1
|
Wu SF, Ga Y, Ma DY, Hou SL, Hui QY, Hao ZH. The Role of Ferroptosis in Environmental Pollution-Induced Male Reproductive System Toxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125118. [PMID: 39414070 DOI: 10.1016/j.envpol.2024.125118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/28/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
This article provides a comprehensive review of the toxic effects of environmental pollution on the male reproductive system, with a particular emphasis on ferroptosis, a form of programmed cell death. Research has shown that environmental pollutants, such as heavy metals, pesticide residues, and plastic additives, can disrupt oxidative stress, increasing the production of reactive oxygen species (ROS) in germ cells. This disruption damages cellular lipids, proteins, and DNA, culminating in cell dysfunction or death. Ferroptosis, a cell death pathway closely linked to oxidative stress, is characterized by the accumulation of intracellular iron ions and elevated levels of lipid ROS. This review also explores the role of ferroptosis in male reproductive disorders, including its contributions to reduced sperm count, decreased motility, and abnormal morphology. Environmental pollutants, particularly heavy metals, can induce ferroptosis by interfering with intracellular antioxidant systems, notably the NRF2, GSH, and GPX4 pathways, accumulating toxic lipid peroxides. Furthermore, the article examines the potential interplay between ferroptosis and other forms of cell death, such as apoptosis, autophagy, pyroptosis, and necrosis, in the context of male reproductive health. The review underscores the critical need for further research into the link between environmental pollutants and male fertility, particularly focusing on ferroptosis. It advocates for targeted research efforts to mitigate the adverse effects of ferroptosis and protect reproductive health, emphasizing that a deeper understanding of these mechanisms could lead to innovative preventive strategies against environmental threats to fertility.
Collapse
Affiliation(s)
- Shao-Feng Wu
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya, 572025, China.
| | - Yu Ga
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya, 572025, China.
| | - Dan-Yang Ma
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya, 572025, China.
| | - Si-Lu Hou
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya, 572025, China.
| | - Qiao-Yue Hui
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya, 572025, China.
| | - Zhi-Hui Hao
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya, 572025, China; Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China; National Center of Technology Innovation for Medicinal Function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China.
| |
Collapse
|
2
|
Wang G, Duan L, Du Y, Fu X, Liu B, Zhang X, Yu F, Zhou G, Ba Y. Serum calcium improves the relationship between fluoride exposure and hypothalamic-pituitary-testicular axis hormones levels in males-a cross-sectional study on farmers in the lower reaches of the Yellow River. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125084. [PMID: 39374768 DOI: 10.1016/j.envpol.2024.125084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/13/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Numerous studies have reported the toxicity of fluoride to the male reproductive system, but epidemiological evidence is limited. We conducted a cross-sectional study in Kaifeng City, Henan Province in 2011 to explore the association between fluoride exposure and hypothalamic-pituitary-testicular (HPT) axis hormones in men. Morning urinary fluoride (UF), serum HPT axis hormones and serum calcium (SC) concentrations were detected. Percent changes and 95% confidence intervals in HPT axis hormones associated with UF were estimated using adjusted linear regression models, and performed subgroup analysis based on SC levels. The restricted cubic spline model was used to fit nonlinear relationships. For every 10% increase in UF, the concentrations of serum GnRH, T, SHBG and TSI decreased by 2.13%, 2.39%, 2.19% and 1.96%, while E2 and FEI increased by 1.11% and 3.33%. Subgroup analysis showed that for every 10% increase in UF, the levels of GnRH, T, TSI and FTI decreased by approximately 3.15%, 5.49%, 4.47% and 5.14%, while the E2 level increased by 2.92% in low-serum-calcium group (LCG). The levels of GnRH and T decreased by approximately 2.97% and 1.82% in medium-serum-calcium group (MCG). In high-serum-calcium group (HCG), serum SHBG levels decreased by 4.70%, while FTI and FEI levels increased by 4.93% and 4.20% as UF concentration increased (P < 0.05, respectively). The non-linear relationship between serum GnRH and UF concentrations presented an approximately inverted U-shaped curve, with a turning point UF concentration of 1.164 mg/L (P < 0.001), and their nonlinear relationship in LCG and MCG were similar to that in the overall subjects. In conclusion, excessive exposure to fluoride can interfere with male serum HPT axis hormones, and a moderate increase in SC alleviates the effect of fluoride. Prospective cohort studies are essential to confirm the causality.
Collapse
Affiliation(s)
- Guoqing Wang
- Department of Environmental Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Leizhen Duan
- Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yuhui Du
- Department of Environmental Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Xiaoli Fu
- Department of Environmental Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Bin Liu
- Department of Environmental Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Xuanyin Zhang
- Department of Environmental Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Fangfang Yu
- Department of Environmental Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Guoyu Zhou
- Department of Environmental Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yue Ba
- Department of Environmental Health, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
3
|
Patial B, Khan I, Thakur R, Fishta A. Effects of fluoride toxicity on the male reproductive system: A review. J Trace Elem Med Biol 2024; 86:127522. [PMID: 39276446 DOI: 10.1016/j.jtemb.2024.127522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/27/2024] [Accepted: 09/03/2024] [Indexed: 09/17/2024]
Abstract
BACKGROUND Fluoride toxicity and fluorosis is an emerging global problem. Fluoride has long been added to water for dental caries prevention; however, it has a variety of damaging consequences on human bodies. The aim of this paper is to analyse all the literature available on the effects of fluoride toxicity on male reproductive system. METHODS Research papers were collected using various methods of data collection like Pubmed, Scopus, and Google Scholar from 1980 to 2024, and then reviewed thoroughly. RESULTS Fluoride is known to cause various histopathological and biochemical alterations in the male reproductive system. It also affects fertility, semen quality, sperm number and quality,the process of spermatogenesis and spermiogenesis. Key changes caused by fluoride in male reproductive system include structural defects in the flagellum, acrosome, and nucleus of spermatids and epididymal spermatozoa. Degenerative changes in Leydig cells result in reduced testosterone production, causing regression of seminiferous tubules and structural damage to the epididymis, ultimately terminating spermatogenesis which leads to infertility. Decrease in levels of testosterone and activities of various antioxidant enzymes resulting in greater oxidative stress was also seen. CONCLUSIONS Fluoride has various detrimental effects on male reproductive system and overall reproductive health. This type of study is important for understanding the effects of fluoride toxicity so that health officials can guide public about safe fluoride exposure limits and the damages it can cause in higher concentrations. Studies using various natural and synthetic ameliorative substances mentioned in the text later can prove to be helpful for development of various therapeutic approaches to mitigate the effects of fluoride toxicity.
Collapse
Affiliation(s)
- Bhavna Patial
- Zoology Laboratory II, School of Biological and Environmental Sciences, Shoolini University, Solan, India.
| | - Imtiaza Khan
- Department of Zoology, Khalsa College, Patiala, India.
| | - Ruhi Thakur
- Zoology Laboratory II, School of Biological and Environmental Sciences, Shoolini University, Solan, India.
| | - Aditi Fishta
- Zoology Laboratory II, School of Biological and Environmental Sciences, Shoolini University, Solan, India.
| |
Collapse
|
4
|
Rotimi DE, Iyobhebhe M, Oluwayemi ET, Evbuomwan IO, Asaleye RM, Ojo OA, Adeyemi OS. Mitophagy and spermatogenesis: Role and mechanisms. Biochem Biophys Rep 2024; 38:101698. [PMID: 38577271 PMCID: PMC10990862 DOI: 10.1016/j.bbrep.2024.101698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024] Open
Abstract
The mitophagy process, a type of macroautophagy, is the targeted removal of mitochondria. It is a type of autophagy exclusive to mitochondria, as the process removes defective mitochondria one by one. Mitophagy serves as an additional level of quality control by using autophagy to remove superfluous mitochondria or mitochondria that are irreparably damaged. During spermatogenesis, mitophagy can influence cell homeostasis and participates in a variety of membrane trafficking activities. Crucially, it has been demonstrated that defective mitophagy can impede spermatogenesis. Despite an increasing amount of evidence suggesting that mitophagy and mitochondrial dynamics preserve the fundamental level of cellular homeostasis, little is known about their role in developmentally controlled metabolic transitions and differentiation. It has been observed that male infertility is a result of mitophagy's impact on sperm motility. Furthermore, certain proteins related to autophagy have been shown to be present in mammalian spermatozoa. The mitochondria are the only organelle in sperm that can produce reactive oxygen species and finally provide energy for sperm movement. Furthermore, studies have shown that inhibited autophagy-infected spermatozoa had reduced motility and increased amounts of phosphorylated PINK1, TOM20, caspase 3/7, and AMPK. Therefore, in terms of reproductive physiology, mitophagy is the removal of mitochondria derived from sperm and the following preservation of mitochondria that are exclusively maternal.
Collapse
Affiliation(s)
- Damilare Emmanuel Rotimi
- Department of Biochemistry, Landmark University, Omu-Aran 251101, Kwara State, Nigeria
- SDG 3, Good Health & Well-being, Landmark University, Nigeria
| | - Matthew Iyobhebhe
- Department of Biochemistry, Landmark University, Omu-Aran 251101, Kwara State, Nigeria
- SDG 3, Good Health & Well-being, Landmark University, Nigeria
| | - Elizabeth Temidayo Oluwayemi
- Department of Biochemistry, Landmark University, Omu-Aran 251101, Kwara State, Nigeria
- SDG 3, Good Health & Well-being, Landmark University, Nigeria
| | | | - Rotdelmwa Maimako Asaleye
- Department of Biochemistry, Landmark University, Omu-Aran 251101, Kwara State, Nigeria
- SDG 3, Good Health & Well-being, Landmark University, Nigeria
| | | | | |
Collapse
|
5
|
Tang X, Li H, Wang Y, Zeng L, Long L, Qu Y, Yang H, Zhang X, Li Y, Yu Y, Zhou Q, Luo M. Chronic Fluoride Exposure Induces Ovarian Dysfunction and Potential Association with Premature Ovarian Failure in Female Rats. Biol Trace Elem Res 2024; 202:3225-3236. [PMID: 37828391 DOI: 10.1007/s12011-023-03914-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Chronic fluorosis has been widely investigated for its adverse effects on skeletal and neurological health; however, its impact on reproductive health, especially in females, remains underexplored. In this study, female Sprague-Dawley rats were exposed to different fluoride concentrations (0.75, 50, and 100 mg/L) in their drinking water for six months. Dental fluorosis and increased urinary fluoride content were observed in fluoride-exposed rats, reflecting fluoride accumulation and exposure levels. Chronic fluorosis resulted in reduced ovary organ coefficient, indicating harmful effects on ovarian tissue. Additionally, the number of ovarian primordial and primary/secondary follicles decreased, while the number of atresia follicles increased. Furthermore, chronic fluorosis led to disrupted estrous cycles. Hormonal analysis revealed altered secretion of estrogen, progesterone, anti-Müllerian hormone, luteinizing hormone, follicular stimulating hormone, and inhibin B in response to fluoride exposure. Ultrastructural observation of ovarian granulosa cells showed evidence of apoptosis, which was further confirmed by flow cytometry. Caspase-3 activity was increased, and ATP levels were decreased, suggesting mitochondrial impairment and apoptosis induction. The mRNA and protein expression of BMP15 and GDF9, essential regulators of ovarian function, significantly decreased with increasing fluoride concentration. Furthermore, gene expression analysis identified a panel of premature ovarian failure-related genes that were downregulated in fluoride-exposed rat ovaries. These findings suggest that chronic fluoride exposure may contribute to ovarian dysfunction and possibly the pathogenesis of premature ovarian failure. Understanding the toxicological effects of chronic fluoride exposure on ovarian function is essential for identifying potential environmental risk factors affecting female reproductive health.
