1
|
Kim JH, Choi KS, Yang HS, Kang HS, Hong HK. In vitro impact of Bisphenol A on the immune functions of primary cultured hemocytes of Pacific abalone (Haliotis discus hannai). MARINE POLLUTION BULLETIN 2024; 206:116770. [PMID: 39053261 DOI: 10.1016/j.marpolbul.2024.116770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/08/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
This study investigated the toxic effects of Bisphenol A (BPA) on the Pacific abalone (Haliotis discus hannai) using in vitro assays with primary cultured hemocytes. The abalone hemocytes were exposed to BPA concentrations up to 100 μM to assess cytotoxicity. Subsequently, hemocytes were exposed to sublethal BPA concentrations (LC20 = 2.3 μM and LC50 = 5.8 μM) for 48 h, and we evaluated the cellular immune responses of hemocytes via flow cytometry. Results showed no significant differences between LC20 and control groups, but LC50 exposure significantly reduced phagocytosis and oxidative capacities while increasing nitric oxide production. These findings suggest that BPA exposure negatively affects the immune system of the Pacific abalone, which makes them more susceptible to infections and other stressors in their natural environment. The study also implies that in vitro assays utilizing primary cultured abalone hemocytes may serve as effective proxies for quantifying the cytotoxic effects of chemical pollutants.
Collapse
Affiliation(s)
- Jeong-Hwa Kim
- Department of Marine Life Science (BK21 FOUR), Marine Science Institute, Jeju National University, Jeju 63243, Republic of Korea
| | - Kwang-Sik Choi
- Department of Marine Life Science (BK21 FOUR), Marine Science Institute, Jeju National University, Jeju 63243, Republic of Korea
| | - Hyun-Sung Yang
- Tropical & Subtropical Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea
| | - Hyun-Sil Kang
- Subtropical Fisheries Research Institute, National Institute of Fisheries Science (NIFS), Jeju 63068, Republic of Korea
| | - Hyun-Ki Hong
- Department of Marine Biology and Aquaculture, Gyeongsang National University, Tongyeong 53064, Republic of Korea.
| |
Collapse
|
2
|
Lu S, Wang J, Wang B, Xin M, Lin C, Gu X, Lian M, Li Y. Spatiotemporal variations and risk assessment of estrogens in the water of the southern Bohai Sea: A comprehensive investigation spanning three years. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134754. [PMID: 38820750 DOI: 10.1016/j.jhazmat.2024.134754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/08/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
The ubiquitous and adverse effects of estrogens have aroused global concerns. Natural and synthetic estrogens in 255 water samples from the southern Bohai Sea were analyzed over three years. Total estrogen concentrations were 11.0-268 ng/L in river water and 1.98-99.7 ng/L in seawater, with bisphenol A (BPA) and 17α-ethynylestradiol (EE2) being the predominant estrogens, respectively. Estrogen showed the highest concentrations in summer 2018, followed by spring 2021 and spring 2019, which was consistent with the higher estrogen flux from rivers during summer. Higher estrogen concentrations in 2021 than in 2019 were driven by the higher level of BPA, an additive used in personal protective equipment. Estrogen exhibited higher concentrations in the southern coast of the Yellow River Delta and the northeastern coast of Laizhou bay due to the riverine input and aquaculture. Estrogens could disturb the normal endocrine activities of organisms and edict high ecological risks (90th simulated RQT > 1.0) to aquatic organisms, especially to fish. EE2 was the main contributor of estrogenic potency and ecological risk, which requires special concern. This is the first comprehensive study of estrogen spatiotemporal variations and risks in the Bohai Sea, providing insights into the environmental behavior of estrogens in coastal regions.
Collapse
Affiliation(s)
- Shuang Lu
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China; Beijing Normal University, Beijing 100875, China
| | - Jing Wang
- Beijing Normal University, Beijing 100875, China.
| | - Baodong Wang
- First Institute of Oceanography, Ministry in of Natural Resources, Qingdao 266061, China
| | - Ming Xin
- First Institute of Oceanography, Ministry in of Natural Resources, Qingdao 266061, China
| | - Chunye Lin
- Beijing Normal University, Beijing 100875, China
| | - Xiang Gu
- Beijing Normal University, Beijing 100875, China
| | - Maoshan Lian
- Beijing Normal University, Beijing 100875, China
| | - Yun Li
- Beijing Normal University, Beijing 100875, China
| |
Collapse
|
3
|
Lombó M, Giommi C, Zarantoniello M, Chemello G. A Pretty Kettle of Fish: A Review on the Current Challenges in Mediterranean Teleost Reproduction. Animals (Basel) 2024; 14:1597. [PMID: 38891644 PMCID: PMC11171123 DOI: 10.3390/ani14111597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
The Mediterranean region is facing several environmental changes and pollution issues. Teleosts are particularly sensitive to these challenges due to their intricate reproductive biology and reliance on specific environmental cues for successful reproduction. Wild populations struggle with the triad of climate change, environmental contamination, and overfishing, which can deeply affect reproductive success and population dynamics. In farmed species, abiotic factors affecting reproduction are easier to control, whereas finding alternatives to conventional diets for farmed teleosts is crucial for enhancing broodstock health, reproductive success, and the sustainability of the aquaculture sector. Addressing these challenges involves ongoing research into formulating specialized diets, optimizing feeding strategies, and developing alternative and sustainable feed ingredients. To achieve a deeper comprehension of these challenges, studies employing model species have emerged as pivotal tools. These models offer advantages in understanding reproductive mechanisms due to their well-defined physiology, genetic tractability, and ease of manipulation. Yet, while providing invaluable insights, their applicability to diverse species remains constrained by inherent variations across taxa and oversimplification of complex environmental interactions, thus limiting the extrapolation of the scientific findings. Bridging these gaps necessitates multidisciplinary approaches, emphasizing conservation efforts for wild species and tailored nutritional strategies for aquaculture, thereby fostering sustainable teleost reproduction in the Mediterranean.
