1
|
Chu X, Rao Y, Qu J, Zhang J, Zeng R, Kong Y, Xi Z, Zhu Z, Li D, Li J, Zhao Q. Phosphorus-loaded coconut biochar: A novel strategy for cadmium remediation and soil fertility enhancement. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117074. [PMID: 39342758 DOI: 10.1016/j.ecoenv.2024.117074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024]
Abstract
The management of cadmium (Cd) contamination in soils poses a significant environmental challenge. This study investigates the effectiveness of phosphorus (P)-loaded coconut biochar, synthesized at various pyrolysis temperatures (450°C, 500°C, 550°C, and 600°C), in immobilizing Cd and enhancing P availability in soil environments. The biochar underwent a series of treatments including activation and P enrichment, followed by incubation trials to evaluate its performance in Cd immobilization and P bioavailability enhancement across varying soil concentrations (0.5 %, 1.0 %, and 2.0 %) over time periods of 15, 30, and 45 days. Remediation progress was monitored using phytotoxicity assessments with radish (Raphanus sativus) root length as a bioindicator, supplemented by urease activity analyses. Notably, the activation process increased the P loading capacity of biochar produced at 450°C, 500°C, and 550°C by 54.6 %, 72.4 %, and 51.8 %, respectively, while reducing the P retention capacity of biochar prepared at 600°C by 31.0 %. The biochar activated at 550°C presented the highest efficiency in remediating Cd-contaminated soils. Key findings indicate that the enhanced specific surface area and oxygenated functional group content of the activated biochar facilitated Cd adsorption and P uptake. The P-loaded biochar exhibited a substantial adsorption capacity for Cd, particularly effective at lower concentrations, rendering it highly suitable for soil remediation purposes. Additionally, the study revealed that the application of biochar led to an increase in soil pH, resulting in precipitation of Cd as hydroxide species and formation of insoluble complexes with phosphate ions, thereby reducing its bioavailability. In summary, incorporating P-loaded biochar into soil significantly improved soil quality and enhanced Cd passivation in contaminated soils. The utilization of biochar produced at 550°C, which exhibited optimal performance, suggests a practical and sustainable approach for soil remediation. Future research endeavors should prioritize the refinement of the biochar production process to enhance cost-effectiveness while maintaining high P loading efficiency.
Collapse
Affiliation(s)
- Xiao Chu
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571700, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Yingzhi Rao
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571700, China
| | - Jizhen Qu
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571700, China
| | - Jingmin Zhang
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Ri Zeng
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571700, China
| | - Yipeng Kong
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571700, China
| | - Zimin Xi
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571700, China
| | - Zhiqiang Zhu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Dong Li
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Jianhong Li
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Danzhou Soil Environment of Rubber Plantation, Hainan Observation and Research Station, Danzhou 571700, China.
| | - Qingjie Zhao
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571700, China.
| |
Collapse
|
2
|
Zheng Y, Bolan N, Jenkins SN, Mickan BS. Organic particles and high pH in food waste anaerobic digestate enhanced NH 4+ adsorption on wood-derived biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174458. [PMID: 38964404 DOI: 10.1016/j.scitotenv.2024.174458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/14/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Biogas residues (i.e., digestate) are rich in NH4+ that has great agricultural value but environmental risk if not recycled. Biochar can be an effective adsorbent retaining NH4+ from digestate. However, it remains unclear how the unique composition of digestate affects the capacity and mechanisms of NH4+ adsorption on biochar. This study examined the mechanisms and driving factors of NH4+ recovery from digestate containing different molecular-weight organic particles by using wood-derived biochar with or without H2O2 modification. Four solutions were prepared, including pure NH4+, synthetic NH4+ with multiple cations mimicking digestate solution, supernatant of digestate with small organic particles and dissolved organic matter, and digestate mixture containing supernatant and large organic particles. The results showed that compared with pure NH4+ solution, the adsorbed NH4+ was 42% lower in the synthetic NH4+ solution with multiple cations but was 2.2 time higher in the supernatant of digestate on two biochars following 48-h adsorption. Modified biochar did not change NH4+ adsorption in pure NH4+ solution despite higher specific surface area than raw biochar, but it increased the adsorption of NH4+ in digestate solutions with high pH (e.g., 4.03 vs. 3.37 mg N g-1 for modified and raw biochar, respectively, in the supernatant of digestate). Compared with the supernatant, the large organic particles in digestate mixture significantly but slightly decreased NH4+ adsorption on modified but not raw biochar. The desorption rate of NH4+ on the biochar was up to 74%-100%, and it was not supressed by the adsorption of organic particles in digestate. The findings here demonstrate the dominant role of electrostatic attraction in NH4+ adsorption, the important role of high pH and organic particles in digestate in facilitating NH4+ adsorption on biochar, and the suitability of the wood-derived biochar in recovering NH4+ from digestate and releasing N for agricultural application.