Collapse
Affiliation(s)
- Xiaoke Tang
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Hongjuan Li
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yali Wang
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Li Zeng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guizhou Traditional Chinese Medicine University, Guiyang, China
| | - Ling Long
- Department of Obstetrics and Gynecology, Tongliang District People's Hospital, Chongqing, China
| | - Yajun Qu
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Hui Yang
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Xiaolin Zhang
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yanmin Li
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yanni Yu
- Department of Pathology, Guizhou Medical University, Guiyang, China
| | - Qi Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guizhou Traditional Chinese Medicine University, Guiyang, China.
| | - Man Luo
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China.
- Metabolic Disease Research Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
6
|
Wang R, Gong W, Jiang Y, Yin Q, Wang Z, Wu J, Zhang M, Li M, Liu Y, Wang J, Chen Y, Ji Y. Fluoride exposure during puberty induces testicular impairment via ER stress-triggered apoptosis in mice. Food Chem Toxicol 2024; 189:114773. [PMID: 38823497 DOI: 10.1016/j.fct.2024.114773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/15/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
Fluoride, a ubiquitous environmental compound, carries significant health risks at excessive levels. This study investigated the reproductive toxicity of fluoride exposure during puberty in mice, focusing on its impact on testicular development, spermatogenesis, and underlying mechanisms. The results showed that fluoride exposure during puberty impaired testicular structure, induced germ cell apoptosis, and reduced sperm counts in mice. Additionally, the SOD activity and GSH content were significantly decreased, while MDA content was significantly elevated in the NaF group. Immunohistochemistry showed an increase in the number of cells positive for GRP78, a key ER stress marker. Moreover, qRT-PCR and Western blot analyses confirmed the upregulation of both Grp78 mRNA and protein expression, as well as increased mRNA expression of other ER stress-associated genes (Grp94, chop, Atf6, Atf4, and Xbp1) and enhanced protein expression of phosphorylated PERK, IRE1α, eIF2α, JNK, XBP-1, ATF-6α, ATF-4, and CHOP. In conclusion, our findings demonstrate that fluoride exposure during puberty impairs testicular structure, induces germ cell apoptosis, and reduces sperm counts in mice. ER stress may participate in testicular cell apoptosis, and contribute to the testicular damage and decreased sperm counts induced by fluoride.
Collapse
Affiliation(s)
- Rong Wang
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China; School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Wenjing Gong
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yumeng Jiang
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Qizi Yin
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Ziyue Wang
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Jie Wu
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Mingming Zhang
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Mengyuan Li
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yehao Liu
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Juan Wang
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China.
| | - Yuanhua Chen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China.
| | - Yanli Ji
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei Anhui, China.
| |
Collapse
|
7
|
Cheng A, Luo H, Fan B, Xiang Q, Nie Z, Feng S, Qiao Y, Wu Y, Zhu Q, Liu R, Song X, Li X, Zhang J. Fluoride induces pyroptosis via IL-17A-mediated caspase-1/11-dependent pathways and Bifidobacterium intervention in testis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172036. [PMID: 38554964 DOI: 10.1016/j.scitotenv.2024.172036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Fluoride, a ubiquitous environmental pollutant, poses a significant public health threat. Our previous study revealed a correlation between fluoride-induced testicular pyroptosis and male reproductive dysfunction. However, the underlying mechanism remains unclear. Wild-type and interleukin 17A knockout mice were exposed to sodium fluoride (100 mg/L) in deionized drinking water for 18 weeks. Bifidobacterium intervention (1 × 109 CFU/mL, 0.2 mL/day, administered via gavage) commenced in the 10th week. Sperm quality, testicular morphology, key pyroptosis markers, spermatogenesis key genes, IL-17A signaling pathway, and pyroptosis pathway related genes were determined. The results showed that fluoride reduced sperm quality, damaged testicular morphology, affected spermatogenesis, elevated IL-17A levels, and induced testicular pyroptosis. Bifidobacterium intervention alleviated adverse reproductive outcomes. Fluoride-activated testicular pyroptosis through both typical and atypical pathways, with IL-17A involvement. Bifidobacterium supplementation attenuated pyroptosis by downregulating IL-17A, inhibiting NLRP3 and PYRIN-mediated caspase-1 and caspase-11 dependent pathways in testis, thereby alleviating fluoride-induced male reproductive damage. In summary, this study uncovers the mechanism underlying fluorine-induced testicular pyroptosis and illustrates the novel protecting feature of Bifidobacterium against fluoride-induced harm to male reproduction, along with its potential regulatory mechanism. These results provide fresh perspectives on treating male reproductive dysfunction resulting from fluoride or other environmental toxins.
Collapse
Affiliation(s)
- Ao Cheng
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Huifeng Luo
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Bingchao Fan
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Qing Xiang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Zhaochen Nie
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Shuang Feng
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Yurou Qiao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Yue Wu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Qianlong Zhu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Rongxiu Liu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Xiaochao Song
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Xiang Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Jianhai Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| |
Collapse
|
8
|
Gunasekara TDKSC, De Silva PMCS, Chandana EPS, Jayasinghe S, Herath C, Siribaddana S, Jayasundara N. Environmental fluoride exposure and implications on potential pediatric kidney health risks: an approach with urinary biomarkers. Pediatr Nephrol 2024; 39:1469-1480. [PMID: 38085354 DOI: 10.1007/s00467-023-06218-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 03/16/2024]
Abstract
BACKGROUND Environmental fluoride exposure at elevated levels is potentially linked to kidney injury, and may contribute to chronic kidney disease of uncertain etiology (CKDu) as a risk factor. However, this link remains unclear, and examining the risk of kidney damage from early life fluoride exposure may provide important insights. Hence, this study aimed to investigate associations of fluoride exposure with pediatric kidney health in CKDu impacted and unimpacted communities in Sri Lanka. METHODS Considering the geographical variations in environmental fluoride, climate, and prevalence of CKDu, four study groups were established within selected education zones in CKDu-endemic dry zone regions (D-En), and CKDu-nonendemic regions within the dry (D-NE), wet (W-NE), and intermediate (I-NE) climatic zones. The study population included 922 school students (11-18 years of age). Participants in each group were divided into four subgroups based on quartiles of respective urinary fluoride (UF) distribution for comparison of urinary kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL), and albumin-creatinine ratio (ACR). RESULTS UF levels in participants particularly in CKDu endemic dry zone regions were significantly high compared to the other regions. Significantly high median urinary NGAL (in D-NE) and ACR (in D-EN, and W-NE) levels were observed in subgroups of higher UF quartiles. Albuminuria was not particularly identified in subjects with high UF excretion. Urinary KIM-1 showed no significant variation across the UF quartile subgroups. Linear regression identified weak associations of UF with kidney injury biomarkers. CONCLUSIONS Fluoride exposure is particularly high in CKDu-endemic dry zone communities. As implied by kidney injury biomarkers, a strong link between fluoride exposure and pediatric kidney health was not evident at the observed exposure levels in the study regions.
Collapse
Affiliation(s)
- T D K S C Gunasekara
- Department of Zoology, Faculty of Science, University of Ruhuna, Matara, 81000, Sri Lanka
| | - P Mangala C S De Silva
- Department of Zoology, Faculty of Science, University of Ruhuna, Matara, 81000, Sri Lanka.
| | - E P S Chandana
- Department of Biosystems Technology, Faculty of Technology, University of Ruhuna, Matara, 81000, Sri Lanka
| | - Sudheera Jayasinghe
- Department of Pharmacology, Faculty of Medicine, University of Ruhuna, Galle, 80000, Sri Lanka
| | - Chula Herath
- Department of Nephrology, Sri Jayewardenepura General Hospital, Nugegoda, 10250, Sri Lanka
| | - Sisira Siribaddana
- Department of Medicine, Faculty of Medicine & Allied Sciences, Rajarata University, Saliyapura, 50008, Sri Lanka
| | - Nishad Jayasundara
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
9
|
Li X, Yang J, Luo H, Qiao Y, Zhao L, Cheng C, Fu W, Tan Y, Wang J, Liang C, Zhang J. Riboflavin Attenuates Fluoride-Induced Testicular Injury via Interleukin 17A-Mediated Classical Pyroptosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6143-6154. [PMID: 38475697 DOI: 10.1021/acs.jafc.3c09071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Male reproductive toxicity of fluoride is of great concern worldwide, yet the underlying mechanism is unclear. Pyroptosis is a novel mode of inflammatory cell death, and riboflavin with anti-inflammatory properties has the potential to protect against fluoride damage. However, it is unknown whether pyroptosis is involved in fluoride-induced testicular injury and riboflavin intervention. Here, we first found that riboflavin could alleviate fluoride-caused lower sperm quality and damaged testicular morphology by reducing pyroptosis based on a model of ICR mice treated with NaF (100 mg/L) and/or riboflavin supplementation (40 mg/L) via drinking water for 13 weeks. And then, together with the results of in vitro Leydig cell modelsm it was confirmed that the pyroptosis occurs predominantly through classical NLRP3/Caspase-1/GSDMD pathway. Furthermore, our results reveal that interleukin-17A mediates the process of pyroptosis in testes induced by fluoride and riboflavin attenuation according to the results of our established models of riboflavin- and/or fluoride-treated IL-17A knockout mice. The results not only declare a new mechanism by which fluoride induces testicular injury via interleukin 17A-mediated classical pyroptosis but also provide evidence for the potential clinical application of riboflavin as an effective therapy for fluoride toxicity.
