1
|
Butt SA, Barraza F, Devito K, Frost L, Javed MB, Noernberg T, Oleksandrenko A, Shotyk W. Spatio-temporal variations in dissolved trace elements in peat bog porewaters impacted by dust inputs from open-pit mining activities in the Athabasca Bituminous Sands (ABS) region. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123470. [PMID: 38307240 DOI: 10.1016/j.envpol.2024.123470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/12/2024] [Accepted: 01/29/2024] [Indexed: 02/04/2024]
Abstract
Considerable volumes of dust are generated from open-pit bitumen mining operations in northern Alberta, Canada. The reactive mineral phases of these dust particles can potentially dissolve in acidic (pH < 4) bog waters. Their dissolution could release trace elements (TEs), which could eventually alter these bog ecosystems. The impact of dust dissolution on the abundance of TEs in the dissolved (<0.45 μm) fraction of porewaters from excavated pits (30-40 cm deep) in the ombrogenic zone of five peatlands was evaluated. Porewaters were collected from four bogs situated within 70 km of mines and upgraders in the Athabasca Bituminous Sands (ABS) region, Alberta, Canada, and from a reference bog situated 264 km away. Over two consecutive years, the dissolved concentrations of some conservative (Al, Th, Y) and mobile lithophile elements (Fe, Li, Mn, Sr), as well as the metals enriched in bitumen (V, Ni, Mo), all increased with proximity to the mining area, in the ABS region. These trends reflect the observed increase in dust deposition with proximity to the mining area from independent studies of snow, lichens, and Sphagnum moss. Contrarily, the impact of dust dissolution on the concentration of potentially toxic TEs (As, Cd, Pb, Sb, and Tl) was negligible. Thus, the elements which are more abundant in the porewaters near industry are either ecologically benign (e.g. Li and Sr) or essential micronutrients (e.g. Fe, Mn, Ni, and Mo). Manganese was the only element which was enriched by more than 10x at all sites near the mining area, compared to its concentration at the reference site. The enrichments of all other elements were <10x, indicating that anthropogenic dust emissions from mining areas have had only a modest effect on the TEs abundance in peat porewaters.
Collapse
Affiliation(s)
- Sundas Arooj Butt
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| | - Fiorella Barraza
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| | - Kevin Devito
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Lukas Frost
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| | - Muhammad Babar Javed
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada; Hatfield Consultants, Fort McMurray, AB, Canada
| | - Tommy Noernberg
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| | | | - William Shotyk
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
2
|
Wang Z, Pilechi A, Fok Cheung M, Ariya PA. In-situ and real-time nano/microplastic coatings and dynamics in water using nano-DIHM: A novel capability for the plastic life cycle research. WATER RESEARCH 2023; 235:119898. [PMID: 36989805 DOI: 10.1016/j.watres.2023.119898] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/10/2023] [Accepted: 03/18/2023] [Indexed: 06/19/2023]
Abstract
A novel nano-digital inline holographic microscope (nano-DIHM) was used to advance in-situ and real-time nano/microplastic physicochemical research, such as particle coatings and dynamic processes in water. Nano-DIHM data provided evidence of distinct coating patterns on nano/microplastic particles by oleic acid, magnetite, and phytoplankton, representing organic, inorganic, and biological coatings widely present in the natural surroundings. A high-resolution scanning transmission electron microscopy confirmed nano-DIHM data, demonstrating its nano/microplastic research capabilities. The sedimentation of two plastic size categories was examined: (a) ∼10 to 700 µm, and (b) ∼ 1 to 5 mm. Particle size was the primary factor affecting the sedimentation for studied (a) microplastics and (b) pellets. Two types of silicone rubbers exhibited different sedimentation processes. We also demonstrated that inorganic ions in seawater and oleic acid organic coatings altered the sedimentation velocity of studied plastics by 9 - 13% and 5 - 9%, respectively. Semi-empirical probability functions were developed and incorporated into a numerical model (CaMPSim-3D) to simulate the transport of studied microplastics and pellets in the Saint John River estuary. Water dynamics was the driving force of plastic transport, yet the accumulation of plastics was selectively dependant on particle physicochemical properties such as size and density by ∼ 7%. The usage of nano-DIHM for targeted identification of nano/microplastic hotspots and aquatic plastic wastes remediation were discussed.