Collapse
Affiliation(s)
- Yunyun Zheng
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia.
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - Sasha N Jenkins
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - Bede S Mickan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia; Richgro Garden Products, 203 Acourt Rd, Jandakot, WA 6164, Australia
| |
Collapse
|
3
|
Zan R, Stirling R, Blackburn A, Walsh C, Werner D. Activated carbon amendment of sand in the base of a permeable pavement reduces total nitrogen and nitrate leaching. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172831. [PMID: 38685424 DOI: 10.1016/j.scitotenv.2024.172831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Urban runoff from impermeable surfaces contains various pollutants. Stormwater samples were collected for one year from car parks on the campus of Newcastle University, located in northeast England, to monitor seasonal variation in stormwater properties and leachate quality following stormwater percolation through pilot-scale, outdoor permeable pavements. The pilot study compared an innovative 'pollution munching' permeable pavement with 2 % activated carbon (AC) amendment in the sand base with a conventional, un-amended sand base permeable pavement. Faecal coliforms were detected in stormwater at an average value of 3.75 ± 0.79 log10 CFUs per 100 mL. The permeable pavements without and with AC had mean log removal values of 0.81 ± 0.35 and 0.70 ± 0.35 for these faecal bacteria. The absence of genetic markers for human host associated Bacteroides (HF183) in eleven out of twelve stormwater samples showed that the faecal bacteria were mainly from animal sources. 16S rRNA gene sequencing results confirmed the presence of nitrifying bacteria from the genera Nitrosomonas, Nitrobacter, Nitrosococcus, Nitrospira, and Nitrosospira in stormwater. Nitrification and nitrate leaching was more notable for the conventional permeable pavement and may pose a groundwater pollution risk. Two percent AC amendment of the sand base reduced nitrate and total nitrogen leaching significantly compared with the conventional permeable pavement, by 57 ± 15 % and 40 ± 20 %, respectively. The AC amendment also resulted in significantly reduced Cu and DOC leaching, and lesser accumulation of PAHs by passive samplers embedded in the permeable pavement base. Hydraulic tests showed that the AC amended base layer still met the design specifications for permeable pavements, making it a promising proposition for pollution reduction in Sustainable Drainage Systems (SuDS).
Collapse
Affiliation(s)
- Rixia Zan
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Ross Stirling
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom; UKCRIC National Green Infrastructure Facility, Newcastle upon Tyne NE4 5TG, United Kingdom
| | - Adrian Blackburn
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Claire Walsh
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom; UKCRIC National Green Infrastructure Facility, Newcastle upon Tyne NE4 5TG, United Kingdom
| | - David Werner
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom.
| |
Collapse
|
4
|
Zhang X, Gu L, Gui D, Xu B, Li R, Chen X, Sha Z, Pan X. Suitable biochar application practices simultaneously alleviate N 2O and NH 3 emissions from arable soils: A meta-analysis study. ENVIRONMENTAL RESEARCH 2024; 242:117750. [PMID: 38029822 DOI: 10.1016/j.envres.2023.117750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
Nitrogen (N) fertilization profoundly improves crop agronomic yield but triggers reactive N (Nr) loss into the environment. Nitrous (N2O) and ammonia (NH3) emissions are the main Nr species that affect climate change and eco-environmental health. Biochar is considered a promising soil amendment, and its efficacy on individual Nr gas emission reduction has been widely reported. However, the interactions and trade-offs between these two Nr species after biochar addition have not been comprehensively analysed. The influencing factors, such as biochar characteristics, environmental conditions, and management measures, remain uncertain. Therefore, 35 publications (145 paired observations) were selected for a meta-analysis to explore the simultaneous mitigation potential of biochar on N2O and NH3 emissions after its application on arable soil. The results showed that biochar application significantly reduced N2O emission by 7.09% while having no significant effect on NH3 volatilisation. Using biochar with a low pH, moderate BET, or pyrolyzed under moderate temperatures could jointly mitigate N2O and NH3 emissions. Additionally, applying biochar to soils with moderate soil organic carbon, high soil total nitrogen, or low cation exchange capacity showed similar responses. The machine-learning model suggested that biochar pH is a dominating moderator of its efficacy in mitigating N2O and NH3 emissions simultaneously. The findings of this study have major implications for biochar application management and aid the further realisation of the multifunctionality of biochar application in agriculture, which could boost agronomic production while lowering environmental costs.