Collapse
Affiliation(s)
- Xiang Li
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030800, People's Republic of China
| | - Jie Yang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030800, People's Republic of China
| | - Huifeng Luo
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030800, People's Republic of China
| | - Yurou Qiao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030800, People's Republic of China
| | - Liying Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030800, People's Republic of China
| | - Chenkai Cheng
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030800, People's Republic of China
| | - Weixiang Fu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030800, People's Republic of China
| | - Yanjia Tan
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030800, People's Republic of China
| | - Jundong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030800, People's Republic of China
| | - Chen Liang
- College of Animal Science, Shanxi Agricultural University, Jinzhong, Shanxi 030800, People's Republic of China
| | - Jianhai Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030800, People's Republic of China
| |
Collapse
|
10
|
Kumar S, Shenoy S, Swamy RS, Ravichandiran V, Kumar N. Fluoride-Induced Mitochondrial Dysfunction and Approaches for Its Intervention. Biol Trace Elem Res 2024; 202:835-849. [PMID: 37300595 DOI: 10.1007/s12011-023-03720-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/28/2023] [Indexed: 06/12/2023]
Abstract
Fluoride is present everywhere in nature. The primary way that individuals are exposed to fluoride is by drinking water. It's interesting to note that while low fluoride levels are good for bone and tooth growth, prolonged fluoride exposure is bad for human health. Additionally, preclinical studies link oxidative stress, inflammation, and programmed cell death to fluoride toxicity. Moreover, mitochondria play a crucial role in the production of reactive oxygen species (ROS). On the other hand, little is known about fluoride's impact on mitophagy, biogenesis, and mitochondrial dynamics. These actions control the growth, composition, and organisation of mitochondria, and the purification of mitochondrial DNA helps to inhibit the production of reactive oxygen species and the release of cytochrome c, which enables cells to survive the effects of fluoride poisoning. In this review, we discuss the different pathways involved in mitochondrial toxicity and dysfunction induced by fluoride. For therapeutic approaches, we discussed different phytochemical and pharmacological agents which reduce the toxicity of fluoride via maintained by imbalanced cellular processes, mitochondrial dynamics, and scavenging the ROS.
Collapse
Affiliation(s)
- Sachindra Kumar
- National Institute of Pharmaceutical Education and Research, Hajipur, Industrial Area Hajipur, Vaishali, 844102, India
| | - Smita Shenoy
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
| | - Ravindra Shantakumar Swamy
- Division of Anatomy, Department of Basic Medical Sciences (DBMS), Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
| | - V Ravichandiran
- National Institute of Pharmaceutical Education and Research, Hajipur, Industrial Area Hajipur, Vaishali, 844102, India
| | - Nitesh Kumar
- National Institute of Pharmaceutical Education and Research, Hajipur, Industrial Area Hajipur, Vaishali, 844102, India.
| |
Collapse
|
11
|
Li X, Yang J, Shi E, Lu Y, Song X, Luo H, Wang J, Liang C, Zhang J. Riboflavin alleviates fluoride-induced ferroptosis by IL-17A-independent system Xc -/GPX4 pathway and iron metabolism in testicular Leydig cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123332. [PMID: 38199481 DOI: 10.1016/j.envpol.2024.123332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/23/2023] [Accepted: 01/07/2024] [Indexed: 01/12/2024]
Abstract
Fluoride is widely found in groundwater, soil, animal and plant organisms. Excessive fluoride exposure can cause reproductive dysfunction by activating IL-17A signaling pathway. However, the adverse effects of fluoride on male reproductive system and the mechanisms remain elusive. In this study, the wild type and IL-17A knockout C57BL/6J mouse were treated with 24 mg/kg·bw·d sodium fluoride and/or 5 mg/kg·bw·d riboflavin-5'-phosphate sodium for 91 days. Results showed that fluoride caused dental fluorosis, increased the levels of ROS in testicular Leydig cells and GSSG in testicular tissue, and did not affect the iron and serum hepcidin levels in testicular tissue. Riboflavin alleviated above adverse changes, whereas IL-17A does not participate in the oxidative stress-mediated reproductive toxicity of fluoride. Based on this, TM3 cells were used to verify the injury of fluoride on Leydig cells. Results showed that fluoride increased mRNA levels of ferroptosis marker SLC3A2, VDAC3, TFRC, and SLC40A1 and decreased Nrf2 mRNA levels in TM3 cells. The ferroptosis inhibitor Lip-1 and DFO were used to further investigate the relationship between male reproductive toxicity and ferroptosis induced by fluoride. We found that the fluoride-induced decrease in cell viability, increase in xCT, TFRC, and FTH protein expression, and decrease in GPX4 protein expression, can all be rescued by Lip-1 and DFO. Similar results were also observed in the riboflavin treatment group. Moreover, riboflavin mitigated fluoride-induced increases in ROS levels and SLC3A2 protein levels. In all, our work revealed that riboflavin inhibited ferroptosis in testicular Leydig cells and improved the declined male reproductive function caused by fluoride. This study provides new perspectives for revealing new male reproductive toxicity mechanisms and mitigating fluoride toxicity damage.
Collapse
Affiliation(s)
- Xiang Li
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, 030800, PR China
| | - Jie Yang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, 030800, PR China
| | - Erbao Shi
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, 030800, PR China
| | - Yiguang Lu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, 030800, PR China
| | - Xiaochao Song
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, 030800, PR China
| | - Huifeng Luo
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, 030800, PR China
| | - Jundong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, 030800, PR China
| | - Chen Liang
- College of Animal Science, Shanxi Agricultural University, Jinzhong, Shanxi, 030800, PR China
| | - Jianhai Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, 030800, PR China.
| |
Collapse
|
12
|
Ommati MM, Sabouri S, Sun Z, Zamiri MJ, Retana-Marquez S, Nategh Ahmadi H, Zuo Q, Eftekhari A, Juárez-Rojas L, Asefi Y, Lei L, Cui SG, Jadidi MH, Wang HW, Heidari R. Inactivation of Mst/Nrf2/Keap1 signaling flexibly mitigates MAPK/NQO-HO1 activation in the reproductive axis of experimental fluorosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115947. [PMID: 38215664 DOI: 10.1016/j.ecoenv.2024.115947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/14/2024]
Abstract
Fluoride induced reprotoxicity through oxidative stress-mediated reproductive cell death. Hence, the current study evaluated the importance of the MST/Nrf2/MAPK/NQO-HO1 signaling pathway in fluorosis-induced reproductive toxicity. For this purpose, the reproductive toxicity of sodium fluoride (NaF) at physiological, biochemical, and intracellular levels was evaluated. In-vivo, NaF at 100 mg/L instigated physiological dysfunction, morphological, stereological, and structural injuries in the gut-gonadal axis of fluorosis mice through weakening the antioxidant signaling, Nrf2/HO-1/NQO1signaling pathway, causing the gut-gonadal barrier disintegrated via oxidative stress-induced inflammation, mitochondrial damage, apoptosis, and autophagy. Similar trends were also observed in-vitro in the isolated Leydig cells (LCs) challenging with 20 mg/L NaF. Henceforth, activating the cellular antioxidant signaling pathway, Nrf2/HO-1/NQO1, inactivating autophagy and apoptosis, or attenuating lipopolysaccharide (LPS) can be the theoretical basis and valuable therapeutic targets for coping with NaF-induced reproductive toxicity.
Collapse
Affiliation(s)
- Mohammad Mehdi Ommati
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Samira Sabouri
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Zilong Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | | | - Socorro Retana-Marquez
- Department of Biology of Reproduction, Autonomous Metropolitan University-Iztapalapa, Mexico City, Mexico
| | - Hassan Nategh Ahmadi
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China; College of Animal Science and Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Qiyong Zuo
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China
| | - Aziz Eftekhari
- Department of Biochemistry, Faculty of Science, Ege University, Izmir, Turkey; Nanotechnology and Biochemical Toxicology (NBT) Center, Azerbaijan State University of Economics (UNEC), Baku AZ1001, Azerbaijan
| | - Lizbeth Juárez-Rojas
- Department of Biology of Reproduction, Autonomous Metropolitan University-Iztapalapa, Mexico City, Mexico
| | - Yaser Asefi
- Department of Genetics, Ahar Branch, Islamic Azad University, Ahar, Iran
| | - Lina Lei
- The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471000, China
| | - Shu-Gang Cui
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China
| | - Mohammad Hasan Jadidi
- Comparative Medicine and Animal Resources Centre, McGill University, Montreal, Canada
| | - Hong-Wei Wang
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China.
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
13
|
Dong Y, Sun X, He W, Xiang J, Qi X, Hong W, He Y, Guan Z. Elevated Level of PINK1/Parkin-Mediated Mitophagy Pathway Involved to the Inhibited Activity of Mitochondrial Superoxide Dismutase in Rat Brains and Primary Hippocampal Neurons Exposed to High Level of Fluoride. Biol Trace Elem Res 2024; 202:538-547. [PMID: 37193858 DOI: 10.1007/s12011-023-03681-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/22/2023] [Indexed: 05/18/2023]
Abstract
To reveal the molecular mechanism of brain damage induced by chronic fluorosis, expression of PTEN-induced kinase 1 (PINK1)/parkin RBR E3 ubiquitin-protein ligase (Parkin)-mediated mitophagy pathway and activity of mitochondrial superoxide dismutase (SOD) were investigated in rat brains and primary cultured neurons exposed to high level of fluoride. Sprague-Dawley (SD) rats were treated with fluoride (0, 5, 50, and 100 ppm) for 3 and 6 months. The primary neurons were exposed to 0.4 mM (7.6 ppm) fluoride and thereafter treated with 100 nM rapamycin (a stimulator of mitophagy) or 50 μM 3-methyladenine (3-MA, an inhibitor of mitophagy) for 24 h. The expressions of PINK1/Parkin at the protein level and the activity of SOD in mitochondria of rat brains and cultured neurons were determined by Western blotting and biochemical method, respectively. The results showed that the rats exposed to fluoride exhibited different degrees of dental fluorosis. In comparison to controls, the expressions of PINK1 and Parkin were significantly higher in the rat brains and primary neurons exposed to high fluoride. In addition, a declined activity of mitochondrial SOD was determined. Interestingly, rapamycin treatment enhanced but 3-MA inhibited the changes of PINK1/Parkin pathway and SOD activity, and the correlations between the inhibited SOD activity and the elevated PINK1/Parkin proteins were observed. The results suggest that the inhibition of mitochondrial SOD activity induced by fluorosis may stimulate the expressions of mitophagy (PINK1/ Parkin) pathway to maintain the mitochondrial homeostasis.
