1
|
Azadeh Del F, Dindarloo Inaloo K, Alipur V, Ghaffari HR, Dehghani S. Assessment of health risk and mortality caused by exposure to suspended particles (PM10, PM2.5) in industrial and non-industrial areas of Bandar Abbas city, Iran, 2023: a cross sectional study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2025:1-9. [PMID: 39955626 DOI: 10.1080/09603123.2024.2413685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 10/03/2024] [Indexed: 02/17/2025]
Abstract
The measurement of the concentration of PM2.5 and PM10 pollutants was carried out by means of a device for measuring suspended particles (LowVolume) for 24 hours and during 6 months in the number of 180 samples in industrial and non-industrial areas. The average concentration of PM2.5 and PM10 measured in the air of the industrial area was 29.70 and 56.13 µg/m3, respectively, and in the air of the non-industrial area was 29.40 and 46.15 µg/m3, respectively. The attributed component related to total mortality caused by PM2.5 and PM10 in the industrial area was equal to 17.31% and 14.90% and in the non-industrial area was equal to 17.12% and 11.50%, respectively. The rate of respiratory mortality attributed to PM2.5 and PM10 was 20.98% and 37.26% in the industrial area and 20.75% and 29.74% in the non-industrial area, respectively. .
Collapse
Affiliation(s)
- Fatemeh Azadeh Del
- Environmental Health Engineering, Hormozgan University of Medical Sciences, Hormozgan, Iran
| | - Kavoos Dindarloo Inaloo
- Department of Environmental Health, School of Health, Social Determinants in Health Promotion Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Hormozgan, Iran
| | - Vali Alipur
- Department of Environmental Health, School of Health, Tobacco and Health Research Center, Hormozgan University of Medical Sciences, Hormozgan, Iran
| | - Hamid Reza Ghaffari
- Associate Professor of Environmental Health Engineering, Department of Environmental Health, School of Health, Food Health Research Center, Hormozgan University of Medical Sciences, Hormozgan, Iran
| | - Somayyeh Dehghani
- Associate Professor of Environmental Health Engineering, Department of Environmental Health, School of Health, Food Health Research Center, Hormozgan University of Medical Sciences, Hormozgan, Iran
| |
Collapse
|
2
|
Martins C, Teófilo V, Clemente M, Corda M, Fermoso J, Aguado A, Rodriguez S, Moshammer H, Kristian A, Ferri M, Costa-Ruiz B, Pérez L, Hanke W, Badyda A, Kepa P, Affek K, Doskocz N, Martín-Torrijos L, Mulayim MO, Martinez CM, Gómez A, González R, Cano I, Roca J, de Leede S, Viegas S. Sources, levels, and determinants of indoor air pollutants in Europe: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 964:178574. [PMID: 39855122 DOI: 10.1016/j.scitotenv.2025.178574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/16/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
Clean air is a requirement for life, and the quality of indoor air is a health determinant since people spend most of their daily time indoors. The aim of this study was to systematically review the available evidence regarding the sources, determinants and concentrations of indoor air pollutants in a set of scenarios under study in K-HEALTHinAIR project. To this end, a systematic review was performed to review the available studies published between the years 2013-2023, for several settings (schools, homes, hospitals, lecture halls, retirement homes, public transports and canteens), conducted in Europe, where sources and determinants of the indoor pollutants concentrations was assessed. After a two-stage screening in abstract and full-text, 148 papers were included for data extraction. For particulate matter, carbon dioxide and volatile organic compounds, several emission sources were identified (occupancy, human activities, resuspension, cleaning products, disinfectants, craft activities, cooking, smoking), with ventilation, number of occupants, building characteristics, being considered as important determinants. This review made also possible to discuss some of the actions that are already in place or should be implemented in the future to prevent and control the presence of pollutants indoors.
Collapse
Affiliation(s)
- Carla Martins
- NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, REAL, CCAL, NOVA University Lisbon, Lisbon, Portugal.
| | - Vânia Teófilo
- NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, REAL, CCAL, NOVA University Lisbon, Lisbon, Portugal
| | - Marta Clemente
- NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, REAL, CCAL, NOVA University Lisbon, Lisbon, Portugal
| | - Mariana Corda
- NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, REAL, CCAL, NOVA University Lisbon, Lisbon, Portugal
| | | | | | | | - Hanns Moshammer
- Medical University of Vienna, ZPH, Department of Environmental Health, Vienna, Austria
| | - Alexandra Kristian
- Medical University of Vienna, ZPH, Department of Environmental Health, Vienna, Austria
| | | | | | | | | | - Artur Badyda
- Warsaw University of Technology, Faculty of Building Services, Hydro and Environmental Engineering, Warsaw, Poland
| | - Piotr Kepa
- Warsaw University of Technology, Faculty of Building Services, Hydro and Environmental Engineering, Warsaw, Poland
| | - Katarzyna Affek
- Warsaw University of Technology, Faculty of Building Services, Hydro and Environmental Engineering, Warsaw, Poland
| | - Nina Doskocz
- Warsaw University of Technology, Faculty of Building Services, Hydro and Environmental Engineering, Warsaw, Poland
| | - Laura Martín-Torrijos
- Department of Mycology at Real Jardín Botánico, CSIC (RJB-CSIC), Plaza de Murillo 2, 28014 Madrid, Spain
| | - Mehmet Oguz Mulayim
- Artificial Intelligence Research Institute (IIIA), CSIC, Campus de la UAB, Cerdanyola del Vallès 08193, Spain
| | | | - Alba Gómez
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
| | - Ruben González
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
| | - Isaac Cano
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain; University of Barcelona, Faculty of Medicine, Barcelona, Spain
| | - Josep Roca
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
| | - Simon de Leede
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Susana Viegas
- NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, REAL, CCAL, NOVA University Lisbon, Lisbon, Portugal
| |
Collapse
|
3
|
Ding R, Huang L, Yan K, Sun Z, Duan J. New insight into air pollution-related cardiovascular disease: an adverse outcome pathway framework of PM2.5-associated vascular calcification. Cardiovasc Res 2024; 120:699-707. [PMID: 38636937 DOI: 10.1093/cvr/cvae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 04/20/2024] Open
Abstract
Despite the air quality has been generally improved in recent years, ambient fine particulate matter (PM2.5), a major contributor to air pollution, remains one of the major threats to public health. Vascular calcification is a systematic pathology associated with an increased risk of cardiovascular disease. Although the epidemiological evidence has uncovered the association between PM2.5 exposure and vascular calcification, little is known about the underlying mechanisms. The adverse outcome pathway (AOP) concept offers a comprehensive interpretation of all of the findings obtained by toxicological and epidemiological studies. In this review, reactive oxygen species generation was identified as the molecular initiating event (MIE), which targeted subsequent key events (KEs) such as oxidative stress, inflammation, endoplasmic reticulum stress, and autophagy, from the cellular to the tissue/organ level. These KEs eventually led to the adverse outcome, namely increased incidence of vascular calcification and atherosclerosis morbidity. To the best of our knowledge, this is the first AOP framework devoted to PM2.5-associated vascular calcification, which benefits future investigations by identifying current limitations and latent biomarkers.