Collapse
Affiliation(s)
- Xiayan Zhang
- Yunnan Provincial Field Scientific Observation and Research Station on Water-Soil-Crop System in Seasonal Arid Region, Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Lipeng Gu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Dongyang Gui
- Yunnan Provincial Field Scientific Observation and Research Station on Water-Soil-Crop System in Seasonal Arid Region, Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Bing Xu
- Yunnan Provincial Field Scientific Observation and Research Station on Water-Soil-Crop System in Seasonal Arid Region, Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Rui Li
- Yunnan Provincial Field Scientific Observation and Research Station on Water-Soil-Crop System in Seasonal Arid Region, Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xian Chen
- Yunnan Provincial Field Scientific Observation and Research Station on Water-Soil-Crop System in Seasonal Arid Region, Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zhipeng Sha
- Yunnan Provincial Field Scientific Observation and Research Station on Water-Soil-Crop System in Seasonal Arid Region, Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| |
Collapse
|
5
|
Han H, Chen T, Liu C, Zhang F, Sun Y, Bai Y, Meng J, Chi D, Chen W. Effects of acid modified biochar on potassium uptake, leaching and balance in an alternate wetting and drying paddy ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:166344. [PMID: 37597543 DOI: 10.1016/j.scitotenv.2023.166344] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/21/2023]
Abstract
Straw biochar amended soils reduce fertilizer losses and alleviate soil K-exhaustion, while decrease grain yield due to its high pH. H2SO4-modified biochar has been studied as a means to enhance the advantages of biochar and address yield decrease. However, little information is available on its effects on aboveground K uptake, soil K fixation, K leaching, and utilization in paddy rice systems, especially under water stress. A 3-year field experiment was conducted with two irrigation regimes (continuously flooded irrigation, ICF and alternate wetting and drying irrigation, IAWD) as main plots and 0 (control), 20 t ha-1 biochar (B20), and 20 t ha-1 acid-modified biochar (B20A-M) as subplots. The results showed that IAWD significantly decreased water percolation by 9.26 %-14.74 % but increased K leaching by 10.84 %-15.66 %. Compared to B0, B20 and B20A-M significantly increased K leaching by 32.40 % and 30.42 % in 2019, while decreased it by 11.60 %-14.01 % in 2020 and 2021. Both B20 and B20A-M significantly improved aboveground K uptake by 3.45 %-6.71 % throughout the three years. B20 reduced grain yield in 2019 and increased it in 2020 and 2021, while B20A-M increased grain yield throughout the three years. Apparent K balance (AKB) from pre-transplanting to post-harvest over the three years suggested that IAWD significantly increased the risk of soil K depletion but B20 and B20A-M significantly increased AKB, thereby addressing the depletion of it. IAWDB20A-M have a comparable AKB with ICFB20A-M, but had up to 18.3 % and 21.61 % higher AKB than IAWDB20 and ICFB20. Therefore, the use of H2SO4 modified biochar could produce higher grain yield with lower K leaching for addition in IAWD paddy systems, which is beneficial to mitigate soil K depletion and ensure a sustainable agricultural production.
Collapse
Affiliation(s)
- Hongwei Han
- College of Water Conservancy, Shenyang Agricultural University, Shenyang 110866, China
| | - Taotao Chen
- College of Water Conservancy, Shenyang Agricultural University, Shenyang 110866, China; National Biochar Institute, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, Shenyang 110866, China.
| | - Chang Liu
- College of Water Conservancy, Shenyang Agricultural University, Shenyang 110866, China
| | - Feng Zhang
- College of Water Conservancy, Shenyang Agricultural University, Shenyang 110866, China
| | - Yidi Sun
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yikui Bai
- College of Water Conservancy, Shenyang Agricultural University, Shenyang 110866, China
| | - Jun Meng
- National Biochar Institute, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, Shenyang 110866, China.