Collapse
Affiliation(s)
- Marta Lombó
- Department of Life and Environmental Sciences (DiSVA), Università Politecnica delle Marche, 60131 Ancona, Italy; (M.L.); (C.G.)
- INBB—Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma, Italy
- Department of Molecular Biology, Faculty of Biology and Environmental Sciences, Universidad de León, 24071 León, Spain
| | - Christian Giommi
- Department of Life and Environmental Sciences (DiSVA), Università Politecnica delle Marche, 60131 Ancona, Italy; (M.L.); (C.G.)
- INBB—Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma, Italy
| | - Matteo Zarantoniello
- Department of Life and Environmental Sciences (DiSVA), Università Politecnica delle Marche, 60131 Ancona, Italy; (M.L.); (C.G.)
| | - Giulia Chemello
- Department of Life and Environmental Sciences (DiSVA), Università Politecnica delle Marche, 60131 Ancona, Italy; (M.L.); (C.G.)
- INBB—Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma, Italy
| |
Collapse
|
4
|
Zainuddin AH, Roslan MQJ, Razak MR, Yusoff FM, Haron DEM, Aris AZ. Occurrence, distribution, and ecological risk of bisphenol analogues in marine ecosystem of urbanized coast and estuary. MARINE POLLUTION BULLETIN 2023; 192:115019. [PMID: 37201347 DOI: 10.1016/j.marpolbul.2023.115019] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/20/2023]
Abstract
Bisphenol analogues are prevalent globally because of rampant usage and imprecise processing techniques, prompting alerts about environmental and health hazards. The method employed in this study by solid phase extraction (SPE) and liquid chromatography-tandem quadrupole mass spectrometer (LC-MS/MS) for both quantification and qualitative analysis of the bisphenol compounds in the surface water samples. The coastal and estuarine surface water of Port Dickson and Lukut ranges from 1.32 ng/L to 1890.51 ng/L of bisphenol analogues. BPF mean concentration at 1143.88 ng/L is the highest, followed by BPA and BPS at 59.01 ng/L and 10.96 ng/L, respectively. Based on RQm for bisphenol analogues, the highest for BPF at 2.49 (RQ > 1, high risk), followed by BPS at 0.12 (0.1 < RQ < 1, medium risk) and BPA at 0.09 (0.1 < RQ < 1, medium risk). The presence and current risk of bisphenols analogues should alert the possible water quality degradation soon.
Collapse
Affiliation(s)
- Azim Haziq Zainuddin
- International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, 71050 Port Dickson, Negeri Sembilan, Malaysia
| | - Muhammad Qusyairi Jori Roslan
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Muhammad Raznisyafiq Razak
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Fatimah Md Yusoff
- International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, 71050 Port Dickson, Negeri Sembilan, Malaysia; Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Didi Erwandi Mohamad Haron
- Research Services Division, The Institute of Research Management and Services, Deputy Vice-Chancellor (Research and Innovation), Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ahmad Zaharin Aris
- International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, 71050 Port Dickson, Negeri Sembilan, Malaysia; Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
5
|
De la Parra-Guerra AC, Acevedo-Barrios R. Studies of Endocrine Disruptors: Nonylphenol and Isomers in Biological Models. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023. [PMID: 37057841 DOI: 10.1002/etc.5633] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 05/23/2023]
Abstract
Certain emerging pollutants are among the most widely used chemicals globally, causing widespread concern in relation to their use in products devoted to cleaniness and asepsis. Nonylphenol ethoxylate (NPEOn) is one such contaminant, along with its degradation product, nonylphenol, an active ingredient presents in nonionic surfactants used as herbicides, cosmetics, paints, plastics, disinfectants, and detergents. These chemicals and their metabolites are commonly found in environmental matrices. Nonylphenol and NPEOn, used, are particularly concerning, given their role as endocrine disruptors chemical and possible neurotoxic effects recorded in several biological models, primarily aquatic organisms. Limiting and detecting these compounds remain of paramount importance. The objective of the present review was to evaluate the toxic effects of nonylphenol and NPEOn in different biological models. Environ Toxicol Chem 2023;00:1-12. © 2023 SETAC.
Collapse
Affiliation(s)
- Ana C De la Parra-Guerra
- Department of Natural and Exact Sciences, Universidad de La Costa, Barranquilla, Colombia
- Biodiversity Research Group, Faculty of Basic Sciences, Universidad del Atlántico, Barranquilla, Colombia
| | - Rosa Acevedo-Barrios
- Grupo de Investigación en Estudios Químicos y Biológicos, Facultad de Ciencias Básicas, Universidad Tecnológica de Bolívar, Cartagena, Colombia
| |
Collapse
|
6
|
López-Velázquez K, Guzmán-Mar JL, Saldarriaga-Noreña HA, Murillo-Tovar MA, Villanueva-Rodríguez M. Ecological risk assessment associated with five endocrine-disrupting compounds in wastewater treatment plants of Northeast Mexico. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:30714-30726. [PMID: 36441306 DOI: 10.1007/s11356-022-24322-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
The ecological risk associated with five endocrine-disrupting compounds (EDCs) was studied in four wastewater treatment plants (WWTPs) in Monterrey, Mexico. The EDCs, 17β-estradiol (E2), 17α-ethinylestradiol (EE2), bisphenol A (BPA), 4-nonylphenol (4NP), and 4-tert-octylphenol (4TOP) were determined by SPE/GC-MS method, where EE2 and 4TOP were the most abundant in effluents at levels from 1.6 - 26.8 ng/L (EE2) and < LOD - 5.0 ng/L (4TOP), which corroborate that the wastewater discharges represent critical sources of EDCs to the aquatic environments. In this study, the potential risk associated with selected EDCs was assessed through the risk quotients (RQs) and by estimating the estrogenic activity (expressed as EEQ). This study also constitutes the first approach for the ecological risk assessment in effluents of WWTPs in Northeast Mexico. The results demonstrated that the effluents of the WWTPs represent a high risk for the organisms living in the receiving water bodies because the residual estrogens effect E2 and EE2 with RQ values up to 49.1 and 1165.2. EEQ values between 6.3 and 24.6 ngEE2/L were considered the most hazardous compounds among the target EDCs, capable of causing some alterations in the endocrine system of aquatic and terrestrial organisms due to chronic exposition.