Collapse
Affiliation(s)
- Zi Wang
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | | | - Maïline Fok Cheung
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Parisa A Ariya
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada; Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec H3A 0B9, Canada.
| |
Collapse
|
3
|
Hall R, Pal D, Ariya PA. Novel Dynamic Technique, Nano-DIHM, for Rapid Detection of Oil, Heavy Metals, and Biological Spills in Aquatic Systems. Anal Chem 2022; 94:11390-11400. [PMID: 35929664 DOI: 10.1021/acs.analchem.2c02396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Numerous anthropogenic and natural particle contaminants exist in diverse aquatic systems, with widely unknown environmental fates. We coupled a flow tube with a digital in-line holographic microscopy (nano-DIHM) technique for aquatic matrices, for in situ real-time analysis of particle size, shape, and phase. Nano-DIHM enables 4D tracking of particles in water and their transformations in three-dimensional space. We demonstrate that nano-DIHM can be automated to detect and track oil spills/oil droplets in dynamic systems. We provide evidence that nano-DIHM can detect the MS2 bacteriophage as a representative biological-viral material and mercury-containing particles alongside other heavy metals as common toxic contaminants. Nano-DIHM shows the capability of observation of combined materials in water, characterizing the interactions of various particles in mixtures, and particles with different coatings in a suspension. The observed sizes of the particles and droplets ranged from ∼1 to 200 μm. We herein demonstrate the ability of nano-DIHM to characterize and distinguish particle-based contaminants in water and their interactions in both stationary and dynamic modes with a 62.5 millisecond time resolution. The fully automated software for dynamic and real-time detection of contaminants will be of global significance. A comparison is also made between nano-DIHM and established techniques such as S/TEM for their different capabilities. Nano-DIHM can provide a range of physicochemical information in stationary and dynamic modes, allowing life cycle analysis of diverse particle contaminants in different aquatic systems, and serve as an effective tool for rapid response for spills and remediation of natural waters.
Collapse
Affiliation(s)
- Ryan Hall
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Quebec H3A 2K6, Canada
| | - Devendra Pal
- Department of Atmospheric and Oceanic Sciences, McGill University, 805 Sherbrooke Street West, Montreal, Quebec H3A 0B9, Canada
| | - Parisa A Ariya
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Quebec H3A 2K6, Canada.,Department of Atmospheric and Oceanic Sciences, McGill University, 805 Sherbrooke Street West, Montreal, Quebec H3A 0B9, Canada
| |
Collapse
|
4
|
Rangel-Alvarado R, Pal D, Ariya P. PM 2.5 decadal data in cold vs. mild climate airports: COVID-19 era and a call for sustainable air quality policy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:58133-58148. [PMID: 35364791 PMCID: PMC8975444 DOI: 10.1007/s11356-022-19708-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/10/2022] [Indexed: 05/21/2023]
Abstract
Airports are identified hotspots for air pollution, notably for fine particles (PM2.5) that are pivotal in aerosol-cloud interaction processes of climate change and human health. We herein studied the field observation and statistical analysis of 10-year data of PM2.5 and selected emitted co-pollutants (CO, NOx, and O3), in the vicinity of three major Canadian airports, with moderate to cold climates. The decadal data analysis indicated that in colder climate airports, pollutants like PM2.5 and CO accumulate disproportionally to their emissions in fall and winter, in comparison to airports in milder climates. Decadal daily averages and standard errors of PM2.5 concentrations were as follows: Vancouver, 5.31 ± 0.017; Toronto, 6.71 ± 0.199; and Montreal, 7.52 ± 0.023 μg/m3. The smallest and the coldest airport with the least flights/passengers had the highest PM2.5 concentration. QQQ-ICP-MS/MS and HR-S/TEM analysis of aerosols near Montreal Airport indicated a wide range of emerging contaminants (Cd, Mo, Co, As, Ni, Cr, and Pb) ranging from 0.90 to 622 μg/L, which were also observed in the atmosphere. During the lockdown, a pronounced decrease in the concentrations of PM2.5 and submicron particles, including nanoparticles, in residential areas close to airports was observed, conforming with the recommended workplace health thresholds (~ 2 × 104 cm-3), while before the lockdown, condensable particles were up to ~ 1 × 105 cm-3. Targeted reduction of PM2.5 emission is recommended for cold climate regions.
Collapse
Affiliation(s)
| | - Devendra Pal
- Department of Atmospheric & Oceanic Sciences, McGill University, Montréal, QC, H3A 2K6, Canada
| | - Parisa Ariya
- Department of Chemistry, McGill University, Montréal, QC, H3A 2K6, Canada.
