1
|
Kong J, Jeong S, Lee J, Jeong S. Permeable pavement blocks as a sustainable solution for managing microplastic pollution in urban stormwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 966:178649. [PMID: 39904219 DOI: 10.1016/j.scitotenv.2025.178649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/06/2025]
Abstract
Permeable pavement systems (PPS) designed to store stormwater and facilitate its drainage into pipeline networks also provide the added advantage of retaining particulate pollutants in the stormwater runoff. Among these pollutants, microplastics (MPs), are increasingly being detected in the atmosphere and can be deposited in the environment via rainfall. Consequently, mitigating the transport of airborne MPs through rainfall is crucial for preventing water and soil contamination, thereby reducing the potential risks to human health and ecosystems. To achieve effective pollution control, an experimental study was conducted to assess MPs removal efficiencies and permeability performance of various permeable pavement blocks. The pore structure, which is a critical factor influencing permeability, was analyzed using porosity measurements and X-ray computed tomography imaging. Additionally, computational fluid dynamics (CFD) simulations were utilized to investigate the MPs removal mechanisms within the PPS, modeling the flow of MPs through blocks with distinct pore structures and varying permeability levels. Notably, Block A, with the highest permeability (1.7 mm/s), achieved removal efficiencies exceeding 90 % for polyethylene (PE) and polyethylene terephthalate (PET). CFD analysis revealed that low-density PE particles were retained more effectively, while high-density PET particles displayed greater mobility through the pavement blocks. Furthermore, as rainfall intensity increased, the removal efficiencies of PE and PET gradually decreased. This study highlights the critical role of material design and CFD-optimised pore structures in enhancing the efficacy of permeable pavement systems for urban stormwater management. By elucidating the MPs removal mechanisms driven by distinct transport behaviors of PE and PET particles based on density differences, these systems offer a promising solution for mitigating urban stormwater contamination and advancing sustainable water resource management.
Collapse
Affiliation(s)
- Jiwon Kong
- Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Seongeom Jeong
- Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Jieun Lee
- Institute for Environment and Energy, Pusan National University, Busan 46241, Republic of Korea.
| | - Sanghyun Jeong
- Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea; Institute for Environment and Energy, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
2
|
Zhao S, Xu R, Liu X, Wang Y, Jiang Y. Effect of carbon chain length and concentration of perfluorinated compounds on polytetrafluoroethylene microplastics transport behavior. NANOIMPACT 2025; 37:100550. [PMID: 39999948 DOI: 10.1016/j.impact.2025.100550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/02/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
Perfluorooctanoic acid (PFOA) and perfluoropentanoic acid (PFPeA), as important components of perfluorinated compounds (PFAS), are not only ecologically hazardous, but also have surfactant properties that can alter the transport behavior of polytetrafluoroethylene (PTFE) in porous media. In this experiment, the effect of PFAS on the transport of PTFE in porous media under different pH, ionic strength (IS) and ion valence states was studied. The results showed that the recovery rate of PTFE decreased gradually with the decrease of pH and the increase of IS and ion valence states. When the above conditions change, the double electron layer on the microplastic surface is compressed, the absolute value of zeta potential decreases, the repulsion between each other decreases, and aggregation and deposition are more likely. In addition, it was found that the recovery rate of PTFE co-transported with long chain PFOA was higher than that of short chain PFPeA. This phenomenon may be caused by the adhesion ability of PFOA with long carbon chain on the surface of PTFE is greater than that of PFPeA with short carbon chain. On the other hand, PFAS with different carbon chain lengths produce different spatial site resistance effects after binding with particles, and the spatial site resistance produced by the long-chain PFOA is larger than that of the short-chain PFPeA, leading to a decrease in particle-to-particle aggregation and a better transport effect. This study will help to understand the effects of PFAS with different carbon chain lengths on the transport of microplastics in porous media, as well as the transport rule of PTFE under different conditions, and provide reference value for the calculation of its flux in soil.
Collapse
Affiliation(s)
- Shihao Zhao
- College of International Education, Henan Normal University, Xinxiang 453007, China
| | - Ruihao Xu
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Xiangying Liu
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Yifan Wang
- College of International Education, Henan Normal University, Xinxiang 453007, China
| | - Yanji Jiang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
3
|
Kang Q, Zhang K, Dekker SC, Mao J. Microplastics in soils: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 960:178298. [PMID: 39787873 DOI: 10.1016/j.scitotenv.2024.178298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/07/2024] [Accepted: 12/24/2024] [Indexed: 01/12/2025]
Abstract
Microplastics (MPs) have become pervasive pollutants in terrestrial ecosystems, raising significant ecological risks and human health concerns. Despite growing attention, a comprehensive understanding of their quantification, sources, emissions, transport, degradation, and accumulation in soils remains incomplete. This review synthesizes the current knowledge on the anthropogenic activities contributing to soil MP contamination, both intentional and unintentional behaviors, spanning sectors including agriculture, domestic activities, transportation, construction, and industry. Furthermore, it examines the spatial distribution, accumulation, and abundance of MPs across various land use types, alongside a critical assessment of existing quantification methodologies. While the predominant metric for MP quantification is particle number concentration, integrating mass and area concentration enhances the ability to compare pollution levels, assess fluxes, and conduct risk analyses. Additionally, the review explores the transport behavior of MPs in soil, distinguishing between external mechanisms (abiotic factors: wind, leaching, and runoff, biotic factors: soil bioturbation and food chain interactions), and internal mechanisms that are impacted by the characteristics of MPs themselves (e.g., shape, color, size, density, surface properties), soil properties (e.g., porosity, pH, ionic strength, organic matter and mineral content), coexisting substances, and soil structural dynamics. The study of MP transport in soil remains in its early stages, with substantial gaps in knowledge. Future research should focus on integrating number, mass concentration, and area concentration for the more holistic quantification of MP abundance, and prioritize the development of more accurate and efficient methodologies. In addition, the investigation of MP transport and degradation processes under varying environmental conditions and soil management practices is critical for addressing this emerging environmental challenge.
Collapse
Affiliation(s)
- Qilin Kang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun Zhang
- College of Ecology and Environment, Xinjiang University, Urumqi 830017, China
| | - Stefan C Dekker
- Department of Environmental Sciences, Copernicus Institute for Sustainable Development, Utrecht University, Utrecht 3584CB, the Netherlands
| | - Jiefei Mao
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Soltani Tehrani R, Yang X, van Dam J. Rainfall-induced microplastic fate and transport in unsaturated Dutch soils. JOURNAL OF CONTAMINANT HYDROLOGY 2025; 268:104456. [PMID: 39549326 DOI: 10.1016/j.jconhyd.2024.104456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/07/2024] [Accepted: 10/31/2024] [Indexed: 11/18/2024]
Abstract
Microplastic pollution has become a growing concern in terrestrial ecosystems, with significant implications for environmental and human health. Understanding the fate and transport of microplastics in soil environment is crucial for effective mitigation strategies. This study investigates the dynamics of microplastic (Low-density polyethylene (LDPE), polybutylene adipate terephthalate (PBAT), and starch-based biodegradable plastic) transport in unsaturated soils under varying rainfall intensities and soil types, aiming to elucidate the factors influencing their behavior. Effluent samples were analyzed to measure microplastic transport, with microplastic balance analysis ensuring experimental accuracy. The setup replicated real-world flow conditions, providing insights into microplastic transport in unsaturated porous media. Microplastic balance analysis revealed high recovery factors (between 64 % and 104 %), indicating the reliability of the experimental approach. Microplastic transport varied significantly between sandy loam and loamy sand soils, with loamy sand soils exhibiting higher wash-off rates due to their unique properties. LDPE microplastics showed a higher tendency to detach from soil columns compared to PBAT and starch-based particles. Higher rainfall intensity in loamy sand soil columns resulted in an increased washout of LDPE, PBAT, and starch-based particles by 92 %, 144 %, and 85 %, respectively, compared to low rainfall intensity. In sandy loam soil, increased rainfall intensity resulted in a significantly higher washout of LDPE, PBAT, and starch-based particles with percentages of 93 %, 69 %, and 45 %, respectively. This underscores the important role of water flow in mobilizing microplastics within the soil matrix.
Collapse
Affiliation(s)
- Rozita Soltani Tehrani
- Department of Soil Physics and Land Management, Wageningen University and Research, Wageningen, the Netherlands.
| | - Xiaomei Yang
- Department of Soil Physics and Land Management, Wageningen University and Research, Wageningen, the Netherlands.
| | - Jos van Dam
- Department of Soil Physics and Land Management, Wageningen University and Research, Wageningen, the Netherlands.
| |
Collapse
|
5
|
Luo H, Chang L, Ju T, Li Y. Factors Influencing the Vertical Migration of Microplastics up and down the Soil Profile. ACS OMEGA 2024; 9:50064-50077. [PMID: 39741809 PMCID: PMC11683605 DOI: 10.1021/acsomega.4c04083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 11/20/2024] [Accepted: 11/29/2024] [Indexed: 01/03/2025]
Abstract
Soil ecosystems are under serious threat from microplastics (MPs), and this is causing worldwide concern. The relationship between soil and MPs has become a popular research topic, and the vertical migration of soil MPs is of increasing interest. This Review summarizes the current status of research into the factors affecting the vertical migration of soil MPs. Published research shows that the characteristics of MPs and the physicochemical properties of the soil affect the infiltration process. Soil organisms play a key role in the vertical migration by acting as vectors or as a result of adsorption. Dissolved organic matter and metal oxides transfer MPs by adsorption-desorption. In addition, rainfall and dry-wet cycles alter the mobility of soil MPs, leading to changes in migration processes. Agricultural activities such as tillage and irrigation may distribute MPs throughout the topsoil. Vertical migration of soil MPs is a process influenced by a combination of factors, and the role of these factors in MP deposition needs to be explored further.
Collapse
Affiliation(s)
- Han Luo
- College
of Earth Sciences, Jilin University, Changchun 130061, China
| | - Lei Chang
- College
of Earth Sciences, Jilin University, Changchun 130061, China
| | - Tianhang Ju
- College
of Earth Sciences, Jilin University, Changchun 130061, China
| | - Yuefen Li
- College
of Earth Sciences, Jilin University, Changchun 130061, China
| |
Collapse
|
6
|
Haritwal DK, Singh P, Ramana GV, Datta M. Advanced characterisation of groundwater contamination at a dumpsite: Methodology and assessment - Case study of a municipal solid waste dumpsite in India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177642. [PMID: 39579892 DOI: 10.1016/j.scitotenv.2024.177642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 10/24/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024]
Abstract
Groundwater (GW) contamination due to municipal solid waste (MSW) disposal in open dumpsites is a pressing global issue. Traditional GW assessment studies are limited to single-depth sampling from nearby wells/handpumps, providing limited insights into subsurface soil characteristics and are prone to cross-contamination. The present study introduces an innovative methodology integrating advanced techniques: Cone Penetration Testing (CPT), Hydraulic Profiling Tool (HPT), Continuous Soil Sampling, and Discrete GW Sampling. Conducted at an operational dumpsite in New Delhi, India, from January to February 2023, the site investigation program covered seven distinct locations to incorporate the entire dumpsite area. The investigation proceeded in stages, starting with subsurface soil characterisation using CPT and HPT, followed by extracting soil and GW samples using CPT and HPT data. Due to restrictions in the northeast direction, GW samples were directly extracted from borewells. The results revealed maximum and minimum concentrations of 171 items/l and 26 items/l of MPs, while ionic concentration reached 13,200 ppm for Cl- and 4437 ppm for SO4-2. A maximum of 0.721 ppm, 0.663 ppm and 0.948 ppm concentration was observed for Ni, Cu and Mo in GW samples. Spearman correlation and principal component analysis underscore the influence of Ec, TDS, Na+1 and Cl-1 on GW quality. This integrated approach effectively identifies high-permeability layers, which are crucial for understanding contaminant dispersion, and ensures precise sampling at various depths with minimal cross-contamination. This research demonstrates the proposed methodology's effectiveness in providing more profound and precise insights into GW contamination dynamics and suggests its utility in forming the basis for more effective remediation and regulatory strategies.