Collapse
Affiliation(s)
- Yangting Dong
- Key Laboratory of Endemic and Ethnic Diseases (Guizhou Medical University) of the Ministry of Education and Provincial Key Laboratory of Medical Molecular Biology, Guiyang, 550004, People's Republic of China
- Department of Pathology at the Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Xiufen Sun
- Key Laboratory of Endemic and Ethnic Diseases (Guizhou Medical University) of the Ministry of Education and Provincial Key Laboratory of Medical Molecular Biology, Guiyang, 550004, People's Republic of China
| | - Wenwen He
- Key Laboratory of Endemic and Ethnic Diseases (Guizhou Medical University) of the Ministry of Education and Provincial Key Laboratory of Medical Molecular Biology, Guiyang, 550004, People's Republic of China
- Department of Pathology at the Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Jie Xiang
- Department of Pathology at the Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases (Guizhou Medical University) of the Ministry of Education and Provincial Key Laboratory of Medical Molecular Biology, Guiyang, 550004, People's Republic of China
| | - Wei Hong
- Key Laboratory of Endemic and Ethnic Diseases (Guizhou Medical University) of the Ministry of Education and Provincial Key Laboratory of Medical Molecular Biology, Guiyang, 550004, People's Republic of China
| | - Yan He
- Key Laboratory of Endemic and Ethnic Diseases (Guizhou Medical University) of the Ministry of Education and Provincial Key Laboratory of Medical Molecular Biology, Guiyang, 550004, People's Republic of China
| | - Zhizhong Guan
- Key Laboratory of Endemic and Ethnic Diseases (Guizhou Medical University) of the Ministry of Education and Provincial Key Laboratory of Medical Molecular Biology, Guiyang, 550004, People's Republic of China.
- Department of Pathology at the Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People's Republic of China.
| |
Collapse
|
14
|
Zhang B, Li W, Cao J, Zhou Y, Yuan X. Prohibitin 2: A key regulator of cell function. Life Sci 2024; 338:122371. [PMID: 38142736 DOI: 10.1016/j.lfs.2023.122371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
The PHB2 gene is located on chromosome 12p13 and encodes prohibitin 2, a highly conserved protein of 37 kDa. PHB2 is a dimer with antiparallel coils, possessing a unique negatively charged region crucial for its mitochondrial molecular chaperone functions. Thus, PHB2 plays a significant role in cell life activities such as mitosis, mitochondrial autophagy, signal transduction, and cell death. This review discusses how PHB2 inhibits transcription factors or nuclear receptors to maintain normal cell functions; how PHB2 in the cytoplasm or membrane ensures normal cell mitosis and regulates cell differentiation; how PHB2 affects mitochondrial structure, function, and cell apoptosis through mitochondrial intimal integrity and mitochondrial autophagy; how PHB2 affects mitochondrial stress and inhibits cell apoptosis by regulating cytochrome c migration and other pathways; how PHB2 affects cell growth, proliferation, and metastasis through a mitochondrial independent mechanism; and how PHB2 could be applied in disease treatment. We provide a theoretical basis and an innovative perspective for a comprehensive understanding of the role and mechanism of PHB2 in cell function regulation.
Collapse
Affiliation(s)
- Bingjie Zhang
- Gastroenterology and Urology Department II, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410011, China
| | - Wentao Li
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410011, China
| | - Jiaying Cao
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410011, China
| | - Yanhong Zhou
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410011, China.
| | - Xia Yuan
- Gastroenterology and Urology Department II, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
15
|
Tang Y, Zhang J, Hu Z, Xu W, Xu P, Ma Y, Xing H, Niu Q. PRKAA1 induces aberrant mitophagy in a PINK1/Parkin-dependent manner, contributing to fluoride-induced developmental neurotoxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114772. [PMID: 36924562 DOI: 10.1016/j.ecoenv.2023.114772] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/02/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Chronic fluoride exposure can cause developmental neurotoxicity, however the precise mechanisms remain unclear. To explore the mechanism of mitophagy in fluoride-induced developmental neurotoxicity, specifically focusing on PRKAA1 in regulating the PINK1/Parkin pathway, we established a Sprage Dawley rat model with continuous sodium fluoride (NaF) exposure and an NaF-treated SH-SY5Y cell model. We found that NaF exposure increased the levels of LC3-Ⅱ and p62, impaired autophagic degradation, and subsequently blocked autophagic flux. Additionally, NaF exposure increased the expression of PINK1, Parkin, TOMM-20, and Cyt C and cleaved PARP in vivo and in vitro, indicating NaF promotes mitophagy and neuronal apoptosis. Meanwhile, phosphoproteomics and western blot analysis showed that NaF treatment enhanced PRKAA1 phosphorylation. Remarkably, the application of both 3-methyladenosine (3-MA; autophagy inhibitor) and dorsomorphin (DM; AMPK inhibitor) suppressed NaF-induced neuronal apoptosis by restoring aberrant mitophagy. In addition, 3-MA attenuated an increase in p62 protein levels and NaF-induced autophagic degradation. Collectively, our findings indicated that NaF causes aberrant mitophagy via PRKAA1 in a PINK1/Parkin-dependent manner, which triggers neuronal apoptosis. Thus, regulating PRKAA1-activated PINK1/Parkin-dependent mitophagy may be a potential treatment for NaF-induced developmental neurotoxicity.
Collapse
Affiliation(s)
- Yanling Tang
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Jingjing Zhang
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Zeyu Hu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Wanjing Xu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Panpan Xu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Yue Ma
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Hengrui Xing
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Qiang Niu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China.
| |
Collapse
|
16
|
Song C, Zhang A, Zhang M, Song Y, Huangfu H, Jin S, Sun Y, Zhang C, Shi D, Wang J, Peng W, Luo Q. Nrf2/PINK1-mediated mitophagy induction alleviates sodium fluoride-induced hepatic injury by improving mitochondrial function, oxidative stress, and inflammation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114646. [PMID: 36791501 DOI: 10.1016/j.ecoenv.2023.114646] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/02/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Mitophagy has distinct functions, which can lead to either protection or damage of tissues. Though current evidence indicated that NaF triggers mitophagy, the role and regulation of mitophagy in sodium fluoride (NaF)-induced liver injury still remain unclear. Therefore, we exployed the cell and mouse models and confirmed that NaF treatment activates mitophagy. Knocking down PTEN-induced putative kinase protein 1 (PINK1) expression attenuated mitophagy and increased the degree of mitochondrial impairment, oxidative stress, and apoptosis in NaF-treated HepG2 cells. In vivo experiments indicated that PINK1 deficiency weakened NaF-induced mitophagy. Moreover, PINK1-deficient mices aggravated NaF-induced hepatic mitochondrial injury, oxidative stress, and inflammation in livers, evidenced by the increased number of abnormal mitochondria, decreased adenosine triphosphate (ATP) and glutathione (GSH) levels, elevated reactive oxygen species (ROS) and malondialdehyde (MDA) content, enhanced hepatic macrophage infiltration and inflammatory cytokine levels. Notably, NaF exposure activated Nrf2 signaling both in vitro and in vivo. Nrf2 siRNA transfection blocked the upregulation of PINK1 expression and the induction of mitophagy in NaF-treated HepG2 cells. Also, ML385 (Nrf2 inhibitor) partially blocked the upregulation of PINK1 expression caused by NaF in mice livers. To sum up, the present study provided the demonstration that Nrf2/PINK1-mediated mitophagy activation offers a hepatoprotective effect by inhibiting NaF-induced mitochondrial dysfunction, oxidative stress, and inflammation.
Collapse
Affiliation(s)
- Chao Song
- Zhengzhou Key Laboratory of Animal Nutrition Metabolic and Poisoning Diseases, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450000, Henan, China.
| | - Aiguo Zhang
- Zhengzhou Key Laboratory of Animal Nutrition Metabolic and Poisoning Diseases, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450000, Henan, China
| | - Man Zhang
- Zhengzhou Key Laboratory of Animal Nutrition Metabolic and Poisoning Diseases, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450000, Henan, China
| | - Yuzhen Song
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450000, Henan, China
| | - Heping Huangfu
- Zhengzhou Key Laboratory of Animal Nutrition Metabolic and Poisoning Diseases, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450000, Henan, China
| | - Shuangxing Jin
- Zhengzhou Key Laboratory of Animal Nutrition Metabolic and Poisoning Diseases, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450000, Henan, China
| | - Yanting Sun
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450000, Henan, China
| | - Chunhui Zhang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450000, Henan, China
| | - Dongmei Shi
- Zhengzhou Key Laboratory of Animal Nutrition Metabolic and Poisoning Diseases, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450000, Henan, China
| | - Jundong Wang
- Zhengzhou Key Laboratory of Animal Nutrition Metabolic and Poisoning Diseases, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450000, Henan, China
| | - Wei Peng
- Key Laboratory of Plateau Livestock Genetic Resources Protection and Innovative Utilization, Qinghai Academy of Animal Husbandry and Veterinary Science, Xining 810016, Qinghai, China.
| | - Qin Luo
- Zhengzhou Key Laboratory of Animal Nutrition Metabolic and Poisoning Diseases, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450000, Henan, China.
| |
Collapse
|
17
|
Li Y, Zhang J, Sun L, Zhao H, Jia X, Zhang Y, Li Y. Fluoride-Induced Sperm Damage and HuR-Mediated Excessive Apoptosis and Autophagy in Spermatocytes. Biol Trace Elem Res 2023; 201:295-305. [PMID: 35226278 DOI: 10.1007/s12011-022-03138-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/25/2022] [Indexed: 01/11/2023]
Abstract
It is critical to determine the mechanism underlying fluoride (F)-induced damage of the testes to develop appropriate strategies for monitoring and intervention. In the present study, exposure to 50 mg/L sodium fluoride (NaF) for 90 days damaged the normal structure of the testes and quality of the sperm, particularly the spermatocytes, and triggered overexpression of human antigen R (Elavl1/HuR) according to western blotting and immunofluorescence. Furthermore, 0.5 mM NaF exposure for 24 h exposure increased the proportion of apoptosis and expression of caspase-3 and caspase-9 in mouse spermatocytes (GC-2spd cell line), whereas inhibition of HuR reduced apoptosis and the expression of caspase-3 and caspase-9. Additionally, inhibition of HuR alleviated F-induced autophagy based on observation of the autophagy bodies, detection of autophagy activity, and analysis of the expression of the LC3II/LC3I and p62 proteins. These results reveal that excessive F can lead to overexpression of HuR, resulting in high levels of apoptosis and autophagy in spermatocytes. These findings improve the understanding of the mechanisms underlying F-induced male reproductive toxicity, and HuR may be explored as a treatment target for certain conditions. Excessive fluoride can induce overexpression of HuR in testis and result in excessive apoptosis and autophagy in spermatocytes as well as male reproductive damage, such as a decreased sperm count, decreased sperm motility, and increased deformity rate.