- Department of Atmospheric & Oceanic Sciences, McGill University, Montréal, QC, H3A 2K6, Canada.
| |
Collapse
|
5
|
Arciszewski TJ. A re-analysis and review of elemental and polycyclic aromatic compound deposition in snow and lake sediments from Canada's Oil Sands Region integrating industrial performance and climatic variables. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153254. [PMID: 35065131 DOI: 10.1016/j.scitotenv.2022.153254] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Much of the research from Canada's oil sands region (OSR) shows contaminants of concern (CoCs) throughout the ambient environment surrounding the industrial facilities. While there are some well-established sources of the CoCs, there is also spatial and temporal variability suggesting activity intensity, changes in technology, types and amounts of fuels combusted at the facilities, and climate may affect the results of deposition studies. This study re-analysed published data on the deposition of elements and polycyclic aromatic compounds (PACs) in snow and the sediments of some lakes by incorporating production data from facilities and climate. Using the Elastic Net (EN) regularized regression, variables describing potential associations between facility-specific activity and climate on the deposition of CoCs were identified. Among the selected variables, the combustion of delayed petroleum coke at the Suncor Basemine was associated with the deposition of CoCs, including elements in snow and in some lakes. Similarly, combustion of petroleum coke at Syncrude Mildred Lake was also identified in some models. In both cases, the effects of petroluem coke combustion are likely associated with the emission and deposition of fly ash. The mass of stored petroleum coke was not selected in snow CoC models, but the speed of the wind was a common driver for PACs. However, the mass of stockpiled petcoke was more closely associated with both elements and PACs in lake sediments. While the potential influence of other variables on the occurrence of CoCs in the OSR was also identified, including the production of crude bitumen and synthetic crude, the use of process and natural gases, temperature, and precipitation, these analyses support much of the earlier work and provides additional nuance. While more work is required, these results suggest facility-specific production and climatic data can be coupled with existing approaches to improve the identification of sources of CoCs in Canada's OSR and practices associated with their release.
Collapse
Affiliation(s)
- T J Arciszewski
- Resource Stewardship Division, Alberta Environment and Parks, Calgary, Alberta, Canada.
| |
Collapse
|
6
|
Li H, Ariya PA. Black Carbon Particles Physicochemical Real-Time Data Set in a Cold City: Trends of Fall-Winter BC Accumulation and COVID-19. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2021; 126:e2021JD035265. [PMID: 34926105 PMCID: PMC8667652 DOI: 10.1029/2021jd035265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 05/30/2023]
Abstract
Black carbon (BC) plays an important role in climate and health sciences. Using the combination of a year real-time BC observation (photoacoustic extinctiometer) and data for PM2.5 and selected co-pollutants, we herein show that annual BC Mass concentration has a bi-modal distribution, in a cold-climate city of Montreal. In addition to the summer peak, a winter BC peak was observed (up to 0.433 μg/m3), lasting over 3 months. A comparative study between two air pollution hotspots, downtown and Montreal international airport indicated that airborne average BC Mass concentration in downtown was 0.344 μg/m3, whereas in the residential areas around Montreal airport BC Mass values were over 400% higher (1.487 μg/m3). During the numerous snowfall events, airborne BC Mass concentration decreased. High-resolution scanning/transmission electron microscopy with energy dispersive X-ray spectroscopy analysis of the snow samples provided evidence that airborne BC particles or carbon nanomaterials were indeed transferred from polluted air to snow. During the COVID-19 lockdown, the BC concentration and selected co-pollutants, decreased up to 72%, confirming the predominance of anthropogenic activities in BC emission. This first cold-climate BC data set can be essential for more accurate air quality and climate modeling. About one-third of the Earth's land surface receive snow annually, the impact of this study on air quality, health and climate change is discussed.
Collapse
Affiliation(s)
- Houjie Li
- Department of ChemistryMcGill UniversityMontrealQCCanada
| | - Parisa A. Ariya
- Department of ChemistryMcGill UniversityMontrealQCCanada
- Department of Atmospheric and Oceanic SciencesMcGill UniversityMontrealQCCanada
| |
Collapse
|
7
|
Exploring the Influence of Industrial and Climatic Variables on Communities of Benthic Macroinvertebrates Collected in Streams and Lakes in Canada’s Oil Sands Region. ENVIRONMENTS 2021. [DOI: 10.3390/environments8110123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Identifying and tracking the influence of industrial activities on streams and lakes is a priority for monitoring in Canada’s oil sands region (OSR). While differences in indicators are often found in waterbodies adjacent to mining facilities, the confounding influence of natural exposures to bitumen and other stressors can affect the identification of industrial effects. However, recent work suggests metrics of industrial activity at individual facilities, including production and fuel consumption, may be used in site-specific analyses to identify influence of the industry as a whole as well as individual operations. This study further examined the potential relationships between industrial and climatic variables on benthic communities from 13 streams and 4 lakes using publicly available data from the minable region and the Elastic Net (EN) variable selection technique. From the full set of possible industrial and climate variables, the EN commonly identified the negative influence of plant and fuel use of petroleum coke at the Suncor Basemine on benthic communities in streams and lakes. The fuel/plant use of petroleum coke at Suncor likely reflects the emission and regional deposition of delayed coke fly ash. Among the other industrial variables, crude bitumen production at Syncrude Mildred Lake and other facilities, steam injection rates, and petroleum coke stockpiling were also selected for some benthic invertebrate indices at some sites. Land disturbance metrics were also occasionally selected, but the analyses largely support the predominant influence of industrial facilities via (inferred) atmospheric pathways. While climate variables were also commonly selected by EN and follow-up work is needed, this study suggests that integrating industrial performance data into analyses of biota using a site-specific approach may have broad applicability in environmental monitoring in the OSR. More specifically, the approach used here may both resolve the long-standing challenge of natural confounding influences on monitoring the status of streams in the OSR and track the influence of industrial activities in biota below critical effect sizes.