Collapse
Affiliation(s)
- Deepak Kumar Haritwal
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Pranjal Singh
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Gunturi Venkata Ramana
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Manoj Datta
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
7
|
Hsieh L, Rong H, He L, Guo J, Li M, Tong M. Impact of freeze-thaw cycles on the remobilization behaviors of microplastics in natural soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125143. [PMID: 39426474 DOI: 10.1016/j.envpol.2024.125143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
Freeze-thaw (FT) cycle would greatly influence the fate of plastic particles (one of emerging contaminants with great concerns) in soils, yet its impacts and mechanisms remain unclear. The vertical migration/release behaviors of plastic particles (with diameters of 0.2 μm and 1 μm) in two natural soils and one model soil (i.e. quartz sand) without/with FT treatments (1 and 3 cycles) were examined. Owing to the presence of Fe/Al oxide minerals, finer pore structure, and uneven surfaces of natural soils, the breakthrough ratio of plastics in two natural soils was over 25% lower than in quartz sand. However, regardless of porous media type, FT processes (increasing cycles) significantly promoted the remobilization of plastics initially retained in three media during the subsequent water flushing processes. Via theoretical calculation, tracer experiments, and visible chamber experiments, the mechanisms driving plastics release from natural soils subjected to FT treatments during the water elution processes were determined to be different from those from pure quartz sand. The change of sand local configuration (the rearrangement of local sand pore spaces) during FT process mainly drove to plastics released from quartz sand columns. While the alteration in local soil configuration, the formation of preferential pathways, and increased release of soil particles contributed to plastics remobilization from soil columns subjected to FT. Clearly, FT processes significantly increased the vertical migration of plastics in soils potentially to groundwater, enhancing environmental risks of plastics.
Collapse
Affiliation(s)
- Lichun Hsieh
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Haifeng Rong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Lei He
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Jia Guo
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Meng Li
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China.
| |
Collapse
|
8
|
Li Y, Zheng X, Zhao Z, Li W, Huang Y, He H, Han Z, Tao J, Lin T. Perfluorobutanoic acid weakens the heterogeneous aggregation of microplastics and microalgae: Perspective from physicochemical properties, extracellular polymeric substances secretion and DLVO theory. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177127. [PMID: 39461534 DOI: 10.1016/j.scitotenv.2024.177127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/14/2024] [Accepted: 10/19/2024] [Indexed: 10/29/2024]
Abstract
Microplastics (MPs) and per- and poly-fluoroalkyl substances extensively coexist in aquatic environments and potentially endanger organisms. Microalgae may decrease the effective concentration of pollutants via hetero-aggregation with MPs and adsorption of emerging contaminants. However, the potential influence of coexistent pollutants on hetero-aggregation of MPs and microalgae remains unknown. This study investigated the hetero-aggregation process involving different sizes of polystyrene (PS, 3.0 and 50.0 μm) with Chlorella sorokiniana (C. sorokiniana) in the presence or absence of perfluorobutanoic acid (PFBA) along settling experiments, scanning electron microscope, and Derjaguin-Landau-Verwey-Overbeek (DLVO) model. We found that the hetero-aggregation between C. sorokiniana and 3 μm PS was more pronounced than with 50 μm PS, while PFBA inhibited this process. ΔOD1 values (reflected hetero-aggregation level) for 3PS-cells and 50PS-cells were 0.189 and 0.087, respectively, and PFBA decreased these values to 0.134 and 0.033. Furthermore, extracellular polymeric substances, known as inducer of hetero-aggregation, increased by 14.33% when exposed to 3 μm PS alone, whereas the co-exposure group showed a decrease of 4.52% compared to 3PS-cells group. PFBA also significantly decreased the protein/polysaccharide ratios in both MPs sizes, reducing hetero-aggregation. DLVO theory revealed that microalgae lowered the energy barrier significantly, while PFBA elevated it, indicating that hetero-aggregation was inhibited by PFBA. This study provides new perspectives for pollutant removal and toxicity variation in aquatic environments.
Collapse
Affiliation(s)
- Yue Li
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Xiaoying Zheng
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Zhilin Zhao
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Wenfei Li
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yu Huang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Haidong He
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Zongshuo Han
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Jiaqing Tao
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Tao Lin
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
9
|
Xu J, Zuo R, Wu G, Liu J, Liu J, Huang C, Wang Z. Global distribution, drivers, and potential hazards of microplastics in groundwater: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176194. [PMID: 39270874 DOI: 10.1016/j.scitotenv.2024.176194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/18/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
Since microplastics (MPs) were first detected in groundwater, an increasing number of studies have focused on groundwater pollution by MPs. However, knowledge of the global properties of groundwater MPs: distribution, concentration, composition, and morphology remains limited, while potential factors regulating their transport and distribution in groundwater, especially the hydrogeological background and climate warming conditions, have been omitted from most analyses. Furthermore, previous field investigations did not assess the risks posed by groundwater MPs to the environment and to human health, a necessary preliminary to remediation. In this work, to promote future MP pollution studies and remediation policies, we assimilated and synthesized the current knowledge on this topic. We reviewed current data on global groundwater pollution by MPs, analyzed the driving factors of their transport and distribution, and summarized the ecological and health hazards posed by MPs, before discussing current knowledge limits and suggesting perspectives for future work.
Collapse
Affiliation(s)
- Jun Xu
- College of Water Science, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| | - Rui Zuo
- College of Water Science, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China.
| | - Guanlan Wu
- College of Water Science, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China.
| | - Jingchao Liu
- College of Water Science, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| | - Jiawei Liu
- College of Water Science, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| | - Chenxi Huang
- College of Water Science, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| | - Zhiwen Wang
- College of Water Science, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| |
Collapse
|
10
|
Dong S, Su X, Sheng L, Yu Q, Yu Y, Sun Y, Wu J, Gao B. Pore-Scale Visualized Transport and Retention of Fibrous and Fragmental Microplastics in Porous Media under Various Surfactant Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:21058-21067. [PMID: 39527491 DOI: 10.1021/acs.est.4c10405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
For advancing current knowledge on the transport of microplastics (MPs) in the environment, this study used a real-time pore-scale visualization and quantitative system to examine the motions and mobility of fibrous and fragmental MPs under various surfactant (AEO, CTAC, and AES) and electrolyte conditions. The videos showed that fibrous MPs formed tangles through entanglement, which moved in an axial direction aligned with the flow streamline. Both fibrous and fragmental MPs showed suspended movement as well as surface movement (e.g., sliding, rolling, and saltating) in the porous media. Some deposited fibrous MPs showed flexible deformation due to shear flow. Compared to fragmental MPs, fibrous MPs showed lower mobility due to the tendency to deposit and clog the porous media. The mobility of fragmental MPs was enhanced in the presence of AEO but remained relatively unchanged with AES. In the presence of CTAC, the mobility of fragmental MPs was slightly inhibited under low ionic strength (IS) conditions but remarkably enhanced under high IS conditions. However, the mobility of fibrous MPs was largely unaffected by the surfactants. Both the numerical model and FDLVO calculations effectively described the transport and deposition of MPs in porous media.
Collapse
Affiliation(s)
- Shunan Dong
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Xiaoting Su
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Liting Sheng
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Qianhui Yu
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Yulu Yu
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Yuanyuan Sun
- School Earth Science & Engineering, Nanjing University, Nanjing 210023, China
| | - Jichun Wu
- School Earth Science & Engineering, Nanjing University, Nanjing 210023, China
| | - Bin Gao
- Department of Civil and Environmental Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 United States
| |
Collapse
|
11
|
Meng Q, Wang Z, Shi F, Sun K, Wen Z. Effect of background ions and physicochemical factors on the cotransport of microplastics with Cu 2+ in saturated porous media. Sci Rep 2024; 14:27101. [PMID: 39511295 PMCID: PMC11543686 DOI: 10.1038/s41598-024-78480-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024] Open
Abstract
Microplastics (MPs) in subsurface environments are migratory and can carry heavy metals, increasing the extent of MP and heavy metal pollution. This study used quartz sand-filled column experiments to investigate the adsorption and cotransport behaviours of PS-MPs, O3, UV-aged PS-MPs, and Cu2+ at different MP concentrations, ionic strengths, and ionic valences in a saturated porous medium. The results showed that when MPs migrate alone in the absence of an ionic background, higher concentrations have increased mobility. In contrast, an increase in the background ion concentration or ion valence inhibits the individual transport capacity of PS-MPs. An increase in the concentration of background ions or elevation in the valence state promotes Cu2+ transport because of the action of the double electric layer on the surface of the colloid and the electrostatic repulsive forces combined with the background ions. The adsorption capacity of aged PS-MPs was stronger than that of PS-MPs because of the binding of the aged PS-MPs to Cu2+ through complexation and electrostatic attraction. In the binary system of PS-MPs/Cu2+, PS-MPs promoted Cu2+ transport and the mobility of Cu2+ loaded by PS-MPs decreased with increasing background ion concentration. The cotransport results showed that MPs promote Cu2+ transport in the following order: O3-aged Ps > UV-aged Ps > Ps, as the increasing cation concentration in the MPs and Cu2+ occupies the PS surface adsorption sites. Overall, PS is an effective carrier for Cu2+. These findings offer fresh exploration concepts for the joint migration of MPs and heavy metals in underground settings.
Collapse
Affiliation(s)
- Qingling Meng
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, China.
| | - Zijian Wang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, China
| | - Fuqiang Shi
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, China
| | - Kaicheng Sun
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, China
| | - Zhao Wen
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, China
| |
Collapse
|
12
|
Yang H, Lin X, Lu J, Zhao X, Wu D, Kim H, Su L, Cai L. Effect of shape on the transport and retention of nanoplastics in saturated quartz sand. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135766. [PMID: 39244984 DOI: 10.1016/j.jhazmat.2024.135766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Nanoplastics (NPs) pose great challenges to soil-groundwater systems. This study investigated the transport and retention of self-synthesized 0.5-μm polystyrene NPs with different shapes using column experiments. The regular NPs were with spherical shapes, while the irregular NPs were with toroid-like shapes. The toroid-like shapes were the irregular shapes (with low aspect ratio) which have not been studied yet. The explorations were carried out in both 5-25 mM NaNO3 and 1-10 mM Ca(NO3)2 solutions. Both breakthrough curves (BTCs) and retained profiles (RPs) were monitored. Our findings uncovered a clear disparity in the transport of irregular and regular NPs, with irregular particles exhibiting lower transport ability compared to the regular ones. For example, the average breakthrough plateaus of the regular and irregular NPs were ∼0.9 and ∼0.5, respectively, in 10 mM NaNO3. In-depth theoretical analysis indicated that the lower XDLVO interaction energy barrier between the irregular NPs and quartz sand was one factor, and the greater margination of irregular NPs on quartz sand, as verified by the numerical simulation, was another factor leading to the decreased transport and increased retention of the irregular NPs. The obtained results highlighted the significance of considering particle shape in future modelling and predicting the fate of NPs in real environmental circumstances.
Collapse
Affiliation(s)
- Haiyan Yang
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Xunyang Lin
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Jizhe Lu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiaoning Zhao
- Beijing Institute of Metrology, Beijing 100029, China
| | - Dan Wu
- China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Hyunjung Kim
- Department of Earth Resources and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Lei Su
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China.
| | - Li Cai
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
13
|
Yu H, Liu H, Yang K, Xi B, Tan W. Differential carbon accumulation of microbial necromass and plant lignin by pollution of polyethylene and polylactic acid microplastics in soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124504. [PMID: 38968987 DOI: 10.1016/j.envpol.2024.124504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
The wide microplastics (MPs) occurrence affects soil physicochemical and biological properties, thereby influencing its carbon cycling and storage. However, the regulation effect of MPs on soil organic carbon (SOC) formation and stabilization remains unclear, hindering the accurate prediction of carbon sequestration in future global changes under continuous MP pollution. Phospholipid fatty acids, amino sugars and lignin phenols were used in this study as biomarkers for microbial community composition, microbial necromass and plant lignin components, respectively, and their responses to conventional (polyethylene; PE) and biodegradable (polylactic acid; PLA) MPs were explored. Results showed PLA MPs had positive effects on soil microbial biomass, while the positive and negative effects of PE MPs on microbial biomass varied with MP concentration. PE and PLA MPs increased microbial necromass contents and their contribution to SOC, mainly due to the increase in fungal necromass. On the contrary, PE and PLA MPs reduced lignin phenols and their contribution to SOC, mainly owing to the reduction in vanillyl-type phenols. The response of microbial necromass to PLA MPs was higher than that to PE MPs, whereas the response of lignin phenols was the opposite. MPs increased SOC level, with 83%-200% and 50%-75% of additional SOC in PE and PLA treatments, respectively, originating from microbial necromass carbon. This finding indicates that the increase in SOC pool in the presence of MPs can be attributed to soil microbial necromass carbon, and MPs increased capacity and efficacy of microbial carbon pump by increasing microbial turnover and reducing microbial N limitation. Moreover, the increase in amino sugars to lignin phenols ratio in PE treatment was higher than that in PLA treatment, and the increase in SOC content in PLA treatment was higher than that in PE treatment, indicating a high possibility of SOC storage owing to PLA MPs.
