chemical Sciences, Complutense University of Madrid, Avenida Complutense s/n, 28040, Madrid, Spain
| | - Ana Bahamonde
- Instituto de Catálisis y Petroleoquímica, ICP-CSIC, C/ Marie Curie 2, 28049, Madrid, Spain
| | - Aurora Santos
- Department of Chemical Engineering and Materials, Faculty of Chemical Sciences, Complutense University of Madrid, Avenida Complutense s/n, 28040, Madrid, Spain.
| |
Collapse
|
11
|
Kurt-Karakus PB, Odabasi M, Birgul A, Yaman B, Gunel E, Dumanoglu Y, Jantunen L. Contamination of Soil by Obsolete Pesticide Stockpiles: A Case Study of Derince Province, Turkey. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 86:37-47. [PMID: 38063884 DOI: 10.1007/s00244-023-01043-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/14/2023] [Indexed: 02/01/2024]
Abstract
The areal distributions of the soil organochlorine pesticide (OCP) levels were investigated at adjacent and surrounding sites of the obsolete pesticide stockpile warehouse in Kocaeli, Türkiye. OCP levels in soil at neighboring sampling locations (positioned at 0.4 to 3 km from the stockpile) varied from 0.4 to 9 µg/kg and 4.2 to 2226 µg/kg (dry weight) for ΣHCHs and ΣDDXs, respectively. Levels at adjacent locations (positioned within 20 m from the stockpile) were considerably higher, varying from 74 to 39,619 µg/kg and 1592 to 30,419 µg/kg for ΣHCHs and ΣDDXs, respectively. Levels of OCPs dropped abruptly with the horizontal distance from the stockpile and had different transect profiles. The enantiomer fractions (EFs) near the stockpile range from 0.494 to 0.521, 0.454 to 0.515, and 0.483 to 0.533 for α-HCH, o,p'-DDT, and o,p'-DDD, respectively. These near-racemic EFs suggested that observed soil OCP levels were mainly influenced by recent emissions from the stockpile. A comparison of OCP compositions observed in the soil at the present study with the technical HCHs and DDTs revealed that the material in the stockpile primarily contains byproducts that were discarded during DDT and Lindane production at the adjacent plant instead of their technical mixtures.
Collapse
Affiliation(s)
- Perihan Binnur Kurt-Karakus
- Department of Environmental Engineering, Faculty of Engineering and Natural Sciences, Bursa Technical University, Mimar Sinan Mah, Mimar Sinan Bulvarı, Eflak Cad. No: 177, 16310, Yildirim, Bursa, Turkey.
| | - Mustafa Odabasi
- Department of Environmental Engineering, Faculty of Engineering, Dokuz Eylul University, Tinaztepe Campus, 35160, Buca, Izmir, Turkey
| | - Askin Birgul
- Department of Environmental Engineering, Faculty of Engineering and Natural Sciences, Bursa Technical University, Mimar Sinan Mah, Mimar Sinan Bulvarı, Eflak Cad. No: 177, 16310, Yildirim, Bursa, Turkey
| | - Baris Yaman
- Department of Environmental Engineering, Faculty of Engineering, Dokuz Eylul University, Tinaztepe Campus, 35160, Buca, Izmir, Turkey
| | - Ersan Gunel
- Department of Environmental Engineering, Faculty of Engineering, Dokuz Eylul University, Tinaztepe Campus, 35160, Buca, Izmir, Turkey
| | - Yetkin Dumanoglu
- Department of Environmental Engineering, Faculty of Engineering, Dokuz Eylul University, Tinaztepe Campus, 35160, Buca, Izmir, Turkey
| | - Liisa Jantunen
- Air Quality Processes Research Section, Environment and Climate Change Canada, Egbert, ON, L0L 1N0, Canada
| |
Collapse
|
12
|
Amirbekov A, Strojsova M, Nemecek J, Riha J, Hrabak P, Arias C, Sevcu A, Černík M. Biodiversity in wetland+ system: a passive solution for HCH dump effluents. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:3095-3109. [PMID: 38154796 PMCID: wst_2023_395 DOI: 10.2166/wst.2023.395] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
The hexachlorocyclohexane isomers (HCH) are long-banned pesticides. Even though their use has been prohibited for decades, their presence in the environment is still reported worldwide. Wetland + is a registered trademark of the remedial treatment technology consisting of an aerobic sedimentary tank, a permeable reactive barrier, a biosorption system, and an aerobic wetland. This proven method combines a reductive treatment known from PRBs with the natural wetland self-cleaning processes. The average efficiency of the system is 96.8% for chlorobenzenes (ClB) and 81.7% for HCH, during the first 12 months of the system operation. The presence of the genes encoding enzymes involved in the degradation of the HCH compounds indicates that the removal of HCH and ClB occurs not only by chemical removal but also through aerobic and anaerobic combining biodegradation. Changes in abundance and the composition of the diatom community were found to be suitable indicators of the water quality and of the impact of the Wetland + operation on the water ecosystem. The system's annual operation exhibited a markedly higher number of diatom species in the closing profiles of the Ostrovský Creek, the Wetland + effluent recipient.
Collapse
Affiliation(s)
- Aday Amirbekov
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 7, Liberec 460 01, Czech Republic E-mail:
| | - Martina Strojsova
- Faculty of Science, Humanities and Education, Technical University of Liberec, Trebízskeho 1244/2, Liberec 460 01, Czech Republic
| | - Jan Nemecek
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 7, Liberec 460 01, Czech Republic
| | - Jakub Riha
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 7, Liberec 460 01, Czech Republic
| | - Pavel Hrabak
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 7, Liberec 460 01, Czech Republic
| | - Carlos Arias
- Department of Biology, Aquatic Biology, Ole Worms Allé 1, Aarhus University, Aarhus C 8000, Denmark; WATEC Aarhus University Centre for Water Technology, Aarhus University, Ole Worms Allé 3, Building 1171, Aarhus C 8000, Denmark
| | - Alena Sevcu
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 7, Liberec 460 01, Czech Republic; Faculty of Science, Humanities and Education, Technical University of Liberec, Trebízskeho 1244/2, Liberec 460 01, Czech Republic
| | - Miroslav Černík
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 7, Liberec 460 01, Czech Republic
| |
Collapse
|
13
|
Desalegn AA, van der Ent W, Lenters V, Iszatt N, Stigum H, Lyche JL, Berg V, Kirstein-Smardzewska KJ, Esguerra CV, Eggesbø M. Perinatal exposure to potential endocrine disrupting chemicals and autism spectrum disorder: From Norwegian birth cohort to zebrafish studies. ENVIRONMENT INTERNATIONAL 2023; 181:108271. [PMID: 37879205 DOI: 10.1016/j.envint.2023.108271] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND The etiology of autism spectrum disorder (ASD) is multifactorial, involving genetic and environmental contributors such as endocrine-disrupting chemicals (EDCs). OBJECTIVE To evaluate the association between perinatal exposure to 27 potential EDCs and ASD among Norwegian children, and to further examine the neurodevelopmental toxicity of associated chemicals using zebrafish embryos and larvae. METHOD 1,199 mothers enrolled in the prospective birth-cohort (HUMIS, 2002-2009) study. Breastmilk levels of 27 chemicals were measured: polychlorinated biphenyls, organochlorine pesticides, polybrominated diphenyl ethers, and perfluoroalkyl substances as a proxy for perinatal exposure. We employed multivariable logistic regression to determine association, utilized elastic net logistic regression as variable selection method, and conducted an in vivo study with zebrafish larvae to confirm the neurodevelopmental effect. RESULTS A total of 20 children had specialist confirmed diagnosis of autism among 1,199 mother-child pairs in this study. β-Hexachlorocyclohexane (β-HCH) was the only chemical associated with ASD, after adjusting for 26 other chemicals. Mothers with the highest levels of β-HCH in their milk had a significant increased risk of having a child with ASD (OR = 1.82, 95 % CI: 1.20, 2.77 for an interquartile range increase in ln-transformed β-HCH concentration). The median concentration of β-HCH in breast milk was 4.37 ng/g lipid (interquartile range: 2.92-6.47), and the estimated daily intake (EDI) for Norwegian children through breastfeeding was 0.03 µg/kg of body weight. The neurodevelopmental and social behavioral effects of β-HCH were established in zebrafish embryos and larvae across various concentrations, with further analysis suggesting that perturbation of dopaminergic neuron development may underlie the neurotoxicity associated with β-HCH. CONCLUSIONS Prenatal exposure to β-HCH was associated with an increased risk of specialist-confirmed diagnoses of ASD among Norwegian children, and the EDI surpasses the established threshold. Zebrafish experiments confirm β-HCH neurotoxicity, suggesting dopaminergic neuron disruption as a potential underlying mechanism.
Collapse
Affiliation(s)
- Anteneh Assefa Desalegn
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, 0456, Oslo, Norway; Pharmacoepidemiology and Drug Safety Research Group, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Wietske van der Ent
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway (NCMM), Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Virissa Lenters
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, 0456, Oslo, Norway
| | - Nina Iszatt
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, 0456, Oslo, Norway
| | - Hein Stigum
- Department of Non-Communicable Diseases, Norwegian Institute of Public Health, Oslo, Norway
| | - Jan Ludvig Lyche
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 369 Sentrum, NO-0102, Oslo, Norway
| | - Vidar Berg
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 369 Sentrum, NO-0102, Oslo, Norway
| | - Karolina J Kirstein-Smardzewska
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway (NCMM), Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Camila Vicencio Esguerra
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway (NCMM), Faculty of Medicine, University of Oslo, Oslo, Norway; Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Merete Eggesbø
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, 0456, Oslo, Norway; Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; Department of Occupational and Environmental Medicine, University Hospital of North Norway, Tromsø, Norway.
| |
Collapse
|
14
|
Zhang Z, Zhou Z, Liu X, Zhang H, Xu H, Lin C, He M, Ouyang W. Mechanochemical remediation of lindane-contaminated soils assisted by CaO: Performance, mechanism and overall assessment. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131985. [PMID: 37413802 DOI: 10.1016/j.jhazmat.2023.131985] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/14/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
Soil contamination caused by persistent organic pollutants (POPs) has been a worldwide concern for decades. With lindane-contaminated soil as the target, a mechanochemical method assisted by CaO was comprehensively evaluated in terms of its remediation performance, degradation mechanism and overall assessment. The mechanochemical degradation performance of lindane in cinnamon soil or kaolin was determined under different additives, lindane concentrations and milling conditions. 2,2-Diphenyl-1-(2,4,6-trinitrophenyl) hydrazinyl free radical (DPPH•) and electron spin resonance (ESR) tests evidenced that the degradation of lindane in soil was caused mainly by the mechanical activation of CaO to produce free electrons (e-) and the alkalinity of the generated Ca(OH)2. Dehydrochlorination or dechlorination by elimination, alkaline hydrolysis, hydrogenolysis and the subsequent carbonization were the main degradation pathways of lindane in soil. The main final products included monochlorobenzene, carbon substances and methane. The mechanochemical method with CaO was proved to also efficiently degrade lindane in three other soils and other hexachlorocyclohexane isomers and POPs in soil. The soil properties and soil toxicity after remediation were assessed. This work presents a relatively clear discussion of various aspects of the mechanochemical remediation of lindane-contaminated soil assisted by CaO.