Collapse
Affiliation(s)
- Yanyan Li
- Department of Public Health and Preventive Medicine, Changzhi Medical College, Changzhi, Shanxi, 046011, People's Republic of China.
| | - Jianbin Zhang
- Department of Public Health and Preventive Medicine, Changzhi Medical College, Changzhi, Shanxi, 046011, People's Republic of China
| | - Linlin Sun
- Department of Public Health and Preventive Medicine, Changzhi Medical College, Changzhi, Shanxi, 046011, People's Republic of China
| | - Hongyu Zhao
- Department of Public Health and Preventive Medicine, Changzhi Medical College, Changzhi, Shanxi, 046011, People's Republic of China
| | - Xiaohan Jia
- Department of Public Health and Preventive Medicine, Changzhi Medical College, Changzhi, Shanxi, 046011, People's Republic of China
| | - Yingri Zhang
- Department of Public Health and Preventive Medicine, Changzhi Medical College, Changzhi, Shanxi, 046011, People's Republic of China
| | - Yuanbin Li
- Department of Public Health and Preventive Medicine, Changzhi Medical College, Changzhi, Shanxi, 046011, People's Republic of China
| |
Collapse
|
18
|
Radovanović J, Antonijević B, Ćurčić M, Baralić K, Kolarević S, Bulat Z, Đukić-Ćosić D, Buha Djordjević A, Vuković-Gačić B, Javorac D, Antonijević Miljaković E, Carević M, Mandinić Z. Fluoride subacute testicular toxicity in Wistar rats: Benchmark dose analysis for the redox parameters, essential elements and DNA damage. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120321. [PMID: 36191801 DOI: 10.1016/j.envpol.2022.120321] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/07/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Excessive fluoride (F-) levels in the environment could induce different pathological changes, including comorbidities in reproductive functions. Hence, the aim of the present in vivo study was to explore F- subacute toxicity mechanisms via Benchmark dose (BMD) methodology on rat's testicles. The experiment was conducted on thirty male Wistar rats for 28 days, divided into six groups (n = 5): 1) Control (tap water); 2) 10 mg/L F-; 3) 25 mg/L F-; 4) 50 mg/L F-; 5) 100 mg/L F-; 6) 150 mg/L F-. Testicles were dissected out and processed for the determination of F- tissue concentrations, redox status parameters, essential elements level, and DNA damage. PROASTweb 70.1 software was used for determination of external and internal dose-response relationship. The results confirmed a significant increase in superoxide anion (O2.-), total oxidative status (TOS), copper (Cu), zinc (Zn), iron (Fe), DNA damage levels, and decrease in superoxide dismutase activity (SOD1) and total thiol (SH) groups. The dose-dependent changes were confirmed for SOD1 activity and DNA damage. The most sensitive parameters were SOD1 activity and DNA damage with the lowest BMDLs 0.1 μg F-/kg b. w. Since human and animal populations are daily and frequently unconsciously exposed to F-, this dose-response study is valuable for further research regarding the F- health risk assessment.
Collapse
Affiliation(s)
- Jelena Radovanović
- Clinic for Paediatric and Preventive Dentistry, School of Dental Medicine, University of Belgrade, 11000, Belgrade, Serbia; Department of Radiobiology and Molecular Genetics, "Vinča" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11000, Belgrade, Serbia.
| | - Biljana Antonijević
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Marijana Ćurčić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Katarina Baralić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Stoimir Kolarević
- Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, Department for Hydroecology and Water Protection, University of Belgrade, 11000, Belgrade, Serbia
| | - Zorica Bulat
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Danijela Đukić-Ćosić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Aleksandra Buha Djordjević
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Branka Vuković-Gačić
- Faculty of Biology, Chair of Microbiology, Center for Genotoxicology and Ecogenotoxicology, University of Belgrade, 11000, Belgrade, Serbia
| | - Dragana Javorac
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Evica Antonijević Miljaković
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Momir Carević
- Clinic for Paediatric and Preventive Dentistry, School of Dental Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - Zoran Mandinić
- Clinic for Paediatric and Preventive Dentistry, School of Dental Medicine, University of Belgrade, 11000, Belgrade, Serbia
| |
Collapse
|
19
|
Avila-Rojas SH, Aparicio-Trejo OE, Sanchez-Guerra MA, Barbier OC. Effects of fluoride exposure on mitochondrial function: Energy metabolism, dynamics, biogenesis and mitophagy. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 94:103916. [PMID: 35738460 DOI: 10.1016/j.etap.2022.103916] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/09/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Fluoride is ubiquitous in the environment. Furthermore, drinking water represents the main source of exposure to fluoride for humans. Interestingly, low fluoride concentrations have beneficial effects on bone and teeth development; however, chronic fluoride exposure has harmful effects on human health. Besides, preclinical studies associate fluoride toxicity with oxidative stress, inflammation, and apoptosis. On the other hand, it is well-known that mitochondria play a key role in reactive oxygen species production. By contrast, fluoride's effect on processes such as mitochondrial dynamics, biogenesis and mitophagy are little known. These processes modulate the size, content, and distribution of mitochondria and their depuration help to counter the reactive oxygen species production and cytochrome c release, thereby allowing cell survival. However, a maladaptive response could enhance fluoride-induced toxicity. The present review gives a brief account of fluoride-induced mitochondrial alterations on soft and hard tissues, including liver, reproductive organs, heart, brain, lung, kidney, bone, and tooth.
Collapse
Affiliation(s)
- Sabino Hazael Avila-Rojas
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Departamento de Toxicología (CINVESTAV-IPN), Av. IPN No. 2508 Col., San Pedro Zacatenco, México CP 07360, Mexico.
| | | | - Marco Antonio Sanchez-Guerra
- Department of Developmental Neurobiology, National Institute of Perinatology, Montes Urales 800, Lomas Virreyes, Mexico 1100, Mexico.
| | - Olivier Christophe Barbier
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Departamento de Toxicología (CINVESTAV-IPN), Av. IPN No. 2508 Col., San Pedro Zacatenco, México CP 07360, Mexico.
| |
Collapse
|
20
|
Wang H, Yang L, Gao P, Deng P, Yue Y, Tian L, Xie J, Chen M, Luo Y, Liang Y, Qing W, Zhou Z, Pi H, Yu Z. Fluoride exposure induces lysosomal dysfunction unveiled by an integrated transcriptomic and metabolomic study in bone marrow mesenchymal stem cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113672. [PMID: 35617906 DOI: 10.1016/j.ecoenv.2022.113672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Fluoride has received much attention for its predominant bone toxicity in the human body. However, the toxic mechanism of bone injury caused by fluoride exposure remains largely unclear. Bone marrow mesenchymal stem cells (BMSCs) are widely used as model cells for evaluating bone toxicity after environmental toxicant exposure. In this study, BMSCs were exposed to fluoride at 1, 2, and 4 mM for 24 h, and fluoride significantly inhibited cell viability at 2 and 4 mM. A multiomics analysis combining transcriptomics with metabolomics was employed to detect alterations in genes and metabolites in BMSCs treated with 2 mM fluoride. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of transcriptomics profiles identified "lysosomes" as the top enriched pathway, which was severely damaged by fluoride exposure. Lysosomal damage was indicated by decreases in the expression of lysosomal associated membrane protein 2 (LAMP 2) and cathepsin B (CTSB) as well as an increase in pH. Upregulation of the lysosome-related genes Atp6v0b and Gla was observed, which may be attributed to a compensatory lysosomal biogenesis transcriptional response. Interestingly, inhibition of glutathione metabolism was observed in fluoride-treated BMSCs at the metabolomic level. Moreover, an integrative analysis between altered genes, metabolites and lysosome signaling pathways was conducted. Palmitic acid, prostaglandin C2, and prostaglandin B2 metabolites were positively associated with Atp6v0b, a lysosome-related gene. Overall, our results provide novel insights into the mechanism responsible for fluoride-induced bone toxicity.