Collapse
Affiliation(s)
- Ruiyang Ding
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, No. 10 Xitoutiao, You'anmen Wai, Fengtai District, Beijing 100069, PR China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No. 10 Xitoutiao, You'anmen Wai, Fengtai District, Beijing 100069, PR China
| | - Linyuan Huang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, No. 10 Xitoutiao, You'anmen Wai, Fengtai District, Beijing 100069, PR China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No. 10 Xitoutiao, You'anmen Wai, Fengtai District, Beijing 100069, PR China
| | - Kanglin Yan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, No. 10 Xitoutiao, You'anmen Wai, Fengtai District, Beijing 100069, PR China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No. 10 Xitoutiao, You'anmen Wai, Fengtai District, Beijing 100069, PR China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, No. 10 Xitoutiao, You'anmen Wai, Fengtai District, Beijing 100069, PR China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No. 10 Xitoutiao, You'anmen Wai, Fengtai District, Beijing 100069, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, No. 10 Xitoutiao, You'anmen Wai, Fengtai District, Beijing 100069, PR China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No. 10 Xitoutiao, You'anmen Wai, Fengtai District, Beijing 100069, PR China
| |
Collapse
|
4
|
Wang C, Li J, Li J, Li Y, Li C, Ren L. What can be done to protect toddlers from air pollution: Current evidence. J Pediatr Nurs 2024; 76:e50-e59. [PMID: 38278746 DOI: 10.1016/j.pedn.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 01/28/2024]
Abstract
PROBLEM Toddlers are more prone to exposure to widely distributed air pollution and to health damage from it. However, systematic summaries of evidence on protective behaviors against air pollution for toddlers are lacking. OBJECTIVE To identify currently available evidence on protective behaviors against air pollution for toddlers. METHODS The literature retrieval was performed in selected databases, limited from 2002 to 2022. Studies meeting the following criteria were included and praised: 1) clinical practice guideline, systematic review, expert consensus, recommended practice, randomized control test (RCT) or cohort study published in Chinese or English; 2) studies reporting effects of protective behaviors against air pollution on toddlers' health outcomes or providing recommendation on these behaviors. The evidence in the included studies was extracted, synthesized and graded for evidence summary. RESULTS Studies (N = 19) were used for evidence summary development and 35 pieces of best evidence were synthesized, which were divided into three categories, including "avoiding or reducing air pollution generation", "removing existing air pollution", and "avoiding or reducing exposure to existing air pollution". CONCLUSIONS More evidence is needed to identify protective measures against outdoor air pollution and tobacco smoke. Research in the future should focus on the safety, effectiveness and feasibility of universal measures implemented in toddlers, and try to develop protective measures specific to toddlers which highlight their special nature. IMPLICATIONS The results of this study can help pediatric nurses provide individualized advice and assistance for toddlers and their families, and conduct research on the effectiveness of toddler-targeting protective behaviors more efficiently.
Collapse
Affiliation(s)
- Chongkun Wang
- School of Nursing, Peking University, Beijing, China
| | - Junying Li
- School of Nursing, Peking University, Beijing, China
| | - Jiahe Li
- School of Nursing, Peking University, Beijing, China
| | - Yuxuan Li
- School of Nursing, Peking University, Beijing, China
| | - Chunying Li
- Associate Research Librarian, Peking University Medical Library, Peking University, Beijing, China
| | - Lihua Ren
- Associate Researcher, School of Nursing, Peking University, Beijing, China.
| |
Collapse
|
5
|
Zhang J, Chen Z, Shan D, Wu Y, Zhao Y, Li C, Shu Y, Linghu X, Wang B. Adverse effects of exposure to fine particles and ultrafine particles in the environment on different organs of organisms. J Environ Sci (China) 2024; 135:449-473. [PMID: 37778818 DOI: 10.1016/j.jes.2022.08.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 10/03/2023]
Abstract
Particulate pollution is a global risk factor that seriously threatens human health. Fine particles (FPs) and ultrafine particles (UFPs) have small particle diameters and large specific surface areas, which can easily adsorb metals, microorganisms and other pollutants. FPs and UFPs can enter the human body in multiple ways and can be easily and quickly absorbed by the cells, tissues and organs. In the body, the particles can induce oxidative stress, inflammatory response and apoptosis, furthermore causing great adverse effects. Epidemiological studies mainly take the population as the research object to study the distribution of diseases and health conditions in a specific population and to focus on the identification of influencing factors. However, the mechanism by which a substance harms the health of organisms is mainly demonstrated through toxicological studies. Combining epidemiological studies with toxicological studies will provide a more systematic and comprehensive understanding of the impact of PM on the health of organisms. In this review, the sources, compositions, and morphologies of FPs and UFPs are briefly introduced in the first part. The effects and action mechanisms of exposure to FPs and UFPs on the heart, lungs, brain, liver, spleen, kidneys, pancreas, gastrointestinal tract, joints and reproductive system are systematically summarized. In addition, challenges are further pointed out at the end of the paper. This work provides useful theoretical guidance and a strong experimental foundation for investigating and preventing the adverse effects of FPs and UFPs on human health.
Collapse
Affiliation(s)
- Jianwei Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Zhao Chen
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Dan Shan
- Department of Medical, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, China
| | - Yang Wu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Yue Zhao
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Chen Li
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China; National Demonstration Center for Experimental Preventive Medicine Education (Tianjin Medical University), Tianjin 300070, China
| | - Yue Shu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Xiaoyu Linghu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Baiqi Wang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China; National Demonstration Center for Experimental Preventive Medicine Education (Tianjin Medical University), Tianjin 300070, China.
| |
Collapse
|
6
|
Teixeira J, Sousa G, Morais S, Delerue-Matos C, Oliveira M. Assessment of coarse, fine, and ultrafine particulate matter at different microenvironments of fire stations. CHEMOSPHERE 2023:139005. [PMID: 37245598 DOI: 10.1016/j.chemosphere.2023.139005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/17/2023] [Accepted: 05/20/2023] [Indexed: 05/30/2023]
Abstract
The concentrations of respirable particulate matter (PM) and the impact on indoor air quality in occupational settings remains poorly characterized. This study assesses, for the first time, the cumulative and non-cumulative concentrations of 14 fractions of coarse (3.65-9.88 μm), fine (0.156-2.47 μm), and ultrafine (0.015-0.095 μm) PM inside the garage of heavy vehicles, firefighting personal protective equipment' storage room, bar, and a common area of seven Portuguese fire stations. Sampling campaigns were performed during a regular work week at the fire stations. Levels of daily total cumulative PM ranged from 277.4 to 413.2 μg/m3 (maximum values of 811.4 μg/m3), with the bar (370.1 μg/m3) and the PPE' storage room (361.3 μg/m3) presenting slightly increased levels (p > 0.05) than the common area (324.8 μg/m3) and the garage (339.4 μg/m3). The location of the sampling site, the proximity to local industries and commercial activities, the layout of the building, the heating system used, and indoor sources influenced the PM concentrations. Fine (193.8-301.0 μg/m3) and ultrafine (41.3-78.2 μg/m3) particles were predominant in the microenvironments of all fire stations and accounted for 71.5% and 17.8% of daily total cumulative levels, respectively; coarse particles (23.3-47.1 μg/m3) represented 10.7% of total PM. The permissible exposure limit (5.0 mg/m3) defined by the Occupational Safety and Health Organization for respirable dust was not overcome in the evaluated fire stations. Results suggest firefighters' regular exposure to fine and ultrafine PM inside fire stations which will contribute to cardiorespiratory health burden. Further studies are needed to characterize firefighters' exposure to fine and ultrafine PM inside fire stations, identify main emission sources, and evaluate the contribution of exposures at fire stations to firefighters' occupational health risks.