Collapse
Affiliation(s)
- Zhenguo Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Zhou Zhou
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; North China Power Engineering CO., Ltd of China Power Engineering Group, Beijing 100120, China
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Hui Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Hengpu Xu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
15
|
Ayri I, Genisoglu M, Sofuoglu A, Kurt-Karakus PB, Birgul A, Sofuoglu SC. The effect of military conflict zone in the Middle East on atmospheric persistent organic pollutant contamination in its north. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:162966. [PMID: 36958550 DOI: 10.1016/j.scitotenv.2023.162966] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 05/13/2023]
Abstract
This study aimed to investigate long-range atmospheric transport of selected POPs released due to the effects of military conflicts in regions to the south of Turkey's borders. Ten locations were selected to deploy passive air samplers at varying distances to the border on a southeast-west transect of the country, proximity-grouped as close, middle, and far. Sampling campaign included winter and transition months when desert dust transport events occur. Hypothesis of the study was that a decreasing trend would be observed with increasing distance to the border. Group comparisons based on statistical testing showed that PBDE-183, Σ45PCB, and dieldrin in winter; PBDE-28, PBDE-99, PBDE-154, p,p'-DDE, Σ14PBDE, and Σ25OCP in the transition period; and PBDE-28, PBDE-85, PBDE-99, PBDE-154, PBDE-190, PCB-52, Σ45PCB, p,p'-DDE, and Σ25OCP over the whole campaign had a decreasing trend on the transect. An analysis of concentration ratio to the background showed that long-range atmospheric transport impacted the study sites, especially those of close group in comparison to the local sources. Back-trajectory analyses indicated that there was transport from the conflict areas to sites in the close-proximity group, while farther sampling locations mostly received air masses from Europe, Russia, and former Soviet Union countries, followed by North Africa, rather than the military conflict areas. In consequence, decrease in concentrations with distance and its relation to molecular weight through proportions, diagnostic ratios, analysis of concentration ratio to the background, and back-trajectory analyses support the effect of transport from the military-conflict area to its north.
Collapse
Affiliation(s)
- Ilknur Ayri
- Izmir Institute of Technology, Dept. of Environmental Engineering, Izmir, Turkey
| | - Mesut Genisoglu
- Izmir Institute of Technology, Dept. of Environmental Engineering, Izmir, Turkey
| | - Aysun Sofuoglu
- Izmir Institute of Technology, Dept. of Chemical Engineering, Izmir, Turkey
| | | | - Askin Birgul
- Bursa Technical University, Dept. of Environmental Engineering, Bursa, Turkey
| | - Sait C Sofuoglu
- Izmir Institute of Technology, Dept. of Environmental Engineering, Izmir, Turkey.
| |
Collapse
|
16
|
Simukoko CK, Mwakalapa EB, Muzandu K, Mutoloki S, Evensen Ø, Ræder EM, Müller MB, Polder A, Lyche JL. Persistent organic pollutants (POPs) and per- and polyfluoroalkyl substances (PFASs) in liver from wild and farmed tilapia (Oreochromis niloticus) from Lake Kariba, Zambia: Levels and geographic trends and considerations in relation to environmental quality standards (EQSs). ENVIRONMENTAL RESEARCH 2023:116226. [PMID: 37247651 DOI: 10.1016/j.envres.2023.116226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/29/2023] [Accepted: 05/22/2023] [Indexed: 05/31/2023]
Abstract
The current study was carried out to investigate a wide variety of persistent organic pollutants (POPs) in wild and farmed tilapia (Oreochromis niloticus) in Lake Kariba, Zambia, and assess levels of POPs in relation to Environmental Quality Standards (EQSs). Concentrations of organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), polybrominated diphenyls (PBDEs), and perfluoroalkyl substances (PFASs) were determined in liver samples of tilapia. PFASs compounds PFOS, PFDA and PFNA were only detected in wild fish, with the highest median PFOS levels in site 1 (0.66 ng/g ww). Concentrations of POPs were in general highest in wild tilapia. The highest median ∑DDTs (93 and 81 ng/g lw) were found in wild tilapia from sites 1 and 2, respectively 165 km and 100 km west of the fish farms. Lower DDE/DDT ratios in sites 1 and 3 may indicate relatively recent exposure to DDT. The highest median of ∑17PCBs (3.2 ng/g lw) and ∑10PBDEs (8.1 ng/g lw) were found in wild tilapia from sites 1 and 2, respectively. The dominating PCB congeners were PCB-118, -138, -153 and -180 and for PBDEs, BDE-47, -154, and -209. In 78% of wild fish and 8% of farmed fish ∑6PBDE concentrations were above EQSbiota limits set by the EU. This warrants further studies.
Collapse
Affiliation(s)
- Chalumba Kachusi Simukoko
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003 NMBU, 1432 Ås, Norway; Department of Biomedical Sciences, School of Veterinary Medicine, University of Zambia, P. O. Box 32379 Lusaka, Zambia
| | - Eliezer Brown Mwakalapa
- Department of Natural Sciences, Mbeya University of Science and Technology, P. O. Box 131, Mbeya, Tanzania
| | - Kaampwe Muzandu
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Zambia, P. O. Box 32379 Lusaka, Zambia
| | - Stephen Mutoloki
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003 NMBU, 1432 Ås, Norway
| | - Øystein Evensen
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003 NMBU, 1432 Ås, Norway
| | - Erik Magnus Ræder
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003 NMBU, 1432 Ås, Norway
| | - Mette Bjørge Müller
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003 NMBU, 1432 Ås, Norway
| | - Anuschka Polder
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003 NMBU, 1432 Ås, Norway.
| | - Jan Ludvig Lyche
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003 NMBU, 1432 Ås, Norway
| |
Collapse
|
17
|
Zhang S, Liu Z, Li S, Zhang S, Fu H, Tu X, Xu W, Shen X, Yan K, Gan P, Feng X. Remediation of lindane contaminated soil by fluidization-like dielectric barrier discharge. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130164. [PMID: 36308938 DOI: 10.1016/j.jhazmat.2022.130164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
This study proposed the fluidization-like dielectric barrier discharge (DBD) plasma for the remediation of lindane contaminated soil and integrated physical and chemical reaction pathway. Soil particle distribution within the reactor was simulated with Euler-Euler and Gidaspow drag models, and a bipolar pulsed power supply was applied to energize the DBD reactor after full fluidized. The effect of soil particles movement on electric features was discussed in terms of voltage waveforms and Lissajous figures. Lindane degradation was found to be related to electrics parameters and soil properties. Soil samples before and after treatment were analyzed by XRD and SEM methods. A 95.98% lindane decomposition and 0.66 mgLindane/h average reaction rate were obtained with 3 wt% CaO injection by pulse power drove fluidization-like DBD after 32 min treatment. Ozone was proved to play a major role during lindane degrading by plasma. The reaction potential pathway of lindane decomposition contains 4 steps, including dehydrogen, dehydrochlorination, and dechlorination, respectively.
Collapse
Affiliation(s)
- Shuo Zhang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhen Liu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Shuran Li
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Shihao Zhang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hui Fu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xuan Tu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wenyi Xu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xing Shen
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Keping Yan
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030002, China
| | - Ping Gan
- State Environmental Protection Engineering Technology Center for Industrial Contaminated Site and Groundwater Remediation, Cecep Dadi (Hangzhou) Environmental Remediation Co., Ltd, Hangzhou 310017, China
| | - Xiujuan Feng
- The School of Mines, China University of Mining and Technology, Xuzhou 221116, China
| |
Collapse
|
18
|
Chen Q, Shi H, Liang Y, Qin L, Zeng H, Song X. Degradation Characteristics and Remediation Ability of Contaminated Soils by Using β-HCH Degrading Bacteria. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2767. [PMID: 36833464 PMCID: PMC9957227 DOI: 10.3390/ijerph20042767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Three degradation strains that can utilize β-Hexachlorocyclohexanes (β-HCH) as the sole carbon source were isolated from the soil substrate of constructed wetland under long-term β-HCH stress, and they were named A1, J1, and M1. Strains A1 and M1 were identified as Ochrobactrum sp. and strain J1 was identified as Microbacterium oxydans sp. by 16S rRNA gene sequence analysis. The optimum conditions for degradation with these three strains, A1, J1, and M1, were pH = 7, 30 °C, and 5% inoculum amount, and the degradation rates of 50 μg/L β-HCH under these conditions were 58.33%, 51.96%, and 50.28%, respectively. Degradation characteristics experiments showed that root exudates could increase the degradation effects of A1 and M1 on β-HCH by 6.95% and 5.82%, respectively. In addition, the degradation bacteria A1 and J1 mixed in a ratio of 1:1 had the highest degradation rate of β-HCH, which was 69.57%. An experiment on simulated soil remediation showed that the compound bacteria AJ had the best effect on promoting the degradation of β-HCH in soil within 98 d, and the degradation rate of β-HCH in soil without root exudates was 60.22%, whereas it reached 75.02% in the presence of root exudates. The addition of degradation bacteria or degradation bacteria-root exudates during soil remediation led to dramatic changes in the community structure of the soil microorganisms, as well as a significant increase in the proportion of aerobic and Gram-negative bacterial groups. This study can enrich the resources of β-HCH degrading strains and provided a theoretical basis for the on-site engineering treatment of β-HCH contamination.