Collapse
Affiliation(s)
- Khirbet López-Velázquez
- Universidad Autónoma de Nuevo León (UANL), Facultad de Ciencias Químicas, Av. Universidad s/n, Ciudad Universitaria, Nuevo León, 66455, San Nicolás de los Garza, México
- Universidad Politécnica de Tapachula, Carretera Tapachula - Puerto Madero Km. 24 + 300, Chiapas, 30830, Tapachula, México
| | - Jorge L Guzmán-Mar
- Universidad Autónoma de Nuevo León (UANL), Facultad de Ciencias Químicas, Av. Universidad s/n, Ciudad Universitaria, Nuevo León, 66455, San Nicolás de los Garza, México
| | - Hugo A Saldarriaga-Noreña
- Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, 62209, Cuernavaca, México
| | - Mario A Murillo-Tovar
- CONACYT-Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, 62209, Cuernavaca, México
| | - Minerva Villanueva-Rodríguez
- Universidad Autónoma de Nuevo León (UANL), Facultad de Ciencias Químicas, Av. Universidad s/n, Ciudad Universitaria, Nuevo León, 66455, San Nicolás de los Garza, México.
| |
Collapse
|
7
|
Lu S, Wang J, Wang B, Xin M, Lin C, Gu X, Lian M, Li Y. Comprehensive profiling of the distribution, risks and priority of pharmaceuticals and personal care products: A large-scale study from rivers to coastal seas. WATER RESEARCH 2023; 230:119591. [PMID: 36638740 DOI: 10.1016/j.watres.2023.119591] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/25/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) have captured global concern due to their detrimental effects on aquatic organisms. Thirty PPCPs were analyzed in the water of the Jiaozhou Bay watershed, the Yellow Sea (YS) and the East China Sea (ECS) in China to investigate the distribution and risk of PPCPs from rivers to coastal seas, which are not yet well documented. The results showed the prevalence of the target PPCPs with a downward trend in detection frequencies and total concentrations from rivers (675 ng/L on average) to bay (166 ng/L) and to coastal seas (103 ng/L). Antibiotics and personal care products (PCPs) were dominated by amoxicillin (AMOX) and p-hydroxybenzoic acid, respectively, while the dominant estrogens were inconsistent in different regions. Spatially, the total PPCP concentrations were higher in the ECS than that in the YS due to the larger quantity of sewage flowing into the ECS. Additionally, higher total PPCP concentrations were appeared in the southeastern waters outside the Yangtze estuary and Hangzhou Bay of the ECS. The PPCP mixtures might pose medium to high risk to aquatic organisms in general. The total risk quotient (RQT) of antibiotics and PCPs to algae was higher than that to crustacean and fish, while estrogens may cause the greatest damage to fish. Despite the higher PPCP concentrations in river water than in seawater, the RQT of PPCPs in bay water was generally higher than that in river water, which may be associated with the susceptibility of marine organisms. Furthermore, the high-risk pollutants that need special concern in different regions were clarified, showing that AMOX, 17ß-estradiol, and estriol deserve the highest-priority in rivers, bay, and coastal waters, respectively.
Collapse
Affiliation(s)
- Shuang Lu
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Jing Wang
- Beijing Normal University, Beijing 100875, China
| | - Baodong Wang
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Ming Xin
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Chunye Lin
- Beijing Normal University, Beijing 100875, China.
| | - Xiang Gu
- Beijing Normal University, Beijing 100875, China
| | - Maoshan Lian
- Beijing Normal University, Beijing 100875, China
| | - Yun Li
- Beijing Normal University, Beijing 100875, China
| |
Collapse
|
8
|
Ye C, Yu F, Huang Y, Hua M, Zhang S, Feng J. Hydrochar as an environment-friendly additive to improve the performance of biodegradable plastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:155124. [PMID: 35405227 DOI: 10.1016/j.scitotenv.2022.155124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Plastic additives affect the properties of plastics, which further determine the application range of plastics. However, most plastic additives have environmental friendliness or performance issues limiting their application. Hydrochar (HC) from waste biomass by hydrothermal carbonization has been proved to contain organic matter as function substances, like a binder, and is environment-friendly material. Currently, hydrochar as a plastic additive has not been previously reported. In this study, the HC/PBAT composites were produced by hydrochar blending with poly (butylene adipate-co-terephthalate) (PBAT) which is a biodegradable polymer. The hydrochar produced at different hydrothermal carbonization temperatures (180 °C, 210 °C, 240 °C, 270 °C, and 300 °C) and the addition of hydrochar (10 wt%, 20 wt%) were investigated. The results showed that the elastic modulus of the composites was increased by 27.4 MPa and 32.5 MPa compared with virgin PBAT while adding 10 wt% and 20 wt% hydrochar, respectively. Moreover, the stiffness of the composite was improved, and the balance of stiffness and toughness of the composites was effectively maintained when adding 10 wt% hydrochar treated at 300 °C. The elongation at break, tensile strength, and the elastic modulus of its composites were 630.8 ± 13.7%, 23.0 ± 0.4 MPa, and 100.5 ± 2.7 MPa, respectively. Furthermore, the crystallization temperature of the composites was increased after hydrochar was added into PBAT, and the maximum was 87.9 °C. It also means that hydrochar has a great nucleation effect during plastic processing. Therefore, hydrochar can be used as an environment-friendly additive to promote the performance of biodegradable plastic and promise to be applied in the field of biodegradable plastics.