Collapse
Affiliation(s)
- Hui Wang
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China
| | - Lu Yang
- Hunan Province Prevention and Treatment Hospital for Occupational Diseases, Hunan, China
| | - Peng Gao
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China
| | - Ping Deng
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China
| | - Yang Yue
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China
| | - Li Tian
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China
| | - Jia Xie
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China
| | - Mengyan Chen
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China
| | - Yan Luo
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China
| | - Yidan Liang
- School of Medicine, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Weijia Qing
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China; The 63710th Military Hospital of PLA, Xinzhou, Shanxi, China
| | - Zhou Zhou
- Department of Environmental Medicine, School of Public Health, and Department of Emergency Medicine, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Huifeng Pi
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China.
| | - Zhengping Yu
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China.
| |
Collapse
|
21
|
PINK1/Parkin-mediated mitophagy is activated to protect against testicular damage caused by aluminum. J Inorg Biochem 2022; 232:111840. [DOI: 10.1016/j.jinorgbio.2022.111840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 11/22/2022]
|
22
|
Wu S, Wang Y, Iqbal M, Mehmood K, Li Y, Tang Z, Zhang H. Challenges of fluoride pollution in environment: Mechanisms and pathological significance of toxicity - A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119241. [PMID: 35378201 DOI: 10.1016/j.envpol.2022.119241] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/21/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Fluoride is an important trace element in the living body. A suitable amount of fluoride has a beneficial effect on the body, but disproportionate fluoride entering the body will affect various organs and systems, especially the liver, kidneys, nervous system, endocrine system, reproductive system, bone, and intestinal system. In recent years, with the rapid development of agriculture and industry, fluoride pollution has become one of the important factors of environmental pollution, and fluoride pollution in any form is becoming a serious problem. Although countries around the world have made great breakthroughs in controlling fluoride pollution, however fluorosis still exists. A large amount of fluoride accumulated in animals will not only produce the toxic effects, but it also causes cell damage and affect the normal physiological activities of the body. There is no systematic description of the damage mechanism of fluoride. Therefore, the study on the toxicity mechanism of fluoride is still in progress. This review summarizes the existing information of several molecular mechanisms of the fluoride toxicity comprehensively, aiming to clarify the toxic mechanism of fluoride on various body systems. We have also summerized the pathological changes of those organ systems after fluoride poisoning in order to provide some ideas and solutions to the reader for the prevention and control of modern fluoride pollution.
Collapse
Affiliation(s)
- Shouyan Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yajing Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Mujahid Iqbal
- Department of Pathology, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur, 63100, Pakistan
| | - Khalid Mehmood
- Department of Pathology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
23
|
Wei M, Ye Y, Ali MM, Chamba Y, Tang J, Shang P. Effect of Fluoride on Cytotoxicity Involved in Mitochondrial Dysfunction: A Review of Mechanism. Front Vet Sci 2022; 9:850771. [PMID: 35518640 PMCID: PMC9062983 DOI: 10.3389/fvets.2022.850771] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/07/2022] [Indexed: 12/11/2022] Open
Abstract
Fluoride is commonly found in the soil and water environment and may act as chronic poison. A large amount of fluoride deposition causes serious harm to the ecological environment and human health. Mitochondrial dysfunction is a shared feature of fluorosis, and numerous studies reported this phenomenon in different model systems. More and more evidence shows that the functions of mitochondria play an extremely influential role in the organs and tissues after fluorosis. Fluoride invades into cells and mainly damages mitochondria, resulting in decreased activity of mitochondrial related enzymes, weakening of protein expression, damage of respiratory chain, excessive fission, disturbance of fusion, disorder of calcium regulation, resulting in the decrease of intracellular ATP and the accumulation of Reactive oxygen species. At the same time, the decrease of mitochondrial membrane potential leads to the release of Cyt c, causing a series of caspase cascade reactions and resulting in apoptosis. This article mainly reviews the mechanism of cytotoxicity related to mitochondrial dysfunction after fluorosis. A series of mitochondrial dysfunction caused by fluorosis, such as mitochondrial dynamics, mitochondrial Reactive oxygen species, mitochondrial fission, mitochondrial respiratory chain, mitochondrial autophagy apoptosis, mitochondrial fusion disturbance, mitochondrial calcium regulation are emphasized, and the mechanism of the effect of fluoride on cytotoxicity related to mitochondrial dysfunction are further explored.
Collapse
Affiliation(s)
- Mingbang Wei
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, China.,The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi, China
| | - Yourong Ye
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, China.,The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi, China
| | - Muhammad Muddassir Ali
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Yangzom Chamba
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, China.,The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi, China
| | - Jia Tang
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, China.,The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi, China
| | - Peng Shang
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, China.,The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi, China
| |
Collapse
|
24
|
Saylor C, Malin AJ, Tamayo-Ortiz M, Cantoral A, Amarasiriwardena C, Estrada-Gutierrez G, Tolentino MC, Pantic I, Wright RO, Tellez-Rojo MM, Sanders AP. Early childhood fluoride exposure and preadolescent kidney function. ENVIRONMENTAL RESEARCH 2022; 204:112014. [PMID: 34506780 PMCID: PMC11071127 DOI: 10.1016/j.envres.2021.112014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Early-life renal maturation is susceptible to nephrotoxic environmental chemicals. Given the widespread consumption of fluoride and the global obesity epidemic, our main aim was to determine whether childhood fluoride exposure adversely affects kidney function in preadolescence, and if adiposity status modifies this association. METHODS Our study included 438 children from the PROGRESS cohort. Urinary fluoride (uF) was assessed at age 4 by diffusion analysis; outcomes studied included estimated glomerular filtration rate (eGFR), blood urea nitrogen (BUN), selected kidney proteins and blood pressure measured at age 8-12 years. We modeled the relationship between uF and outcomes, and adjusted for body mass index (BMI), age, sex, and socioeconomic status. RESULTS The median uF concentration was 0.67 μg/mL. We observed null associations between 4-year uF and preadolescent eGFR, although effect estimates were in the expected inverse direction. A single unit increase in ln-transformed uF was associated with a 2.2 mL/min decrease in cystatin C-based eGFR (95% CI: 5.8, 1.4; p = 0.23). We observed no evidence of sex-specific effects or effect modification by BMI status. Although uF was not associated with BMI, among children with obesity, we observed an inverse association (β: 4.8; 95% CI: 10.2, 0.6; p = 0.08) between uF and eGFR. CONCLUSIONS Low-level fluoride exposure in early childhood was not associated with renal function in preadolescence. However, given the adverse outcomes of chronic fluoride consumption it is possible that the preadolescent age was too young to observe any effects. Longitudinal follow-up in this cohort and others is an important next step.
Collapse
Affiliation(s)
- Charles Saylor
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ashley J Malin
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, 2001 N Soto St., Los Angeles, CA, 90032, USA.
| | - Marcela Tamayo-Ortiz
- Occupational Health Research Unit, Mexican Social Security Institute, Mexico City, Mexico.
| | - Alejandra Cantoral
- Iberoamerican University -Mexico City, Department of Health, Mexico City, Mexico
| | - Chitra Amarasiriwardena
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Mari Cruz Tolentino
- Department of Nutrition, National Institute of Perinatology, Mexico City, Mexico
| | - Ivan Pantic
- Department of Developmental Neurobiology, National Institute of Perinatology, Mexico City, Mexico
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Martha M Tellez-Rojo
- Occupational Health Research Unit, Mexican Social Security Institute, Mexico City, Mexico
| | - Alison P Sanders
- Department of Environmental and Occupational Health, University of Pittsburgh, USA.
| |
Collapse
|
25
|
Yu X, Xia L, Zhang S, Zhou G, Li Y, Liu H, Hou C, Zhao Q, Dong L, Cui Y, Zeng Q, Wang A, Liu L. Fluoride exposure and children's intelligence: Gene-environment interaction based on SNP-set, gene and pathway analysis, using a case-control design based on a cross-sectional study. ENVIRONMENT INTERNATIONAL 2021; 155:106681. [PMID: 34098334 DOI: 10.1016/j.envint.2021.106681] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Excessive fluoride exposure has been associated with intelligence loss, but little is known about gene-fluoride interactions on intelligence at SNP-set, gene and pathway level. OBJECTIVES Here we conducted a population-based study in Chinese school-aged children to estimate the associations of fluoride from internal and external exposures with intelligence as well as to explore the gene-fluoride interactions on intelligence at SNP-set, gene and neurodevelopmental pathway level. METHODS A total of 952 resident children aged 7 to 13 were included in the current study. The fluoride contents in drinking water, urine, hair and nail were measured using the ion-selective electrode method. LASSO Binomial regression was conducted to screen the intelligence-related SNP-set. The gene-fluoride interactions at gene and pathway levels were detected by the Adaptive Rank Truncated Product method. RESULTS The probability of high intelligence was inversely correlated with fluoride contents in water, urine, hair and nail (all P < 0.001). The SNP-set based on rs3788319, rs1879417, rs57377675, rs11556505 and rs7187776 was related to high intelligence (P = 0.001) alone and by interaction with water, urinary and hair fluoride (P = 0.030, 0.040, 0.010), separately. In gene level, CLU and TOMM40 interacted with hair fluoride (both P = 0.017) on intelligence. In pathway level, Alzheimer disease pathway, metabolic pathway, signal transduction pathway, sphingolipid signaling pathway and PI3K-AKT signaling pathway interacted with fluoride on intelligence in men. CONCLUSIONS Our study suggests that fluoride is inversely associated with intelligence. Moreover, the interactions of fluoride with mitochondrial function-related SNP-set, genes and pathways may also be involved in high intelligence loss.
Collapse
Affiliation(s)
- Xingchen Yu
- Department of Epidemiology and Biostatistics, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Lu Xia
- Department of Epidemiology and Biostatistics, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Shun Zhang
- Department of Occupational and Environmental Health, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Guoyu Zhou
- Department of Environment Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Yonggang Li
- Tianjin Baodi District Centers for Disease Control and Prevention, Tianjin, PR China
| | - Hongliang Liu
- Tianjin Centers for Disease Control and Prevention, Tianjin, PR China
| | - Changchun Hou
- Tianjin Centers for Disease Control and Prevention, Tianjin, PR China
| | - Qian Zhao
- Department of Occupational and Environmental Health, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Lixin Dong
- Department of Occupational and Environmental Health, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yushan Cui
- Tianjin Centers for Disease Control and Prevention, Tianjin, PR China
| | - Qiang Zeng
- Tianjin Centers for Disease Control and Prevention, Tianjin, PR China
| | - Aiguo Wang
- Department of Occupational and Environmental Health, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Li Liu
- Department of Epidemiology and Biostatistics, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
26
|
Wang Y, Su R, Liu P, Yuan Z, Han Y, Zhang H, Weng Q. Seasonal changes of mitochondrial autophagy and oxidative response in the testis of the wild ground squirrels ( Spermophilus dauricus). Am J Physiol Regul Integr Comp Physiol 2021; 321:R625-R633. [PMID: 34494473 DOI: 10.1152/ajpregu.00105.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mitochondria are the main organelles for mammalian energy metabolism and have been implicated in the regulation of germ cell maintenance and spermatogenesis. However, little is known about the changes in the mitochondria of the testis of seasonal breeders. Here, we characterized the seasonal changes in the mitochondria in the testis of the wild ground squirrels. Increased testicle weight, seminiferous tubule diameter, and sperm count were observed in the wild ground squirrels at the breeding season. RNA-seq analysis of the wild ground squirrel testes revealed that mitochondrial-related genes were expressed differentially between the breeding and nonbreeding seasons. Immunohistochemical staining showed that key mitophagy factors including PINK1, MFN2, and PARKIN were highly expressed in various cell types of testis during the breeding season. In addition, the abundance and enzymatic activities of mitochondrial-localized antioxidative enzymes superoxide dismutase 2 (SOD2) and Catalase were decreased in the testis during the breeding season, suggesting a tightly controlled redox balance at least partially facilitated by mitophagy during the seasonal breeding. Taken together, our study reveals that mitochondrial autophagy and oxidative stress may be implicated in the seasonal reproductive recrudescence of the wild ground squirrels, which deepens our understanding of the mitochondrial regulation of seasonal reproductivity in wildlife and provides new insights into the development of potential therapeutic interventions of male infertility.