Collapse
Affiliation(s)
- Qing Chen
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Huijun Shi
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Yanpeng Liang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China
- Collaborative Innovation Center for Water Pollution Control and Water Security in Karst Region, Guilin University of Technology, Guilin 541004, China
| | - Litang Qin
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China
| | - Honghu Zeng
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
- Collaborative Innovation Center for Water Pollution Control and Water Security in Karst Region, Guilin University of Technology, Guilin 541004, China
| | - Xiaohong Song
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
19
|
Zhu M, Liu Y, Xu J, He Y. Compound-specific stable isotope analysis for characterization of the transformation of γ-HCH induced by biochar. CHEMOSPHERE 2023; 314:137729. [PMID: 36603676 DOI: 10.1016/j.chemosphere.2022.137729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/23/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
The role of biochar as the redox catalyst in the removal of reductive pollutants from soil and water system has been extensively studied recently, but there is still a lack of qualitative description of its specific mechanisms in redox processes. In this study, the mechanism of biochar in the transformation process of γ-HCH under anoxic condition was revealed by the compound-specific isotope analysis. The concentration and carbon isotopic composition (δ13C) of γ-HCH were detected in the treatments with different initial concentrations of γ-HCH and biochar materials with different redox properties and varied doses. The surface functional groups and electrochemical properties of biochar before and after the reaction were also characterized. The addition amount of biochar could affect the reduction of γ-HCH concentration, which were 59.1%, 34.6% and 22.4% in treatments with the addition of 5%, 1% and 0.2% biochar, respectively. Meanwhile, the δ13C value of γ-HCH also increased from -26.6 ± 0.2‰ to -23.8 ± 0.2‰ with the addition amount of biochar, especially in the treatment with 5% biochar. As evidenced by X-ray diffraction analysis and electrochemical analysis, biochar promoted the adsorption and transformation of γ-HCH simultaneously, and the oxygen-containing functional groups on the surface of biochar played an important role in the redox process. The isotopic fractionation value (εC) of γ-HCH transformation by biochar was first reported as -3.4 ± 0.4‰. The results will enable the quantitative description of the transformation degree of organic pollutants induced by biochar, and provide a new approach for evaluating the in-situ remediation effects of biochar in a complex environment.
Collapse
Affiliation(s)
- Min Zhu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Hangzhou, 310058, China
| | - Yaqing Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Jianming Xu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yan He
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Hangzhou, 310058, China.
| |
Collapse
|
20
|
Jaiswal S, Singh DK, Shukla P. Degradation effectiveness of hexachlorohexane (ϒ-HCH) by bacterial isolate Bacillus cereus SJPS-2, its gene annotation for bioremediation and comparison with Pseudomonas putida KT2440. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120867. [PMID: 36528203 DOI: 10.1016/j.envpol.2022.120867] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 11/19/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
The contamination of Hexachlorohexane (Lindane) in soil and water has toxic effects due to its persistent nature. In our study, an indigenous HCH (gamma isomer) degrading bacterium viz Bacillus cereus SJPS-2 was isolated from Yamuna river water using enrichment culture method. The growth curve indicated that Bacillus cereus SJPS-2 was able to degrade ϒ-HCH effectively with 80.98% degradation. Further, process was improved by using immobilization using alginate beads which showed enhanced degradation (89.34%). Interestingly, in presence of fructose, the ϒ-HCH degradation was up to 79.24% with exponential growth curve whereas the degradation was only 5.61% in presence of glucose revealing diauxic growth curve. Furthermore, The FTIR results confirmed the potential lindane degradation capability of Bacillus cereus SJPS-2 and the bonds were recorded at wavelengths viz. 2900-2500 cm-1, 3300-2800 cm-1 and 785-540 cm-1. Similarity, the GC studies also reconfirmed the degradation potential with retention time (RT) of ethyl acetate and lindane was 2.12 and 11.0 respectively. Further, we studied the metabolic pathway involved for lindane utilization in Bacillus cereus using KEGG-KASS and functional gene annotation through Rapid Annotation using Subsystems Technology (RAST) resulted in the annotation of the lin genes (lin A, lin B, lin C, lin X, lin D, lin E) and respective encoding enzymes. The comparative ϒ-HCH degradation potential of B. cereus and P. putida KT2440 was also evaluated. The island viewer showed the different colors on circular genome indicate the coordinates of genomic islands resulted with some common genomic islands (GEIs) between both bacteria indicating the possibility of horizontal gene transfer at contaminated site or natural environment. These genomic islands (GEIs) contribute in the rearrangement genetic material or to evolve bacteria in stress conditions, as a result the metabolic pathways evolve by formation of catabolic genes. This study establishes the potential of Bacillus cereus SJPS-2 for effectual ϒ-HCH degradation.
Collapse
Affiliation(s)
- Shweta Jaiswal
- Department of Microbiology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Dileep Kumar Singh
- Soil Microbial Ecology and Environmental Toxicology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Pratyoosh Shukla
- Department of Microbiology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India; Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
21
|
Kleoff M, Voßnacker P, Riedel S. The Rise of Trichlorides Enabling an Improved Chlorine Technology. Angew Chem Int Ed Engl 2023; 62:e202216586. [PMID: 36622244 DOI: 10.1002/anie.202216586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/10/2023]
Abstract
Chlorine plays a central role for the industrial production of numerous materials with global relevance. More recently, polychlorides have been evolved from an area of academic interest to a research topic with enormous industrial potential. In this minireview, the value of trichlorides for chlorine storage and chlorination reactions are outlined. Particularly, the inexpensive ionic liquid [NEt3 Me][Cl3 ] shows a similar and sometimes even advantageous reactivity compared to chlorine gas, while offering a superior safety profile. Used as a chlorine storage, [NEt3 Me][Cl3 ] could help to overcome the current limitations of storing and transporting chlorine in larger quantities. Thus, trichlorides could become a key technique for the flexibilization of the chlorine production enabling an exploitation of renewable, yet fluctuating, electrical energy. As the loaded storage, [NEt3 Me][Cl3 ], is a proven chlorination reagent, it could directly be employed for downstream processes, paving the path to a more practical and safer chlorine industry.
Collapse
Affiliation(s)
- Merlin Kleoff
- Fachbereich Biologie, Chemie, Pharmazie, Institut für Chemie und Biochemie-Anorganische Chemie, Fabeckstr. 34/36, 14195, Berlin, Germany
| | - Patrick Voßnacker
- Fachbereich Biologie, Chemie, Pharmazie, Institut für Chemie und Biochemie-Anorganische Chemie, Fabeckstr. 34/36, 14195, Berlin, Germany
| | - Sebastian Riedel
- Fachbereich Biologie, Chemie, Pharmazie, Institut für Chemie und Biochemie-Anorganische Chemie, Fabeckstr. 34/36, 14195, Berlin, Germany
| |
Collapse
|
22
|
Santos A, García-Cervilla R, Checa-Fernández A, Domínguez CM, Lorenzo D. Acute Toxicity Evaluation of Lindane-Waste Contaminated Soils Treated by Surfactant-Enhanced ISCO. Molecules 2022; 27:molecules27248965. [PMID: 36558105 PMCID: PMC9786798 DOI: 10.3390/molecules27248965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
The discharge of lindane wastes in unlined landfills causes groundwater and soil pollution worldwide. The liquid waste generated (a mixture of 28 chlorinated organic compounds, COCs) constitutes a dense non-aqueous phase liquid (DNAPL) that is highly persistent. Although in situ chemical oxidation (ISCO) is effective for degrading organic pollutants, the low COCs solubility requires high reaction times. Simultaneous injection of surfactants and oxidants (S-ISCO) is a promising technology to solve the limitation of ISCO treatment. The current work studies the remediation of highly polluted soil (COCs = 3682 mg/kg) obtained at the Sardas landfill (Sabiñáñigo, Spain) by ISCO and S-ISCO treatments. Special attention is paid to acute soil toxicity before and after the soil treatment. Microtox®, modified Basic Solid-Phase Test (mBSPT) and adapted Organic Solvent Sample Solubilization Test (aOSSST) were used for this scope. Persulfate (PS, 210 mM) activated by alkali (NaOH, 210 mM) was used in both ISCO and S-ISCO runs. A non-ionic and biodegradable surfactant selected in previous work, Emulse®3 (E3, 5, and 10 g/L), was applied in S-ISCO experiments. Runs were performed in soil columns filled with 50 g of polluted soil, with eight pore volumes (Pvs) of the reagents injected and 96 h between successive Pv injections. The total treatment time was 32 days. The results were compared with those corresponding without surfactant (ISCO). After remediation treatments, soils were water-washed, simulating the conditions of groundwater flux in the subsoil. The treatments applied highly reduced soil toxicity (final soil toxicity equivalent to that obtained for non-contaminated soil, mBSPT) and organic extract toxicity (reduction > 95%, aOSSST). Surfactant application did not cause an increase in the toxicity of the treated soil, highlighting its suitability for full-scale applications.
Collapse
|
23
|
Liu Y, Fu J, Wu L, Kümmel S, Nijenhuis I, Richnow HH. Characterization of Hexachlorocyclohexane Isomer Dehydrochlorination by LinA1 and LinA2 Using Multi-element Compound-Specific Stable Isotope Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16848-16856. [PMID: 36397208 DOI: 10.1021/acs.est.2c05334] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Dehydrochlorination is one of the main (thus far discovered) processes for aerobic microbial transformation of hexachlorocyclohexane (HCH) which is mainly catalyzed by LinA enzymes. In order to gain a better understanding of the reaction mechanisms, multi-element compound-specific stable isotope analysis was applied for evaluating α- and γ-HCH transformations catalyzed by LinA1 and LinA2 enzymes. The isotopic fractionation (εE) values for particular elements of (+)α-HCH (εC = -10.8 ± 1.0‰, εCl = -4.2 ± 0.5‰, εH = -154 ± 16‰) were distinct from the values for (-)α-HCH (εC = -4.1 ± 0.7‰, εCl = -1.6 ± 0.2‰, εH = -68 ± 10‰), whereas the dual-isotope fractionation patterns were almost identical for both enantiomers (ΛC-Cl = 2.4 ± 0.4 and 2.5 ± 0.2, ΛH-C = 12.9 ± 2.4 and 14.9 ± 1.1). The εE of γ-HCH transformation by LinA1 and LinA2 were -7.8 ± 1.0‰ and -7.5 ± 0.8‰ (εC), -2.7 ± 0.3‰ and -2.5 ± 0.4‰ (εCl), -170 ± 25‰ and -150 ± 13‰ (εH), respectively. Similar ΛC-Cl values (2.7 ± 0.2 and 2.9 ± 0.2) were observed as well as similar ΛH-C values (20.1 ± 2.0 and 18.4 ± 1.9), indicating a similar reaction mechanism by both enzymes during γ-HCH transformation. This is the first data set on 3D isotope fractionation of α- and γ-HCH enzymatic dehydrochlorination, which gave a more precise characterization of the bond cleavages, highlighting the potential of multi-element compound-specific stable isotope analysis to characterize different transformation processes (e.g., dehydrochlorination and reductive dehalogenation).