Collapse
Affiliation(s)
- Cheng Ye
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Fengbo Yu
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yanqin Huang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Mingda Hua
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Shicheng Zhang
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Jiachun Feng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
| |
Collapse
|
9
|
Bellas J, Rial D, Valdés J, Vidal-Liñán L, Bertucci JI, Muniategui S, León VM, Campillo JA. Linking biochemical and individual-level effects of chlorpyrifos, triphenyl phosphate, and bisphenol A on sea urchin (Paracentrotus lividus) larvae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:46174-46187. [PMID: 35165844 PMCID: PMC9209388 DOI: 10.1007/s11356-022-19099-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/03/2022] [Indexed: 05/04/2023]
Abstract
The effects of three relevant organic pollutants: chlorpyrifos (CPF), a widely used insecticide, triphenyl phosphate (TPHP), employed as flame retardant and as plastic additive, and bisphenol A (BPA), used primarily as plastic additive, on sea urchin (Paracentrotus lividus) larvae, were investigated. Experiments consisted of exposing sea urchin fertilized eggs throughout their development to the 4-arm pluteus larval stage. The antioxidant enzymes glutathione reductase (GR) and catalase (CAT), the phase II detoxification enzyme glutathione S-transferase (GST), and the neurotransmitter catabolism enzyme acetylcholinesterase (AChE) were assessed in combination with responses at the individual level (larval growth). CPF was the most toxic compound with 10 and 50% effective concentrations (EC10 and EC50) values of 60 and 279 μg/l (0.17 and 0.80 μM), followed by TPHP with EC10 and EC50 values of 224 and 1213 μg/l (0.68 and 3.7 μM), and by BPA with EC10 and EC50 values of 885 and 1549 μg/l (3.9 and 6.8 μM). The toxicity of the three compounds was attributed to oxidative stress, to the modulation of the AChE response, and/or to the reduction of the detoxification efficacy. Increasing trends in CAT activity were observed for BPA and, to a lower extent, for CPF. GR activity showed a bell-shaped response in larvae exposed to CPF, whereas BPA caused an increasing trend in GR. GST also displayed a bell-shaped response to CPF exposure and a decreasing trend was observed for TPHP. An inhibition pattern in AChE activity was observed at increasing BPA concentrations. A potential role of the GST in the metabolism of CPF was proposed, but not for TPHP or BPA, and a significant increase of AChE activity associated with oxidative stress was observed in TPHP-exposed larvae. Among the biochemical responses, the GR activity was found to be a reliable biomarker of exposure for sea urchin early-life stages, providing a first sign of damage. These results show that the integration of responses at the biochemical level with fitness-related responses (e.g., growth) may help to improve knowledge about the impact of toxic substances on marine ecosystems.
Collapse
Affiliation(s)
- Juan Bellas
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO, CSIC), Subida a Radio Faro 50, 36390, Vigo, Spain.
| | - Diego Rial
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO, CSIC), Subida a Radio Faro 50, 36390, Vigo, Spain
| | - Juliana Valdés
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (IEO, CSIC), Varadero 1, San Pedro del Pinatar, 30740, Murcia, Spain
| | - Leticia Vidal-Liñán
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO, CSIC), Subida a Radio Faro 50, 36390, Vigo, Spain
| | - Juan I Bertucci
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO, CSIC), Subida a Radio Faro 50, 36390, Vigo, Spain
| | - Soledad Muniategui
- Grupo Química Analítica Aplicada (QANAP), Instituto Universitario de Medio Ambiente (IUMA), Centro de Investigaciones Científicas Avanzadas (CICA), Departamento de Química Analítica, Facultade de Ciencias, Universidade da Coruña, Campus de A Coruña, 15071, A Coruña, Spain
| | - Víctor M León
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (IEO, CSIC), Varadero 1, San Pedro del Pinatar, 30740, Murcia, Spain
| | - Juan A Campillo
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (IEO, CSIC), Varadero 1, San Pedro del Pinatar, 30740, Murcia, Spain
| |
Collapse
|
10
|
Schönemann AM, Moreno Abril SI, Diz AP, Beiras R. The bisphenol A metabolite MBP causes proteome alterations in male Cyprinodon variegatus fish characteristic of estrogenic endocrine disruption. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118936. [PMID: 35124124 DOI: 10.1016/j.envpol.2022.118936] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/06/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
The toxicological status of bisphenol A (BPA) is under strong debate. Whereas in vitro it is an agonist of the estrogen receptor with a potency ca. 105-fold lower than the natural female hormone estradiol, in vivo exposure causes only mild effects at concentration thresholds environmentally not relevant and inconsistent among species. By using a proteomic approach, shotgun liver proteome analysis, we show that 7-d exposure to 10 μg/L of the BPA metabolite, 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP), and not the same exposure to the parental molecule BPA, alters the liver proteome of male Cyprinodon variegatus fish. Different physiological and environmental conditions leading to biotransformation of BPA to MBP may partly explain the conflicting results so far reported for in vivo BPA exposures. The pattern of alteration induced by MBP is similar to that caused by estradiol, and indicative of estrogenic endocrine disruption. MBP enhanced ribosomal activity, protein synthesis and transport, with upregulation of 91% of the ribosome-related proteins, and 12 proteins whose expression is regulated by estrogen-responsive elements, including vitellogenin and zona pellucida. Whey acidic protein (WAP) was the protein most affected by MBP exposure (FC = 68). This result points at WAP as novel biomarker for xenoestrogens.