Collapse
Affiliation(s)
- Hong Yu
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; School of Resources and Environment Engineering, Mianyang Teachers' College, Mianyang, 621000, China; School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China.
| | - Haixia Liu
- School of Resources and Environment Engineering, Mianyang Teachers' College, Mianyang, 621000, China
| | - Ke Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
14
|
Dogra K, Kumar M, Deoli Bahukhandi K, Zang J. Traversing the prevalence of microplastics in soil-agro ecosystems: Origin, occurrence, and pollutants synergies. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 266:104398. [PMID: 39032427 DOI: 10.1016/j.jconhyd.2024.104398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/17/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
The ubiquity of plastics in modern life has made them a significant environmental concern and a marker of the Anthropocene era. The degradation of plastics results in the formation of microplastics (MPs), which measure 5 mm or less. The coexistence of MPs with other pollutants found in sludge, water treatment plant effluents, surface water, and groundwater, shapes the environmental landscape together. Despite extensive investigation, the long-term implications of MPs in soils remain uncertain, underscoring the importance of delving into their transportation and interactions with soil biota and other contaminants. The present article provides a comprehensive overview of MPs contamination in soil, encompassing its sources, prevalence, features, and interactions with soil flora and fauna, heavy metals, and organic compounds. The sources of MPs in soil agroecosystems are mulching, composting, littering, sewage sludge, irrigation water, and fertilizer application. The concentration of MPs reported in plastic mulch, littering, and sewage sludge is 503 ± 2760 items per kg-1, 4483 ± 2315 MPs/kg, and 11,100 ± 570 per/kg. The transport of MPs in soil agroecosystems is due to their horizontal and vertical migration including biotic and abiotic mobility. The article also highlighted the analytical process, which includes sampling planning, collection, purification, extraction, and identification techniques of MPs in soil agroecosystems. The mechanism in the interaction of MPs and organic pollutants includes surface adsorption or adhesion cation bridging, hydrogen bonding, charge transfer, ligand exchange, van der Waals interactions, and ion exchange.
Collapse
Affiliation(s)
- Kanika Dogra
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun 248007, Uttarakhand, India
| | - Manish Kumar
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun 248007, Uttarakhand, India; Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Monterey, Monterrey 64849, Nuevo León, Mexico.
| | - Kanchan Deoli Bahukhandi
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun 248007, Uttarakhand, India
| | - Jian Zang
- Joint International Research Laboratory of Green Buildings and Built Environments, School of Civil Engineering, Chongqing University, Chongqing, China
| |
Collapse
|
15
|
Ameen A, Stevenson ME, Kirschner AKT, Jakwerth S, Derx J, Blaschke AP. Fate and transport of fragmented and spherical microplastics in saturated gravel and quartz sand. JOURNAL OF ENVIRONMENTAL QUALITY 2024; 53:727-742. [PMID: 39162095 DOI: 10.1002/jeq2.20618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 07/15/2024] [Indexed: 08/21/2024]
Abstract
Microplastics in urban runoff undergo rapid fragmentation and accumulate in the soil, potentially endangering shallow groundwater. To improve the understanding of microplastic transport in groundwater, column experiments were performed to compare the transport behavior of fragmented microplastics (FMPs ∼1-µm diameter) and spherical microplastics (SMPs ∼1-, 10-, and 20-µm diameter) in natural gravel (medium and fine) and quartz sand (coarse and medium). Polystyrene microspheres were physically abraded with glass beads to mimic the rapid fragmentation process. The experiments were conducted at a constant flow rate of 1.50 m day-1 by injecting two pore volumes of SMPs and FMPs. Key findings indicate that SMPs showed higher breakthrough, compared to FMPs in natural gravel, possibly due to size exclusion of the larger SMPs. Interestingly, FMPs exhibited higher breakthrough in quartz sand, likely due to tumbling and their tendency to align with flow paths, while both sizes (larger and smaller relative to FMPs) of SMPs exhibited higher removal in quartz sand. Therefore, an effect due to shape and size was observed.
Collapse
Affiliation(s)
- Ahmad Ameen
- Institute of Hydraulic Engineering and Water Resources Management E222/2, TU Wien, Vienna, Austria
- Interuniversity Cooperation Centre (ICC) Water and Health, Vienna, Austria
| | - Margaret E Stevenson
- Institute of Hydraulic Engineering and Water Resources Management E222/2, TU Wien, Vienna, Austria
- Interuniversity Cooperation Centre (ICC) Water and Health, Vienna, Austria
| | - Alexander K T Kirschner
- Interuniversity Cooperation Centre (ICC) Water and Health, Vienna, Austria
- Institute for Hygiene and Applied Immunology, Water Microbiology, Medical University of Vienna, Vienna, Austria
- Division Water Quality & Health, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Stefan Jakwerth
- Interuniversity Cooperation Centre (ICC) Water and Health, Vienna, Austria
- Institute for Hygiene and Applied Immunology, Water Microbiology, Medical University of Vienna, Vienna, Austria
| | - Julia Derx
- Institute of Hydraulic Engineering and Water Resources Management E222/2, TU Wien, Vienna, Austria
- Interuniversity Cooperation Centre (ICC) Water and Health, Vienna, Austria
| | - Alfred P Blaschke
- Institute of Hydraulic Engineering and Water Resources Management E222/2, TU Wien, Vienna, Austria
- Interuniversity Cooperation Centre (ICC) Water and Health, Vienna, Austria
| |
Collapse
|
16
|
Cheng D, Liu H, Qian W, Yao R, Wang X. Migration characteristics of microplastics in riparian soils and groundwater. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:796. [PMID: 39112830 DOI: 10.1007/s10661-024-12962-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/01/2024] [Indexed: 09/14/2024]
Abstract
Investigations have revealed the presence of microplastics in both soil and groundwater, but the migration characteristics from soil to groundwater remain incompletely understood. In this study, two sampling sections consisting of soil-groundwater-river water were established near Lianxi Bridge and Xilin Bridge along the Jiuxi River in Xiamen. A total of 22 soil samples, 36 groundwater samples, and 18 river water samples were collected. Microplastics were detected in all samples with an abundance range of 392-836 n/kg in soil (mean, 655 ± 177 n/kg), 0.58-2.48 n/L groundwater (mean, 1.23 ± 0.42 n/L), and 0.38-1.80 n/L in river water (mean, 0.86 ± 0.41 n/L). Flakes predominantly constituted the shape of microplastics found in soil, while fibers dominated those present in water. Black, yellow, and red were the dominant color types. Polyamide (PA) and polyethylene (PE) were the main components of microplastics within soils, whereas polyethylene terephthalate (PET), polypropylene (PP), and PA prevailed within water. Microplastic particle sizes ranged from 39 to 2498 μm in soils, mainly from 29 to 3394 μm in water. The upstream section displayed higher abundances of microplastic compared to the downstream, revealing the soil particles having an intercepting effect on microplastics. The distribution and migration of microplastics in soil and groundwater are affected by many factors, including natural and anthropogenic factors, such as soil depth, soil properties, pore structure, hydrodynamics, hydraulic connections between groundwater and surface water, the extensive utilization and disposal of plastics, irrational exploitation of groundwater, and morphology and types of microplastics. These research findings contribute to a better understanding of the pathways, migration capacity, and influencing factors associated with microplastic entry into groundwater, thereby providing valuable technical support for the development of strategies aimed at controlling microplastic pollution.
Collapse
Affiliation(s)
- Dongdong Cheng
- College of the Environment and Ecology, Xiamen University, Xiamen, 361102, PR China
| | - Huatai Liu
- College of the Environment and Ecology, Xiamen University, Xiamen, 361102, PR China.
- Key Laboratory of the Coastal and Wetland Ecosystems, Xiamen University, Ministry of Education, Xiamen, 361102, PR China.
| | - Weixu Qian
- College of the Environment and Ecology, Xiamen University, Xiamen, 361102, PR China
| | - Rui Yao
- College of the Environment and Ecology, Xiamen University, Xiamen, 361102, PR China
| | - Xinhong Wang
- College of the Environment and Ecology, Xiamen University, Xiamen, 361102, PR China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, PR China
| |
Collapse
|
17
|
Schenkel CA, Brown MRM, Lenczewski ME. Impact of Type and Shape of Microplastics on the Transport in Column Experiments. GROUND WATER 2024; 62:537-547. [PMID: 37983834 DOI: 10.1111/gwat.13375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023]
Abstract
The pervasive nature of plastic and the longevity of plastics leaves a legacy of microplastics (MPs) that contaminate our environment, including drinking water sources. Although MPs have been documented in every environmental setting, a paucity of research has focused on the transport and fate of MPs in groundwater. Previous field and laboratory studies have shown that MPs can migrate through aquifer material and are influenced by environmental factors. This study used controlled column experiments to investigate the influence of polymer type (polyamide, polyethylene, polypropylene, and polyester) and particle shape (fragment, fiber, and sphere) on MP retardation and retention. The results showed that all individual MP types investigated were retarded compared to the NaCl tracer, with a retardation factor ranging from 1.53 to 1.75. While hypothesized that presence of multiple types and shapes could change mobility, the results indicate that this hypothesis is not correct for the conditions tested. This study provides new insights into MP transport in groundwater systems based on the characteristics of MP particles. In addition, this study demonstrates the need for further research on types of MPs and under more conditions, especially in the presence of a mixture of types and shapes of MPs to gauge what is occurring in natural systems where many MPs are present together.
Collapse
Affiliation(s)
- Cheyanne A Schenkel
- Department of Earth, Atmosphere and Environment, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL, 60115, USA
| | - Megan R M Brown
- Department of Earth, Atmosphere and Environment, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL, 60115, USA
| | - Melissa E Lenczewski
- Department of Earth, Atmosphere and Environment, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL, 60115, USA
| |
Collapse
|
18
|
Liu H, Wen Y, Xu J. Comparative study of polystyrene microplastic transport behavior in three different filter media: Quartz sand, zeolite, and anthracite. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 265:104395. [PMID: 39018629 DOI: 10.1016/j.jconhyd.2024.104395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/22/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
Microplastics (MPs) are emerging contaminants that are attracting increasing interest from researchers, and the safety of drinking water is greatly affected by their transportation during filtration. Polystyrene (PS) was selected as a representative MPs, and three filter media (quartz sand, zeolite, and anthracite) commonly found in water plants were used. The retention patterns of PS-MPs by various filter media under various background water quality conditions were methodically investigated with the aid of DLVO theory and colloidal filtration theory. The results show that the different structures and elemental compositions of the three filter media cause them to exhibit different surface roughnesses and surface potentials. A greater surface roughness of the filter media can provide more deposition sites for PS-MPs, and the greater surface roughness of zeolite and anthracite significantly enhances their ability to inhibit the migration of PS-MPs compared with that of quartz sand. However, surface roughness is not the only factor affecting the migration of MPs. The lower absolute value of the surface potential of anthracite causes the DLVO energy between it and PS-MPs to be significantly lower than that between zeolite and PS-MPs, which results in stronger retention of PS-MPs by anthracite, which has a lower surface roughness, than zeolite, which has a higher surface roughness. The transport of PS-MPs in the medium is affected by the combination of the surface roughness of the filter media and the DLVO energy. Under the same operating conditions, the retention efficiencies of the three filter materials for PS-MPs followed the order of quartz sand < zeolite < anthracite. Additionally, the conditions of the solution markedly influenced the transport ability of PS-MPs within the simulated filter column. The transport PS-MPs in the simulated filter column decreased with increasing solution ionic strength and cation valence. Naturally, dissolved organic matter promoted the transfer of PS-MPs in the filter layer, and humic acid had a much stronger facilitating impact than fulvic acid. The study findings might offer helpful insight for improving the ability of filter units ability to retain MPs.
Collapse
Affiliation(s)
- Haicheng Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215000, China.
| | - Yu Wen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215000, China
| | - Jingkun Xu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215000, China
| |
Collapse
|
19
|
Heinze WM, Steinmetz Z, Klemmensen NDR, Vollertsen J, Cornelis G. Vertical distribution of microplastics in an agricultural soil after long-term treatment with sewage sludge and mineral fertiliser. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124343. [PMID: 38852659 DOI: 10.1016/j.envpol.2024.124343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Sewage sludge applications release contaminants to agricultural soils, such as potentially toxic metals and microplastics (MPs). However, factors determining the subsequent mobility of MPs in long-term field conditions are poorly understood. This study aimed to understand the vertical distribution of MPs in soils amended with sewage sludge in comparison to conventional mineral fertiliser for 24 years. The depth-dependent MP mass and number concentrations, plastic types, sizes and shapes were compared with the distribution of organic carbon and metals to provide insights into potentially transport-limiting factors. Polyethylene, polypropylene and polystyrene mass concentrations were screened down to 90 cm depth via pyrolysis-gas chromatography/mass spectrometry. MP number concentrations, additional plastic types, sizes, and shapes were analysed down to 40 cm depth using micro-Fourier transform-infrared imaging. Across all depths, MP numbers were twice and mass concentrations 8 times higher when sewage sludge was applied, with a higher share of textile-related plastics, more fibres and on average larger particles than in soil receiving mineral fertiliser. Transport of MPs beyond the plough layer (0-20 cm) is often assumed negligible, but substantial MP numbers (42 %) and mass (52 %) were detected down to 70 cm in sewage sludge-amended soils. The initial mobilization of MPs was shape- and size-dependent, because the fractions of fragmental-shaped and relatively small MPs increased directly below the plough layer, but not at greater depths. The sharp decline of total MP concentrations between 20 and 40 cm depth resembled that of metals and organic matter suggesting similar transport limitations. We hypothesize that the effect of soil management, such as ploughing, on soil compactness and subsequent transport by bioturbation and via macropores drives vertical MP distribution over long time scales. Risk assessment in soils should therefore account for considerable MP displacement to avoid underestimating soil exposure.