Collapse
Affiliation(s)
- Joana Teixeira
- REQUIMTE/LAQV, Instituto Superior de Engenharia Do Porto, Instituto Politécnico Do Porto, R. Dr. António Bernardino de Almeida 431, 4249-015, Porto, Portugal
| | - Gabriel Sousa
- REQUIMTE/LAQV, Instituto Superior de Engenharia Do Porto, Instituto Politécnico Do Porto, R. Dr. António Bernardino de Almeida 431, 4249-015, Porto, Portugal
| | - Simone Morais
- REQUIMTE/LAQV, Instituto Superior de Engenharia Do Porto, Instituto Politécnico Do Porto, R. Dr. António Bernardino de Almeida 431, 4249-015, Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia Do Porto, Instituto Politécnico Do Porto, R. Dr. António Bernardino de Almeida 431, 4249-015, Porto, Portugal
| | - Marta Oliveira
- REQUIMTE/LAQV, Instituto Superior de Engenharia Do Porto, Instituto Politécnico Do Porto, R. Dr. António Bernardino de Almeida 431, 4249-015, Porto, Portugal.
| |
Collapse
|
7
|
Johnes C, Sharpe RA, Menneer T, Taylor T, Nestel P. Using Sensor Data to Identify Factors Affecting Internal Air Quality within 279 Lower Income Households in Cornwall, South West of England. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1075. [PMID: 36673833 PMCID: PMC9858683 DOI: 10.3390/ijerph20021075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/18/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
(1) Background: Poor air quality affects health and causes premature death and disease. Outdoor air quality has received significant attention, but there has been less focus on indoor air quality and what drives levels of diverse pollutants in the home, such as particulate matter, and the impact this has on health; (2) Methods: This study conducts analysis of cross-sectional data from the Smartline project. Analyses of data from 279 social housing properties with indoor sensor data were used to assess multiple factors that could impact levels of particulate matter. T-Tests and Anova tests were used to explore associations between elevated PM2.5 and building, household and smoking and vaping characteristics. Binary logistic regression was used to test the association between elevated particulate matter and self-reported health; (3) Results: Of the multiple potential drivers of the particulate matter investigated, smoking and vaping were significantly associated with mean PM2.5. Following multivariate analysis, only smoking remained significantly associated with higher mean concentrations. Properties in which <15 cigarettes/day were smoked were predicted to have PM2.5 concentrations 9.06 µg/m3 higher (95% CI 6.4, 12.82, p ≤ 0.001) than those in which residents were non-smokers and 11.82 µg/m3 higher (95% CI 7.67, 18.19, p ≤ 0.001) where >15 cigarettes were smoked; (4) Conclusions: A total of 25% of social housing properties in this study experienced levels of indoor PM greater than WHO guideline levels for ambient air pollution. Although there are many factors that impact air quality, in this study the main driver was smoking. This highlights the importance of targeting smoking in indoor environments in future smoking cessation and control policy and practice and of understanding how pollutants interact in the home environment. There is also a need for further research into the impact on indoor air quality of vaping, particularly due to the rise in use and uncertainty of its long-term impact.
Collapse
Affiliation(s)
- Christopher Johnes
- Faculty of Medicine, University of Southampton, University Road, Southampton SO17 1BJ, UK
| | - Richard A. Sharpe
- Wellbeing and Public Health Service, Cornwall Council, Truro TR1 3AY, UK
- European Centre for Environment and Human Health, College of Medicine and Health, University of Exeter, Truro TR1 3HD, UK
| | - Tamaryn Menneer
- European Centre for Environment and Human Health, College of Medicine and Health, University of Exeter, Truro TR1 3HD, UK
- Environment and Sustainability Institute, Penryn Campus, University of Exeter, Penryn TR10 9FE, UK
| | - Timothy Taylor
- European Centre for Environment and Human Health, College of Medicine and Health, University of Exeter, Truro TR1 3HD, UK
| | - Penelope Nestel
- Faculty of Medicine, University of Southampton, University Road, Southampton SO17 1BJ, UK
| |
Collapse
|
8
|
Reis J, Lopes D, Graça D, Fernandes AP, Miranda AI, Lopes M. Using low-cost sensors to assess real-time comfort and air quality patterns in indoor households. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:7736-7751. [PMID: 36042135 DOI: 10.1007/s11356-022-22771-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
People spend most of their time in indoor environments without knowing about the air quality in these spaces. In this study, indoor low-cost sensors were used (for 5 months) to assess the comfort and air quality patterns in two indoor households. To strengthen the robustness of the considered approach and build confidence in the obtained comfort and indoor air quality (IAQ) levels, the sensor measurements were also compared against information from reference monitoring equipment; in which, high correlation coefficients were obtained (> 0.85) and also low errors (on average 22%). The IAQ results were strongly influenced by the residents' activity and behaviour, the outdoor weather conditions, and indoor/outdoor air pollution sources. Overall, the recommended values of temperature and relative humidity for the occupant's comfort in indoor environments were not fulfilled. The highest particulate matter (PM) levels were recorded at the weekend (on average +14% higher), while maximum CO2 and CO levels were obtained on the weekdays (on average +9% higher). PM daily profiles followed the outdoor concentrations with the maximum levels at the end of the night and the lowest values in the early morning/mid-afternoon. The highest and lowest CO2 concentrations were registered in the early morning (< 1536 ppm) and mid-afternoon (< 627 ppm), respectively, while the CO daily profiles showed a high impact of outdoor emissions, with the minimum concentrations up to 0.81 mg m-3 (at 10 a.m. or 6 p.m.), and a maximum concentration of 1.87 mg m-3 (at 10 p.m.). Real-time comfort conditions and IAQ levels are a powerful approach to providing fast decisions to minimise human exposure and prevent negative health impacts.
Collapse
Affiliation(s)
- Johnny Reis
- CESAM - Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, Aveiro, Portugal
| | - Diogo Lopes
- CESAM - Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, Aveiro, Portugal.
| | - Daniel Graça
- CESAM - Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, Aveiro, Portugal
| | - Ana Patrícia Fernandes
- CESAM - Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, Aveiro, Portugal
| | - Ana Isabel Miranda
- CESAM - Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, Aveiro, Portugal
| | - Myriam Lopes
- CESAM - Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
9
|
Li T, Yu Y, Sun Z, Duan J. A comprehensive understanding of ambient particulate matter and its components on the adverse health effects based from epidemiological and laboratory evidence. Part Fibre Toxicol 2022; 19:67. [PMID: 36447278 PMCID: PMC9707232 DOI: 10.1186/s12989-022-00507-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022] Open
Abstract
The impacts of air pollution on public health have become a great concern worldwide. Ambient particulate matter (PM) is a major air pollution that comprises a heterogeneous mixture of different particle sizes and chemical components. The chemical composition and physicochemical properties of PM change with space and time, which may cause different impairments. However, the mechanisms of the adverse effects of PM on various systems have not been fully elucidated and systematically integrated. The Adverse Outcome Pathway (AOP) framework was used to comprehensively illustrate the molecular mechanism of adverse effects of PM and its components, so as to clarify the causal mechanistic relationships of PM-triggered toxicity on various systems. The main conclusions and new insights of the correlation between public health and PM were discussed, especially at low concentrations, which points out the direction for further research in the future. With the deepening of the study on its toxicity mechanism, it was found that PM can still induce adverse health effects with low-dose exposure. And the recommended Air Quality Guideline level of PM2.5 was adjusted to 5 μg/m3 by World Health Organization, which meant that deeper and more complex mechanisms needed to be explored. Traditionally, oxidative stress, inflammation, autophagy and apoptosis were considered the main mechanisms of harmful effects of PM. However, recent studies have identified several emerging mechanisms involved in the toxicity of PM, including pyroptosis, ferroptosis and epigenetic modifications. This review summarized the comprehensive evidence on the health effects of PM and the chemical components of it, as well as the combined toxicity of PM with other air pollutants. Based on the AOP Wiki and the mechanisms of PM-induced toxicity at different levels, we first constructed the PM-related AOP frameworks on various systems.