| | - Daocai Chi
- College of Water Conservancy, Shenyang Agricultural University, Shenyang 110866, China
| | - Wenfu Chen
- National Biochar Institute, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, Shenyang 110866, China
| |
Collapse
|
6
|
Shi RY, Ni N, Wang RH, Nkoh JN, Pan XY, Dong G, Xu RK, Cui XM, Li JY. Dissolved biochar fractions and solid biochar particles inhibit soil acidification induced by nitrification through different mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162464. [PMID: 36858227 DOI: 10.1016/j.scitotenv.2023.162464] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/27/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Biochar can inhibit soil acidification by decreasing the H+ input from nitrification and improving soil pH buffering capacity (pHBC). However, biochar is a complex material and the roles of its different components in inhibiting soil acidification induced by nitrification remain unclear. To address this knowledge gap, dissolved biochar fractions (DBC) and solid biochar particles (SBC) were separated and mixed thoroughly with an amended Ultisol. Following a urea addition, the soils were subjected to an incubation study. The results showed that both the DBC and SBC inhibited soil acidification by nitrification. The DBC inhibited soil acidification by decreasing the H+ input from nitrification, while SBC enhanced the soil pHBC. The DBC from peanut straw biochar (PBC) and rice straw biochar (RBC) decreased the H+ release by 16 % and 18 % at the end of incubation. The decrease in H+ release was attributed to the inhibition of soil nitrification and net mineralization caused by the toxicity of the phenols in DBC to soil bacteria. The abundance of ammonia-oxidizing bacteria (AOB) and total bacteria decreased by >60 % in the treatments with DBC. The opposite effects were observed in the treatments with SBC. Soil pHBC increased by 7 % and 19 % after the application of solid RBC and PBC particles, respectively. The abundance of carboxyl on the surface of SBC was mainly responsible for the increase in soil pHBC. Generally, the mixed application of DBC and SBC was more effective at inhibiting soil acidification than their individual applications. The negative impacts of dissolved biochar components on soil microorganisms need to be closely monitored.
Collapse
Affiliation(s)
- Ren-Yong Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing 210008, PR China
| | - Ni Ni
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing 210042, PR China
| | - Ru-Hai Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing 210008, PR China
| | - Jackson Nkoh Nkoh
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing 210008, PR China
| | - Xiao-Ying Pan
- Engineering and Technology Research Center for Agricultural Land Pollution Integrated Prevention and Control of Guangdong Higher Education Institutes, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, PR China
| | - Ge Dong
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing 210008, PR China
| | - Ren-Kou Xu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing 210008, PR China
| | - Xiu-Min Cui
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Jiu-Yu Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing 210008, PR China.
| |
Collapse
|
7
|
Yan M, Tian H, Song S, Tan HTW, Lee JTE, Zhang J, Sharma P, Tiong YW, Tong YW. Effects of digestate-encapsulated biochar on plant growth, soil microbiome and nitrogen leaching. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 334:117481. [PMID: 36801683 DOI: 10.1016/j.jenvman.2023.117481] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/22/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The increasing amount of food waste and the excessive use of mineral fertilizers have caused detrimental impacts on soil, water, and air quality. Though digestate derived from food waste has been reported to partially replace fertilizer, its efficiency requires further improvement. In this study, the effects of digestate-encapsulated biochar were comprehensively investigated based on growth of an ornamental plant, soil characteristics, nutrient leaching and soil microbiome. Results showed that except for biochar, the tested fertilizers and soil additives, i.e., digestate, compost, commercial fertilizer, digestate-encapsulated biochar had positive effects on plants. Especially, the digestate-encapsulated biochar had the best effectiveness as evidenced by 9-25% increase in chlorophyll content index, fresh weight, leaf area and blossom frequency. For the effects of fertilizers or soil additives on soil characteristics and nutrient retention, the digestate-encapsulated biochar leached least N-nutrients (<8%), while the compost, digestate and mineral fertilizer leached up to 25% N-nutrients. All the treatments had minimal effects on the soil properties of pH and electrical conductivity. According to the microbial analysis, the digestate-encapsulated biochar has the comparable role with compost in improving the soil immune system against pathogen infection. The metagenomics coupling with qPCR analysis suggested that digestate-encapsulated biochar boosted the nitrification process and inhibited the denitrification process. This study provides an extensive understanding into the impacts of the digestate-encapsulated biochar on an ornamental plant and offers practical implications for the choice of sustainable fertilizers or soil additives and food-waste digestate management.
Collapse
Affiliation(s)
- Miao Yan
- Laboratory of Biomass Bio-chemical Conversion, Guang Zhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China; Environmental Research Institute, National University of Singapore, Singapore
| | - Hailin Tian
- Environmental Research Institute, National University of Singapore, Singapore; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Shuang Song
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Hugh T W Tan
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Jonathan T E Lee
- Environmental Research Institute, National University of Singapore, Singapore; Energy and Environmental Sustainability for Megacities (E2S2), Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore, 138602, Singapore
| | - Jingxin Zhang
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 201306, PR China
| | - Pooja Sharma
- Environmental Research Institute, National University of Singapore, Singapore
| | - Yong Wei Tiong
- Environmental Research Institute, National University of Singapore, Singapore
| | - Yen Wah Tong
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore.