Collapse
Affiliation(s)
- Yaqing Liu
- College of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Guangxi University, Daxue Road 100, Nanning530004, P.R. China
| | - Juan Fu
- College of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Guangxi University, Daxue Road 100, Nanning530004, P.R. China
| | - Langping Wu
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, Leipzig04318, Germany
- Ecometrix Incorporated, 6800 Campobello Road, Mississauga, OntarioL5N 2L8, Canada
| | - Steffen Kümmel
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, Leipzig04318, Germany
| | - Ivonne Nijenhuis
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, Leipzig04318, Germany
| | - Hans H Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, Leipzig04318, Germany
- Isodetect, Deutscher Platz 5b, Leipzig04103, Germany
| |
Collapse
|
24
|
Reprogramming of glycolysis by chemical carcinogens during tumor development. Semin Cancer Biol 2022; 87:127-136. [PMID: 36265806 DOI: 10.1016/j.semcancer.2022.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022]
Abstract
Indiscriminate usage and mismanagement of chemicals in the agricultural and industrial sectors have contaminated different environmental compartments. Exposure to these persistent and hazardous pollutants like heavy metals, endocrine disruptors, aromatic hydrocarbons, and pesticides can result in various health adversities, including cancer. Chemical carcinogens follow a similar pattern of carcinogenesis, like oxidative stress, chromosomal aberration, DNA double-strand break, mismatch repair, and misregulation of oncogenic and/or tumor suppressors. Out of several cancer-associated endpoints, cellular metabolic homeostasis is the commonest to be deregulated upon chemical exposure. Chemical carcinogens hamper glycolytic reprogramming to fuel the malignant transformation of the cells and/or promote cancer progression. Several regulators like Akt, ERK, Ras, c-Myc, HIF-1α, and p53 regulate glycolysis in chemical-induced carcinogenesis. However, the deregulation of the anabolic biochemistry of glucose during chemical-induced carcinogenesis remains to be uncovered. This review comprehensively covers the environmental chemical-induced glycolytic shift during carcinogenesis and its mechanism. The focus is also to fill the major gaps associated with understanding the fairy tale between environmental carcinogens and metabolic reprogramming. Although evidence from studies regarding glycolytic reprogramming in chemical carcinogenesis provides valuable insights into cancer therapy, exposure to a mixture of toxicants and their mechanism of inducing carcinogenesis still needs to be studied.
Collapse
|
25
|
Iakovides M, Oikonomou K, Sciare J, Mihalopoulos N. Evidence of stockpile contamination for legacy polychlorinated biphenyls and organochlorine pesticides in the urban environment of Cyprus (Eastern Mediterranean): Influence of meteorology on air level variability and gas/particle partitioning based on equilibrium and steady-state models. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129544. [PMID: 35908394 DOI: 10.1016/j.jhazmat.2022.129544] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
The present study investigated comprehensively the atmospheric occurrence and fate of an extensive range of polychlorinated biphenyls (PCBs; forty-two congeners), organochlorine pesticides (OCPs; twenty-seven emerging and legacy agrochemicals) and polycyclic aromatic hydrocarbons (PAHs; fifty parent and alkylated members, including the non USEPA-16 listed toxic ones), in both gas and particulate phase of the scarcely monitored atmosphere over Cyprus for the first time. Parent-metabolite concentration ratios suggested fresh application for dichlorodiphenyl-trichloroethanes (DDTs), dicofol, hexachlorocyclohexanes, endosulfan and chlorothalonil, particularly during spring (April-May). Regressions of logarithms of partial pressure against ambient temperature revealed that secondary recycling from contaminated terrestrial surfaces regulates the atmospheric level variability of PCBs, DDTs, aldrin, chlordane, dicofol, heptachlor and endosulfan. Enthalpies of surface-air exchange (∆HSA) calculated from Clausius-Clapeyron equations were significantly correlated to vaporization enthalpies (∆HV) determined by chromatographic techniques, corroborating presence of potential stockpile-contaminated sites around the study area. The Harner-Bidleman equilibrium model simulating urban areas, and the Li-Jia empirical model, predicted better the partitioning behavior of PAHs (<four-ring parent and alkylated members), PCBs (<hexa-chlorobiphenyls), and OCPs, respectively. For heavier PAHs and PCBs, partitioning coefficients (KP) were inadequately predicted by the Li-Ma-Yang steady-state model, probably due to local human activities and regional transport in the study area.
Collapse
Affiliation(s)
- Minas Iakovides
- Climate and Atmosphere Research Center, The Cyprus Institute, 20, Konstantinou Kavafi Street, 2121 Aglantzia, Cyprus.
| | - Konstantina Oikonomou
- Climate and Atmosphere Research Center, The Cyprus Institute, 20, Konstantinou Kavafi Street, 2121 Aglantzia, Cyprus
| | - Jean Sciare
- Climate and Atmosphere Research Center, The Cyprus Institute, 20, Konstantinou Kavafi Street, 2121 Aglantzia, Cyprus
| | - Nikos Mihalopoulos
- Climate and Atmosphere Research Center, The Cyprus Institute, 20, Konstantinou Kavafi Street, 2121 Aglantzia, Cyprus; Chemistry Department, University of Crete, 71003 Heraklion, Crete, Greece; Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Palaia Penteli, 15236 Athens, Greece
| |
Collapse
|
26
|
Li Y, Liu Y, Zhang X, Tian K, Tan D, Song X, Wang P, Jiang Q, Lu J. Electrochemical Reduction and Oxidation of Chlorinated Aromatic Compounds Enhanced by the Fe-ZSM-5 Catalyst: Kinetics and Mechanisms. ACS OMEGA 2022; 7:33500-33510. [PMID: 36157725 PMCID: PMC9494633 DOI: 10.1021/acsomega.2c04458] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Devising cost-effective electrochemical catalyst system for the efficient degradation of chlorinated aromatic compounds is urgently needed for environmental pollution control. Herein, a Fe-ZSM-5 zeolite was used as a suspended catalyst to facilitate the degradation of lindane as a model chlorinated pesticide in an electrochemical system consisting of the commercial DSA (Ti/RuO2-IrO2) anode and graphite cathode. It was found that the Fe-ZSM-5 zeolite greatly accelerated the degradation of lindane, with the degradation rate constant more than 8 times higher than that without Fe-ZSM-5. In addition, the Fe-ZSM-5 zeolite widened the working pH range from 3 to 11, while efficient degradation of lindane in the absence of Fe-ZSM-5 was only obtained at pH ≤ 5. The degradation of lindane was primarily due to reductive dechlorination mediated by atomic H* followed by •OH oxidation. Fe-ZSM-5 zeolite could enrich lindane, H*, and •OH on its surface, thus provided a suitable local environment for lindane degradation. The Fe-ZSM-5 zeolite exhibited high stability and reusability, and reduced the energy consumption. This research provides a potential reduction-oxidation strategy for removing organochlorine compounds through a cost-efficient Fe-ZSM-5 catalytic electrochemical system.
Collapse
Affiliation(s)
- Yuexuan Li
- Key
Laboratory of Soil Environment and Pollution Remediation, Institute
of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- Lanzhou
Jiaotong University, Lanzhou 730070, China
| | - Yun Liu
- Key
Laboratory of Soil Environment and Pollution Remediation, Institute
of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University
of Chinese Academy of Sciences, Beijing 100000, China
| | - Xuan Zhang
- Lanzhou
Jiaotong University, Lanzhou 730070, China
| | - Kun Tian
- Key
Laboratory of Soil Environment and Pollution Remediation, Institute
of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University
of Chinese Academy of Sciences, Beijing 100000, China
| | - Ding Tan
- Key
Laboratory of Soil Environment and Pollution Remediation, Institute
of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University
of Chinese Academy of Sciences, Beijing 100000, China
| | - Xiaosan Song
- Lanzhou
Jiaotong University, Lanzhou 730070, China
| | - Ping Wang
- Lanzhou
Jiaotong University, Lanzhou 730070, China
| | - Qian Jiang
- Key
Laboratory of Soil Environment and Pollution Remediation, Institute
of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Junhe Lu
- College
of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
27
|
Lee M, Lee S, Noh S, Park KS, Yu SM, Lee S, Do YS, Kim YH, Kwon M, Kim H, Park MK. Assessment of organochlorine pesticides in the atmosphere of South Korea: spatial distribution, seasonal variation, and sources. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:754. [PMID: 36083375 DOI: 10.1007/s10661-022-10335-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Organochlorine pesticides (OCPs) are widely used in certain countries. We determined atmospheric concentrations, distribution patterns, and seasonal variations of OCPs at four sites in South Korea for 1 year. Samples of 22 OCPs were collected using a high-volume air sampler, and measured via the isotope dilution method with HRGC/HRMS. In South Korea, pentachlorobenzene (PeCB), hexachlorocyclohexane (HCB), and endosulfan (EnSF) were dominant, accounting for > 87% of total OCPs. Spatial distributions showed significant differences and the highest levels were observed in Seosan (295.2 pg·m-3), indicating the compounding potential of diverse sources as Seosan has concentrated large-scale industrial complexes and agricultural activity (Seoul: 243.6 pg·m-3 > Jeju: 193.5 pg·m-3 > Baengnyeong: 178.2 pg·m-3). The isomeric ratios of OCPs in the South Korean atmosphere indicated that the dominant sources of HCB and dichlorodiphenyltrichloroethane were primarily used in the past; meanwhile, chlordane (CHL) and EnSFs were derived from recent material inputs. Seasonally, OCP concentrations largely peaked in summer with minimum values in winter. This apparent temperature dependence suggests the re-volatilization of accumulated chemicals into the atmosphere. Additionally, an air mass back trajectory indicated the influence of pollutants released from a reservoir through long-range atmospheric transport in the summer. In particular, restricted OCPs are primarily released into the atmosphere by inadvertent sources, such as industrial activities and volatilization from contaminated areas. Thus, severe OCP pollution in Korea is due to the mobile nature of the particles. These data can be useful for the continuous monitoring of long-range transported air pollutants that are transferred between countries.