Collapse
Affiliation(s)
- Wiebke Mareile Heinze
- Swedish University of Agricultural Sciences, Department of Soil and Environment, Box 7014, 75007, Uppsala, Sweden.
| | - Zacharias Steinmetz
- RPTU Kaiserslautern-Landau, iES Landau, Institute for Environmental Sciences, Environmental and Soil Chemistry Lab, Fortstraße 7, 76829, Landau, Germany.
| | - Nanna Dyg Rathje Klemmensen
- Aalborg University, Department of the Built Environment, Division of Civil and Environmental Engineering, Thomas Manns Vej 23, 9220, Aalborg, Denmark.
| | - Jes Vollertsen
- Aalborg University, Department of the Built Environment, Division of Civil and Environmental Engineering, Thomas Manns Vej 23, 9220, Aalborg, Denmark.
| | - Geert Cornelis
- Swedish University of Agricultural Sciences, Department of Soil and Environment, Box 7014, 75007, Uppsala, Sweden.
| |
Collapse
|
20
|
Rullander G, Lorenz C, Strömvall AM, Vollertsen J, Dalahmeh SS. Bark and biochar in horizontal flow filters effectively remove microplastics from stormwater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124335. [PMID: 38848957 DOI: 10.1016/j.envpol.2024.124335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/15/2024] [Accepted: 06/05/2024] [Indexed: 06/09/2024]
Abstract
Organic materials such as bark and biochar can be effective filter materials to treat stormwater. However, the efficiency of such filters in retaining microplastics (MPs) - an emerging stormwater pollutant - has not been sufficiently studied. This study investigated the removal and transport of a mixture of MPs commonly associated with stormwater. Different MP types (polyamide, polyethylene, polypropylene, and polystyrene) were mixed into the initial 2 cm material of horizontal bark and biochar filters of 25, 50, and 100 cm lengths. The MP types consisted of spherical and fragmented shapes in size ranges of 25-900 μm. The filters were subjected to a water flow of 5 mL/min for one week, and the total effluents were analyzed for MPs by μFTIR imaging. To gain a deeper insight, one 100 cm bark filter replica was split into 10 cm segments, and MPs in each segment were extracted and counted. The results showed that MPs were retained effectively, >97%, in all biochar and bark filters. However, MPs were detected in all effluents regardless of filter length. Effluent concentrations of 5-750 MP/L and 35-355 MP/L were measured in bark and biochar effluents, respectively, with >91% of the MP counts consisting of small-sized (25 μm) polyamide spherical particles. Combining all data, a decrease in average MP concentration was noticed with longer filters, likely attributed to channeling in a 25 and 50-cm filter. The analyses of MPs in the bark media revealed that most MPs were retained in the 0-10 cm segment but that some MPs were transported further, with 19% of polyamide retained in the 80-90 cm segment. Overall, this study shows promising results for bark and biochar filters to retain MPs, while highlighting the importance of systematic packing of filters to reduce MP emissions to the environment from polluted stormwater.
Collapse
Affiliation(s)
- Gabriella Rullander
- Department of Earth Sciences, Uppsala University, Villavägen 16, SE-752 36, Sweden.
| | - Claudia Lorenz
- Environmental Dynamics, Department of Science and Environment, Roskilde University, Universitetsvej 1, 11.2 DK-4000, Roskilde, Denmark
| | - Ann-Margret Strömvall
- Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Jes Vollertsen
- Aalborg University, Department of The Built Environment, Thomas Manns Vej 23, 9220, Aalborg Øst, Denmark
| | - Sahar S Dalahmeh
- Department of Earth Sciences, Uppsala University, Villavägen 16, SE-752 36, Sweden
| |
Collapse
|
21
|
Umeh OR, Ophori DU, Ibo EM, Eke CI, Oyen TP. Groundwater systems under siege: The silent invasion of microplastics and cock-tails worldwide. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124305. [PMID: 38830527 DOI: 10.1016/j.envpol.2024.124305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/22/2024] [Accepted: 06/01/2024] [Indexed: 06/05/2024]
Abstract
Microplastics (MPs) contamination is one of the significant escalating environmental concerns worldwide, and this stems from the increasing production and unlawful disposal of plastic materials. Regretfully, the synthesis of plastic materials is expected to triple in the upcoming years. Nevertheless, MPs pollution in marine, aquatic, and terrestrial settings has received much attention, unlike in groundwater systems. This study exhaustively reviewed varying degrees of recent publications in various search engines and provided a detailed state of current knowledge and research progress vis-à-vis MPs and cock-tail pollution in groundwater systems. Evidently, groundwater sources are severely contaminated as a result of growing anthropogenic activities and vertical movement of MPs and cock-tails from the atmospheric, terrestrial, and aquatic environments, however, fewer researchers have fixated their attention on estimating the occurrence of MPs in groundwater resources, while sufficient information regarding their sources, sampling methods, abundance, transport pathways, fate, modeling techniques, appropriate and adequate data, sorption properties, separation from other environmental media, toxicity, and remedial measures are extensively lacking. In addition, MPs may combine with other toxic emerging contaminants to improve migration and toxicity; however, no research has been conducted to fully understand cock-tail migration mechanisms and impacts in groundwater systems. Over time, groundwater may be regarded as the primary sink for MPs, if effective actions are neglected. Overall, this study detected a lack of concern and innumerable voids in this field; hence, vital and nascent research gaps were identified for immediate, advanced, and interdisciplinary research investigations.
Collapse
Affiliation(s)
- Odera R Umeh
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ, 07043, USA.
| | - Duke U Ophori
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ, 07043, USA.
| | - Eziafakaego M Ibo
- Department of Environmental Management, Pan African University Life and Earth Sciences Institute, Ibadan, Oyo State, 200002, Nigeria.
| | - Chima I Eke
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ, 07043, USA.
| | - Toritseju P Oyen
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ, 07043, USA.
| |
Collapse
|
22
|
Li F, Huang D, Wang G, Cheng M, Chen H, Zhou W, Xiao R, Li R, Du L, Xu W. Microplastics/nanoplastics in porous media: Key factors controlling their transport and retention behaviors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171658. [PMID: 38490411 DOI: 10.1016/j.scitotenv.2024.171658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/05/2024] [Accepted: 03/09/2024] [Indexed: 03/17/2024]
Abstract
Till now, microplastics/nano-plastics(M/NPs) have received a lot of attention as emerging contaminant. As a typical but complex porous medium, soil is not only a large reservoir of M/NPs but also a gateway for M/NPs to enter groundwater. Therefore, the review of the factors controlling the transport behavior of M/NPs in porous media can provide important guidance for the risk assessment of M/NPs in soil and groundwater. In this study, the key factors controlling the transport behavior of M/NPs in porous media are systematically divided into three groups: (1) nature of M/NPs affecting M/NPs transport in porous media, (2) nature of flow affecting M/NPs transport in porous media, (3) nature of porous media affecting M/NPs transport. In each group, the specific control factors for M/NPs transport in porous media are discussed in detail. In addition to the above factors, some substances (colloids or pollutants) present in natural porous media (such as soil or sediments) will co-transport with M/NPs and affect its mobility. According to the different properties of co-transported substances, the mechanism of promoting or inhibiting the migration behavior of M/NPs in porous media was discussed. Finally, the limitations and future research directions of M/NPs transport in porous media are pointed out. This review can provide a useful reference for predicting the transport of M/NPs in natural porous media.
Collapse
Affiliation(s)
- Fei Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China.
| | - Guangfu Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Min Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Haojie Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Wei Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Ruihao Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Ruijin Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Li Du
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Wenbo Xu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| |
Collapse
|
23
|
Liu Y, Gu G, Lu J, Zhu L, Chen Q, Kim H, Wang J, Ji P, Cai L. Decreased transport of nano- and micro-plastics in the presence of low-molecular-weight organic acids in saturated quartz sand. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171195. [PMID: 38408673 DOI: 10.1016/j.scitotenv.2024.171195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/13/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
Low-molecular-weight organic acids (LMWOAs) and nano- and micro-plastics (NPs and MPs) are both widely distributed in terrestrial systems. To better understand the influence of LMWOAs on the transport of NPs and MPs, the effects of 0.5 mM citric- (CA), malic- (MA), and tartaric- (TA) acid on the transport of nano- (0.51 μm, PS NPs) and micro- (1.1 μm, PS MPs) polystyrene particles (2 mg L-1) in saturated quartz sand were investigated. All three LMWOAs decreased the transport of PS NPs and MPs, regardless of ionic composition or strength (0.1-10 mM NaCl and 0.1-1 mM CaCl2). Further investigation revealed that the interfacial interactions between PS-quartz sand surfaces and PS-PS were altered by LMWOAs. LMWOAs adsorbed to quartz sand surfaces could serve as new deposition sites, as evidenced by the decreased transport of PS NPs and MPs in quartz sand that was subjected to pre-equilibration with selected MA, the low inhibition of PS transport with low concentrations of LMWOAs (0.1 mM), and also the adsorption of LMWOAs onto quartz sand surfaces by batch experiments. Meanwhile, the adsorption of LMWOAs on PS, hydrodynamic measurement and visual TEM observation together clarified the slight aggregation of PS NPs and MPs in suspensions, inducing the subsequent decrease in transport. Among them, the adsorption of LMWOAs onto quartz sand surfaces was found to be the main factor dominating the decreased transport of both PS NPs and MPs in saturated quartz sand.
Collapse
Affiliation(s)
- Yanan Liu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Genyao Gu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Jizhe Lu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Luxiang Zhu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Quanyuan Chen
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Hyunjung Kim
- Department of Earth Resources and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Jiajun Wang
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, PR China
| | - Peng Ji
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, PR China
| | - Li Cai
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, PR China.
| |
Collapse
|
24
|
Li W, Brunetti G, Zafiu C, Kunaschk M, Debreczeby M, Stumpp C. Experimental and simulated microplastics transport in saturated natural sediments: Impact of grain size and particle size. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133772. [PMID: 38377904 DOI: 10.1016/j.jhazmat.2024.133772] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/12/2024] [Accepted: 02/09/2024] [Indexed: 02/22/2024]
Abstract
Microplastics (MPs) present in terrestrial environments show potential leaching risk to deeper soil layers and aquifer systems, which threaten soil health and drinking water supply. However, little is known about the environmental fate of MPs in natural sediments. To examine the MPs transport mechanisms in natural sediments, column experiments were conducted using different natural sediments and MPs (10-150 µm) with conservative tracer. Particle breakthrough curves (BTCs) and retention profiles (RPs) were numerically interpreted in HYDRUS-1D using three different models to identify the most plausible deposition mechanism of MPs. Results show that the retention efficiency for a given particle size increased with decreasing grain size, and RPs exacerbated their hyper-exponential shape in finer sediments. Furthermore, the amounts of MPs present in the effluent increased to over 85 % as MPs size decreased to 10-20 µm in both gravel and coarse sand columns, while all larger MPs (125-150 µm) were retained in the coarse sand column. The modeling results suggested that the blocking mechanism becomes more important with increasing particle sizes. In particular, the attachment-detachment without blocking was the most suited parameterization to interpret the movement of small MPs, while a depth-dependent blocking approach was necessary to adequately describe the fate of larger particles.