| |
Collapse
|
8
|
Biochar as a Green Sorbent for Remediation of Polluted Soils and Associated Toxicity Risks: A Critical Review. SEPARATIONS 2023. [DOI: 10.3390/separations10030197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023] Open
Abstract
Soil contamination with organic contaminants and various heavy metals has become a global environmental concern. Biochar application for the remediation of polluted soils may render a novel solution to soil contamination issues. However, the complexity of the decontaminating mechanisms and the real environment significantly influences the preparation and large-scale application of biochar for soil ramification. This review paper highlights the utilization of biochar in immobilizing and eliminating the heavy metals and organic pollutants from contaminated soils and factors affecting the remediation efficacy of biochar. Furthermore, the risks related to biochar application in unpolluted agricultural soils are also debated. Biochar production conditions (pyrolysis temperature, feedstock type, and residence time) and the application rate greatly influence the biochar performance in remediating the contaminated soils. Biochars prepared at high temperatures (800 °C) contained more porosity and specific surface area, thus offering more adsorption potential. The redox and electrostatic adsorption contributed more to the adsorption of oxyanions, whereas ion exchange, complexation, and precipitation were mainly involved in the adsorption of cations. Volatile organic compounds (VOCs), dioxins, and polycyclic aromatic hydrocarbons (PAHs) produced during biochar pyrolysis induce negative impacts on soil alga, microbes, and plants. A careful selection of unpolluted feedstock and its compatibility with carbonization technology having suitable operating conditions is essential to avoid these impurities. It would help to prepare a specific biochar with desired features to target a particular pollutant at a specific site. This review provided explicit knowledge for developing a cost-effective, environment-friendly specific biochar, which could be used to decontaminate targeted polluted soils at a large scale. Furthermore, future study directions are also described to ensure a sustainable and safe application of biochar as a soil improver for the reclamation of polluted soils.
Collapse
|
9
|
Ullah S, Ali I, Yang M, Zhao Q, Iqbal A, Wu X, Ahmad S, Muhammad I, Khan A, Adnan M, Yuan P, Jiang L. Partial Substitution of Urea with Biochar Induced Improvements in Soil Enzymes Activity, Ammonia-Nitrite Oxidizers, and Nitrogen Uptake in the Double-Cropping Rice System. Microorganisms 2023; 11:microorganisms11020527. [PMID: 36838492 PMCID: PMC9959172 DOI: 10.3390/microorganisms11020527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Biochar is an important soil amendment that can enhance the biological properties of soil, as well as nitrogen (N) uptake and utilization in N-fertilized crops. However, few studies have characterized the effects of urea and biochar application on soil biochemical traits and its effect on paddy rice. Therefore, a field trial was conducted in the early and late seasons of 2020 in a randomized complete block design with two N levels (135 and 180 kg ha-1) and four levels of biochar (0, 10, 20, and 30 t ha-1). The treatment combinations were as follows: 135 kg N ha-1 + 0 t B ha-1 (T1), 135 kg N ha-1 + 10 t B ha-1 (T2), 135 kg N ha-1 + 20 t B ha-1 (T3), 135 kg N ha-1 + 30 t B ha-1 (T4), 180 kg N ha-1 + 0 t B ha-1 (T5), 180 kg N ha-1 + 10 t B ha-1 (T6), 180 kg N ha-1 + 20 t B ha-1 (T7) and 180 kg N ha-1 + 30 t B ha-1 (T8). The results showed that soil amended with biochar had higher soil pH, soil organic carbon content, total nitrogen content, and mineral nitrogen (NH4+-N and NO3--N) than soil that had not been amended with biochar. In both seasons, the 20 t ha-1 and 30 t ha-1 biochar treatments had the highest an average concentrations of NO3--N (10.54 mg kg-1 and 10.25 mg kg-1, respectively). In comparison to soil that had not been treated with biochar, the average activity of the enzymes urease, polyphenol oxidase, dehydrogenase, and chitinase was, respectively, 25.28%, 14.13%, 67.76%, and 22.26% greater; however, the activity of the enzyme catalase was 15.06% lower in both seasons. Application of biochar considerably increased the abundance of ammonia-oxidizing bacteria (AOB), which was 48% greater on average in biochar-amended soil than in unamended soil. However, there were no significant variations in the abundances of ammonia-oxidizing archaea (AOA) or nitrite-oxidizing bacteria (NOB) across treatments. In comparison to soil that had not been treated with biochar, the average N content was 24.46%, 20.47%, and 19.08% higher in the stem, leaves, and panicles, respectively. In general, adding biochar at a rate of 20 to 30 t ha-1 with low-dose urea (135 kg N ha-1) is a beneficial technique for improving the nutrient balance and biological processes of soil, as well as the N uptake and grain yield of rice plants.