Collapse
Affiliation(s)
- Myungsup Lee
- Chemical Research Division, National Institute of Environmental Research (NIER), 42, Hwangyeong-ro, Seo-gu, Incheon, 22689, Republic of Korea
| | - Sumin Lee
- Chemical Research Division, National Institute of Environmental Research (NIER), 42, Hwangyeong-ro, Seo-gu, Incheon, 22689, Republic of Korea
| | - Seam Noh
- Chemical Research Division, National Institute of Environmental Research (NIER), 42, Hwangyeong-ro, Seo-gu, Incheon, 22689, Republic of Korea
| | - Kwang-Su Park
- Chemical Research Division, National Institute of Environmental Research (NIER), 42, Hwangyeong-ro, Seo-gu, Incheon, 22689, Republic of Korea
| | - Seok Min Yu
- Chemical Research Division, National Institute of Environmental Research (NIER), 42, Hwangyeong-ro, Seo-gu, Incheon, 22689, Republic of Korea
| | - Seunghwa Lee
- Chemical Research Division, National Institute of Environmental Research (NIER), 42, Hwangyeong-ro, Seo-gu, Incheon, 22689, Republic of Korea
| | - Young-Sun Do
- Chemical Research Division, National Institute of Environmental Research (NIER), 42, Hwangyeong-ro, Seo-gu, Incheon, 22689, Republic of Korea
| | - Young Hee Kim
- Chemical Research Division, National Institute of Environmental Research (NIER), 42, Hwangyeong-ro, Seo-gu, Incheon, 22689, Republic of Korea
| | - Myunghee Kwon
- Chemical Research Division, National Institute of Environmental Research (NIER), 42, Hwangyeong-ro, Seo-gu, Incheon, 22689, Republic of Korea
| | - Hyunjeong Kim
- Chemical Research Division, National Institute of Environmental Research (NIER), 42, Hwangyeong-ro, Seo-gu, Incheon, 22689, Republic of Korea.
| | - Min-Kyu Park
- Chemical Research Division, National Institute of Environmental Research (NIER), 42, Hwangyeong-ro, Seo-gu, Incheon, 22689, Republic of Korea.
| |
Collapse
|
28
|
Zhang Z, Liu X, Huang J, Xu H, Ren W, Lin C, He M, Ouyang W. Horizontal planetary mechanochemical method for rapid and efficient remediation of high-concentration lindane-contaminated soils in an alkaline environment. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129078. [PMID: 35533523 DOI: 10.1016/j.jhazmat.2022.129078] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
Lindane is a persistent organic pollutant that has attracted worldwide attention because of its threat to human health and environmental security. A horizontal planetary mechanochemical method was developed for rapid and efficient degradation of lindane in soil in an alkaline environment. Under the condition of a very low reagent-to-soil ratio (R = 2%), ball-to-powder ratio (CR = 6:1), rotation speed (r = 300 rpm) and high soil single treatment capacity (SC = 60 g), the lindane in four typical soils (~ 100 mg/kg) can be degraded up to 96.30% in 10 min. This method can also remediate high-concentration lindane-contaminated soil (833 ± 26 mg/kg). The experimental results and theoretical calculations proved that the stepwise dechlorination and final carbonization of lindane in soil are mainly attributed to the combined action of mechanical energy and alkalinity. The bimolecular elimination (E2) reaction was the first step of lindane destruction. Subsequently, the unimolecular elimination (E1) reaction tended to occur with the weakening of alkalinity. Then, benzene was obtained through stepwise hydrogenolysis reaction. The last was the generation of carbon substances by fragmentation or condensation of benzene rings. This work proposes a practical remediation technology for organic contaminated soil and improves the understanding of the degradation pathways of lindane in soil in alkali-assisted mechanochemical system.
Collapse
Affiliation(s)
- Zhenguo Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Jun Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), School of Environment, Tsinghua University, Beijing 100084, China
| | - Hengpu Xu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wenbo Ren
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
29
|
Henrique JMM, Isidro J, Saez C, Lopez-Vizcaíno R, Yustres A, Navarro V, Dos Santos EV, Rodrigo MA. Combining Soil Vapor Extraction and Electrokinetics for the Removal of Hexachlorocyclohexanes from Soil. Chemistry 2022; 12:e202200022. [PMID: 35876395 PMCID: PMC10152886 DOI: 10.1002/open.202200022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/30/2022] [Indexed: 11/10/2022]
Abstract
This paper focuses on the evaluation of the mobility of four hexachlorocyclohexane (HCH) isomers by soil vapor extraction (SVE) coupled with direct electrokinetic (EK) treatment without adding flushing fluids. SVE was found to be very efficient and remove nearly 70 % of the four HCH in the 15-days of the tests. The application of electrokinetics produced the transport of HCH to the cathode by different electrochemical processes, which were satisfactorily modelled with a 1-D transport equation. The increase in the electric field led to an increase in the transport of pollutants, although 15 days was found to be a very short time for an efficient transportation of the pollutants to the nearness of the cathode. Loss of water content in the vicinity of the cathode warns about the necessity of using electrokinetic flushing technologies instead of simple direct electrokinetics. Thus, results point out that direct electrokinetic treatment without adding flushing fluids produced low current intensities and ohmic heating that contributes negatively to the performance of the SVE process. No relevant differences were found among the removal of the four isomers, neither in SVE nor in EK processes.
Collapse
Affiliation(s)
- João M M Henrique
- Postgraduate Program in Chemical Engineering, School of Science and Technology, Universidade Federal do Rio Grande do Norte Campus Universitário, Lagoa Nova, 59078-970, Natal/RN, Brazil.,Faculty of Chemical Sciences & Technologies, Department of Chemical Engineering, Universidad de Castilla La Mancha, Campus Universitario, s/n, 13071, Ciudad Real, Spain
| | - Julia Isidro
- Faculty of Chemical Sciences & Technologies, Department of Chemical Engineering, Universidad de Castilla La Mancha, Campus Universitario, s/n, 13071, Ciudad Real, Spain
| | - Cristina Saez
- Faculty of Chemical Sciences & Technologies, Department of Chemical Engineering, Universidad de Castilla La Mancha, Campus Universitario, s/n, 13071, Ciudad Real, Spain
| | - Rúben Lopez-Vizcaíno
- Geoenvironmental Group, Civil Engineering School, Universidad de Castilla La Mancha, Avda. Camilo José Cela s/n, 13071, Ciudad Real, Spain
| | - Angel Yustres
- Geoenvironmental Group, Civil Engineering School, Universidad de Castilla La Mancha, Avda. Camilo José Cela s/n, 13071, Ciudad Real, Spain
| | - Vicente Navarro
- Geoenvironmental Group, Civil Engineering School, Universidad de Castilla La Mancha, Avda. Camilo José Cela s/n, 13071, Ciudad Real, Spain
| | - Elisama V Dos Santos
- Postgraduate Program in Chemical Engineering, School of Science and Technology, Universidade Federal do Rio Grande do Norte Campus Universitário, Lagoa Nova, 59078-970, Natal/RN, Brazil
| | - Manuel A Rodrigo
- Faculty of Chemical Sciences & Technologies, Department of Chemical Engineering, Universidad de Castilla La Mancha, Campus Universitario, s/n, 13071, Ciudad Real, Spain
| |
Collapse
|
30
|
Miller de Melo Henrique J, Isidro J, Sáez C, López-Vizcaíno R, Yustres A, Navarro V, Dos Santos EV, Rodrigo MA. Enhancing soil vapor extraction with EKSF for the removal of HCHs. CHEMOSPHERE 2022; 296:134052. [PMID: 35189200 DOI: 10.1016/j.chemosphere.2022.134052] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
This paper evaluates the combination of electrokinetic soil flushing (EKSF) with soil vapor extraction (SVE) for the removal of four hexachlorocyclohexane (HCH) isomers contained in a real matrix. Results demonstrate that the combination of EKSF and SVE can be positive, but it is required the application of high electric fields (3 V cm-1) in order to promote a higher temperature in the system, which improves the volatilization of the HCH contained in the system. Electrokinetic transport is also enhanced with the application of higher electric gradients, but these transport processes are slower than the volatilization processes, which are the primary in this system. Hence collection of species in the electrolyte wells is negligible as compared to the compound dragged with air by the SVE but the temperature increase demonstrates a good performance. Combination of EKSF with SVE can efficiently exhaust the four HCH isomers reaching a removal of more than 90% after 15 days of treatment (20% more than values attained by SVE) but it is required the application of high electric fields to promote a higher temperature in the system (to improve the volatilization) and EK transport (to improve the dragging). 1-D transport model can be easily used to estimate the average pore water velocity and the effective diffusion of each compound under the different experimental conditions tested.
Collapse
Affiliation(s)
- João Miller de Melo Henrique
- Postgraduate Program in Chemical Engineering, School of Science and Technology, Federal University of Rio Grande do Norte, 59078-970, Natal, RN, Brazil; Department of Chemical Engineering, Faculty of Chemical Sciences & Technologies, Universidad de Castilla La Mancha, Campus Universitario, s/n, 13071, Ciudad Real, Spain
| | - Julia Isidro
- Department of Chemical Engineering, Faculty of Chemical Sciences & Technologies, Universidad de Castilla La Mancha, Campus Universitario, s/n, 13071, Ciudad Real, Spain
| | - Cristina Sáez
- Department of Chemical Engineering, Faculty of Chemical Sciences & Technologies, Universidad de Castilla La Mancha, Campus Universitario, s/n, 13071, Ciudad Real, Spain
| | - Rubén López-Vizcaíno
- Geoenvironmental Group, Civil Engineering School, University of Castilla-La Mancha, Avda. Camilo José Cela s/n, 13071, Ciudad Real, Spain
| | - Angel Yustres
- Geoenvironmental Group, Civil Engineering School, University of Castilla-La Mancha, Avda. Camilo José Cela s/n, 13071, Ciudad Real, Spain
| | - Vicente Navarro
- Geoenvironmental Group, Civil Engineering School, University of Castilla-La Mancha, Avda. Camilo José Cela s/n, 13071, Ciudad Real, Spain
| | - Elisama V Dos Santos
- Postgraduate Program in Chemical Engineering, School of Science and Technology, Federal University of Rio Grande do Norte, 59078-970, Natal, RN, Brazil
| | - Manuel A Rodrigo
- Department of Chemical Engineering, Faculty of Chemical Sciences & Technologies, Universidad de Castilla La Mancha, Campus Universitario, s/n, 13071, Ciudad Real, Spain.
| |
Collapse
|
31
|
Liu X, Wu L, Kümmel S, Richnow HH. Stable isotope fractionation associated with the synthesis of hexachlorocyclohexane isomers for characterizing sources. CHEMOSPHERE 2022; 296:133938. [PMID: 35149010 DOI: 10.1016/j.chemosphere.2022.133938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/17/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
The stable isotope fingerprints of hexachlorocyclohexane (HCH) isomers have potential for identifying sources as they are related to the synthesis processes and isotopic compositions of raw materials. However, the isotopic fractionation associated with the synthesis processes has not been investigated. Therefore, photochemical synthesis experiments using benzene and chlorine gas were conducted to characterize the associated isotopic fractionation under different conditions. Different patterns of isotopic fractionation factors (αC, αCl, and αH) were observed in each experiment. The large variability of αH is related to the accumulating secondary hydrogen isotope effects or the rearrangement of C-H bonds at the cyclohexane ring. An increase of δ13C and δ37Cl values of HCH isomers was observed during synthesis, which is related to the C-Cl bond formation in the radical dichlorination forming HCH and the subsequent chlorine substitution forming heptachlorocyclohexanes. The large variability of δ2H values is related to the secondary and primary hydrogen isotope effects. Different δ13C, δ37Cl and δ2H values among HCH isomers were observed, indicating that conformational complexity of HCH caused by arrangement of C-Cl bonds in planar and axial positions also influence the isotope values. The understanding of isotopic fractionation during HCH synthesis can be indicative for source identification in the field.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318, Leipzig, Germany.