Collapse
Affiliation(s)
- Alexandre M Schönemann
- Centro de Investigación Mariña, Universidade de Vigo (CIM-UVigo), Vigo, Galicia, Spain; Department of Biochemistry, Genetics and Immunology, University of Vigo, Galicia, Spain
| | - Sandra Isabel Moreno Abril
- Centro de Investigación Mariña, Universidade de Vigo (CIM-UVigo), Vigo, Galicia, Spain; Department of Ecology and Animal Biology, University of Vigo, Vigo, Galicia, Spain
| | - Angel P Diz
- Centro de Investigación Mariña, Universidade de Vigo (CIM-UVigo), Vigo, Galicia, Spain; Department of Biochemistry, Genetics and Immunology, University of Vigo, Galicia, Spain
| | - Ricardo Beiras
- Centro de Investigación Mariña, Universidade de Vigo (CIM-UVigo), Vigo, Galicia, Spain; Department of Ecology and Animal Biology, University of Vigo, Vigo, Galicia, Spain.
| |
Collapse
|
11
|
Fauser P, Vorkamp K, Strand J. Residual additives in marine microplastics and their risk assessment - A critical review. MARINE POLLUTION BULLETIN 2022; 177:113467. [PMID: 35314391 DOI: 10.1016/j.marpolbul.2022.113467] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
This review summarizes the current state of knowledge regarding the risk assessment of plastic-associated residual additives, i.e. residual monomers, degradation products and additives, in the marine environment, also considering effects of weathering and bioavailability. Experimental studies have found a number of organic and metal additive compounds in leachates from plastics, and the analysis of weathered plastic particles, such as polyethylene, polypropylene and polystyrene particles sampled on beaches and shorelines, has identified residual additives, such as flame retardants, plasticizers, UV stabilizers and antioxidants. While the transfer of e.g. PBDEs to organisms upon ingestion has been demonstrated, studies on uptake and bioaccumulation of plastic-associated chemicals are inconclusive. Studies on hazard and risk assessments are few, and focus on monomers and/or a limited number of high concentration additives, such as phthalates and flame retardants. The risk assessment results vary between low, moderate and high risks of specific additives, and are not necessarily consistent for the same compound. Given the large number of chemicals potentially introduced into the marine environment with plastic particles and the challenges associated with the correct quantification of exposure concentrations and toxicity thresholds, the question arises whether new risk assessment concepts may be needed.
Collapse
Affiliation(s)
- Patrik Fauser
- Aarhus University, Department of Environmental Science, Frederiksborgvej 399, 4000 Roskilde, Denmark.
| | - Katrin Vorkamp
- Aarhus University, Department of Environmental Science, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Jakob Strand
- Aarhus University, Department of Ecoscience, Frederiksborgvej 399, 4000 Roskilde, Denmark
| |
Collapse
|
12
|
Ringbeck B, Bury D, Ikeda-Araki A, Ait Bamai Y, Ketema RM, Miyashita C, Brüning T, Kishi R, Koch HM. Nonylphenol exposure in 7-year-old Japanese children between 2012 and 2017- Estimation of daily intakes based on novel urinary metabolites. ENVIRONMENT INTERNATIONAL 2022; 161:107145. [PMID: 35168185 DOI: 10.1016/j.envint.2022.107145] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/23/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Nonylphenol (NP) has been under scrutiny for decades due to its endocrine-disrupting properties and its ubiquity in the environment. Despite its widespread occurrence, robust and reliable exposure data are rare. In this study, we used human biomonitoring (HBM) measuring the novel urinary alkyl-chain-oxidized biomarkers OH-NP and oxo-NP to determine NP exposure in 7-year-old Japanese children. The new biomarkers are advantageous over measuring unchanged NP because they are not prone to external contamination. We analyzed 180 first morning void urine samples collected between 2012 and 2017. OH-NP and oxo-NP were detected in 100% and 66% of samples at median concentrations of 2.69 and 0.36 µg/L, respectively. 10-fold concentration differences between OH-NP and oxo-NP are in line with recent findings on human NP metabolism. Based on OH-NP we back-calculated median and maximum NP daily intakes (DI) of 0.14 and 0.95 µg/(kg bw*d). These DIs are rather close to but still below the current provisional tolerable daily intake of 5 µg/(kg bw*d) by the Danish Environmental Protection Agency. Between 2012 and 2017 the DIs decreased by an average of 4.7% per year. We observed no seasonal changes or gender differences and questionnaire data on food consumption, housing characteristics or pesticide use showed no clear associations with NP exposure. Urinary OH-NP was weakly associated with the oxidative stress (lipid peroxidation) biomarkers N-ε-hexanoyl-lysine (HEL) and trans-4-hydroxy-2-nonenal (HNE) (Spearman ρ = 0.30 and 0.22, respectively), but not with 8-hydroxy-2'-deoxyguanosine (8-OHdG). Further research is needed to identify and understand the major sources of NP exposure and to investigate a potential role in oxidative stress. This study is the first to investigate NP exposure in Japanese children based on robust and sensitive HBM data. It is a first step to fill the long-standing gap in quantitative human NP exposure monitoring and risk assessment.
Collapse
Affiliation(s)
- Benedikt Ringbeck
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany.
| | - Daniel Bury
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany.
| | - Atsuko Ikeda-Araki
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12 Nishi 7, Sapporo, Japan; Faculty of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Sapporo, Japan.
| | - Yu Ait Bamai
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12 Nishi 7, Sapporo, Japan.
| | - Rahel Mesfin Ketema
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12 Nishi 7, Sapporo, Japan; Faculty of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Sapporo, Japan.
| | - Chihiro Miyashita
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12 Nishi 7, Sapporo, Japan.
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany.
| | - Reiko Kishi
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12 Nishi 7, Sapporo, Japan.
| | - Holger M Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany.
| |
Collapse
|
13
|
Peñalver R, Ortiz A, Arroyo-Manzanares N, Campillo N, López-García I, Viñas P. Non-targeted analysis by DLLME-GC-MS for the monitoring of pollutants in the Mar Menor lagoon. CHEMOSPHERE 2022; 286:131588. [PMID: 34293555 DOI: 10.1016/j.chemosphere.2021.131588] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/08/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Non-targeted analysis for the monitoring of organic pollutants resulting from agricultural and industrial practices, plastics and pharmaceutical products of seawater from the Mar Menor lagoon (SE Spain) is proposed using dispersive liquid-liquid microextraction (DLLME) and gas chromatography-mass spectrometry (GC-MS). Initially, a home-made MS database including 118 environmental organic pollutants, whose presence in different ecosystems has already been reported, was created. The analytical method was applied for the analysis of 42 samples and a total of 18 pollutants were detected and identified. Samples were obtained from different sites around the Mar Menor in three sampling campaigns, enabling the assessment of impact of rain on the input of the detected chemicals and their distribution. In addition, this methodology was validated using a standard mixture containing 54 of the environmental pollutants included in the database, allowing the quantification of the 9 of the identified compounds (dibutyl phthalate, diisobutyl phthalate, diethyl phthalate, bis(2-ethylhexyl) phthalate, anthracene, 2-methylnaphthalene, hexachlorocyclopentadiene, bis(2-ethylhexyl) adipate and oleamide) with concentration between 3 and 271 μg L-1.