Collapse
|
8
|
Wang Z, Saadé NK, Ariya PA. Advances in Ultra-Trace Analytical Capability for Micro/Nanoplastics and Water-Soluble Polymers in the Environment: Fresh Falling Urban Snow. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 276:116698. [PMID: 33611197 DOI: 10.1016/j.envpol.2021.116698] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Discarded micro/nano-plastic inputs into the environment are emerging global concerns. Yet the quantification of micro/nanoplastics in complex environmental matrices is still a major challenge, notably for soluble ones. We herein develop in-laboratory built nanostructures (zinc oxide, titanium oxide and cobalt) coupled to mass spectrometry techniques, for picogram quantification of micro/nanoplastics in water and snow matrices, without sample pre-treatment. In parallel, an ultra-trace quantification method for micro/nanoplastics based on nanostructured laser desorption/ionization time-of-flight mass spectrometry (NALDI-TOF-MS) is developed. The detection limit is ∼5 pg for ambient snow. Soluble polyethylene glycol and insoluble polyethylene fragments were observed and quantified in fresh falling snow in Montreal, Canada. Complementary physicochemical studies of the snow matrices and reference plastics using laser-based particle sizers, inductively coupled plasma tandem mass spectrometry, and high-resolution scanning/transmission electron microscopy, produced consistent results with NALDI, and further provided information on morphology and composition of the micro/nano-plastic particles. This work is promising as it demonstrates that a wide range of recyclable nanostructures, in-laboratory built or commercial, can provide ultra-trace capability for quantification for both soluble polymers and insoluble plastics in air, water and soil. It may thereby produce key missing information to determine the fate of micro/nanoplastics in the environment, and their impacts on human health.
Collapse
Affiliation(s)
- Zi Wang
- Department of Chemistry, McGill University, Montreal, Quebec, H3A 0B8, Canada
| | - Nadim K Saadé
- Department of Chemistry, McGill University, Montreal, Quebec, H3A 0B8, Canada
| | - Parisa A Ariya
- Department of Chemistry, McGill University, Montreal, Quebec, H3A 0B8, Canada; Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, H3A 0B9, Canada.
| |
Collapse
|
9
|
Dissolved and Suspended Forms of Metals and Metalloids in Snow Cover of Megacity: Partitioning and Deposition Rates in Western Moscow. ATMOSPHERE 2020. [DOI: 10.3390/atmos11090907] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Concentrations and ratio of dissolved and suspended forms of metals and metalloids (MMs) in snow cover and their deposition rates from the atmosphere in the western part of Moscow were studied. Forms of MMs were separated using a filter with pore diameter of 0.45 μm; their concentrations were measured by ICP-MS and ICP-AES methods. Anthropogenic impact in Moscow caused a significant increase in dust load (2–7 times), concentration of solid particles in snow cover (2–5 times), and mineralization of snow meltwater (5–18 times) compared to the background level. Urban snow contains Sn, Ti, Bi, Al, W, Fe, Pb, V, Cr, Rb, Mo, Mn, As, Co, Cu, Ba, Sb, Mg mainly in suspended form, and Ca and Na in dissolved form. The role of suspended MMs in the city significantly increases compared to the background region due to high dust load, usage of de-icing salts, and the change of acidic background conditions to alkaline ones. Anthropogenic emissions are the main sources of suspended Ca, W, Co, V, Sr, Ti, Mg, Na, Mo, Zn, Fe, Sb, and Cu in the snow cover of traffic zone. These elements’ concentrations in roadside snow cover exceed the background values more than 25 times. The highest concentrations and deposition rates of MMs in the snow of Moscow are localized near the large and medium roads.
Collapse
|