| | - Langping Wu
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318, Leipzig, Germany; Department of Civil & Mineral Engineering, University of Toronto, 35 St George St, Toronto, ON M5S 1A4, Canada.
| | - Steffen Kümmel
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318, Leipzig, Germany.
| | - Hans H Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318, Leipzig, Germany.
| |
Collapse
|
32
|
Ansari M, Sharifian M, Farzadkia M. Removal of lindane in water by non-thermal plasma: Parametric optimization, kinetic study, energy yield evaluation, and toxicity assessment. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
33
|
Electrochemical Reduction and Voltammetric Sensing of Lindane at the Carbon (Glassy and Pencil) Electrodes. ELECTROCHEM 2022. [DOI: 10.3390/electrochem3020017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In the agricultural field, pesticides are used tremendously to shield our crops from insects, weeds, and diseases. Only a small percentage of pesticides employed reach their intended target, and the remainder passes through the soil, contaminating ground and surface-water supplies, damaging the crop fields, and ultimately harming the crop, including humans and other creatures. Alternative approaches for pesticide measurement have recently received a lot of attention, thanks to the growing interest in the on-site detection of analytes using electrochemical techniques that can replace standard chromatographic procedures. Among all organochlorine pesticides such as gamma-lindane are hazardous, toxic, and omnipresent contaminants in the environment. Here, in this review, we summarize the different ways of the gamma-lindane detection, performing the electrochemical techniques viz cyclic, differential, square wave voltammetry, and amperometry using various bare and surface-modified glassy carbon and pencil carbon electrodes. The analytical performances are reported as the limit of detection 18.8 nM (GCE–AONP–PANI–SWCNT), 37,000 nM (GCE), 38.1 nM (Bare HBPE), 21.3 nM (Nyl-MHBPE); percentage recovery is 103%.
Collapse
|
34
|
Li Z. Quantifying exposure source allocation factors of pesticides in support of regulatory human health risk assessment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 309:114697. [PMID: 35151136 DOI: 10.1016/j.jenvman.2022.114697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/21/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
One of the challenges while assessing the aggregate exposure risk of pesticides is quantifying exposure doses from various exposure pathways. To address this issue, a regulatory screening approach is proposed for evaluating pesticide allocation factors (AFs) for major exposure pathways for rural and urban residents. This was achieved by integrating dynamiCrop and other screening models to estimate the potential human intake of residues from major crops at harvest, livestock products, and main environmental media (air, water, and soil). The AFs were calculated from the average daily dose factors (ADDFs) of pesticides via major exposure pathways, where a large AF of an exposure pathway indicates that a greater margin of exposure should be given to that exposure pathway. The simulated results for many current-use pesticides showed that the ingestion of crops had pesticide AFs close to 1.0, which indicated that the crop exposure pathway contributed to a significant portion of the total exposure to pesticides. In contrast, for legacy pesticides with high lipophilicity and low degradability in the environment, the simulated AFs for major environmental compartments (air, freshwater, and soil) accounted for relatively large exposures. As legacy pesticides have been banned globally, exposure pathways via the food web and environmental media cannot be neglected because of their high lipophilicity and environmental persistence. Although other factors such as geographical conditions and living habits should be considered to improve the spatial resolution of the model, the method proposed in this study can serve as a preliminary tool to conduct screening-level risk assessments for populations by considering the allocated exposure to pesticides via major exposure pathways.
Collapse
Affiliation(s)
- Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| |
Collapse
|
35
|
Nowak A, Nowak I. Review of harmful chemical pollutants of environmental origin in honey and bee products. Crit Rev Food Sci Nutr 2021:1-23. [PMID: 34904474 DOI: 10.1080/10408398.2021.2012752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Honey is a natural food with many pro-health properties, which comprises a wide variety of valuable ingredients. It can also be the source of chemical contaminants of environmental origin, including POPs that can contribute to adverse health effects to human. Monitoring the degree of pollution of honey/bee products with hazardous chemicals is important from a nutraceutical point of view. In the present work, overview of recent literature data on chemical pollutants in honey/bee products originating from the environment was performed. Their MLs, MRLs and EDI were discussed. It can be concluded that huge amount of research concerned on the presence of TMs and pesticides in honey. Most of the studies have shown that honey/bee products sampled from urban and industrialized areas were more contaminated than these sampled from ecological and rural locations. More pollutants were usually detected in propolis and bee pollen than in honey. Based on their research and regulations, authors stated, that most of the toxic pollutants of environmental origin in honey/bee products are at levels that do not pose a threat to the health of the potential consumer. The greatest concern relates to pesticides and TMs, because in some research MLs in individual samples were highly exceeded.
Collapse
Affiliation(s)
- Adriana Nowak
- Department of Environmental Biotechnology, Lodz University of Technology, Lodz, Poland
| | - Ireneusz Nowak
- Faculty of Law and Administration, University of Lodz, Lodz, Poland
| |
Collapse
|
36
|
Liu X, Li W, Kümmel S, Merbach I, Sood U, Gupta V, Lal R, Richnow HH. Soil from a Hexachlorocyclohexane Contaminated Field Site Inoculates Wheat in a Pot Experiment to Facilitate the Microbial Transformation of β-Hexachlorocyclohexane Examined by Compound-Specific Isotope Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:13812-13821. [PMID: 34609852 DOI: 10.1021/acs.est.1c03322] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
β-Hexachlorocyclohexane (β-HCH) is a remnant from former HCH pesticide production. Its removal from the environment gained attention in the last few years since it is the most stable HCH isomer. However, knowledge about the transformation of β-HCH in soil-plant systems is still limited. Therefore, experiments with a contaminated field soil were conducted to investigate the transformation of β-HCH in soil-plant systems by compound specific isotope analysis (CSIA). The results showed that the δ13C and δ37Cl values of β-HCH in the soil of the planted control remained stable, revealing no transformation due to a low bioavailability. Remarkably, an increase of the δ13C and δ37Cl values in soil and plant tissues of the spiked treatments were observed, indicating the transformation of β-HCH in both the soil and the plant. This was surprising as previously it was shown that wheat is unable to transform β-HCH when growing in hydroponic culture or garden soil. Thus, results of this work indicate for the first time that a microbial community of the soil inoculated the wheat and then facilitated the transformation of β-HCH in the wheat, which may have implications for the development of phytoremediation concepts. A high abundance of HCH degraders belonging to Sphingomonas sp., Mycobacterium sp., and others was detected in the β-HCH-treated bulk and rhizosphere soil, potentially supporting the biotransformation.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Wang Li
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- Institute for Applied Geosciences, Technical University Darmstadt, Schnittspahnstraße 9, 64287 Darmstadt, Germany
| | - Steffen Kümmel
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Ines Merbach
- Department of Community Ecology, Helmholtz Centre for Environmental Research GmbH - UFZ, Theodor-Lieser-Str. 4, 06102 Halle, Germany
| | - Utkarsh Sood
- The Energy and Resources Institute, Lodhi Road, New Delhi 110003, India
| | - Vipin Gupta
- PhiXGen Private Limited, Gurugram, Haryana 122001, India
| | - Rup Lal
- The Energy and Resources Institute, Lodhi Road, New Delhi 110003, India
| | - Hans H Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| |
Collapse
|
37
|
He L, Bu L, Spinney R, Dionysiou DD, Xiao R. Reactivity and reaction mechanisms of sulfate radicals with lindane: An experimental and theoretical study. ENVIRONMENTAL RESEARCH 2021; 201:111523. [PMID: 34133974 DOI: 10.1016/j.envres.2021.111523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/17/2021] [Accepted: 06/05/2021] [Indexed: 05/27/2023]
Abstract
Advanced oxidation technologies (AOTs) have been intensely used to eliminate various organic pollutants in engineering waters. In this context, we investigated the kinetics and mechanisms of the sulfate radical (SO4-)-mediated degradation of lindane in UV/peroxydisulfate system, and compared results with previous studies on SO4--based AOTs for destruction of lindane. The second order rate constant (k) value between SO4- and lindane was determined to be (8.95 ± 0.29) × 106 M-1 s-1via competition kinetics using p-cyanobenzoic acid as reference compound, which is close to the theoretically calculated value of 4.41 × 107 M-1 s-1, that was performed at SMD/M05-2X/6-311++G**//M05-2X/6-31+G** level of theory using density functional theory (DFT) approach. H-atom abstraction pathway was calculated to be thermodynamically favorable and kinetically dominant. In the combined experimental and theoretical study, we aim for a better understanding on the degradation kinetics and mechanisms of lindane, serving as a starting point for more attention to SO4--mediated degradation kinetics of cycloaliphatic compounds in future.
Collapse
Affiliation(s)
- Lei He
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China; Water Pollution Control Technology Key Lab of Hunan Province, Changsha, 410004, China
| | - Lingjun Bu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Richard Spinney
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (ChEE), University of Cincinnati, Cincinnati, OH, 45221-0012, USA
| | - Ruiyang Xiao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China; Water Pollution Control Technology Key Lab of Hunan Province, Changsha, 410004, China.
| |
Collapse
|
38
|
Nazarova EA, Egorova DO, Anan’ina LN, Korsakova ES, Plotnikova EG. New Associations of Aerobic Bacteria that Actively Decompose Lindane. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821050112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Stochastic Particle Tracking Application in Different Urban Areas in Central Europe: The Milano (IT) and Jaworzno (PL) Case Study to Secure the Drinking Water Resources. SUSTAINABILITY 2021. [DOI: 10.3390/su131810291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Urban areas are typically characterized by the presence of industrial sites, which are often sources of groundwater contamination, posing a serious threat for the groundwater. In such cases, a crucial step is to find a link between the contaminant sources and freshwater supply wells at risk. As a part of the AMIIGA Project, two different stochastic approaches were applied to assess drinking water supply wells vulnerability in Functional Urban Areas in the presence of several chlorinated hydrocarbons sources in an alluvial aquifer in Milano and a pesticide mega site in a complex geological setting in Poland. In the first case study, the innovative Pilot Point Null-Space Monte Carlo forward particle tracking was used, applying a forward solution instead of the classical backtracking, while in the second case was chosen the classical Monte Carlo methodology. Both case studies represent useful application examples, allowing an effective prioritization of expensive remediation actions in order to protect freshwater wells.