Collapse
Affiliation(s)
- Wang Li
- University of Natural Resources and Life Sciences, Vienna, Department of Water, Atmosphere and Environment, Institute of Soil Physics and Rural Water Management, Muthgasse 18, 1190 Vienna, Austria.
| | - Giuseppe Brunetti
- University of Natural Resources and Life Sciences, Vienna, Department of Water, Atmosphere and Environment, Institute of Soil Physics and Rural Water Management, Muthgasse 18, 1190 Vienna, Austria; University of Calabria, Department of Civil Engineering, Rende, Italy
| | - Christian Zafiu
- University of Natural Resources and Life Sciences, Vienna, Department of Water, Atmosphere and Environment, Institute of Waste Management and Circular Economy, Muthgasse 18, 1190 Vienna, Austria
| | - Marco Kunaschk
- Bavarian Environment Agency (LfU), Demollstrasse 31, 82407 Wielenbach, Germany
| | - Monika Debreczeby
- University of Natural Resources and Life Sciences, Vienna, Department of Applied Genetics and Cell Biology, Institute of Molecular Plant Biology, Muthgasse 18, 1190 Vienna, Austria
| | - Christine Stumpp
- University of Natural Resources and Life Sciences, Vienna, Department of Water, Atmosphere and Environment, Institute of Soil Physics and Rural Water Management, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
25
|
Feng Q, Chen Z, Huang G, An C, Yang X, Wang Z. Prolonged drying impedes the detachment of microplastics in unsaturated substrate: Role of flow regimes. WATER RESEARCH 2024; 252:121246. [PMID: 38340454 DOI: 10.1016/j.watres.2024.121246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/12/2023] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
The detachment of microplastics (MPs) from porous media under different moisture conditions and flow regimes has garnered limited attention within the research community. The present study investigates the detachment of MPs from porous media under wet and dry conditions combined with steady and transient flow. For both the wet and dry conditions, the increase in flow rates is found to decrease the detachment of hydrophobic polyethylene of two sizes and of hydrophilic polymethylmethacrylate. Intermittent flow is found to result in effluent peaks and a higher rate of MP detachment compared to steady flow. The ionic strength of inflow drops in a stepwise manner, leading to abrupt peaks followed by a tail corresponding to the arrival of each ionic strength front. Each step increase in flow rate leads to a steep peak followed by slow release over several pore volumes. Although transient flow facilitates the detachment of MPs, drying significantly impedes the detachment of MPs irrespective of flow regime. Ultraviolet weathering of MPs for 60 days weakens the inhibition effect of drying on hydrophilic polymethylmethacrylate, facilitating their detachment. Furthermore, the release of MPs decreases markedly with an increase in air-drying duration from 0 h to 72 h. Hydrus-1D two-site kinetic models are used to successfully simulate time-dependent processes, implying that drying heightens the energy barrier for MPs to detach. Our analysis confirms the significance of moisture in determining the remobilization of MPs, providing valuable insights concerning the fate of MPs in unsaturated substrate under prolonged drought conditions.
Collapse
Affiliation(s)
- Qi Feng
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Zhi Chen
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Guohe Huang
- Environmental Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Regina, SK S4S 0A2, Canada
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada.
| | - Xiaohan Yang
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Zheng Wang
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| |
Collapse
|
26
|
Okutan H, Hul G, Stoll S, Le Coustumer P. Retention and Transport of Nanoplastics with Different Surface Functionalities in a Sand Filtration System. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:32. [PMID: 38202487 PMCID: PMC11326042 DOI: 10.3390/nano14010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
The efficiency of sand filtration was investigated in terms of the behavior of the nanoplastics (NPLs) with different surface functionalities. The initial condition concentrations of NPLs were varied, and their effects on retention and transport were investigated under a constant flow rate in saturated porous media. The behavior of NPLs in this porous system was discussed by considering Z- average size and zeta (ζ) potential measurements of each effluent. The retention efficiencies of NPLs were ranked as functionalized with amidine [A-PS]+ > with sulfate [S-PS]- > with surfactant-coated amidine [SDS-A-PS]-. The reversibility of the adsorption process was revealed by introducing surfactant into the sand filter system containing adsorbed [A-PS]+ at three different initial state concentration conditions. The deposition behavior on sand grain showed that positively charged NPLs were attached to the quartz surface, and negatively charged NPLs were attached to the edge of the clay minerals, which can be caused by electrical heterogeneities. The homoaggregates made of positively charged NPLs were more compact than those made of negatively charged NPLs and surfactant-coated NPLs. An anti-correlation was revealed, suggesting a connection between the fractal dimension (Df) of NPL aggregates and retention efficiencies. Increased Df values are associated with decreased retention efficiencies.The findings underscore the crucial influence of NPL surface properties in terms of retention efficiency and reversible adsorption in the presence of surfactants in sand filtration systems.
Collapse
Affiliation(s)
- Hande Okutan
- Ecole Doctorale, Sciences et Technologies, Université de Bordeaux Montaigne, 33607 Pessac, France
- Department F.-A. Forel for Environmental and Aquatic Sciences, University of Geneva, 1205 Geneva, Switzerland
- Department of Geological Engineering, Mugla Sitki Kocman University, Mugla 48000, Türkiye
| | - Gabriela Hul
- Department F.-A. Forel for Environmental and Aquatic Sciences, University of Geneva, 1205 Geneva, Switzerland
| | - Serge Stoll
- Department F.-A. Forel for Environmental and Aquatic Sciences, University of Geneva, 1205 Geneva, Switzerland
| | - Philippe Le Coustumer
- Ecole Doctorale, Sciences et Technologies, Université de Bordeaux Montaigne, 33607 Pessac, France
- Earth Sciences Department, Université de Bordeaux, 33615 Pessac, France
- Bordeaux Imaging Center, Université de Bordeaux, CNRS-UAR3420-INSERM US4, 33000 Bordeaux, France
| |
Collapse
|
27
|
Liu Y, Gu G, Li G, Kim H, Cai L, Cai H. Limited effects of different real groundwaters from three coastal cities in China on the transport of low-concentration nanoplastics in quartz sand. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:2148-2156. [PMID: 37960893 DOI: 10.1039/d3em00388d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Nanoplastics (NPs) have been widely detected in soil-groundwater systems. However, to date, the effect of real groundwater on the fate and transport of NPs has been poorly understood. In this study, the transport and retention behaviors of both polystyrene and poly(lactic-co-glycolic acid) NPs (PS NPs and PLGA NPs) in different real groundwaters from three coastal cities in China were explored using column experiments. PS (0.51 and 1.1 μm) and PLGA (1 μm) NPs with a low concentration of 2 mg L-1 were employed. Close observation showed that the transport of PS NPs was much higher than PLGA NPs in different groundwaters, with an average breakthrough curve plateau (C/Co) of ∼0.81 for PS NPs and ∼0.19 for PLGA NPs, respectively. As observed for PLGA, the plastic shape- and size-induced straining may be the reason for the minimal transport. Interestingly, we found that although the physicochemical characteristics of different real groundwaters varied significantly, the transport of certain NPs in real groundwater was similar with negligible differences. Closer inspection indicated that similar pHs of different groundwaters may be the reason contributing to these findings. Further investigation revealed that the transport behaviors of PS and PLGA NPs in real groundwater did not follow the classical DLVO theory. These findings suggest that the fate and transport of NPs in real soil-groundwater systems are much more comprehensive than the prediction based on DLVO theory and need intensive investigation.
Collapse
Affiliation(s)
- Yanan Liu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, P. R. China.
| | - Genyao Gu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, P. R. China.
| | - Guoqing Li
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, P. R. China.
| | - Hyunjung Kim
- Department of Earth Resources and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Li Cai
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, P. R. China.
| | - Huiwen Cai
- Takuvik, CNRS/Université Laval, IRL3376, 1045 avenue de la, Médecine Quebec QC, G1V0A6, Canada.
| |
Collapse
|
28
|
Zhang M, Hou J, Xia J, Wu J, Zeng Y, Miao L, Lv B. Transport of polystyrene nanoplastics in porous media: Combined effects of two co-existing substances. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165275. [PMID: 37406707 DOI: 10.1016/j.scitotenv.2023.165275] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Both surfactants and natural organic matters (NOMs) are substances commonly found in aqueous environments, and their effects on the transport of nanoplastics that is gradually gaining widespread attention in porous media are currently in their infancy, while their combined effects are absent. We investigated innovatively the combined effect of surfactants and NOMs on the transport of polystyrene nanoplastics (PS-NPs) in saturated porous media. Adsorption tests of surfactants and NOMs onto PS-NPs, adsorption tests of PS-NPs onto quartz sand, and transport tests of PS-NPs in saturated quartz sand were conducted. Hydrophobicity and Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction energy were measured and calculated. A mathematical model was employed to fit the transport of PS-NPs in porous media. It was found that the effects and action mechanisms of cationic cetyl trimethylammonium bromide (CTAB) and anionic sodium dodecylbenzene sulfonate (SDBS) on the transport of PS-NPs in porous media were distinct. In the presence of CTAB, 1 mg/L humic acid (HA) and 10 mg/L sodium alginate (SA) could promote aggregation of PS-NPs by decreasing the absolute zeta potential of PS-NPs, and reducing the energy barrier between PS-NPs and porous media and increasing the blocking and straining, thus inhibiting the transport of PS-NPs. In the presence of SDBS, SA and HA could improve the adsorption of SDBS onto PS-NPs by bridging and increasing adsorption sites, thus increasing the hydrophilicity of PS-NPs and improving the transport of PS-NPs. Whether or not NOMs were present, the transport of PS-NPs in porous media was mainly governed by the DLVO interaction energy in the presence of cationic surfactants and by hydrophobicity in the presence of anionic surfactants. This innovative observation has led to an understanding on the environmental behaviour of nanoplastics in porous media under complex environments.
Collapse
Affiliation(s)
- Mingzhi Zhang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Jun Xia
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Jun Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Yuan Zeng
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, People's Republic of China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Bowen Lv
- Policy Research Center for Environment and Economy, Ministry of Ecology and Environment of the People's Republic of China, Beijing 100000, China.
| |
Collapse
|
29
|
Rullander G, Lorenz C, Herbert RB, Strömvall AM, Vollertsen J, Dalahmeh SS. How effective is the retention of microplastics in horizontal flow sand filters treating stormwater? JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118690. [PMID: 37586166 DOI: 10.1016/j.jenvman.2023.118690] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/10/2023] [Accepted: 07/25/2023] [Indexed: 08/18/2023]
Abstract
Microplastics accumulate in stormwater and can ultimately enter freshwater recipients, and pose a serious risk to aquatic life. This study investigated the effectiveness of lab-scale horizontal flow sand filters of differing lengths (25, 50 and 100 cm) in retaining four types of thermoplastic microplastics commonly occurring in stormwater runoff (polyamide, polyethylene, polypropylene, and polyethylene terephthalate). Despite the differences in particle shape, size and density, the study revealed that more than 98% of the spiked microplastics were retained in all filters, with a slightly increased removal with increased filter length. At a flow rate of 1 mL/min and after one week of operation, 62-84% of the added microplastics agglomerated in the first 2 cm of the filters. The agglomerated microplastics included 96% of high-density fibers. Larger-sized particles were retained in the sand media, while microplastics smaller than 50 μm were more often detected in the effluent. Microplastics were quantified and identified using imaging based micro Fourier Transform Infrared Spectroscopy. The efficient retention of microplastics in low-flow horizontal sand filters, demonstrated by the results, highlights their potential importance for stormwater management. This retention is facilitated by various factors, including microplastic agglomeration, particle sedimentation of heavy fibers and favorable particle-to-media size ratios.
Collapse
Affiliation(s)
- Gabriella Rullander
- Department of Earth Sciences, Uppsala University, Villavägen 16, SE-752 36, Sweden.
| | - Claudia Lorenz
- Aalborg University, Department of The Built Environment, Thomas Manns Vej 23, 9220, Aalborg Øst, Denmark
| | - Roger B Herbert
- Department of Earth Sciences, Uppsala University, Villavägen 16, SE-752 36, Sweden
| | - Ann-Margret Strömvall
- Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Jes Vollertsen
- Aalborg University, Department of The Built Environment, Thomas Manns Vej 23, 9220, Aalborg Øst, Denmark
| | - Sahar S Dalahmeh
- Department of Earth Sciences, Uppsala University, Villavägen 16, SE-752 36, Sweden
| |
Collapse
|
30
|
Wang J, Zhang X, Li X, Wang Z. Exposure pathways, environmental processes and risks of micro (nano) plastics to crops and feasible control strategies in agricultural regions. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132269. [PMID: 37607458 DOI: 10.1016/j.jhazmat.2023.132269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/24/2023]
Abstract
Micro/nanoplastics (MPs/NPs) pollution may adversely impact agricultural ecosystems, threatening the sustainability and security of agricultural production. This drives an urgent need to comprehensively understand the environmental behavior and effects of MPs/NPs in soil and atmosphere in agricultural regions, and to seek relevant pollution prevention strategies. The rhizosphere and phyllosphere are the interfaces where crops are exposed to MPs/NPs. The environmental behavior of MPs/NPs in soil and atmosphere, especially in the rhizosphere and phyllosphere, determines their plant accessibility, bioavailability and ecotoxicity. This article comprehensively reviews the transformation and migration of MPs/NPs in soil, transportation and deposition in the atmosphere, environmental behavior and effects in the rhizosphere and phyllosphere, and plant uptake and transportation pathways. The article also summarizes the key factors controlling MPs/NPs environmental processes, including their properties, biotic and abiotic factors. Based on the sources, environmental processes and intake risks of MPs/NPs in agroecosystems, the article offers several feasible pollution prevention and risk management options. Finally, the review highlights the need for further research on MPs/NPs in agro-systems, including developing quantitative detection methods, exploring transformation and migration patterns in-situ soil, monitoring long-term field experiments, and establishing pollution prevention and control systems. This review can assist in improving our understanding of the biogeochemistry behavior of MPs/NPs in the soil-plant-atmosphere system and provide a roadmap for future research.