Collapse
Affiliation(s)
- Tianyu Li
- grid.24696.3f0000 0004 0369 153XDepartment of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069 People’s Republic of China ,grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069 People’s Republic of China
| | - Yang Yu
- grid.24696.3f0000 0004 0369 153XDepartment of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069 People’s Republic of China ,grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069 People’s Republic of China
| | - Zhiwei Sun
- grid.24696.3f0000 0004 0369 153XDepartment of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069 People’s Republic of China ,grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069 People’s Republic of China
| | - Junchao Duan
- grid.24696.3f0000 0004 0369 153XDepartment of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069 People’s Republic of China ,grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069 People’s Republic of China
| |
Collapse
|
10
|
Wei S, Semple S. Exposure to fine particulate matter (PM 2.5) from non-tobacco sources in homes within high-income countries: a systematic review. AIR QUALITY, ATMOSPHERE, & HEALTH 2022; 16:553-566. [PMID: 36467893 PMCID: PMC9703437 DOI: 10.1007/s11869-022-01288-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
UNLABELLED The health impacts associated with exposure to elevated concentrations of fine particulate matter (PM2.5) are well recognised. There is a substantial number of studies characterising PM2.5 concentrations outdoors, as well as in homes within low- and middle-income countries. In high-income countries (HICs), there is a sizeable literature on indoor PM2.5 relating to smoking, but the evidence on exposure to PM2.5 generated from non-tobacco sources in homes is sparse. This is especially relevant as people living in HICs spend the majority of their time at home, and in the northern hemisphere households often have low air exchange rates for energy efficiency. This review identified 49 studies that described indoor PM2.5 concentrations generated from a variety of common household sources in real-life home settings in HICs. These included wood/solid fuel burning appliances, cooking, candles, incense, cleaning and humidifiers. The reported concentrations varied widely, both between sources and within groups of the same source. The burning of solid fuels was found to generate the highest indoor PM2.5 concentrations. On occasion, other sources were also reported to be responsible for high PM2.5 concentrations; however, this was only in a few select examples. This review also highlights the many inconsistencies in the ways data are collected and reported. The variable methods of measurement and reporting make comparison and interpretation of data difficult. There is a need for standardisation of methods and agreed contextual data to make household PM2.5 data more useful in epidemiological studies and aid comparison of the impact of different interventions and policies. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11869-022-01288-8.
Collapse
Affiliation(s)
- Shuying Wei
- Faculty of Health Sciences and Sport, University of Stirling, Stirling, FK9 4LA UK
| | - Sean Semple
- Institute for Social Marketing and Health, University of Stirling, Stirling, FK9 4LA UK
| |
Collapse
|
11
|
Mbazima SJ. Health risk assessment of particulate matter 2.5 in an academic metallurgy workshop. INDOOR AIR 2022; 32:e13111. [PMID: 36168227 PMCID: PMC9825944 DOI: 10.1111/ina.13111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 08/28/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Exposure to indoor PM2.5 is associated with allergies, eye and skin irritation, lung cancer, and cardiopulmonary diseases. To control indoor PM2.5 and protect the health of occupants, exposure and health studies are necessary. In this study, exposure to PM2.5 released in an academic metallurgy workshop was assessed and a health risk assessment was conducted for male and female students and technicians. Polycarbonate membrane filters and an active pump operating at a flow rate of 2.5 L/min were used to collect PM2.5 from Monday to Friday for 3 months (August-October 2020) from 08:00-16:00. PM2.5 mass concentrations were obtained gravimetrically, and the Multiple-Path Particle Dosimetry model was used to predict the deposition, retention, and clearance of PM2.5 in the respiratory tract system. The risk of developing carcinogenic and non-carcinogenic effects among students and technicians was determined. The average PM2.5 mass concentration for August was 32.6 μg/m3 32.8 μg/m3 for September, and 32.2 μg/m3 for October. The head region accounted for the highest deposition fraction (49.02%), followed by the pulmonary (35.75%) and tracheobronchial regions (15.26%). Approximately 0.55 mg of PM2.5 was still retained in the alveolar region 7 days after exposure. The HQ for male and female students was <1 while that of male and female technicians was >1, suggesting that technicians are at risk of developing non-carcinogenic health effects compared with students. The results showed a risk of developing carcinogenic health effects among male and female technicians (>1 × 10-5 ); however, there was no excess cancer risk for students (<1 × 10-6 ). This study highlights the importance of exposure and health studies in academic micro-environments such as metallurgy workshops which are often less researched, and exposure is underestimated. The results also indicated the need to implement control measures to protect the health of the occupants and ensure that the workshop rules are adhered to.
Collapse
Affiliation(s)
- Setlamorago Jackson Mbazima
- School of Geography, Archaeology and Environmental StudiesUniversity of the WitwatersrandJohannesburgSouth Africa
- Department of Environmental Sciences, College of Agriculture and Environmental SciencesUniversity of South AfricaJohannesburgSouth Africa
- Department of Toxicology and BiochemistryNational Institute for Occupational HealthDivision of the National Health Laboratory ServiceJohannesburgSouth Africa
| |
Collapse
|
12
|
[Addendum on the health significance of particulate matter in indoor air : Cummunication from the German Committee on Indoor Air Guide Values (AIR)]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2022; 65:848. [PMID: 35748924 DOI: 10.1007/s00103-022-03556-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Li L, Chen A, Deng T, Zeng J, Xu F, Yan S, Wang S, Cheng W, Zhu M, Xu W. A Simple Optical Aerosol Sensing Method of Sauter Mean Diameter for Particulate Matter Monitoring. BIOSENSORS 2022; 12:436. [PMID: 35884239 PMCID: PMC9312855 DOI: 10.3390/bios12070436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Mass concentration is a commonly used but insufficient metric to evaluate the particulate matter (PM) exposure hazard. Recent studies have declared that small particles have more serious impacts on human health than big particles given the same mass concentration. However, state-of-the-art PM sensors cannot provide explicit information of the particle size for further analysis. In this work, we adopt Sauter mean diameter (SMD) as a key metric to reflect the particle size besides the mass concentration. To measure SMD, an effective optical sensing method and a proof-of-concept prototype sensor are proposed by using dual wavelengths technology. In the proposed method, a non-linear conversion model is developed to improve the SMD measurement accuracy for aerosol samples of different particle size distributions and reflective indices based on multiple scattering channels. In the experiment of Di-Ethyl-Hexyl-Sebacate (DEHS) aerosols, the outputs of our prototype sensor demonstrated a good agreement with existing laboratory reference instruments with maximum SMD measurement error down to 7.04%. Furthermore, the simplicity, feasibility and low-cost features of this new method present great potential for distributed PM monitoring, to support sophisticated human exposure hazard assessment.