Collapse
Affiliation(s)
- Saif Ullah
- Key Laboratory of Crop Cultivation and Physiology, Guangxi University, Education Department of Guangxi, Nanning 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Izhar Ali
- Key Laboratory of Crop Cultivation and Physiology, Guangxi University, Education Department of Guangxi, Nanning 530004, China
| | - Mei Yang
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Quan Zhao
- Key Laboratory of Crop Cultivation and Physiology, Guangxi University, Education Department of Guangxi, Nanning 530004, China
| | - Anas Iqbal
- Key Laboratory of Crop Cultivation and Physiology, Guangxi University, Education Department of Guangxi, Nanning 530004, China
| | - Xiaoyan Wu
- Key Laboratory of Crop Cultivation and Physiology, Guangxi University, Education Department of Guangxi, Nanning 530004, China
| | - Shakeel Ahmad
- Key Laboratory of Crop Cultivation and Physiology, Guangxi University, Education Department of Guangxi, Nanning 530004, China
| | - Ihsan Muhammad
- Key Laboratory of Crop Cultivation and Physiology, Guangxi University, Education Department of Guangxi, Nanning 530004, China
| | - Abdullah Khan
- Key Laboratory of Crop Cultivation and Physiology, Guangxi University, Education Department of Guangxi, Nanning 530004, China
| | - Muhammad Adnan
- Key Laboratory of Crop Cultivation and Physiology, Guangxi University, Education Department of Guangxi, Nanning 530004, China
| | - Pengli Yuan
- Key Laboratory of Crop Cultivation and Physiology, Guangxi University, Education Department of Guangxi, Nanning 530004, China
| | - Ligeng Jiang
- Key Laboratory of Crop Cultivation and Physiology, Guangxi University, Education Department of Guangxi, Nanning 530004, China
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
- Correspondence:
| |
Collapse
|
10
|
Acosta-Luque MP, López JE, Henao N, Zapata D, Giraldo JC, Saldarriaga JF. Remediation of Pb-contaminated soil using biochar-based slow-release P fertilizer and biomonitoring employing bioindicators. Sci Rep 2023; 13:1657. [PMID: 36717659 PMCID: PMC9886935 DOI: 10.1038/s41598-022-27043-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/23/2022] [Indexed: 02/01/2023] Open
Abstract
Soil contamination by Pb can result from different anthropogenic sources such as lead-based paints, gasoline, pesticides, coal burning, mining, among others. This work aimed to evaluate the potential of P-loaded biochar (Biochar-based slow-release P fertilizer) to remediate a Pb-contaminated soil. In addition, we aim to propose a biomonitoring alternative after soil remediation. First, rice husk-derived biochar was obtained at different temperatures (450, 500, 550, and 600 °C) (raw biochars). Then, part of the resulting material was activated. Later, the raw biochars and activated biochars were immersed in a saturated KH2PO4 solution to produce P-loaded biochars. The ability of materials to immobilize Pb and increase the bioavailability of P in the soil was evaluated by an incubation test. The materials were incorporated into doses of 0.5, 1.0, and 2.0%. After 45 days, soil samples were taken to biomonitor the remediation process using two bioindicators: a phytotoxicity test and enzyme soil activity. Activated P-loaded biochar produced at 500 °C has been found to present the best conditions for soil Pb remediation. This material significantly reduced the bioavailability of Pb and increased the bioavailability of P. The phytotoxicity test and the soil enzymatic activity were significantly correlated with the decrease in bioavailable Pb but not with the increase in bioavailable P. Biomonitoring using the phytotoxicity test is a promising alternative for the evaluation of soils after remediation processes.
Collapse
Affiliation(s)
- María Paula Acosta-Luque
- Department of Civil and Environmental Engineering, Universidad de los Andes, Carrera 1Este #19A-40, 111711, Bogotá, Colombia
| | - Julián E López
- Facultad de Arquitectura e Ingeniería, Institución Universitaria Colegio Mayor de Antioquia, Carrera 78 #65-46, 050034, Medellín, Colombia
| | - Nancy Henao
- Department of Civil and Environmental Engineering, Universidad de los Andes, Carrera 1Este #19A-40, 111711, Bogotá, Colombia
| | - Daniela Zapata
- Faculty of Engineering, Universidad de Medellín, Carrera 87 #30-65, 050026, Medellín, Colombia
| | - Juan C Giraldo
- Facultad de Arquitectura e Ingeniería, Institución Universitaria Colegio Mayor de Antioquia, Carrera 78 #65-46, 050034, Medellín, Colombia
| | - Juan F Saldarriaga
- Department of Civil and Environmental Engineering, Universidad de los Andes, Carrera 1Este #19A-40, 111711, Bogotá, Colombia.