Collapse
Affiliation(s)
- Jie Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaokai Zhang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaona Li
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
31
|
Kedzierski M, Cirederf-Boulant D, Palazot M, Yvin M, Bruzaud S. Continents of plastics: An estimate of the stock of microplastics in agricultural soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163294. [PMID: 37028674 DOI: 10.1016/j.scitotenv.2023.163294] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/28/2023] [Accepted: 04/01/2023] [Indexed: 05/27/2023]
Abstract
While there are estimates of the stock of microplastics in the marine environment, there are no estimates for soils. The main objective of this work is to estimate the total mass of microplastics in global agricultural soils. Microplastic abundance data from 442 sampling sites were collected from 43 articles. From these, the median of the abundance values, as well as the abundance profile of microplastics in soils were calculated. Thus, 1.5 to 6.6 Mt of microplastics would be present in soils on a global scale, i.e. one to two orders of magnitude higher than the estimated ocean surface microplastic stock. However, many limitations exist to accurately calculate these stocks. This work should therefore be considered as a first step in addressing this question. In the long term, in order to better assess this stock, it seems important to obtain more diversified data, e.g. better representing certain countries, or certain land uses.
Collapse
Affiliation(s)
- Mikaël Kedzierski
- Université Bretagne Sud, UMR CNRS 6027, IRDL, F-56100 Lorient, France.
| | | | - Maialen Palazot
- Université Bretagne Sud, UMR CNRS 6027, IRDL, F-56100 Lorient, France
| | - Marion Yvin
- Université Bretagne Sud, UMR CNRS 6027, IRDL, F-56100 Lorient, France
| | - Stéphane Bruzaud
- Université Bretagne Sud, UMR CNRS 6027, IRDL, F-56100 Lorient, France
| |
Collapse
|
32
|
Park S, Kim I, Jeon WH, Moon HS. Exploring the vertical transport of microplastics in subsurface environments: Lab-scale experiments and field evidence. JOURNAL OF CONTAMINANT HYDROLOGY 2023; 257:104215. [PMID: 37348415 DOI: 10.1016/j.jconhyd.2023.104215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/22/2023] [Accepted: 06/11/2023] [Indexed: 06/24/2023]
Abstract
Microplastics (MPs) defined as smaller 5 mm plastic particles have received increasing attention due to their global occurrence and potential toxicity. This study investigated the effects of environmental factors (rainfall intensity, 13 and 29 mm/h) and MP characteristics (morphology (fiber, flake, and film), polymer type (polypropylene (PP), polyethylene terephthalate (PET), and polystyrene (PS)) and size (100-300, 300-500, and 500-1000 μm)) on the vertical transport of MP in unsaturated soil conditions using lab-scale column experiments. Additionally, the occurrence and characteristics of MP detected in soil/sediment (total 13 samples) and groundwater samples (total 6 samples) were explored in the field study. Laboratory-scale column experiments revealed that heavy rainfall intensity (29 mm/h) increased the degree of MP vertical transport in unsaturated soil conditions and MP fibers showed the greatest vertical mobility among the various morphologies of MPs assessed. For the polymer type and size, the lighter PP polymer or the larger size of MP (500-1000 μm) showed higher mobility. In the field study, a statistical difference in MP abundance was observed depending on the population density and degree of urban development in both soil and groundwater samples. Comparing to the two different types of environmental media samples obtained from the same site, there was a significant difference in the composition of polymer types present while statistically no difference in MP abundance was observed between the two media samples (i.e., soil or sediment and groundwater). In addition, MP fibers and polyethylene (PE) were predominantly detected in our two study areas. These results suggest that various types of MP can pass through the unsaturated zone by water infiltration, even if it takes a long time to reach groundwater. Overall, we found that the degree of vertical transport of the MPs was highly sensitive to environmental conditions and MP characteristics.
Collapse
Affiliation(s)
- Saerom Park
- Department of Environmental Research, Korea Institute of Civil Engineering and Building Technology (KICT), Gyeonggi-do 10223, Republic of Korea
| | - Ilho Kim
- Department of Environmental Research, Korea Institute of Civil Engineering and Building Technology (KICT), Gyeonggi-do 10223, Republic of Korea; Civil and Environmental Engineering, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Woo-Hyun Jeon
- Groundwater Environment Research Center, Climate Change Response Division, Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon 34132, Republic of Korea
| | - Hee Sun Moon
- Groundwater Environment Research Center, Climate Change Response Division, Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon 34132, Republic of Korea; Geological Science, University of Science Technology (UST), Daejeon 34113, Republic of Korea.
| |
Collapse
|
33
|
Wu J, Lu L, Wang R, Pan L, Chen B, Zhu X. Influence of microplastics on the transport of antibiotics in sand filtration investigated by AFM force spectroscopy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162344. [PMID: 36813196 DOI: 10.1016/j.scitotenv.2023.162344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/11/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Microplastics and antibiotics were frequently detected in the effluent of sand filtration, while the presence of microplastics may change the interactions between the antibiotics and the quartz sands. However, the influence of microplastics on the transport of antibiotics in sand filtration has not been revealed. In this study, ciprofloxacin (CIP) and sulfamethoxazole (SMX) were respectively grafted on AFM probes to determine the adhesion forces to the representative microplastics (PS and PE) and the quartz sand. CIP and SMX exhibited low and high mobilities in the quartz sands, respectively. Compositional analysis of the adhesion forces indicated that the lower mobility of CIP in sand filtration columns could be attributed to the electrostatic attraction between the quartz sand and CIP compared with repulsion for SMX. Moreover, the significant hydrophobic interaction between the microplastics and the antibiotics could be responsible for the competitive adsorption of the antibiotics to the microplastics from the quartz sands; meanwhile, the π-π interaction further enhanced the adsorption of PS to the antibiotics. As a result of the high mobility of microplastics in the quartz sands, the carrying effect of microplastics enhanced the transport of antibiotics in the sand filtration columns regardless of their original mobilities. This study provided insights into the mechanism of the microplastics on enhancing the transport of antibiotics in sand filtration systems from the perspective of the molecular interaction.
Collapse
Affiliation(s)
- Jiayi Wu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| | - Lun Lu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| | - Rui Wang
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| | - Liuyi Pan
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| | - Xiaoying Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| |
Collapse
|
34
|
Xu D, Zhang G, Ni X, Wang B, Sun H, Yu Y, Mosa AA, Yin X. Effect of different aging treatments on the transport of nano-biochar in saturated porous media. CHEMOSPHERE 2023; 323:138272. [PMID: 36863628 DOI: 10.1016/j.chemosphere.2023.138272] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Widely used for soil amendment, carbon sequestration, and remediation of contaminated soils, biochars (BCs) inevitably produce a large number of nanoparticles with relatively high mobility. Geochemical aging alters chemical structure of these nanoparticles and thus affect their colloidal aggregation and transport behavior. In this study, the transport of ramie derived nano-BCs (after ball-milling) was investigated by different aging treatments (i.e., photo (PBC) and chemical aging (NBC)) as well as the managing BC under different physicochemical factors (i.e., flow rates, ionic strengths (IS), pH, and coexisting cations). Consequences of the column experiments indicated aging promoted the mobility of the nano-BCs. Compared to the nonaging BC, consequences of spectroscopic analysis demonstrated the aging BCs exhibited a number of tiny corrosion pores. Both of these aging treatments contribute to a more negative zeta potential and a higher dispersion stability of the nano-BCs, which is caused by the abundance of O-functional groups. Also the specific surface area and mesoporous volume of both aging BCs increased significantly, with the increase being more pronounced for NBC. The breakthrough curves (BTCs) obtained for the three nano-BCs were modelled by the advection-dispersion equation (ADE), which included first-order deposition and release terms. The ADE revealed high mobility of aging BCs, which meant their retention in saturated porous media was reduced. This work contributes to a comprehensive understanding of the transport of aging nano-BCs in the environment.
Collapse
Affiliation(s)
- Duo Xu
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi, 712100, PR China
| | - Guangcai Zhang
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi, 712100, PR China
| | - Xue Ni
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi, 712100, PR China; Administrative Committee of Shizuishan High Tech Industrial Development Zone, Shizuishan, Gansu, 753000, PR China
| | - Binying Wang
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi, 712100, PR China
| | - Huimin Sun
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, PR China
| | - Yingcui Yu
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi, 712100, PR China
| | - Ahmed Ali Mosa
- Soils Department, Faculty of Agriculture, Mansoura University, 35516, Mansoura, Egypt
| | - Xianqiang Yin
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
35
|
Ranjan VP, Joseph A, Sharma HB, Goel S. Preliminary investigation on effects of size, polymer type, and surface behaviour on the vertical mobility of microplastics in a porous media. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161148. [PMID: 36572318 DOI: 10.1016/j.scitotenv.2022.161148] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Due to the ubiquitous nature of microplastic (MP), knowledge of its fate and migration in subsurface environments like soil becomes extremely important to understand underlying ecological risk. The fate and migration of MP in subterranean settings like sand are governed by the retention/transport properties influenced by the interaction of sand and MPs. In this study, sand column experiments under simulated rainfall conditions were conducted for 180 days to assess the vertical migration of mixed MPs consisting of polypropylene (PP), polyethylene (PE), and polyethylene terephthalate (PET). Sand column experiments were subjected to 60 wet-dry cycles over 180 days. The effects of polymer type, microplastic size, sand particle size, and surface roughness on the migration of MPs were evaluated. Results showed that the smallest-sized fragmented PE particles had the highest migration potential compared to PET and PE. The ratios of the diameters of MP particles and sand particles (dMP/dsand) played a significant role in determining the penetration depth of the various sizes of MPs. The MP particles with dMP/dsand 0.11 showed greater penetration depth in sand media and were detected in the column effluent water after 60 days of a column run. In addition, surface roughness, low ionic strength water, irregularly shaped particles, and wet and dry cycles contributed to the migration of MPs in the sand column. Three new absorbance peaks corresponding to the hydroxyl, CO stretch, and carbonyl groups evolved in the extracted PE MPs sample from different depths, as shown by FTIR analysis, suggesting that PE MPs had been oxidised. XPS analysis revealed changes in the surface properties of the MPs, indicating that oxidation occurred at the top layer, causing structural deterioration of the PE MPs. However, oxidation of the surface bonds was restricted in the layers underneath due to a lack of oxygen. The finding of the study suggests that in a natural environment, such accumulation and migration of MPs in sandy soil can increase the possibilities to the underlying groundwater contamination.
Collapse
Affiliation(s)
- Ved Prakash Ranjan
- Environmental Engineering and Management, Department of Civil Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302, India.
| | - Anuja Joseph
- School of Environmental Science and Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Hari Bhakta Sharma
- Department of Civil Engineering, Sikkim Manipal Institute of Technology, Majitar, Rangpo, Sikkim 737136, India
| | - Sudha Goel
- Environmental Engineering and Management, Department of Civil Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| |
Collapse
|
36
|
Silori R, Shrivastava V, Mazumder P, Mootapally C, Pandey A, Kumar M. Understanding the underestimated: Occurrence, distribution, and interactions of microplastics in the sediment and soil of China, India, and Japan. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:120978. [PMID: 36586556 DOI: 10.1016/j.envpol.2022.120978] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Microplastics (MPs) are non-biodegradable substances that can sustain our environment for up to a century. What is more worrying is the incapability of modern technologies to annihilate MPs from om environment. One ramification of MPs is their impact on every kind of life form on this planet, which has been discussed ahead; that is why these substances are surfacing in everyday discussions of scholars and researchers. This paper discusses the overview of the global occurrence, abundance, analysis, and remediation techniques of MPs in the environment. This paper primarily reviews the event and abundance of MPs in coastal sediments and agricultural soil of three major Asian countries, India, China, and Japan. A significant concentration of MPs has been recorded from these countries, which affirms its strong presence and subsequent environmental impacts. Concentrations such as 73,100 MPs/kg in Indian coastal sediments and 42,960 particles/kg in the agricultural soil of China is a solid testimony to prove their massive outbreak in our environment and require urgent attention towards this issue. Conclusions show that human activities, rivers, and plastic mulching on agricultural fields have majorly acted as carriers of MPs towards coastal and terrestrial soil and sediments. Later, based on recorded concentrations and gaps, future research studies are recommended in the concerned domain; a dearth of studies on MPs influencing Indian agricultural soil make a whole sector and its consumer vulnerable to the adverse effects of this emerging contaminant.