Collapse
Affiliation(s)
- Liangbo Li
- School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan 430074, China; (L.L.); (A.C.); (T.D.); (J.Z.); (F.X.); (S.Y.); (S.W.); (W.C.); (M.Z.)
| | - Ang Chen
- School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan 430074, China; (L.L.); (A.C.); (T.D.); (J.Z.); (F.X.); (S.Y.); (S.W.); (W.C.); (M.Z.)
| | - Tian Deng
- School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan 430074, China; (L.L.); (A.C.); (T.D.); (J.Z.); (F.X.); (S.Y.); (S.W.); (W.C.); (M.Z.)
- Hubei Key Laboratory of Smart Internet Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jin Zeng
- School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan 430074, China; (L.L.); (A.C.); (T.D.); (J.Z.); (F.X.); (S.Y.); (S.W.); (W.C.); (M.Z.)
| | - Feifan Xu
- School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan 430074, China; (L.L.); (A.C.); (T.D.); (J.Z.); (F.X.); (S.Y.); (S.W.); (W.C.); (M.Z.)
| | - Shu Yan
- School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan 430074, China; (L.L.); (A.C.); (T.D.); (J.Z.); (F.X.); (S.Y.); (S.W.); (W.C.); (M.Z.)
| | - Shu Wang
- School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan 430074, China; (L.L.); (A.C.); (T.D.); (J.Z.); (F.X.); (S.Y.); (S.W.); (W.C.); (M.Z.)
| | - Wenqing Cheng
- School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan 430074, China; (L.L.); (A.C.); (T.D.); (J.Z.); (F.X.); (S.Y.); (S.W.); (W.C.); (M.Z.)
- Hubei Key Laboratory of Smart Internet Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ming Zhu
- School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan 430074, China; (L.L.); (A.C.); (T.D.); (J.Z.); (F.X.); (S.Y.); (S.W.); (W.C.); (M.Z.)
- Hubei Key Laboratory of Smart Internet Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wenbo Xu
- School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan 430074, China; (L.L.); (A.C.); (T.D.); (J.Z.); (F.X.); (S.Y.); (S.W.); (W.C.); (M.Z.)
- Hubei Key Laboratory of Smart Internet Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
14
|
Luo Z, Xing R, Huang W, Xiong R, Qin L, Ren Y, Li Y, Liu X, Men Y, Jiang K, Tian Y, Shen G. Impacts of Household Coal Combustion on Indoor Ultrafine Particles-A Preliminary Case Study and Implication on Exposure Reduction. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:5161. [PMID: 35564556 PMCID: PMC9101610 DOI: 10.3390/ijerph19095161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/08/2022] [Accepted: 04/20/2022] [Indexed: 01/27/2023]
Abstract
Ultrafine particles (UFPs) significantly affect human health and climate. UFPs can be produced largely from the incomplete burning of solid fuels in stoves; however, indoor UFPs are less studied compared to outdoor UFPs, especially in coal-combustion homes. In this study, indoor and outdoor UFP concentrations were measured simultaneously by using a portable instrument, and internal and outdoor source contributions to indoor UFPs were estimated using a statistical approach based on highly temporally resolved data. The total concentrations of indoor UFPs in a rural household with the presence of coal burning were as high as 1.64 × 105 (1.32 × 105-2.09 × 105 as interquartile range) #/cm3, which was nearly one order of magnitude higher than that of outdoor UFPs. Indoor UFPs were unimodal, with the greatest abundance of particles in the size range of 31.6-100 nm. The indoor-to-outdoor ratio of UFPs in a rural household was about 6.4 (2.7-16.0), while it was 0.89 (0.88-0.91) in a home without strong internal sources. A dynamic process illustrated that the particle number concentration increased by ~5 times during the coal ignition period. Indoor coal combustion made up to over 80% of indoor UFPs, while in an urban home without coal combustion sources indoors, the outdoor sources may contribute to nearly 90% of indoor UFPs. A high number concentration and a greater number of finer particles in homes with the presence of coal combustion indicated serious health hazards associated with UFP exposure and the necessity for future controls on indoor UFPs.
Collapse
Affiliation(s)
- Zhihan Luo
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; (Z.L.); (R.X.); (W.H.); (R.X.); (L.Q.); (Y.R.); (Y.L.); (X.L.); (Y.M.); (K.J.); (Y.T.)
| | - Ran Xing
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; (Z.L.); (R.X.); (W.H.); (R.X.); (L.Q.); (Y.R.); (Y.L.); (X.L.); (Y.M.); (K.J.); (Y.T.)
| | - Wenxuan Huang
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; (Z.L.); (R.X.); (W.H.); (R.X.); (L.Q.); (Y.R.); (Y.L.); (X.L.); (Y.M.); (K.J.); (Y.T.)
| | - Rui Xiong
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; (Z.L.); (R.X.); (W.H.); (R.X.); (L.Q.); (Y.R.); (Y.L.); (X.L.); (Y.M.); (K.J.); (Y.T.)
| | - Lifan Qin
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; (Z.L.); (R.X.); (W.H.); (R.X.); (L.Q.); (Y.R.); (Y.L.); (X.L.); (Y.M.); (K.J.); (Y.T.)
| | - Yuxuan Ren
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; (Z.L.); (R.X.); (W.H.); (R.X.); (L.Q.); (Y.R.); (Y.L.); (X.L.); (Y.M.); (K.J.); (Y.T.)
| | - Yaojie Li
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; (Z.L.); (R.X.); (W.H.); (R.X.); (L.Q.); (Y.R.); (Y.L.); (X.L.); (Y.M.); (K.J.); (Y.T.)
| | - Xinlei Liu
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; (Z.L.); (R.X.); (W.H.); (R.X.); (L.Q.); (Y.R.); (Y.L.); (X.L.); (Y.M.); (K.J.); (Y.T.)
| | - Yatai Men
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; (Z.L.); (R.X.); (W.H.); (R.X.); (L.Q.); (Y.R.); (Y.L.); (X.L.); (Y.M.); (K.J.); (Y.T.)
| | - Ke Jiang
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; (Z.L.); (R.X.); (W.H.); (R.X.); (L.Q.); (Y.R.); (Y.L.); (X.L.); (Y.M.); (K.J.); (Y.T.)
| | - Yanlin Tian
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; (Z.L.); (R.X.); (W.H.); (R.X.); (L.Q.); (Y.R.); (Y.L.); (X.L.); (Y.M.); (K.J.); (Y.T.)