| |
Collapse
|
11
|
Xu XJ, Yan J, Yuan QK, Wang XT, Yuan Y, Ren NQ, Lee DJ, Chen C. Enhanced methane production in anaerobic digestion: A critical review on regulation based on electron transfer. BIORESOURCE TECHNOLOGY 2022; 364:128003. [PMID: 36155810 DOI: 10.1016/j.biortech.2022.128003] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Anaerobic digestion (AD) is a potential bioprocess for waste biomass utilization and energy conservation. Various iron/carbon-based CMs (e.g., magnetite, biochar, granular activated carbon (GAC), graphite and zero valent iron (ZVI)) have been supplemented in anaerobic digestors to improve AD performance. Generally, the supplementation of CMs has shown to improve methane production, shorten lag phase and alleviate environmental stress because they could serve as electron conduits and promote direct interspecies electron transfer (DIET). However, the CMs dosage varied greatly in previous studies and CMs wash out remains a challenge for its application in full-scale plants. Future work is recommended to standardize the CMs dosage and recover/reuse the CMs. Moreover, additional evidence is required to verify the electrotrophs involved in DIET.
Collapse
Affiliation(s)
- Xi-Jun Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Jin Yan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Qing-Kang Yuan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Xue-Ting Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Yuan Yuan
- College of Biological Engineering, Beijing Polytechnic, Beijing 10076, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; Department of Chemical Engineering & Materials Science, Yuan-Ze University, Chungli 320, Taiwan
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China.
| |
Collapse
|
12
|
Gou Z, Liu G, Wang Y, Li X, Wang H, Chen S, Su Y, Sun Y, Ma NL, Chen G. Enhancing N uptake and reducing N pollution via green, sustainable N fixation-release model. ENVIRONMENTAL RESEARCH 2022; 214:113934. [PMID: 36027962 DOI: 10.1016/j.envres.2022.113934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/14/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
The overuse of N fertilizers has caused serious environmental problems (e.g., soil acidification, excessive N2O in the air, and groundwater contamination) and poses a serious threat to human health. Improving N fertilizer utilization efficiency and plant uptake is an alternative for N fertilizers overuses. Enterobacter cloacae is an opportunistic pathogen, also used as plant growth-promoting rhizobacteria (PGPR), has been widely presented in the fields of bioremediation and bioprotection. Here we developed a new N fixation-release model by combining biochar with E. cloacae. The efficiency of the model was evaluated using a greenhouse pot experiment with maize (Zea mays L.) as the test crop. The results showed that biochar combined with E. cloacae significantly increased the N content. The application of biochar combined with E. cloacae increased total N in soil by 33% compared with that of N fertilizers application. The N-uptake and utilization efficiency (NUE) in plant was increased 17.03% and 14.18%, respectively. The activities of urease, dehydrogenase and fluorescein diacetate hydrolase (FDA) was improved, the catalase (CAT) activity decreased. Analysis of the microbial community diversity revealed the abundance of Proteobacteria, Actinobacteria, Firmicutes, and Gemmatimonadetes were significantly improved. The mechanism under the model is that E. cloacae acted as N-fixation by capturing N2 from air. Biochar served as carrier, supporting better living environment for E. cloacae, also as adsorbent adsorbing N from fertilizer and from fixed N by E. cloacae, the adsorption in turn slower the N release. Altogether, the model promotes N utilization by plants, improves the soil environment, and reduces N pollution.
Collapse
Affiliation(s)
- Zechang Gou
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Guoqing Liu
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Yisheng Wang
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Xiufeng Li
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Huiqiong Wang
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Siji Chen
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Yingjie Su
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Yang Sun
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China.