Collapse
|
40
|
Checa-Fernández A, Santos A, Romero A, Domínguez CM. Remediation of real soil polluted with hexachlorocyclohexanes (α-HCH and β-HCH) using combined thermal and alkaline activation of persulfate: Optimization of the operating conditions. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118795] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
41
|
Günes ME, Sari MF, Esen F. Organochlorine pesticides in honeybee, pollen and honey in Bursa, Turkey. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2021; 14:126-132. [PMID: 33691604 DOI: 10.1080/19393210.2021.1896583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
g-In this study, the presence of OCP residues in the honeybee, pollen and honey samples in urban and semi-urban areas were investigated. A total of 10 OCP concentrations (∑10OCP) in honeybee samples were 39.14 ± 11.06 ng g-1 for the urban area and 39.93 ± 7.09 ng g-1 for the semi-urban area, respectively. Similarly, ∑10OCP concentrations in pollen and honey samples were estimated to be 21.72 ± 4.43 ng g-1 and 41.83 ± 1.61 ng g-1 for the urban area, 19.77 ± 2.86 ng g-1 and 39.23 ± 3.90 ng g-1 for the semi-urban area, respectively. Also, it was concluded that the existence of OCP residues in both sampling areas was due to the recent use of pesticides. Finally, the cancer risk caused by the consumption of pollen and honey samples was evaluated, and it was found that there was no cancer risk in both sampling areas.
Collapse
Affiliation(s)
- Mesut Ertan Günes
- Vocational School of Technical Sciences, Bursa Uludag University, Nilüfer/Bursa, Turkey
| | - Mehmet Ferhat Sari
- Department of Environmental Engineering, Faculty of Engineering, Bursa Uludag University, Nilüfer/Bursa, Turkey
| | - Fatma Esen
- Department of Environmental Engineering, Faculty of Engineering, Bursa Uludag University, Nilüfer/Bursa, Turkey
| |
Collapse
|
42
|
β-Hexachlorocyclohexane Drives Carcinogenesis in the Human Normal Bronchial Epithelium Cell Line BEAS-2B. Int J Mol Sci 2021; 22:ijms22115834. [PMID: 34072471 PMCID: PMC8199278 DOI: 10.3390/ijms22115834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 11/17/2022] Open
Abstract
Organochlorine pesticides constitute the majority of the total environmental pollutants, and a wide range of compounds have been found to be carcinogenic to humans. Among all, growing interest has been focused on β-hexachlorocyclohexane (β-HCH), virtually the most hazardous and, at the same time, the most poorly investigated member of the hexachlorocyclohexane family. Considering the multifaceted biochemical activities of β-HCH, already established in our previous studies, the aim of this work is to assess whether β-HCH could also trigger cellular malignant transformation toward cancer development. For this purpose, experiments were performed on the human normal bronchial epithelium cell line BEAS-2B exposed to 10 µM β-HCH. The obtained results strongly support the carcinogenic potential of β-HCH, which is achieved through both non-genotoxic (activation of oncogenic signaling pathways and proliferative activity) and indirect genotoxic (ROS production and DNA damage) mechanisms that significantly affect cellular macroscopic characteristics and functions such as cell morphology, cell cycle profile, and apoptosis. Taking all these elements into account, the presented study provides important elements to further characterize β-HCH, which appears to be a full-fledged carcinogenic agent.
Collapse
|
43
|
Adithya S, Jayaraman RS, Krishnan A, Malolan R, Gopinath KP, Arun J, Kim W, Govarthanan M. A critical review on the formation, fate and degradation of the persistent organic pollutant hexachlorocyclohexane in water systems and waste streams. CHEMOSPHERE 2021; 271:129866. [PMID: 33736213 DOI: 10.1016/j.chemosphere.2021.129866] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/23/2021] [Accepted: 02/03/2021] [Indexed: 05/05/2023]
Abstract
The environmental impacts of persistent organic pollutants (POPs) is an increasingly prominent topic in the scientific community. POPs are stable chemicals that are accumulated in living beings and can act as endocrine disruptors or carcinogens on prolonged exposure. Although efforts have been taken to minimize or ban the use of certain POPs, their use is still widespread due to their importance in several industries. As a result, it is imperative that POPs in the ecosystem are degraded efficiently and safely in order to avoid long-lasting environmental damage. This review focuses on the degradation techniques of hexachlorocyclohexane (HCH), a pollutant that has strong adverse effects on a variety of organisms. Different technologies such as adsorption, bioremediation and advanced oxidation process have been critically analyzed in this study. All 3 techniques have exhibited near complete removal of HCH under ideal conditions, and the median removal efficiency values for adsorption, bioremediation and advanced oxidation process were found to be 80%, 93% and 82% respectively. However, it must be noted that there is no ideal HCH removal technique and the selection of removal method depends on several factors. Furthermore, the fates of HCH in the environment and challenges faced by HCH degradation have also been explained in this study. The future scope for research in this field has also received attention.
Collapse
Affiliation(s)
- Srikanth Adithya
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110, Tamil Nadu, India
| | - Ramesh Sai Jayaraman
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110, Tamil Nadu, India
| | - Abhishek Krishnan
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110, Tamil Nadu, India
| | - Rajagopal Malolan
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110, Tamil Nadu, India
| | - Kannappan Panchamoorthy Gopinath
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110, Tamil Nadu, India
| | - Jayaseelan Arun
- Centre for Waste Management, International Research Centre, Sathyabama Institute of Science and Technology, Jeppiaar Nagar (OMR), Chennai, 600119, Tamil Nadu, India
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daegu, South Korea
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, South Korea.
| |
Collapse
|
44
|
Bescós A, Herrerías CI, Hormigón Z, Mayoral JA, Salvatella L. Theoretical insight on the treatment of β-hexachlorocyclohexane waste through alkaline dehydrochlorination. Sci Rep 2021; 11:8777. [PMID: 33888778 PMCID: PMC8062475 DOI: 10.1038/s41598-021-88060-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/01/2021] [Indexed: 11/09/2022] Open
Abstract
The occurrence of 4.8-7.2 million tons of hexachlorocyclohexane (HCH) isomers stocked in dumpsites around the world constitutes a huge environmental and economical challenge because of their toxicity and persistence. Alkaline treatment of an HCH mixture in a dehydrochlorination reaction is hampered by the low reactivity of the β-HCH isomer (HCl elimination unavoidably occurring through syn H-C-C-Cl arrangements). More intriguingly, the preferential formation of 1,2,4-trichlorobenzene in the β-HCH dehydrochlorination reaction (despite the larger thermodynamical stability of the 1,3,5-isomer) has remained unexplained up to now, though several kinetic studies had been reported. In this paper, we firstly show a detailed Density Functional study on all paths for the hydroxide anion-induced elimination of β-HCH through a three-stage reaction mechanism (involving two types of reaction intermediates). We have now demonstrated that the first reaction intermediate can follow several alternative paths, the preferred route involving abstraction of the most acidic allylic hydrogen which leads to a second reaction intermediate yielding only 1,2,4-trichlorobenzene as the final reaction product. Our theoretical results allow explaining the available experimental data on the β-HCH dehydrochlorination reaction (rate-determining step, regioselectivity, instability of some reaction intermediates).
Collapse
Affiliation(s)
- Alicia Bescós
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Clara I Herrerías
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Zoel Hormigón
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
- Instituto de Tecnología Química (ITQ-CSIC), Avenida de los Naranjos s/n, 46022, Valencia, Spain
| | - José Antonio Mayoral
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Luis Salvatella
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain.
| |
Collapse
|
45
|
Gałgowska M, Pietrzak-Fiećko R. The level of selected organochlorine compounds residues in popular edible mushrooms from north-eastern Poland. Food Chem 2021; 353:129441. [PMID: 33725544 DOI: 10.1016/j.foodchem.2021.129441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/03/2021] [Accepted: 02/21/2021] [Indexed: 12/28/2022]
Abstract
Although DDT, γ-HCH and PCBs have been almost completely withdrawn from world production and use, they are still present in the environment. Mushrooms are eagerly collected and consumed local raw material in north-eastern part of Poland. The aim of the study was to determine the content of DDT, γ-HCH and PCB residues in popular species (Boletus badius, Boletus edulis, Cantharellus cibarius) and to estimate the human exposure of uptaking of these compounds with mushrooms. The content of γ-HCH, DDT and PCB was determined using gas chromatography. The presence of analyzed compounds was observed in all the species under study. The highest content of γ-HCH and ΣDDT was determined in C. cibarius - 7.19 and 180.37 µg/kg of lipids, respectively, whereas the highest amount of ΣPCB was observed in B. edulis - 20.89 µg/kg of lipids. The contents were low and did not pose a threat to human health.
Collapse
Affiliation(s)
- Michalina Gałgowska
- Department of Meat Technology and Chemistry, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, Cieszyński 1 Sq, 10719 Olsztyn, Poland.
| | - Renata Pietrzak-Fiećko
- Department of Commodities and Food Analysis, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, Cieszyński 1 Sq, 10-719 Olsztyn, Poland.
| |
Collapse
|
46
|
Guida Y, Carvalho GOD, Capella R, Pozo K, Lino AS, Azeredo A, Carvalho DFP, Braga ALF, Torres JPM, Meire RO. Atmospheric Occurrence of Organochlorine Pesticides and Inhalation Cancer Risk in Urban Areas at Southeast Brazil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116359. [PMID: 33535363 DOI: 10.1016/j.envpol.2020.116359] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 05/26/2023]
Abstract
Organochlorine pesticides (OCPs) have been produced for almost a century and some of them are still used, even after they have been proved to be toxic, persistent, bioaccumulative and prone to long-range transport. Brazil has used and produced pesticides in industrial scales for both agricultural and public health purposes. Urban and industrial regions are of special concern due to their high population density and their increased exposure to chemical pollution, many times enhanced by chemical production, application or irregular dumping. Therefore, we aimed to investigate the occurrence of OCPs in outdoor air of urban sites from two major regions of southeast Brazil. Some of these sites have been affected by OCP production and their irregular dumping. Deterministic and probabilistic inhalation cancer risk (CR) assessments were conducted for the human populations exposed to OCPs in ambient air. Ambient air was mainly affected by Ʃ-HCH (median = 340 pg m-3) and Ʃ-DDT (median = 233 pg m-3), the only two OCPs registered for domissanitary purposes in Brazil. OCP concentrations tended to be higher in summer than in winter. Dumping sites resulted in the highest OCP atmospheric concentrations and, thus, in the highest CR estimations. Despite of all limitations, probabilistic simulations suggested that people living in the studied regions are exposed to an increased risk of hepatic cancer. Infants and toddlers (0 < 2 y) were exposed to the highest inhalation CRs compared to other age groups. Other exposure pathways (such as ingestion and dermic uptake) are needed for a more comprehensive risk assessment. Moreover, this study also highlights the need to review the human exposure to OCPs through inhalation and their respective CR in other impacted areas worldwide, especially where high levels of OCPs are still being measured.