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Guofeng Shen
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; (Z.L.); (R.X.); (W.H.); (R.X.); (L.Q.); (Y.R.); (Y.L.); (X.L.); (Y.M.); (K.J.); (Y.T.)
| |
Collapse
|
15
|
Sun J, Wang J, Yang J, Shi X, Li S, Cheng J, Chen S, Sun K, Wu Y. Association between maternal exposure to indoor air pollution and offspring congenital heart disease: a case–control study in East China. BMC Public Health 2022; 22:767. [PMID: 35428227 PMCID: PMC9013107 DOI: 10.1186/s12889-022-13174-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 04/05/2022] [Indexed: 11/10/2022] Open
Abstract
Background Previous research suggested an association between maternal exposure to ambient air pollutants and the risk of congenital heart disease (CHD). However, the effect of individual prenatal exposure to indoor air pollutants on CHD occurrence was not reported. Methods We performed a hospital-based case–control study to investigate the association between personal air pollution exposure during pregnancy and the risk of CHD in offspring. A total of 44 cases and 75 controls were included from two hospitals in East China. We investigated maternal and residential environmental characteristics using a questionnaire and obtained personal indoor air samples to assess particulate matter (PM) and volatile organic compounds (VOCs) from 22–30 gestational weeks. Formaldehyde, benzene, toluene, xylene, total volatile organic compounds (TVOCs), PM2.5, and PM10 were assessed. Logistic regression was performed to assess associations and interactions between individual indoor air pollutants and CHD after adjusting for confounders. The potential residential environmental factors affecting the risks of indoor air pollutants on CHD were also assessed. Results Median TVOC (0.400 vs. 0.005 mg/m3, P < 0.001) exposure levels in cases were significantly higher than controls. A logistic regression model adjusted for confounders revealed that exposure to high levels of indoor TVOCs (AOR 7.09, 95% CI 2.10–23.88) during pregnancy was associated with risks for CHD and the occurrence of some major CHD subtype in offspring. These risk effects were enhanced in pregnant women living in a newly renovated house but were mitigated by household use of smoke ventilators when cooking. We observed a positive interaction of maternal exposure to TVOCs and PM2.5 and the risk for CHD. Conclusions Maternal exposure to indoor VOCs and PMs may increase the risk of giving birth to foetuses with CHD. Supplementary Information The online version contains supplementary material available at 10.1186/s12889-022-13174-0.
Collapse
|
16
|
Li Y, Wang Y, Wang J, Chen L, Wang Z, Feng S, Lin N, Du W. Quantify individual variation of real-time PM 2.5 exposure in urban Chinese homes based on a novel method. INDOOR AIR 2022; 32:e12962. [PMID: 34841578 DOI: 10.1111/ina.12962] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/19/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
Fine particulate matter (PM2.5 ) concentrations show high variations in different microenvironments indoors, which has considerable impact on risk management. However, the real-time variations of PM2.5 exposure associated with per activity/microenvironment and intra-variation among family members remain undefined. In this study, real-time monitors were used to collect real-time PM2.5 data in different microenvironments in 32 households in urban community of China. Peak concentrations of PM2.5 were found in kitchen. The parallel levels of PM2.5 household indoor and outdoor indicated the benefit of clean energies use. To validly assess the health risk of individuals, we proposed a novel method to estimate the real-time exposure of all residents and firstly investigate the intra-variation of PM2.5 exposure among family members. The member who is responsible for cooking in the family had the maximum PM2.5 exposure. The ratios among intraindividual variations demonstrated children usually had lower exposure compared to the adults as they stayed more time in lower polluted microenvironments such as living room and bedroom. The exposure intensity in living room was above 1.0 for most residents, indicating it is warranted to alleviate the air pollution in living room. This study firstly focused on the intra differences of PM2.5 exposure among family members and provided a new insight for indoor air pollution management. The results suggested when adopting measures to reduce exposure, the microenvironments pattern of each member should be taken into consideration. Future work is welcomed to move another big step on this issue to protect the human health.
Collapse
Affiliation(s)
- Yungui Li
- Department of Environmental Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Yuqiong Wang
- Department of Environmental Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Jinze Wang
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai, China
| | - Long Chen
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai, China
| | - Zhenglu Wang
- College of Oceanography, Hohai University, Nanjing, Jiangsu, China
| | - Sheng Feng
- Department of Environmental Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Nan Lin
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Du
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
17
|
Zhu YD, Fan L, Wang J, Yang WJ, Li L, Zhang YJ, Yang YY, Li X, Yan X, Yao XY, Wang XL. Spatiotemporal variation in residential PM2.5 and PM10 concentrations in China: National on-site survey. ENVIRONMENTAL RESEARCH 2021; 202:111731. [PMID: 34297935 DOI: 10.1016/j.envres.2021.111731] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/10/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Significant efforts have been directed toward addressing the adverse health effects of particulate matter, while few data exist to evaluate indoor exposure nationwide in China. OBJECTIVES This study aimed to investigate dwellings particulate matter levels in the twelve cities in China and provide large data support for policymakers to accelerate the legislative process. METHODS The current study was based on the CIEHS 2018 study and conducted in 12 cities of China. A total of 2128 air samples were collected from 610 residential households during the summer and winter. Both PM10 and PM2.5 were detected with a light-scattering dust meter in both the living room and bedroom. The Wilcoxon rank-sum test was performed to evaluate the correlations between PM2.5 and PM10 concentrations and both sampling season and site. Ratios of the living room to bedroom were calculated to evaluate the particulate matter variation between rooms. Hierarchical clustering was used to probe the question of whether the concentration varies between cities throughout China. RESULTS The geometric means of the PM2.5 in living rooms and bedrooms were 39.80 and 36.55 μg/m3 in the summer, and 70.97 and 67.99 μg/m3 in the winter, respectively. In the summer, approximately 70 % of indoor dwelling PM2.5 exceeded the limit of 25 μg/m3, and for PM10 approximately 60 % of dwellings demonstrated levels higher than 50 μg/m3; the corresponding values were over 90 % and 80 % in winter, respectively. In Shijiazhuang, Lanzhou, Luoyang and Qingdao, the geometric means of the PM2.5 concentrations were observed to be 1.5 to 4.3 times higher during winter than during summer; similar concentrations in summer and winter were observed in Harbin, Wuxi, and Shenzhen, while the PM2.5 concentrations in Panjin were approximately 1.5 times higher in summer than in winter. There was no significant difference in particulate matter concentrations between the living rooms and bedrooms. Scatter plots showed that cities with low GDP and a small population had higher concentrations, while Shenzhen, which has a higher GDP and a large permanent population, had a relatively low concentration of particulate matter. CONCLUSIONS Our results suggest that indoor air pollution is a severe problem in China. It is necessary to continue monitoring indoor air quality to observe the changing trend under the tremendous effort of the Chinese government.