Collapse
Affiliation(s)
- Yuhan Wang
- College of Biological Science and Technology, Beijing Forestry University, Beijing, People's Republic of China
| | - Ruting Su
- College of Biological Science and Technology, Beijing Forestry University, Beijing, People's Republic of China
| | - Pinxuan Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Zhengrong Yuan
- College of Biological Science and Technology, Beijing Forestry University, Beijing, People's Republic of China
| | - Yingying Han
- College of Biological Science and Technology, Beijing Forestry University, Beijing, People's Republic of China
| | - Haolin Zhang
- College of Biological Science and Technology, Beijing Forestry University, Beijing, People's Republic of China
| | - Qiang Weng
- College of Biological Science and Technology, Beijing Forestry University, Beijing, People's Republic of China
| |
Collapse
|
27
|
Ouyang Z, Yang B, Yi J, Zhu S, Lu S, Liu Y, Li Y, Li Y, Mehmood K, Hussain R, Ijaz M, Guo J, Tang Z, Li Y, Zhang H. Exposure to Fluoride induces apoptosis in liver of ducks by regulating Cyt-C/Caspase 3/9 signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112662. [PMID: 34411823 DOI: 10.1016/j.ecoenv.2021.112662] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/10/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
Fluorine being a well-known and essential element for normal physiological functions of tissues of different organisms is frequently used for growth and development of body. The mechanisms of adverse and injurious impacts of fluoride are not clear and still are under debate. Therefore, this study was executed to ascertain the potential mechanisms of sodium fluoride in liver tissues of ducks. For this purpose, a total of 14 ducks were randomly divided and kept in two groups including control group and sodium fluoride treated group. The ducks in control group were fed with normal diet while the ducks in other group were exposed to sodium fluoride (750 mg/kg) for 28 days. The results showed that exposure to sodium fluoride induced deleterious effects in different liver tissues of ducks. The results indicated that mRNA levels of Cas-3, Cas-9, p53, Apaf-1, Bax and Cyt-c were increased in treated ducks with significantly higher mRNA level of Cas-9 and lower levels of the mRNA level of Bcl-2 as compared to untreated control group (P < 0.01). The results showed that protein expression levels of Bax and p53 were increased while protein expression level of Bcl-2 was reduced in treated ducks. No difference was observed in protein expression level of Cas-3 between treated and untreated ducks. The results of this study suggest that sodium fluoride damages the normal structure of liver and induces abnormal process of apoptosis in hepatocyte, which provide a new idea for elucidating the mechanisms of sodium fluoride induced hepatotoxicity in ducks.
Collapse
Affiliation(s)
- Zhuanxu Ouyang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Bijing Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jiangnan Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Shanshan Zhu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Suge Lu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yingwei Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yangwei Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yuanliang Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Khalid Mehmood
- Department of Clinical Medicine and Surgery, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Riaz Hussain
- Department of Pathology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Muhammad Ijaz
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences Lahore, 54000, Pakistan
| | - Jianying Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
28
|
Santesso MR, Oliveira FA, Tokuhara CK, Oliveira GSN, Levy FM, Antonio LS, Buzalaf MAR, Oliveira RC. Fluoride effects on cell viability and ENaC expression in kidney epithelial cells. Toxicol Mech Methods 2021; 31:566-571. [PMID: 34151709 DOI: 10.1080/15376516.2021.1938325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Fluoride (F) at micromolar (µM) concentrations induces apoptosis in several cell lines. Moreover, proteomic studies have shown major changes in the profile of proteins involved in signal transduction. These effects may negatively affect ion transport in the kidneys. The activity of epithelial sodium channels (ENaCs) is a limiting factor for sodium and water resorption in the kidneys, which is essential for the maintenance of the electrolyte balance and homeostasis of the body. Here we investigated the effects of F, at different concentrations (10, 40, 100, 200, and 400 μM), on the viability of renal epithelial cells (M-1), and ENaC expression. We showed that sodium fluoride (NaF) reduces cell viability in a concentration-dependent manner (p < 0.05) up to a 96-h time-point when compared to control. Sodium fluoride at moderate concentrations (100 and 200 μM), upregulated the ENaC subunit genes Scnn1a and Scnn1g, but not Scnn1b. Sodium fluoride downregulated all three ENaC subunit genes at a higher concentration of 400 μM (p < 0.05). Immunofluorescence analysis showed that Scnn1a and Scnn1g expression was decreased within 24 h of NaF treatment. After 48 h, NaF (400 μM) increased the expression of Scnn1a but not Scnn1g. However, NaF decreased the expression of Scnn1g at all studied concentrations. We conclude that F, at µM concentrations, modulates the expression of ENaC subunit genes, which is likely to significantly affect molecular signaling in kidney epithelial cells.
Collapse
Affiliation(s)
- Mariana R Santesso
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, São Paulo, Bauru, Brazil
| | - Flávia A Oliveira
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, São Paulo, Bauru, Brazil.,Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Cintia K Tokuhara
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, São Paulo, Bauru, Brazil
| | - Gabriela S N Oliveira
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, São Paulo, Bauru, Brazil
| | - Flávia M Levy
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, São Paulo, Bauru, Brazil
| | - Lígia S Antonio
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Marília A R Buzalaf
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, São Paulo, Bauru, Brazil
| | - Rodrigo C Oliveira
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, São Paulo, Bauru, Brazil
| |
Collapse
|
29
|
Cui Y, Song M, Xiao B, Huang W, Zhang J, Zhang X, Shao B, Han Y, Li Y. PINK1/Parkin-Mediated Mitophagy Plays a Protective Role in the Bone Impairment Caused by Aluminum Exposure. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6054-6063. [PMID: 34018397 DOI: 10.1021/acs.jafc.1c01921] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The pollution of aluminum (Al) in agricultural production and its wide application in food processing greatly increase the chance of human and animal exposure. Al can accumulate in bone and cause bone diseases by inducing oxidative stress. Mitophagy can maintain normal cell function by degrading damaged mitochondria and scavenging reactive oxygen species. However, the role of mitophagy in the bone impairment caused by Al is unknown. In this study, we demonstrated that PTEN induced putative kinase 1 (PINK1)/ E3 ubiquitin ligase PARK2 (Parkin)-mediated mitophagy was activated in the bone impairment caused by Al in vivo. Then, the Al-induced mitophagy in Parkin-deficient mice and MC3T3-E1 cells were decreased. Meanwhile, Parkin deficiency exacerbated the bone impairment, mitochondrial damage, and oxidative stress under Al exposure, both in vivo and in vitro. In general, the results reveal that Al exposure can activate PINK1/Parkin-mediated mitophagy, and the PINK1/Parkin-mediated mitophagy plays a protective role in the bone impairment caused by Al.
Collapse
Affiliation(s)
- Yilong Cui
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Miao Song
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Bonan Xiao
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Wanyue Huang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jian Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xuliang Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Bing Shao
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yanfei Han
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yanfei Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
30
|
Tang W, Xiao Y, Long Y, Li Y, Peng F, Zhu C, He T, Lou D, Zhu Y. Sodium fluoride causes oxidative damage to silkworm (Bombyx mori) testis by affecting the oxidative phosphorylation pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 218:112229. [PMID: 33991993 DOI: 10.1016/j.ecoenv.2021.112229] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Bombyx mori was used to study the molecular mechanism of fluoride induced reproductive toxicity. In our previous study, we confirmed the physiological and biochemical effects of NaF on reproductive toxicity, and we found that the molecular mechanism of NaF induced reproductive damage may be associated with the oxidative phosphorylation pathway. To further study the function of NaF exposure on the oxidative phosphorylation pathway in the testis in Bombyx mori, and the relationship between oxidative phosphorylation and oxidative stress, we measured the changes in the main ROS (O2- and H2O2) in the testis, the activity of the main electron transport chain complex enzymes in the oxidative phosphorylation pathway and the transcription levels of the corresponding genes; we additionally performed pathological observations of the silkworm testis after exposure to 200 mg/L NaF solution for different times. The content of O2- and H2O in the silkworm gonads increased significantly at 24 h, 72 h and 120 h after NaF stress. The activity of mitochondrial complexes I, III, IV and V in the silkworm testis was significantly greater than that in the control group. RT-PCR analysis suggested that the mRNA transcription levels of NADH-CoQ1, Cyt c reductase, Cyt c oxidase and ATP synthase genes were up-regulated significantly. Histopathological investigation showed that the damage to the silkworm testis was more severe with increasing NaF exposure times. These results indicated that NaF stress affects the NADH respiratory chain of the mitochondrial electron transport chain and increases the activity of related enzyme complexes, thus destroying the balance of the electron transport chain. Subsequently, the content of ROS in cells significantly increases, thus resulting in oxidative stress reactions in cells. These results enable better understanding of the testis-damaging molecular toxicological mechanism of NaF.