Collapse
Affiliation(s)
- Rahul Silori
- School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India
| | - Vikalp Shrivastava
- School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India
| | - Payal Mazumder
- School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India
| | - Chandrashekar Mootapally
- School of Applied Sciences & Technology (SAST), Gujarat Technological University (GTU), Ahmedabad, Gujarat, India
| | - Ashok Pandey
- School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India; Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, India
| | - Manish Kumar
- School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India; Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Eugenio Garza Sada 2501 Sur, Monterrey, 64849, Mexico.
| |
Collapse
|
37
|
The measurement of food safety and security risks associated with micro- and nanoplastic pollution. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
38
|
Feng Q, An C, Chen Z, Wang Z. New Perspective on the Mobilization of Microplastics through Capillary Fringe Fluctuation in a Tidal Aquifer Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:929-938. [PMID: 36603902 DOI: 10.1021/acs.est.2c04686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The presence of plastic fragments in the environment is a growing global concern. In this study, we explored the effects of dynamic fluctuations of capillary fringe on the transport of microplastics (MPs) in the substrate combining various environmental and MP properties. Both experimental and Hydrus-2D modeling results confirmed that increasing cycles of water table fluctuation led to the rise of capillary fringe. An increase in the cycles of water table fluctuations did not significantly change the overall MP retention percentages in 0.5 mm substrate but altered the MP distribution along the column. In 1 and 2 mm substrate, the increase in cycle numbers enhanced the MP transport from substrate to the water below. In terms of the size of the MPs, more 20-25 μm polyethylene (PE2) were retained in the substrate compared to 4-6 μm polyethylene (PE1) under the same number of fluctuation cycles. High-density polytetrafluoroethylene (PTFE, 5-6 μm) exhibited higher retention percentages compared to PE1 particles. Ultraviolet aging for 60 days enhanced PE1 transport along the column, while 60 days of seawater aging did not affect PE1 transport greatly. For PTFE, ultraviolet and seawater aging enhanced its retention in the substrate. The retention percentages of both PE1 and PTFE in the column increased with the elevated ionic strength and the decrease of fluctuation velocity. This work highlights that capillary fringe fluctuation can serve as a pathway to relocate MPs to the tidal aquifer.
Collapse
Affiliation(s)
- Qi Feng
- Department of Building, Civil and Environmental Engineering, Concordia University, MontrealQC H3G 1M8, Canada
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, MontrealQC H3G 1M8, Canada
| | - Zhi Chen
- Department of Building, Civil and Environmental Engineering, Concordia University, MontrealQC H3G 1M8, Canada
| | - Zheng Wang
- Department of Building, Civil and Environmental Engineering, Concordia University, MontrealQC H3G 1M8, Canada
| |
Collapse
|
39
|
Cohen N, Radian A. Microplastic Textile Fibers Accumulate in Sand and Are Potential Sources of Micro(nano)plastic Pollution. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17635-17642. [PMID: 36475681 DOI: 10.1021/acs.est.2c05026] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Agricultural soils have been identified as sinks for microplastic fibers; however, little information is available on their long-term fate in these soils. In this study, polyester and nylon fibers were precisely cut to relevant environmental lengths, using novel methodology, and their behavior in sand columns was studied at environmental concentration. The longer fibers (>50 μm) accumulated in the upper layers of the sand, smaller fibers were slightly more mobile, and nylon showed marginally higher mobility than polyester. Previous studies have overlooked changes in microplastic morphology due to transport in soil. Our study is the first to show that fibers exhibited breakage, peeling, and thinning under flow conditions in soil, releasing smaller, more mobile fragments. Furthermore, the peelings exhibited different adsorption properties compared to the core fiber. This suggests that microplastic fibers can become a source of smaller micro(nano)plastics and potential vectors for certain molecules, risking continuous contamination of nearby soils, surfaces, and groundwater.
Collapse
Affiliation(s)
- Nirrit Cohen
- Faculty of Civil and Environmental Engineering, Technion - Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | - Adi Radian
- Faculty of Civil and Environmental Engineering, Technion - Israel Institute of Technology, Technion City, Haifa 32000, Israel
| |
Collapse
|
40
|
Fei J, Xie H, Zhao Y, Zhou X, Sun H, Wang N, Wang J, Yin X. Transport of degradable/nondegradable and aged microplastics in porous media: Effects of physicochemical factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158099. [PMID: 35988619 DOI: 10.1016/j.scitotenv.2022.158099] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
The degradable properties of degradable plastics allow them to form microplastics (MPs) faster. Therefore, degradable MPs may easily be transported in the underground environment. Research on degradable MPs transport in porous media is necessary and urgent. In this study, polylactic acid (PLA) and polyvinyl chloride (PVC) were selected to compare the transport differences between degradable and nondegradable MPs under different factors (flow rates, ionic strengths (ISs), pH, and coexisting cations) through column experiments, and UV irradiation was used to further simulate the effect of aging on different types of MPs. Fourier transform infrared (FT-IR) and X-ray photoelectron spectroscopy (XPS) were used to characterize functional groups and to determine the surface elements of MPs, respectively. The results showed that MPs were more mobile at higher flow rate, lower IS, higher pH, and monovalent cations. The order of transport capacity of MPs was PVC < aged PVC < PLA < aged PLA. This result was mainly attributed to the more negative Zeta potential and higher dispersion stability of aged PLA and PLA, which were caused by abundant O-functional groups. Compared with PVC, the O/C ratio of PLA increased significantly after aging, indicating that PLA was more prone to aging. The advection-dispersion-equation (ADE) fitted the transport data of MPs well. The interaction energy of MPs and quartz sand was accurately predicted by the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. This work contributes to a comprehensive understanding of the transport of degradable MPs in the environment.
Collapse
Affiliation(s)
- Jiao Fei
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China 712100
| | - Haoyuan Xie
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China 712100
| | - Yifan Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China 712100
| | - Xuerong Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China 712100
| | - Huimin Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China 712100; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Nong Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs of the People's Republic of China Tianjin, 300191, China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Tai'an 271000, Shandong, China
| | - Xianqiang Yin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China 712100; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China.
| |
Collapse
|
41
|
Tiwari E, Singh N, Khandelwal N, Ganie ZA, Choudhary A, Monikh FA, Darbha GK. Impact of nanoplastic debris on the stability and transport of metal oxide nanoparticles: role of varying soil solution chemistry. CHEMOSPHERE 2022; 308:136091. [PMID: 36002060 DOI: 10.1016/j.chemosphere.2022.136091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/29/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
The release of metal-based nanoparticles (MNPs) and nanoplastic debris (NPDs) has become ubiquitous in the natural ecosystem. Interaction between MNPs and NPDs may alter their fate and transport in the sub-surface environment and have not been addressed so far. Therefore, the present study has explored the role of NPDs on the stability and mobility of extensively used MNPs, i.e., CuO nanoparticles (NPs) under varying soil solutions (SS) chemistry. In the absence of NPDs, a very high aggregation of CuO NPs observed in SS extracted from black, lateritic, and red soils, which can be correlated with ionic strength (IS) and type of ionic species. The sedimentation rate (ksed(1/h)) for CuO NPs was >0.5 h-1 in the case of these SS. Interestingly, the stability and sedimentation behavior of CuO NPs varied significantly in the presence of NPDs. The ksed for CuO NPs decreased to half and found <0.25 h-1 in the presence of NPDs in all SS. C/C0 values in breakthrough curves increased drastically (black < alluvial < laterite < red) in presence of NPDs. Results suggest that the release of NPDs in the terrestrial ecosystem is a potential threat leading to increased mobility of MNPs in the environment.
Collapse
Affiliation(s)
- Ekta Tiwari
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India; Natural Resources Management & Environmental Sciences, College of Agriculture, Food & Environmental Sciences, California Polytechnic State University, CA, 93401, USA
| | - Nisha Singh
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India; Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka, Kanagawa, 237-0061, Japan
| | - Nitin Khandelwal
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India
| | - Zahid Ahmad Ganie
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India
| | - Aniket Choudhary
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India
| | - Fazel Abdolahpur Monikh
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, Joensuu, FI-80101, Finland
| | - Gopala Krishna Darbha
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India; Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India.
| |
Collapse
|
42
|
Qi S, Song J, Shentu J, Chen Q, Lin K. Attachment and detachment of large microplastics in saturated porous media and its influencing factors. CHEMOSPHERE 2022; 305:135322. [PMID: 35709840 DOI: 10.1016/j.chemosphere.2022.135322] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Groundwater contamination by microplastics (MPs) has been gradually regarded as a potential human health risk, which calls for detailed investigation of MPs transport behavior in saturated zone. In this study, a series of sand column experiments were carried out to investigate the transport characteristics of large MPs with its diameter of 10-20 μm in porous media, in which the effects of different hydrological conditions and MPs characteristics were examined. Experimental results showed that the increase of water flow rate from 2.2 to 7.5 mL/min significantly increased the maximal outlet MPs concentration by two orders of magnitude, while a larger ratio of MPs diameter to soil particle diameter decreased its mobility. The increase of water salinity from 0 to 25 mmol/L (NaCl) decreased the maximal outlet MPs concentration by 50.5-68.4% for different sized MPs. Since chemical aging would lead to the formation of oxygen-containing functional groups and make MPs more negatively charged, it greatly increased the maximal outlet MPs concentration by 0.53-5.67 times. Compared with the traditional attachment model (AM), the attachment-detachment model (ADM) could better simulate the gradual desorption of large MPs from soil in the process of clean water flushing, indicating the nonnegligible detachment of large MPs from soil. In ADM, the desorption coefficient gradually decreased in the process of clean water flushing, which was only 31.6% of the initial value after flushing kept for 10 PV. Moreover, the equations to calculate the adsorption and desorption coefficients of MPs in the saturated zone were developed, which considered both MPs and aquifer characteristics. Results from this study described the desorption of large MPs in porous media under various conditions, which expands our knowledge about the fate and risk of MPs in underground environment.
Collapse
Affiliation(s)
- Shengqi Qi
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Provincial Engineering Research Center of Nonferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou, 310012, PR China.
| | - Jianhao Song
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Provincial Engineering Research Center of Nonferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Jiali Shentu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Provincial Engineering Research Center of Nonferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou, 310012, PR China
| | - Qian Chen
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Provincial Engineering Research Center of Nonferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Kexin Lin
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Provincial Engineering Research Center of Nonferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| |
Collapse
|
43
|
Belkhiri AH, Carre F, Quiot F. State of knowledge and future research needs on microplastics in groundwater. JOURNAL OF WATER AND HEALTH 2022; 20:1479-1496. [PMID: 36308493 DOI: 10.2166/wh.2022.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Microplastics (MPs) are widespread in aquatic and soil environments. This study targets the issue of MPs' transfer from soil to groundwater. Scientific papers were collected and analyzed using a text-mining approach that classifies text segments. This allowed the identification of four research topics and the organization of the results into a summarizing table. Those four topics are sources of groundwater MPs, main types of MPs (physico-chemical properties, polymer units, shapes, and size), human exposure (mainly drinking water), and potential environmental and human effects. Compared to the research of MP on aquatic or soil compartments, scientific data on MP in groundwater are less substantial. Current results show a divergence due to differences in context (alluvial aquifer, fractured rock aquifer, karst aquifer, etc), collecting, sampling, and analytical methods. This divergence requires further research with standardized analytic protocols and reference materials. The associated research gaps were identified by using the same approach. The following five topics emerged: (1) the transfer of MPs from soil to underground, (2) the contribution of groundwater to drinking water microplastic pollution, (3) the interaction with other contaminants, (4) the human and environmental effects, and (5) the protective and remediation solutions.
Collapse
Affiliation(s)
- Amélie Hoarau Belkhiri
- INERIS (Institut National de l'Environnement Industriel et des Risques), BP 2, 60550 Verneuil-en-Halatte, France E-mail:
| | - Florence Carre
- INERIS (Institut National de l'Environnement Industriel et des Risques), BP 2, 60550 Verneuil-en-Halatte, France E-mail:
| | - Fabrice Quiot
- INERIS (Institut National de l'Environnement Industriel et des Risques), BP 2, 60550 Verneuil-en-Halatte, France E-mail:
| |
Collapse
|
44
|
Zhao P, Geng T, Guo Y, Meng Y, Zhang H, Zhao W. Transport of E. coli colloids and surrogate microspheres in the filtration process: Effects of flow rate, media size, and media species. Colloids Surf B Biointerfaces 2022; 220:112883. [DOI: 10.1016/j.colsurfb.2022.112883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/15/2022] [Accepted: 09/24/2022] [Indexed: 10/14/2022]
|
45
|
Tumwet FC, Serbe R, Kleint T, Scheytt T. Effect of fragmentation on the transport of polyvinyl chloride and low-density polyethylene in saturated quartz sand. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155657. [PMID: 35513138 DOI: 10.1016/j.scitotenv.2022.155657] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/08/2022] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
Microplastics are an obstinate pollutant in terrestrial environments, posing a risk to the subsurface soil matrix and potentially to groundwater. In this study, the transport and retention behaviour of two major plastic polymers, 125-300 μm Polyvinyl chloride (PVC) plastic fragments and 300 μm Low-density polyethylene (LDPE) spherical particles, were explored in saturated quartz sand (1.6-2.0 mm) columns. The PVC used in this study represented secondary microplastics, while the LDPE represented primary microplastics. Retention profiles at different ultrapure water flow rates (2.0-3.5 ml/min) were compared and analysed. At the beginning and end of each column test, the microplastic particles were scrutinized, identified, and quantified by light microscopy. The results showed that the transport distance of microplastic particles increased with their decreasing diameter. Small-sized PVC microplastic particles, whose morphology was more 1-dimensional, were more susceptible to fragmentation within the column, promoting migration. Spherical LDPE remained at their initial position without fragmenting. Microplastic degradation into fragments appeared to play an important role in improving the movement of particles. This study offers initial indications of infiltration depths and shape-dependent fragmentation of secondary microplastics in coarse sand based on the lab experiments.