Collapse
Affiliation(s)
- Yago Guida
- Laboratório de Micropoluentes Jan Japenga, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho, 373, 21941-902, Rio de Janeiro, RJ, Brazil; Laboratório de Radioisótopos Eduardo Penna Franca, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho, 373, 21941-902, Rio de Janeiro, RJ, Brazil.
| | - Gabriel Oliveira de Carvalho
- Laboratório de Radioisótopos Eduardo Penna Franca, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho, 373, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Raquel Capella
- Laboratório de Micropoluentes Jan Japenga, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho, 373, 21941-902, Rio de Janeiro, RJ, Brazil; Laboratório de Radioisótopos Eduardo Penna Franca, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho, 373, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Karla Pozo
- RECETOX, Research Centre for Toxic Compounds in the Environment, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic; Facultad de Ingeniería y Tecnología, Universidad San Sebastián, Lientur, 1457, Concepción, Bío Bío, Chile
| | - Adan Santos Lino
- Laboratório de Radioisótopos Eduardo Penna Franca, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho, 373, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Antonio Azeredo
- Laboratório de Radioisótopos Eduardo Penna Franca, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho, 373, 21941-902, Rio de Janeiro, RJ, Brazil; Laboratório de Toxicologia, Instituto de Estudos Em Saúde Coletiva Universidade Federal Do Rio de Janeiro, Av. Horácio Macedo, 21941-598, Rio de Janeiro, RJ, Brazil
| | - Daniele Fernandes Pena Carvalho
- Laboratório de Radioisótopos Eduardo Penna Franca, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho, 373, 21941-902, Rio de Janeiro, RJ, Brazil; Curso de Ciências Biológicas, Instituto de Ciências da Saúde, Universidade Paulista, Avenida Francisco Manoel, S/N, 11075-110, Santos, SP, Brazil
| | - Alfésio Luís Ferreira Braga
- Grupo de Avaliação de Exposição e Risco Ambiental, Programa de Pós-graduação Em Saúde Coletiva, Universidade Católica de Santos, Avenida Conselheiro Nébias, 300, 11015-002, Santos, SP, Brazil
| | - João Paulo Machado Torres
- Laboratório de Micropoluentes Jan Japenga, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho, 373, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Rodrigo Ornellas Meire
- Laboratório de Micropoluentes Jan Japenga, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho, 373, 21941-902, Rio de Janeiro, RJ, Brazil; Laboratório de Radioisótopos Eduardo Penna Franca, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho, 373, 21941-902, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
47
|
Dong X, Roeckl JL, Waldvogel SR, Morandi B. Merging shuttle reactions and paired electrolysis for reversible vicinal dihalogenations. Science 2021; 371:507-514. [DOI: 10.1126/science.abf2974] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/30/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Xichang Dong
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
| | - Johannes L. Roeckl
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
- Department of Chemistry, Johannes Gutenberg University, Mainz, Germany
| | | | - Bill Morandi
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
48
|
Wang S, Hu C, Lu A, Wang Y, Cao L, Wu W, Li H, Wu M, Yan C. Association between prenatal exposure to persistent organic pollutants and neurodevelopment in early life: A mother-child cohort (Shanghai, China). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111479. [PMID: 33099138 DOI: 10.1016/j.ecoenv.2020.111479] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
As common environmental pollutants, persistent organic pollutants (POPs) that are widely applied in industry and agriculture have adverse effects on neurodevelopment. However, evidence on the neurotoxicity of POPs in neural development of offspring is limited. This study explored the relationship between prenatal exposure to POPs and neurodevelopment of 18-month-old toddlers in a mother-child cohort in Shanghai, China. In this study, we determined exposure levels of 37 POPs in cord blood serum collected at the time of delivery. The detection rate of pollutants HCB, β-HCH, and p,p'-DDE was higher than 60%, so these will be discussed in the following analysis. From birth to approximately 18 months, we followed up infants to longitudinally explore whether POPs influenced their language, motor, and cognitive development according to a Bayley-Ⅲ assessment . Based on multivariable regression analyses, the β-HCH concentration in cord serum was negatively related to motor development scores in children at 18 months by adjusting for the covariates, but there was no change in language and cognition. Further piecewise linear regression analysis showed that a cord serum β-HCH concentration greater than 0.2 μg/L had a significantly negative correlation with the motor development scores. p,p'-DDE was positively associated with language development at 18 months before and after adjusting for covariates. But prenatal HCB levels were not associated with any of the Bayley-Ⅲ subscales at 18 months. We concluded that prenatal exposure to β-HCH might have adverse effects on infants' motor development. The minimum harmful concentration of β-HCH was estimated at 0.2 μg/L in cord serum. The unexpected positive association between p,p'-DDT and language development could be due to live birth bias.
Collapse
Affiliation(s)
- Susu Wang
- School of Public Health, Shanghai Jiao Tong University, Shanghai, China
| | - Chunping Hu
- School of Public Health, Shanghai Jiao Tong University, Shanghai, China
| | - Anxin Lu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaqian Wang
- School of Public Health, Shanghai Jiao Tong University, Shanghai, China
| | - Lulu Cao
- Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Wu
- Qilu Children's Hospital of Shandong University, Shandong, Jinan, China
| | - Hui Li
- Jining No.1 People's Hospital, Shandong, Jining, China
| | - Meiqin Wu
- The Women and Children's Health Care Department Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, No.2699, West Gaoke Road, Shanghai 200040, China.
| | - Chonghuai Yan
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
49
|
Ma Y, Yun X, Ruan Z, Lu C, Shi Y, Qin Q, Men Z, Zou D, Du X, Xing B, Xie Y. Review of hexachlorocyclohexane (HCH) and dichlorodiphenyltrichloroethane (DDT) contamination in Chinese soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:141212. [PMID: 32827819 DOI: 10.1016/j.scitotenv.2020.141212] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/08/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
Despite a ban on the production and use of organochlorine pesticides (OCPs) after 1983, serious OCP pollution still exists in the soil in certain areas of China because OCPs degrade very slowly. Based on a systematic review, we identified 136 relevant papers focusing on soil contamination from hexachlorocyclohexane (HCH) and dichlorodiphenyltrichloroethane (DDT) in China (published from 2001 to 2019). We compiled scientific data, extracted and analyzed relevant information, and summarized the pollution characteristics of HCH and DDT in Chinese soils found in two land use types: agricultural land and land for construction. Related studies on HCH and DDT in Chinese soils focus on the Beijing-Tianjin-Hebei region and the Yangtze and Pearl River Deltas, where agricultural soils are predominant. The average concentrations of both HCH and DDT in agricultural soils were generally lower than the risk screening value (100 μg/kg) in most provinces in China, except for DDT concentrations in the Inner Mongolia autonomous region. However, in certain central and eastern regions, mean or maximum recorded DDT concentrations approaching or exceeding 100 μg/kg were recorded. Regarding land for construction, soils with excessive concentrations of HCH and DDT were primarily observed at sites of operational or defunct pesticide factories. According to isomer and metabolite compositions, HCH and DDT at most sites originated from historical residues, but others may have been new inputs after 1983. Since 2015, the concentrations of HCH and DDT in agricultural soils in China have been decreasing, and those in the soils of land for construction (except for sites of operational or defunct pesticide factories) have not exceeded the standard after 2005. This indicates that the measures to prohibit the production and use of OCPs in China have been effective. However, the management of operational or defunct pesticide factories polluted by OCPs requires further improvement.
Collapse
Affiliation(s)
- Yan Ma
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, People's Republic of China
| | - Xiaotong Yun
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, People's Republic of China
| | - Ziyuan Ruan
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, People's Republic of China
| | - Chaojun Lu
- Chinese Research Academy of Environmental Sciences, Beijing 100012, People's Republic of China
| | - Yi Shi
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, People's Republic of China.
| | - Qiang Qin
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, People's Republic of China
| | - Zhuming Men
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Dezhi Zou
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Xiaoming Du
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, People's Republic of China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| | - Yunfeng Xie
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, People's Republic of China.
| |
Collapse
|
50
|
Chuang S, Wang B, Chen K, Jia W, Qiao W, Ling W, Tang X, Jiang J. Microbial catabolism of lindane in distinct layers of acidic paddy soils combinedly affected by different water managements and bioremediation strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 746:140992. [PMID: 32745849 DOI: 10.1016/j.scitotenv.2020.140992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
The environmental fate of the recalcitrant organic chlorine insecticide lindane and its removal from contaminated soils are still of great concern. However, the key factors influencing microbial removal of lindane from paddy soils with intermittent flooding and draining remain largely unknown. Here, we conducted laboratory experiments to investigated lindane biodegradation in different layers of typical acidic paddy soils under different water managements and bioremediation strategies, together with the changes of functional bacterial consortium, key genes and metabolic pathways. It was found that under flooded conditions, lindane spiking significantly stimulated the growth of some bacterial genera with potential anaerobic catabolic functions in both top- (0-20 cm depth) and subsoil (20-40 cm depth), leading to the shortest half-life of lindane with 7.6-9.0 d in the topsoil. In contrary, lindane spiking dramatically stimulated the growth of bacterial members with aerobic catabolic functions under drained conditions, exhibiting half-lives of lindane with 85-131 d and 18-23 d in the top- and subsoil, respectively. Overall, biostimulation coupled with flooding management would be the better combination for increased lindane bioremediation. Functional genes involved in lindane degradation and retrieved from metagenomic data further supported the anaerobic and aerobic biodegradation of lindane under flooded and drained conditions, respectively. Moreover, the integrated network analysis suggested water management and organic matter were the primary factors shaped the assembly of functional bacteria in lindane degradation, among which Clostridium and Rhodanobacter were the key anaerobic and aerobic functional genera, respectively. Taken together, our study provides a comprehensive understanding of lindane biodegradation in distinct layers of acidic paddy soils that were combinedly affected by different water managements and bioremediation strategies.
Collapse
Affiliation(s)
- Shaochuang Chuang
- Department of Microbiology, Key Lab of Environmental Microbiology for Agriculture, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Baozhan Wang
- Department of Microbiology, Key Lab of Environmental Microbiology for Agriculture, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Kai Chen
- Department of Microbiology, Key Lab of Environmental Microbiology for Agriculture, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Weibin Jia
- Department of Microbiology, Key Lab of Environmental Microbiology for Agriculture, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenjing Qiao
- Department of Microbiology, Key Lab of Environmental Microbiology for Agriculture, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangyu Tang
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jiandong Jiang
- Department of Microbiology, Key Lab of Environmental Microbiology for Agriculture, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|