Collapse
Affiliation(s)
- Rosa Peñalver
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100, Murcia, Spain
| | - Alberto Ortiz
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100, Murcia, Spain
| | - Natalia Arroyo-Manzanares
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100, Murcia, Spain
| | - Natalia Campillo
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100, Murcia, Spain
| | - Ignacio López-García
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100, Murcia, Spain
| | - Pilar Viñas
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100, Murcia, Spain.
| |
Collapse
|
14
|
Ringbeck B, Bury D, Hayen H, Weiss T, Brüning T, Koch HM. Determination of specific urinary nonylphenol metabolites by online-SPE-LC-MS/MS as novel human exposure biomarkers. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1177:122794. [PMID: 34098181 DOI: 10.1016/j.jchromb.2021.122794] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 11/19/2022]
Abstract
Nonylphenol (NP) is an endocrine disrupting and ecotoxic substance that has been detected in a variety of environmental matrices. It is utilized for the production of non-ionic nonylphenol ethoxylate (NPEO) detergents and other high production volume chemicals. Human biomonitoring data are scarce and mostly limited to the non-oxidized NP, which is ubiquitous in the (laboratory) environment and susceptible to external contamination. Here, we describe a sensitive, precise, accurate and rugged analytical method for the determination of OH-NP and oxo-NP, two potential alkyl-chain-oxidized metabolites of NP in human urine. We used single isomer standards, obtained by custom synthesis, for the quantification of the sum of the respective isomers. After enzymatic hydrolysis of potential urinary phase II conjugates, urine samples were analyzed by online turbulent flow chromatography for analyte enrichment and matrix depletion coupled to reversed phase liquid chromatography with negative electrospray-ionization triple quadrupole tandem mass spectrometry detection (online-SPE-LC-MS/MS). Quantification was performed by stable isotope dilution analysis. Limits of quantification in urinary matrix were 0.5 µg/L for OH-NP and 0.25 µg/L for oxo-NP. Mean relative recoveries were 101-105% (OH-NP) and 112-117% (oxo-NP) and the method imprecision (CV) in matrix was below 5%. In spite of extensive use restrictions in the EU since 2003, we could quantify OH-NP and oxo-NP in 94% and 47% of spot urine samples from the general German population (n = 32) collected in 2014. Thus, both metabolites seem suitable as sensitive and specific urinary biomarkers of NP exposure for future human biomonitoring population studies. Currently this method is used to quantitatively investigate human NP metabolism and to derive urinary metabolite excretion fractions that can be used to calculate external doses based on urinary biomarker concentrations.
Collapse
Affiliation(s)
- Benedikt Ringbeck
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, Bochum 44789, Germany.
| | - Daniel Bury
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, Bochum 44789, Germany.
| | - Heiko Hayen
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 30, Münster 48149, Germany.
| | - Tobias Weiss
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, Bochum 44789, Germany.
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, Bochum 44789, Germany.
| | - Holger M Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, Bochum 44789, Germany.
| |
Collapse
|
15
|
He J, Yang X, Liu H. Enhanced toxicity of triphenyl phosphate to zebrafish in the presence of micro- and nano-plastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:143986. [PMID: 33307501 DOI: 10.1016/j.scitotenv.2020.143986] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/16/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
Co-occurrence of microplastics and chemicals was a complex environmental issue, whereas little concerned on the effect of microplastics on the toxicity of chemicals. In this study, we studied the changes of toxicity of triphenyl phosphate (TPhP) to zebrafish, in the presence of micro-polystyrene (MPS, 5.8 μm) and nano-polystyrene (NPS, 46 nm). Results indicated that separate MPS and NPS had no acute toxicity and little reproductive toxicity on zebrafish. TPhP alone was a highly toxic substance with a median lethal concentration (LC50) of 976 μg/L, the presence of MPS and NPS did not have significant effect on the acute toxicity of TPhP. TPhP alone stimulated the enlargement of liver and gonad of fish (except the testis) by 1.25-2.12 fold, and the presence of NPS further aggravated this stimulation by 1.23-2.84 fold, while MPS did not. The gonadal histology indicated that comparing with TPhP alone, the addition of MPS and NPS further inhibited the process of spermatogenesis and oogenesis, even causing obvious lacunas in testis and atretic follicles oocytes in ovary. Meanwhile, TPhP did not significantly disturb the hormone homeostasis (E2/T) and vitellogenin (Vtg) content in fish, but the presence of NPS increased the E2/T ratio and Vtg content in male fish, while slightly decreased those in female fish, which implying that effects of PS was sex-dependent. As a result, the egg production, the fertilization rate and hatchability of eggs significantly reduced after combined TPhP+PS exposure, demonstrating that co-occurrence of TPhP and PS, especially NPS, could greatly impaired the reproductive performance of zebrafish.