Collapse
Affiliation(s)
- Yuan-Duo Zhu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Lin Fan
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Jiao Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Wen-Jing Yang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Li Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Yu-Jing Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Yu-Yan Yang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Xu Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Xu Yan
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Xiao-Yuan Yao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Xian-Liang Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China.
| |
Collapse
|
18
|
Indoor and Outdoor Nanoparticle Concentrations in an Urban Background Area in Northern Sweden: The NanoOffice Study. ENVIRONMENTS 2021. [DOI: 10.3390/environments8080075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In recent years, nanoparticles (NPs) have received much attention due to their very small size, high penetration capacity, and high toxicity. In urban environments, combustion-formed nanoparticles (CFNPs) dominate in particle number concentrations (PNCs), and exposure to those particles constitutes a risk to human health. Even though fine particles (<2.5 µm) are regularly monitored, information on NP concentrations, both indoors and outdoors, is still limited. In the NanoOffice study, concentrations of nanoparticles (10–300 nm) were measured both indoors and outdoors with a 5-min time resolution at twelve office buildings in Umeå. Measurements were taken during a one-week period in the heating season and a one-week period in the non-heating season. The measuring equipment SMPS 3938 was used for indoor measurements, and DISCmini was used for outdoor measurements. The NP concentrations were highest in offices close to a bus terminal and lowest in offices near a park. In addition, a temporal effect appeared, usually with higher concentrations of nanoparticles found during daytime in the urban background area, whereas considerably lower nanoparticle concentrations were often present during nighttime. Infiltration of nanoparticles from the outdoor air into the indoor air was also common. However, the indoor/outdoor ratios (I/O ratios) of NPs showed large variations between buildings, seasons, and time periods, with I/O ratios in the range of 0.06 to 0.59. The reasons for high indoor infiltration rates could be NP emissions from adjacent outdoor sources. We could also see particle growth since the indoor NPs were, on average, almost twice as large as the NPs measured outdoors. Despite relatively low concentrations of NPs in the urban background air during nighttime, they could rise to very high daytime concentrations due to local sources, and those particles also infiltrated the indoor air.
Collapse
|
19
|
Xie Q, Guan Q, Li L, Pan X, Ho CL, Liu X, Hou S, Chen D. Exposure of children and mothers to organophosphate esters: Prediction by house dust and silicone wristbands. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 282:117011. [PMID: 33823314 DOI: 10.1016/j.envpol.2021.117011] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Ubiquitous human exposure to organophosphorus tri-esters (tri-OPEs) has been reported worldwide. Previous studies investigated the feasibility of using house dust and wristbands to assess human OPE exposure. We hypothesized that these two approaches could differ in relative effectiveness in the characterization of children and adult exposure. In the participants recruited from Guangzhou, South China, urinary levels of major OPE metabolites, including diphenyl phosphate (DPHP) and bis(butoxyethyl) phosphate (BBOEP), were significantly higher in children than their mothers (median 6.6 versus 3.7 ng/mL and 0.11 versus 0.06 ng/mL, respectively). The associations of dust or wristband-associated OPEs with urinary metabolites exhibited chemical-specific patterns, which also differed between children and mothers. Significant and marginally significant associations were determined between dust concentrations of triphenyl phosphate (TPHP), tris(2-butoxyethyl) phosphate (TBOEP), trimethylphenyl phosphate (TMPP), or tris(1-chloro-2-propyl) phosphate (TCIPP) and their metabolites in children urine and between dust tris(1,3-dichloroisopropyl) phosphate (TDCIPP), TPHP or TMPP and urinary metabolites in mothers. By contrast, wristbands exhibited better efficiency of predicting internal exposure to TDCIPP. While both house dust and wristbands exhibited the potential as a convenient approach for assessing long-term OPE exposure, their feasibility requires better investigations via larger-scale studies and standardized sampling protocols.
Collapse
Affiliation(s)
- Qitong Xie
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Qingxia Guan
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Liangzhong Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Minister of Environmental Protection, Guangzhou, Guangdong, 510655, China
| | - Xiongfei Pan
- Department of Epidemiology & Biostatistics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Cheuk-Lam Ho
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China, PolyU Shenzhen Research Institute, Shenzhen, 518057, China; Department of Chemistry, Hong Kong Baptist University, Waterloo Road, Kowloon Tong, Hong Kong
| | - Xiaotu Liu
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Sen Hou
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Da Chen
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, 510632, China.
| |
Collapse
|
20
|
Gabriel MF, Felgueiras F, Batista R, Ribeiro C, Ramos E, Mourão Z, de Oliveira Fernandes E. Indoor environmental quality in households of families with infant twins under 1 year of age living in Porto. ENVIRONMENTAL RESEARCH 2021; 198:110477. [PMID: 33197420 DOI: 10.1016/j.envres.2020.110477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/20/2020] [Accepted: 11/10/2020] [Indexed: 06/11/2023]
Abstract
Exposure to air pollution in early years can exacerbate the risk of noncommunicable diseases throughout childhood and the entire life course. This study aimed to assess temperature, relative humidity (RH), carbon dioxide (CO2) and monoxide (CO), particulate matter (PM2.5, PM10), ultrafine particles, nitrogen dioxide (NO2), ozone (O3), formaldehyde, acetaldehyde and volatile organic compounds (VOC) levels in the two rooms where infant twins spend more time at home (30 dwellings, Northern Portugal). Findings showed that, in general, the worst indoor environmental quality (IEQ) settings were found in bedrooms. In fact, although most of the bedrooms surveyed presented adequate comfort conditions in terms of temperature and RH, several children are sleeping in a bedroom with improper ventilation and/or with a significant degree of air pollution. In particular, mean concentrations higher than recommended limits were found for CO2, PM2.5, PM10 and total VOC. Additionally, terpenes and decamethylcyclopentasiloxane were identified as main components of emissions from indoor sources. Overall, findings revealed that factors related to behaviors of the occupants, namely related to a conscientious use of cleaning products, tobacco and other consumer products (air-fresheners, incenses/candles and insecticides) and promotion of ventilation are essential for the improvement of air quality in households and for the promotion of children's health.
Collapse
Affiliation(s)
- Marta Fonseca Gabriel
- INEGI, Institute of Science and Innovation in Mechanical and Industrial Engineering, Campus da FEUP, Rua Dr. Roberto Frias 400, 4200-465, Porto, Portugal.
| | - Fátima Felgueiras
- INEGI, Institute of Science and Innovation in Mechanical and Industrial Engineering, Campus da FEUP, Rua Dr. Roberto Frias 400, 4200-465, Porto, Portugal
| | - Raúl Batista
- INEGI, Institute of Science and Innovation in Mechanical and Industrial Engineering, Campus da FEUP, Rua Dr. Roberto Frias 400, 4200-465, Porto, Portugal
| | - Cláudia Ribeiro
- EPIUnit, Institute of Public Health, University of Porto, Rua Das Taipas 135, 4050-600, Porto, Portugal; Department of Clinical Epidemiology, Predictive Medicine and Public Health, University of Porto Medical School, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Elisabete Ramos
- EPIUnit, Institute of Public Health, University of Porto, Rua Das Taipas 135, 4050-600, Porto, Portugal; Department of Clinical Epidemiology, Predictive Medicine and Public Health, University of Porto Medical School, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Zenaida Mourão
- INEGI, Institute of Science and Innovation in Mechanical and Industrial Engineering, Campus da FEUP, Rua Dr. Roberto Frias 400, 4200-465, Porto, Portugal
| | | |
Collapse
|
21
|
Shehab M, Pope FD, Delgado-Saborit JM. The contribution of cooking appliances and residential traffic proximity to aerosol personal exposure. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:307-318. [PMID: 34150237 PMCID: PMC8172705 DOI: 10.1007/s40201-020-00604-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
PURPOSE Indoor and outdoor factors affect personal exposure to air pollutants. Type of cooking appliance (i.e. gas, electricity), and residential location related to traffic are such factors. This research aims to investigate the effect of cooking with gas and electric appliances, as an indoor source of aerosols, and residential traffic as outdoor sources, on personal exposures to particulate matter with an aerodynamic diameter lower than 2.5 μm (PM2.5), black carbon (BC), and ultrafine particles (UFP). METHODS Forty subjects were sampled for four consecutive days measuring personal exposures to three aerosol pollutants, namely PM2.5, BC, and UFP, which were measured using personal sensors. Subjects were equally distributed into four categories according to the use of gas or electric stoves for cooking, and to residential traffic (i.e. houses located near or away from busy roads). RESULTS/CONCLUSION Cooking was identified as an indoor activity affecting exposure to aerosols, with mean concentrations during cooking ranging 24.7-50.0 μg/m3 (PM2.5), 1.8-4.9 μg/m3 (BC), and 1.4 × 104-4.1 × 104 particles/cm3 (UFP). This study also suggest that traffic is a dominant source of exposure to BC, since people living near busy roads are exposed to higher BC concentrations than those living further away from traffic. In contrast, the contribution of indoor sources to personal exposure to PM2.5 and UFP seems to be greater than from outdoor traffic sources. This is probably related to a combination of the type of building construction and a varying range of activities conducted indoors. It is recommended to ensure a good ventilation during cooking to minimize exposure to cooking aerosols. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s40201-020-00604-7.