Collapse
Affiliation(s)
- Wenchao Tang
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guizhou, China; School of Biotechnology, Southwest University, Chongqing, China; Key Laboratory of Forensic Toxicology of Herbal Medicines, Guizhou Education Department, Guiyang, China
| | - Yuanyuan Xiao
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guizhou, China
| | - Yaohang Long
- School of Biotechnology, Southwest University, Chongqing, China
| | - Yaofeng Li
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guizhou, China
| | - Fang Peng
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guizhou, China
| | - Can Zhu
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guizhou, China
| | - Tinggui He
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guizhou, China
| | - Didong Lou
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guizhou, China; Key Laboratory of Forensic Toxicology of Herbal Medicines, Guizhou Education Department, Guiyang, China.
| | - Yong Zhu
- School of Biotechnology, Southwest University, Chongqing, China.
| |
Collapse
|
31
|
Li Y, Zhao Y, Wang J, Wang J. Effects of fluoride on PIWI-interacting RNA expression profiling in testis of mice. CHEMOSPHERE 2021; 269:128727. [PMID: 33213873 DOI: 10.1016/j.chemosphere.2020.128727] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/04/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
Excessive fluoride intake can damage testis by breaking the integrity of sperm DNA and changing the expression profiles of testicular mRNAs and microRNAs. However, the effects of fluoride on the expression of PIWI-interacting RNAs (piRNAs) in mouse testes have not been reported. In this study, we determined the effect of fluoride on PIWI-interacting RNA expression profiling in testis of mice, using deep-sequencing technology. Compared to the control, 50 mg/L sodium fluoride (NaF) exposure led to a reduced testicular organ coefficient, semen quality, and testosterone level, and altered the testicular microstructure. Furthermore, NaF exposure also changed the expression of 28 piRNAs that regulate 182 target genes in mouse testes. In mice given water containing 50 mg/L NaF, the following four pathways were enriched and overexpressed: lysosomal, Jak-STAT, chemokine, and ubiquitin-mediated proteolysis. Among the piRNAs affecting the lysosomal pathway, piR-mmu-1277316, piR-mmu-8060747, and piR-mmu-1566415 levels were increased. We also observed increased levels of the following target gene mRNAs in lysosomal pathwa in the 50 mg/L NaF-treated group: Gga2, Ap4e1, Gla, and Ap1s3. These findings are in line with the results of piRNA-sequencing and suggest that piRNAs in the testis could be potential biomarkers for fluoride reproductive toxicity.
Collapse
Affiliation(s)
- Yanyan Li
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China; Department of Public Health and Preventive Medicine, Changzhi Medical College, Changzhi, Shanxi, 046011, People's Republic of China
| | - Yangfei Zhao
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Jinming Wang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Jundong Wang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China.
| |
Collapse
|
32
|
Chen G, Hu P, Xu Z, Peng C, Wang Y, Wan X, Cai H. The beneficial or detrimental fluoride to gut microbiota depends on its dosages. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111732. [PMID: 33373928 DOI: 10.1016/j.ecoenv.2020.111732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/06/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
Fluoride, widely presented in drinking water and tea, may be detrimental or beneficial to the human health, depending on its dosages ingested. However, the relationship of different dosages of fluoride and gut microbiota is still unclear. In this work, the fermentation model using fecal samples provided by four volunteers was used to evaluate the effects of different dosages of fluoride (1, 2, 10 and 15 mg/L) on the gut microbiota in vitro. The result showed low dosages of fluoride (1 and 2 mg/L) had limited effect on the structure and functional Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway of gut microbiota. Furthermore, the low dosage of fluoride could promote the growth of beneficial gut microbiota, including Faecalibacterium and Lactobacillus. Whereas, the high dosage of fluoride (10 and 15 mg/L) significantly changed the composition and functional KEGG pathway of gut microbiota. Moreover, the high dosage of fluoride could also reduce the beneficial gut microbiota, including Faecalibacterium and Phascolarctobacterium, and increase the harmful bacterium including Proteobacteria and Enterobacteriaceae. Both low and high dosages of fluoride showed limited effect on the productions of short-chain fatty acids (SCFAs). Thus, the beneficial or detrimental fluoride to gut microbiota depends on its dosages. The fluoride is expected to serve as a food additive in suitable dosage to improve human health through modulation of the gut microbiota. Moreover, more attention should be paid to toxicity of fluoride with high dosage to gut microbiota.
Collapse
Affiliation(s)
- Guijie Chen
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, People's Republic of China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Pengcheng Hu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, People's Republic of China
| | - Zhichao Xu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, People's Republic of China
| | - Chuanyi Peng
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, People's Republic of China
| | - Yijun Wang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, People's Republic of China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, People's Republic of China.
| | - Huimei Cai
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, People's Republic of China.
| |
Collapse
|
33
|
Chu Y, Gao Y, Yang Y, Liu Y, Guo N, Wang L, Huang W, Wu L, Sun D, Gu W. β-catenin mediates fluoride-induced aberrant osteoblasts activity and osteogenesis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114734. [PMID: 32806408 DOI: 10.1016/j.envpol.2020.114734] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/07/2020] [Accepted: 05/02/2020] [Indexed: 06/11/2023]
Abstract
Excess fluoride in drinking water is an environmental issue of increasing worldwide concern, because of its adverse effect on human health. Skeletal fluorosis caused by chronic exposure to excessive fluoride is a metabolic bone disease characterized by accelerated bone turnover accompanied by aberrant activation of osteoblasts. It is not clear whether Wnt/β-catenin signaling, an important signaling pathway regulating the function of osteoblasts, mediates the pathogenesis of skeletal fluorosis. A cross-sectional case-control study was conducted in Tongyu County, Jilin Province, China showed that fluoride stimulated the levels of OCN and OPG, resulting in accelerated bone turnover in patients with skeletal fluorosis. To investigate the influence of fluoride on Wnt/β-catenin signaling pathway, 64 male BALB/c mice were allotted randomly to four groups and treated with deionized water containing 0, 55, 110 and 221 mg/L NaF for 3 months, respectively. The results demonstrated that fluoride significantly increased mouse cancellous bone formation and the protein expression of Wnt3a, phospho-GSK3β (ser 9) and Runx2. Moreover, partial correlation analysis indicated that there was no significant correlation between fluoride exposure and Runx2 protein levels, after adjusting for β-catenin, suggesting that β-catenin might play a crucial role in fluoride-induced aberrant osteogenesis. In vivo, viability of SaoS2 cells was significantly facilitated by 4 mg/L NaF, and fluoride could induce the abnormal activation of Wnt/β-catenin signaling, the expression of its target gene Runx2 and significantly increased Tcf/Lef reporter activity. Importantly, inhibition of β-catenin suppressed fluoride-induced Runx2 protein expression and the osteogenic phenotypes. Taken together, the present study provided in vivo and in vitro evidence reveals a potential mechanism for fluoride-induced aberrant osteoblast activation and indicates that β-catenin is the pivot molecule mediating viability and differentiation of osteoblasts and might be a therapeutic target for skeletal fluorosis.
Collapse
Affiliation(s)
- Yanru Chu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin, 150081, Heilongjiang Province, China; Heilongjiang Provincial Key Lab of Trace Elements and Human Health Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin, 150081, Heilongjiang Province, China; Heilongjiang Provincial Key Lab of Trace Elements and Human Health Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Yanmei Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin, 150081, Heilongjiang Province, China; Heilongjiang Provincial Key Lab of Trace Elements and Human Health Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Yang Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin, 150081, Heilongjiang Province, China; Heilongjiang Provincial Key Lab of Trace Elements and Human Health Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Ning Guo
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin, 150081, Heilongjiang Province, China; Heilongjiang Provincial Key Lab of Trace Elements and Human Health Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Limei Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin, 150081, Heilongjiang Province, China; Heilongjiang Provincial Key Lab of Trace Elements and Human Health Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Wei Huang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin, 150081, Heilongjiang Province, China; Heilongjiang Provincial Key Lab of Trace Elements and Human Health Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Liaowei Wu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin, 150081, Heilongjiang Province, China; Heilongjiang Provincial Key Lab of Trace Elements and Human Health Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Dianjun Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin, 150081, Heilongjiang Province, China; Heilongjiang Provincial Key Lab of Trace Elements and Human Health Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Weikuan Gu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China; Department of Orthopedic Surgery and BME-Campbell Clinic, University of Tennessee Health Science Center, Memphis, 38163, TN, USA; Research Service, Veterans Affairs Medical Center, Memphis, 38104, TN, USA.
| |
Collapse
|
34
|
Liang C, Feng Z, Manthari RK, Wang C, Han Y, Fu W, Wang J, Zhang J. Arsenic induces dysfunctional autophagy via dual regulation of mTOR pathway and Beclin1-Vps34/PI3K complex in MLTC-1 cells. JOURNAL OF HAZARDOUS MATERIALS 2020; 391:122227. [PMID: 32044640 DOI: 10.1016/j.jhazmat.2020.122227] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/01/2020] [Accepted: 02/02/2020] [Indexed: 06/10/2023]
Abstract
Arsenic poisoning and induced potential lesion is a global concern. However, the exact mechanisms underlying its toxicity especially in male reproductive system still remain unclear. Hence, this study aimed to explore the roles of mTOR and Beclin1-Vps34/PI3K complex during As-induced-toxicity using Rapamycin (mTOR inhibitor), Beclin1 siRNA and 3-methyladenine (3-MA, Vps34/PI3K inhibitor) in testicular stromal cells. For this, mouse testis Leydig Tumor Cell lines (MLTC-1) were challenged with As2O3 (0, 3, 6 and 9 μM) exposure for 24 hs. Lyso-Tracker Red and Monodansylcadaverine (MDC) staining results depicted a significant accumulation of autophagosomes in MLTC-1 cells exposed to arsenic. Meanwhile, arsenic treatment up-regulated autophagic markers including LC3, Atg7, Beclin1 and Vps34 expressions, mTOR downstream autophagy related genes and the Beclin1-Vps34/PI3K complex associated members. Furthermore, silencing of Beclin1, and inhibition of Vps34/PI3K and mTOR altered the arsenic-induced autophagosomes formation. However, p62, the substrate protein of autophagy, was also up-regulated by arsenic administration independent on Beclin1-Vps34/PI3K complex. Altogether, our results revealed that arsenic exposure induced autophagosomes formation via regulation of the Beclin1-Vps34/PI3K complex and mTOR pathway; the blockage of autophagosomes degradation maybe due to impaired function of lysosomes. Thus, this study provides a novel mechanistic approach with respect to As-induced male reproductive toxicity.
Collapse
Affiliation(s)
- Chen Liang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Zhiyuan Feng
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Ram Kumar Manthari
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Chong Wang
- Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, People's Republic of China
| | - Yongli Han
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Weixiang Fu
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Jundong Wang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Jianhai Zhang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China.
| |
Collapse
|