Collapse
Affiliation(s)
- Faith Chebet Tumwet
- Chair of Hydrogeology and Hydrochemistry, Freiberg University of Mining and Technology (TU Bergakademie Freiberg), 09599 Freiberg, Germany; Zittau Institute for Process Development, Recycling Management, Surface Technology, and Natural Substance Research (ZIRKON), University of Applied Sciences Zittau/Görlitz (HSZG), 02763 Zittau, Germany.
| | - Rebecca Serbe
- Chair of Hydrogeology and Hydrochemistry, Freiberg University of Mining and Technology (TU Bergakademie Freiberg), 09599 Freiberg, Germany
| | - Tomas Kleint
- Zittau Institute for Process Development, Recycling Management, Surface Technology, and Natural Substance Research (ZIRKON), University of Applied Sciences Zittau/Görlitz (HSZG), 02763 Zittau, Germany
| | - Traugott Scheytt
- Chair of Hydrogeology and Hydrochemistry, Freiberg University of Mining and Technology (TU Bergakademie Freiberg), 09599 Freiberg, Germany
| |
Collapse
|
46
|
Hsieh L, He L, Zhang M, Lv W, Yang K, Tong M. Addition of biochar as thin preamble layer into sand filtration columns could improve the microplastics removal from water. WATER RESEARCH 2022; 221:118783. [PMID: 35759848 DOI: 10.1016/j.watres.2022.118783] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
The release of microplastics (MPs) especially those with sizes less than 10 μm from effluent of wastewater treatment plants (WWTPs) is one of the major sources of plastics into aquatic environment. To reduce the discharge of MPs into environment, it is essential to further enhance their removal efficiencies in WWTPs. In present study, to boost the removal performance of MPs in sand filtration systems (units that commonly employed in WWTPs to remove colloidal pollutants), six types of biochar fabricated from three raw biomass materials (i.e. lignin, cellulose, and woodchips) at two pyrolysis temperatures (400 °C and 700 °C) was respectively amended into sand columns as thin permeable layer. We found that adding all six types of biochar into sand columns as thin permeable layer could greatly improve the retention of MPs with the diameter of 1 μm under either slow (4 m/d) or fast flow rates (160 m/d) due to the high adsorption capability of biochar. Woodchip-derived biochar exhibited the highest MPs retention performance, which was followed by cellulose-derived biochar and then lignin-derived biochar. Moreover, for biochar derived from three raw biomasses, increasing pyrolysis temperature could improve MPs retention performance. The direct observation of real-time plastics retention processes on different types of biochar via a visible flow chamber showed that woodchip-derived biochar especially that fabricated at 700 °C exhibited more MPs trapping processes relative to lignin and cellulose-derived biochar due to their more complex surface morphology. Thus, the highest MPs retention performance was achieved in sand columns with amendment by 1 wt% woodchip-derived biochar fabricated at 700 °C. More importantly, we found that for these modified sand filtration column systems, complete MPs removal could be achieved in real river water and actual sewage water, in multiple filtration cycles, longtime filtration process (100 pore volumes injection) as well as with interval flow conditions. Moreover, biochar could be regenerated and reused as thin permeable layer to effectively remove MPs. The results of this study clearly showed that biochar especially woodchip-derived biochar fabricated at 700 °C had the potential to immobilize MPs especially those with small sizes in WWTPs.
Collapse
Affiliation(s)
- Lichun Hsieh
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Lei He
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Mengya Zhang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Wanze Lv
- Department of Environmental Science, Zhejiang University, Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, PR China
| | - Kun Yang
- Department of Environmental Science, Zhejiang University, Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, PR China.
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China.
| |
Collapse
|
47
|
Soltani N, Keshavarzi B, Moore F, Busquets R, Nematollahi MJ, Javid R, Gobert S. Effect of land use on microplastic pollution in a major boundary waterway: The Arvand River. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154728. [PMID: 35331773 DOI: 10.1016/j.scitotenv.2022.154728] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/25/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
The occurrence of microplastics (MPs) was investigated in the Arvand River (Iran). The Arvand River (200 Km) is a major water body that flows through land with diverse use and it meets the Persian Gulf. This study constitutes the first assessment of MP pollution (prevalence and physico-chemical characteristics) in the Arvand river, both in the sediment and in the water. MP monitoring has been carried out in 24 stations located along the river. The MP pollution found ranged between 1 and 291 items·L-1 and 70 to 15,620 items·kg-1 (dw), in water and sediment, respectively. The majority of MPs were fibres, black/grey and yellow/orange in colour, and mainly 250-500 μm and >1000 μm in size. Polyethylene terephthalate (PET), polypropylene (PP), nylon (NYL), high-density polyethylene (HDPE), and polystyrene (PS) were found in sediment samples. All these polymers, except HDPE, were also identified in the water samples. PET and PP were dominant in the water samples; whereas PET and PS were the most abundant in the sediments. The vicinity of urban wastewater effluents could be behind MP pollution in both water and sediments. Significant differences (p < 0.05) of MP concentrations were affected by different land uses when comparing MP levels in undisturbed natural area with urban areas. A strong correlation between MP fibres and fragments found with PCA biplots revealed their similar distribution in water. In the sediment samples, fibre and fragment MP particles were significantly correlated with colloidal particles (e.g., clay and organic matter) suggesting a relevant role of colloidal particles in the aquatic ecosystem of the Arvand River in transporting MPs. This study contributes to the better understanding of the presence of MP in major rivers, which are systems that have been scarcely investigated for this type of pollution, and it can inform interventions to reduce MP inputs to the river and sea.
Collapse
Affiliation(s)
- Naghmeh Soltani
- Department of Earth Sciences, College of Science, Shiraz University, 71454 Shiraz, Iran.
| | - Behnam Keshavarzi
- Department of Earth Sciences, College of Science, Shiraz University, 71454 Shiraz, Iran.
| | - Farid Moore
- Department of Earth Sciences, College of Science, Shiraz University, 71454 Shiraz, Iran
| | - Rosa Busquets
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston Upon Thames, Surrey KT1 2EE, UK
| | | | - Reza Javid
- Khorramshahr Environmental Protection Office, Khorramshahr 6491846783, Iran; Department of Marine Biology, Faculty of Marine Science and Oceanography, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| | - Sylvie Gobert
- STAtion de REcherche Sous-Marineset Océanographiques (STARESO), 20260 Calvi, France; Université de Liège, Centre MARE, Laboratoire d'Océanologie, Sart-Tilman, B6c, 4000 Liège, Belgium
| |
Collapse
|
48
|
Wang X, Dan Y, Diao Y, Liu F, Wang H, Sang W. Transport and retention of microplastics in saturated porous media with peanut shell biochar (PSB) and MgO-PSB amendment: Co-effects of cations and humic acid. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119307. [PMID: 35452753 DOI: 10.1016/j.envpol.2022.119307] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Biochar particles are extensively used in soil remediation and interact with microplastics (MPs), especially metal oxide-modified biochar may have stronger interactions with MPs. The mechanism of interactions between humic acid (HA) and different valence cations is different and the co-effect on the transport of MPs is not clear. In this study, the co-effects of HA and cations (Na+, Ca2+) on the transport and retention of MPs in saturated porous media with peanut shell biochar (PSB) and MgO-modified PSB (MgO-PSB) were systematically investigated. Breakthrough curves (BTCs) of MPs were fitted by the two-site kinetic retention model for analysis. In the absence of HA, the addition of PSB and MgO-PSB significantly hindered the transport of MPs in saturated porous media, and the retention of MPs increased from 34.2% to 59.1% and 75.5%, respectively. In Na+ solutions, the HA concentration played a dominant role in controlling MPs transport, compared to the minor role of Na+. The transport capacity of MPs always increased gradually with the increase of HA concentration. Whereas, in Ca2+ solutions, Ca2+ concentrations had a stronger effect than HA. The transport ability of MPs was instead greater than that in Na+ solutions as the HA concentration increased at low ionic strength (1 mM). However, the transport capacity of MPs was significantly reduced with increasing HA concentrations at higher ionic strength (10, 100 mM). The two-site kinetic retention model indicated that chemical attachment and physical straining are the main mechanisms of MPs retention in the saturated porous media.
Collapse
Affiliation(s)
- Xiaoxia Wang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yitong Dan
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yinzhu Diao
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Feihong Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Huan Wang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Wenjing Sang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
49
|
Ling X, Yan Z, Lu G. Vertical transport and retention behavior of polystyrene nanoplastics in simulated hyporheic zone. WATER RESEARCH 2022; 219:118609. [PMID: 35598467 DOI: 10.1016/j.watres.2022.118609] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/19/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
The ecological risk of microplastics (MPs) usually depends on their environmental behavior, however, few studies focused on the impact of hydrodynamic perturbations on the fate of MPs in hyporheic zone. This study chose quartz sand (250-425 μm) as simulated porous medium to investigate the transport of 100 nm polystyrene nanoplastics (PSNPs) under hydrodynamic factors, including flow rates (0.5, 1.0, and 2.0 mL/min), flow orientations (up-flow, down-flow, and horizontal-flow), and water saturations (50%, 80%, and 100%), as well as different salinities and temperatures. The breakthrough curves (BTCs) and retained profiles (RPs) of PSNPs were compared and analyzed by Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Due to the small size and moderate density of PSNPs, as well as high flow rates, the flow orientation exhibited little effect on the PSNP transport. However, high flow rate, low salinity, high water saturation, and low temperature would facilitate the mobility of PSNPs. The increase in salinity from zero to 35 PSU (practical salinity units) caused the compression of electrical double layer and weakened the electrostatic repulsion between PSNPs and sands, which dramatically decreased the penetration rate from 100% to zero. Especially, the lower energy barrier of PSNPs-PSNPs at 3.5 and 35 PSU (16.45 kBT and zero, respectively) facilitated the adsorption of PSNPs on sand via ripening mechanism. Due to the strong adsorption of PSNPs by sand at high salinity, the effect of flow rate on PSNP transport was more pronounced at low salinity. The mobility of PSNPs at 0.035 PSU was enhanced by 41.4%-75.3% as the flow rate increased from 0.5 to 2.0 mL/min, which was contributed from the reversible deposition in lower secondary energy minimum depth at low salinity and the stronger hydrodynamic drag force generated by the high flow rate. However, the sufficient molecular diffusion at low flow rate promoted the occupation of PSNPs on adsorption sites. In addition, the penetration rate of PSNPs decreased by 25.0% as the water saturation decreased from 100% to 50%, indicating that the film straining at the air-water interface would hinder the transport of PSNPs. Finally, temperature increase impeded the penetration of PSNPs by 6.26%-23.1% via blocking mechanism. Our results suggest that low-salinity, high-flow river systems may be at greater risk of MPs contamination due to enhanced vertical transport capability.
Collapse
Affiliation(s)
- Xin Ling
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
50
|
Feng Q, Chen Z, Greer CW, An C, Wang Z. Transport of Microplastics in Shore Substrates over Tidal Cycles: Roles of Polymer Characteristics and Environmental Factors. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8187-8196. [PMID: 35658111 DOI: 10.1021/acs.est.2c01599] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Tidal zones providing habitats are particularly vulnerable to microplastic (MP) pollution. In this study, the effects of tidal cycles on the transport of MPs (4-6 μm polyethylene, PE1; 125 μm polyethylene, PE2; and 5-6 μm polytetrafluoroethylene, PFTE) in porous media combined with various environmental and MPs properties were systemically investigated. The results indicated that smaller substrate sizes exhibited higher retention percentages compared to those of larger substrate sizes under different tidal cycles. In terms of the size of MPs, a larger size (same density) was found to result in enhanced retention of MPs in the column. As the number of tidal cycles increased, although the transport of MPs from the substrate to the water phase was enhanced, PE1 was washed out more with the change in water level, compared to PTFE. Additionally, more MPs were retained in the column with the increase of salinity and the decrease of flow velocity under the same tidal cycles. Ultraviolet and seawater aged PE1 showed enhanced transport, while aged PTFE showed enhanced retention under the same tidal cycles. These results can help understand the MP behaviors in the shoreline environment and provide support for future cleanup and sampling in tidal zones.
Collapse
Affiliation(s)
- Qi Feng
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada
| | - Zhi Chen
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada
| | - Charles W Greer
- Department of Natural Resource Sciences, McGill University, Montreal H9X 3V9, Canada
- Energy, Mining and Environment Research Centre, National Research Council of Canada, Montreal H4P 2R2, Canada
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada
| | - Zheng Wang
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada
| |
Collapse
|