Collapse
Affiliation(s)
- M. Shehab
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
- Environmental Protection Authority (EPA), Shuwaikh Industrial, Kuwait City, Kuwait
| | - F. D. Pope
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - J. M. Delgado-Saborit
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
- Perinatal Epidemiology, Environmental Health and Clinical Research, School of Medicine, Universitat Jaume I, Castellon, Spain
- ISGlobal Barcelona Institute for Global Health, Barcelona Biomedical Research Park, Barcelona, Spain
| |
Collapse
|
22
|
Duval JFL, van Leeuwen HP, Norde W, Town RM. Chemodynamic features of nanoparticles: Application to understanding the dynamic life cycle of SARS-CoV-2 in aerosols and aqueous biointerfacial zones. Adv Colloid Interface Sci 2021; 290:102400. [PMID: 33713994 PMCID: PMC7931671 DOI: 10.1016/j.cis.2021.102400] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 12/23/2022]
Abstract
We review concepts involved in describing the chemodynamic features of nanoparticles and apply the framework to gain physicochemical insights into interactions between SARS-CoV-2 virions and airborne particulate matter (PM). Our analysis is highly pertinent given that the World Health Organisation acknowledges that SARS-CoV-2 may be transmitted by respiratory droplets, and the US Center for Disease Control and Prevention recognises that airborne transmission of SARS-CoV-2 can occur. In our theoretical treatment, the virion is assimilated to a core-shell nanoparticle, and contributions of various interaction energies to the virion-PM association (electrostatic, hydrophobic, London-van der Waals, etc.) are generically included. We review the limited available literature on the physicochemical features of the SARS-CoV-2 virion and identify knowledge gaps. Despite the lack of quantitative data, our conceptual framework qualitatively predicts that virion-PM entities are largely able to maintain equilibrium on the timescale of their diffusion towards the host cell surface. Comparison of the relevant mass transport coefficients reveals that virion biointernalization demand by alveolar host cells may be greater than the diffusive supply. Under such conditions both the free and PM-sorbed virions may contribute to the transmitted dose. This result points to the potential for PM to serve as a shuttle for delivery of virions to host cell targets. Thus, our critical review reveals that the chemodynamics of virion-PM interactions may play a crucial role in the transmission of COVID-19, and provides a sound basis for explaining reported correlations between episodes of air pollution and outbreaks of COVID-19.
Collapse
Affiliation(s)
| | - Herman P van Leeuwen
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708, WE, Wageningen, the Netherlands
| | - Willem Norde
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708, WE, Wageningen, the Netherlands
| | - Raewyn M Town
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708, WE, Wageningen, the Netherlands; Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, Universiteit Antwerpen, Groenenborgerlaan 171, 2020 Antwerpen, Belgium..
| |
Collapse
|
23
|
Monitoring 2019 Forest Fires in Southeastern Australia with GNSS Technique. REMOTE SENSING 2021. [DOI: 10.3390/rs13030386] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
From late 2019 to early 2020, forest fires in southeastern Australia caused huge economic losses and huge environmental pollution. Monitoring forest fires has become increasingly important. A new method of fire detection using the difference between global navigation satellite system (GNSS)-derived precipitable water vapor and radiosonde-derived precipitable water vapor (ΔPWV) is proposed. To study the feasibility of the new method, the relationship is studied between particulate matter 10 (PM10) (2.5 to 10 microns particulate matter) and ΔPWV based on Global Positioning System (GPS) data, radiosonde data, and PM10 data from 1 June 2019 to 1 June 2020 in southeastern Australia. The results show that before the forest fire, ΔPWV and PM10 were smaller and less fluctuating. When the forest fire happened, ΔPWV and PM10 were increasing. Then after the forest fire, PM10 became small with relatively smooth fluctuations, but ΔPWV was larger and more fluctuating. Correlation between the 15-day moving standard deviation (STD) time series of ΔPWV and PM10 after the fire was significantly higher than that before the fire. This study shows that ΔPWV is effective in monitoring forest fires based on GNSS technique before and during forest fires in climates with more uniform precipitation, and using ΔPWV to detect forest fires based on GNSS needs to be further investigated in climates with more precipitation and severe climate change.
Collapse
|
24
|
Scungio M, Rizza V, Stabile L, Morawska L, Buonanno G. Influence of methodology on the estimation of the particle surface area dose received by a population in all-day activities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115209. [PMID: 32688075 DOI: 10.1016/j.envpol.2020.115209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 07/06/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
In everyday life, people are exposed to different concentrations of airborne particles depending on the microenvironment where they perform their different activities. Such exposure can lead to high sub-micron particle doses. The received dose depends on particle concentration to which people are exposed (typically expressed in terms of number or surface area), time spent in each activity or microenvironment (time activity pattern) and amount of air inhaled (inhalation rate). To estimate an actual value of the received dose, all these parameters should be measured under real-life conditions; in fact, the concentrations should be measured on a personal scale (i.e. through a direct exposure assessment), whereas time activity patterns and inhalation rates specific to the activity performed should be considered. The difficulties in obtaining direct measurements of these parameters usually lead to adopt time activity patterns and inhalation rates already available in scientific literature for typical populations, and local outdoor particle concentrations measured with fixed monitoring stations and extrapolated for all the other microenvironments. To overcome these limitations, we propose a full-field method for estimating the received dose of a population sample, in which all the parameters (concentration levels, time activity patterns and inhalation rates) are measured under real-life conditions (also including the inhalation rates, that were evaluated on the basis of the measured heart rates). Specifically, 34 volunteers were continuously monitored for seven days and the data of sub-micron particle concentrations, activities performed, and inhalation rates were recorded. The received dose was calculated with the proposed method and compared with those obtained from different simplified methodologies that consider typical data of particle concentrations, time activity patterns and inhalation rates obtained from literature. The results show that, depending on the methodology used, the differences in the received daily dose can be significant, with a general underestimation of the most simplified method.
Collapse
Affiliation(s)
- Mauro Scungio
- School of Engineering, University of Tuscia, Viterbo, Italy.
| | - Valeria Rizza
- Institute of Atmospheric Pollution Research (IIA), CNR, Rome, Italy
| | - Luca Stabile
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, Italy
| | - Lidia Morawska
- Queensland University of Technology, Brisbane, Australia
| | - Giorgio Buonanno
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, Italy; Queensland University of Technology, Brisbane, Australia
| |
Collapse
|