Collapse
Affiliation(s)
- Junyi He
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China
| | - Xianhai Yang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China
| | - Huihui Liu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China.
| |
Collapse
|
16
|
Hung CM, Huang CP, Chen CW, Hsieh SL, Dong CD. Effects of biochar on catalysis treatment of 4-nonylphenol in estuarine sediment and associated microbial community structure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115673. [PMID: 33007651 DOI: 10.1016/j.envpol.2020.115673] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/13/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
The effect of pyrolysis temperature on the generation of polycyclic aromatic hydrocarbons (PAHs) in sewage sludge biochar (SSB) and the removal of hazardous chemicals from esturine sediments by SSB and sodium percarbonate (SPC), exemplified by 4-nonylphenol (4-NP) were studied. SSB synthesized at 500 °C (SSB500) achieved the highest 4-NP degradation efficiency of 73%, at pH0 9.0 in 12 h of reaction time. The enhanced 4-NP degradation was attributed to the SSB500 activation activation of SPC that produced sufficient •OH and CO3-• due to electron-transfer interaction on the Fe-Mn redox pairs. The microbial community diversity and composition of the treated sediment were compared using high-throughput sequencing. Results showed SSB/SPC treatment increased the microbial diversity and richness in the sediments. Proteobacteria were the keystone phylum, while Thioalkalispira genera were responsible for 4-NP degradation in the SSB/SPC treatment. Over all, results revealed the change in the bacterial community during the environmental applications of SSB, which provided essential information for better understanding of the monitoring and improvement of sustainable sediment ecosystems.
Collapse
Affiliation(s)
- Chang-Mao Hung
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chin-Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, USA
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Shu-Ling Hsieh
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
17
|
León VM, Viñas L, Concha-Graña E, Fernández-González V, Salgueiro-González N, Moscoso-Pérez C, Muniategui-Lorenzo S, Campillo JA. Identification of contaminants of emerging concern with potential environmental risk in Spanish continental shelf sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140505. [PMID: 32721718 DOI: 10.1016/j.scitotenv.2020.140505] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/26/2020] [Accepted: 06/23/2020] [Indexed: 05/04/2023]
Abstract
The distribution of per- and polyfluoroalkyl substances (PFAS), alkylphenols, organotin compounds, phthalates, alkylated polycyclic aromatic hydrocarbons, current-use pesticides (CUPs) and personal care products (PCPs) was characterized in 29 surface sediments from two Spanish Iberian continental shelf areas (14 on the Atlantic and 15 on the Mediterranean coasts). Concretely, 115 organic contaminants were determined and a specific methodology was used for each contaminant group, including contaminants of emerging concern (CECs) and traditional ones, such as polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and organochlorinated pesticides (OCPs). PAHs, alkylated PAHs, alkylphenols and phthalates were found in all samples, showing mean concentrations per group higher than 20 ng/g (16-4974 ng/g d.w.) in the subregions under consideration (Galician, Cantabrian, Levantine-Balearic and Strait-Alboran). CUPs and PCPs were found in the majority of samples at very low concentrations of ng/g (1.4-46.8 ng/g d.w.), whereas organotins and PFAS were found principally in sediments from the Mediterranean subregions (2.5-3.9 ng/g d.w.). Different distribution patterns were observed for the contaminant groups and subregions under consideration as a consequence of the diverse predominant sources (industrial, urban, transport and agricultural activities) and environmental behavior (mainly hydrophobicity and persistence). Risk assessment confirmed the impact of phthalates, alkylphenols, PAHs and PCBs on Atlantic ecosystems and of alkylphenols, chlorpyrifos, phthalates, TBT, PAHs, OCPs and PCBs on the Mediterranean ones. Furthermore, the presence of CUPs, PCPs and PFAS in sediments from the Spanish continental shelf located between 2 and 31 km from the coast suggested that those contaminants may also provoke adverse effects on coastal marine ecosystems between their sources and their depositional areas. CAPSULE: Alkylphenols, phthalates and organotins may provoke adverse effects on Spanish coastal marine ecosystems from their sources to the sediment depositional areas.
Collapse
Affiliation(s)
- Víctor M León
- Instituto Español de Oceanografía, Centro Oceanográfico de Murcia, C/Varadero 1, 30740 San Pedro del Pinatar, Murcia, Spain.
| | - Lucía Viñas
- Instituto Español de Oceanografía, Centro Oceanográfico de Vigo, Subida a Radio Faro 50, 36390 Vigo, Pontevedra, Spain
| | - Estefanía Concha-Graña
- Grupo Química Analítica Aplicada, Instituto Universitario de Medio Ambiente (IUMA), Centro de Investigaciones Científicas Avanzadas (CICA), Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Verónica Fernández-González
- Grupo Química Analítica Aplicada, Instituto Universitario de Medio Ambiente (IUMA), Centro de Investigaciones Científicas Avanzadas (CICA), Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Noelia Salgueiro-González
- Grupo Química Analítica Aplicada, Instituto Universitario de Medio Ambiente (IUMA), Centro de Investigaciones Científicas Avanzadas (CICA), Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain; Istituto di Ricerche Farmacologiche Mario Negri - IRCCS, Department of Environmental Health Sciences, Via Mario Negri 2, 20156 Milan, Italy
| | - Carmen Moscoso-Pérez
- Grupo Química Analítica Aplicada, Instituto Universitario de Medio Ambiente (IUMA), Centro de Investigaciones Científicas Avanzadas (CICA), Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Soledad Muniategui-Lorenzo
- Grupo Química Analítica Aplicada, Instituto Universitario de Medio Ambiente (IUMA), Centro de Investigaciones Científicas Avanzadas (CICA), Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Juan A Campillo
- Instituto Español de Oceanografía, Centro Oceanográfico de Murcia, C/Varadero 1, 30740 San Pedro del Pinatar, Murcia, Spain
| |
Collapse
|
18
|
Ma Y, Zhang Y, Zhu X, Lu N, Li C, Yuan X, Qu J. Photocatalytic degradation and rate constant prediction of chlorophenols and bisphenols by H 3PW 12O 40/GR/TiO 2 composite membrane. ENVIRONMENTAL RESEARCH 2020; 188:109786. [PMID: 32593897 DOI: 10.1016/j.envres.2020.109786] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/30/2020] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
Photocatalysis is a promising approach to remove highly toxic and refractory aromatics pollutants. However, developing highly active photocatalyst is a long-standing challenge for pollutant degradation. This study addressed this challenge by developing GR (graphene)/TiO2 and HPW (H3PW12O40)/GR/TiO2 membranes by sol-gel method. The removal efficiencies of HPW/GR/TiO2 (the doping of 1.0% HPW) membrane for chlorophenols (including o-chlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol, and pentachlorophenol) and bisphenols (such as Bisphenol A, Bisphenol AP, Bisphenol AF, and Bisphenol S) were up to 97.02-82.71% and 93.28-68.63% with simulated sunlight radiation for 5 h, respectively. Compared with GR/TiO2 composite membrane, HPW/GR/TiO2 remarkably accelerated the formation rates of O2- and OH, due to the simultaneous transfer of photo-generated electrons (generated by TiO2) to GR and HPW. In addition, the activity of the HPW/GR/TiO2 membrane did not decline noticeably after 10-time recycle. Furthermore, the photocatalytic degradation reaction rate constants (k) of phenols by HPW/GR/TiO2 membrane were calculated, and those for other chlorophenols and bisphenols were predicted using a quantitative structure-activity relationship model. The HPW/GR/TiO2 membrane developed in this study poses high potential as an ideal photocatalyst for removal of phenolic pollutants in wastewater.
Collapse
Affiliation(s)
- Ying Ma
- School of Environment, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Yanan Zhang
- School of Environment, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Xiaolin Zhu
- School of Environment, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Nan Lu
- School of Environment, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Chao Li
- School of Environment, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Xing Yuan
- School of Environment, Northeast Normal University, Changchun, Jilin, 130024, China.
| | - Jiao Qu
- School of Environment, Northeast Normal University, Changchun, Jilin, 130024, China.
| |
Collapse
|
19
|
Safakhah N, Ghanemi K, Nikpour Y, Batvandi Z. Occurrence, distribution, and risk assessment of bisphenol A in the surface sediments of Musa estuary and its tributaries in the northern end of the Persian Gulf, Iran. MARINE POLLUTION BULLETIN 2020; 156:111241. [PMID: 32510385 DOI: 10.1016/j.marpolbul.2020.111241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
Musa estuary and its tributaries, located northwest of the Persian Gulf, host many industrial complexes, high-density ports, and urban areas along their coastal regions and are, therefore, constantly threatened by chemical contamination. The present study is the first to have investigated the surface sediments in six stations of the Musa estuary tributaries. The mean variations in BPA concentrations in the dry sediments of these stations ranged from 2.22 to 16.71 ng/g. Fairly high levels of BPA were found in Durragh station and its neighboring industrial sites. The lowest BPA level (2.22 ng/g) was observed in the station at the mouth of the Persian Gulf. Based on the EU risk-assessment system, the concentration levels of BPA in the sediments are in the low-risk range. Only in certain areas of the estuary were the sediments of moderate risk, and prolonged contact between ecological populations and them could cause toxicity in aquatic organisms.
Collapse
Affiliation(s)
- Narges Safakhah
- Department of Marine Chemistry, Faculty of Marine Science, Khorramshahr University of Marine Science and Technology, P.O. Box 669, Khorramshahr, Iran
| | - Kamal Ghanemi
- Department of Marine Chemistry, Faculty of Marine Science, Khorramshahr University of Marine Science and Technology, P.O. Box 669, Khorramshahr, Iran; Marine Science Research Institute, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran.
| | - Yadollah Nikpour
- Department of Marine Chemistry, Faculty of Marine Science, Khorramshahr University of Marine Science and Technology, P.O. Box 669, Khorramshahr, Iran
| | - Ziba Batvandi
- Department of Basic Sciences, Faculty of Economics, Khorramshahr University of Marine Science and Technology, P.O. Box 669, Khorramshahr, Iran
| |
Collapse
|
20
|
Cao X, Yan C, Wu X, Zhou L, Xiu G. Nonylphenol induced individual and population fluctuation of Caenorhabditis elegans: Disturbances on developmental and reproductive system. ENVIRONMENTAL RESEARCH 2020; 186:109486. [PMID: 32283338 DOI: 10.1016/j.envres.2020.109486] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 05/19/2023]
Abstract
The environmental risks that have arisen from endocrine disruption compounds (EDCs) have become global challenges, especially for persistent bio-accumulated xenobiotic chemicals, such as nonylphenol (NP). In the present study, the population dynamics of Caenorhabditis elegans (C. elegans) were systemically investigated by conducting developmental and reproductive bioassays under the exposure of NP, which has been widely detected in actual aquatic environments. The results revealed that under NP exposure (400 μg L-1 NP), developmental indictors of C. elegans, including the body length and width were significantly inhibited at different life stages of L1 and L4 larva, and the growth curves were further adversely affected. In addition, abnormalities in reproductive systems were also observed under NP exposure. Such abnormalities obeyed a dose-dependent relationship with NP levels, which were closely related to the delayed spawning time and decreased reproductive rates. Moreover, the results from global genome expression analysis for nematodes revealed that the most significant enriched GO terms could be predominantly responsible for the dysregulation of growth and reproductive system. The population's parameters, including age composition and intrinsic growth rate (rm d-1), displayed significant changes, with a suppressed potentiality of population growth. Those data elucidated that NP exhibited a profound impact on the dynamic stability of the population, even with no obvious effect on certain biochemical markers.
Collapse
Affiliation(s)
- Xue Cao
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China; Shanghai Environmental Protection Key Laboratory for Environmental Standard and Risk Management of Chemical Pollutants, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chenzhi Yan
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China; Shanghai Environmental Protection Key Laboratory for Environmental Standard and Risk Management of Chemical Pollutants, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xuan Wu
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China; Shanghai Environmental Protection Key Laboratory for Environmental Standard and Risk Management of Chemical Pollutants, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Lei Zhou
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China; Shanghai Environmental Protection Key Laboratory for Environmental Standard and Risk Management of Chemical Pollutants, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Guangli Xiu
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China; Shanghai Environmental Protection Key Laboratory for Environmental Standard and Risk Management of Chemical Pollutants, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|