| | - Nyuk Ling Ma
- Faculty of Science and Marine Environment, University Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
| | - Guang Chen
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
13
|
Nguyen MK, Lin C, Hoang HG, Sanderson P, Dang BT, Bui XT, Nguyen NSH, Vo DVN, Tran HT. Evaluate the role of biochar during the organic waste composting process: A critical review. CHEMOSPHERE 2022; 299:134488. [PMID: 35385764 DOI: 10.1016/j.chemosphere.2022.134488] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/18/2022] [Accepted: 03/30/2022] [Indexed: 05/21/2023]
Abstract
Composting is very robust and efficient for the biodegradation of organic waste; however secondary pollutants, namely greenhouse gases (GHGs) and odorous emissions, are environmental concerns during this process. Biochar addition to compost has attracted the interest of scientists with a lot of publication in recent years because it has addressed this matter and enhanced the quality of compost mixture. This review aims to evaluate the role of biochar during organic waste composting and identify the gaps of knowledge in this field. Moreover, the research direction to fill knowledge gaps was proposed and highlighted. Results demonstrated the commonly referenced conditions during composting mixed biochar should be reached such as pH (6.5-7.5), moisture (50-60%), initial C/N ratio (20-25:1), biochar doses (1-20% w/w), improved oxygen content availability, enhanced the performance and humification, accelerating organic matter decomposition through faster microbial growth. Biochar significantly decreased GHGs and odorous emissions by adding a 5-10% dosage range due to its larger surface area and porosity. On the other hand, with high exchange capacity and interaction with organic matters, biochar enhanced the composting performance humification (e.g., formation humic and fulvic acid). Biochar could extend the thermophilic phase of composting, reduce the pH value, NH3 emission, and prevent nitrogen losses through positive effects to nitrifying bacteria. The surfaces of the biochar particles are partly attributed to the presence of functional groups such as Si-O-Si, OH, COOH, CO, C-O, N for high cation exchange capacity and adsorption. Adding biochars could decrease NH3 emissions in the highest range up to 98%, the removal efficiency of CH4 emissions has been reported with a wide range greater than 80%. Biochar could absorb volatile organic compounds (VOCs) more than 50% in the experiment based on distribution mechanisms and surface adsorption and efficient reduction in metal bioaccessibilities for Pb, Ni, Cu, Zn, As, Cr and Cd. By applicating biochar improved the compost maturity by promoting enzymatic activity and germination index (>80%). However, physico-chemical properties of biochar such as particle size, pore size, pore volume should be clarified and its influence on the composting process evaluated in further studies.
Collapse
Affiliation(s)
- Minh Ky Nguyen
- Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Chitsan Lin
- Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan.
| | - Hong Giang Hoang
- Faculty of Health Sciences and Finance - Accounting, Dong Nai Technology University, Bien Hoa, Dong Nai, 76100, Viet Nam
| | - Peter Sanderson
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW, Australia
| | - Bao Trong Dang
- HUTECH University, 475A, Dien Bien Phu, Ward 25, Binh Thanh District, Ho Chi Minh City, Viet Nam
| | - Xuan Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology, Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, 700000, Viet Nam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, 700000, Viet Nam
| | - Ngoc Son Hai Nguyen
- Faculty of Environment, Thai Nguyen University of Agriculture and Forestry (TUAF), Thai Nguyen, 23000, Viet Nam
| | - Dai-Viet N Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Viet Nam; School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Penang, Malaysia
| | - Huu Tuan Tran
- Laboratory of Ecology and Environmental Management, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City, Viet Nam; Faculty of Technology, Van Lang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
14
|
Keerthanan S, Jayasinghe C, Bolan N, Rinklebe J, Vithanage M. Retention of sulfamethoxazole by cinnamon wood biochar and its efficacy of reducing bioavailability and plant uptake in soil. CHEMOSPHERE 2022; 297:134073. [PMID: 35227748 DOI: 10.1016/j.chemosphere.2022.134073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/16/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
The objective of this research was to evaluate the efficacy of cinnamon wood biochar (CWBC) in adsorbing sulfamethoxazole (SUL), which alleviates bioavailability and plant uptake. Batch studies at various pH, contact times, and initial SUL loading were used to study SUL adsorption in CWBC, soil, and 2.5% CWBC amended soil. SUL mitigation from plant uptake were examined using Ipomoea aquatica at different SUL contamination levels in the soil. The kinetic results were described by pseudo-second-order with maximum adsorption capacities (Qmax) of 95.64 and 0.234 mg/g for pristine CWBC and amendment, respectively implying that chemical interactions are rate-determining stages. Hill and Toth's model described the isotherm data for pristine CWBC, soil and CWBC amended soil as Qmax of 113.44, 0.72, and 3.45 mg/g. Column data showed a great mobilization of SUL in loamy sand; however, when CWBC was added to the loamy sand, the mobilization was drastically reduced by 98.8%. The Ipomoea aquatica showed a great potential to SUL uptake and it depended on the contamination level; the SUL accumulation in plant was 9.6-13.8 and 19.1-48 mg/kg when soil was spiked with 5 and 50 mg/kg, respectively. The addition of 2.5% CWBC reduced root and shoot uptake by 30 and 95%, respectively in 5 mg/kg of SUL, whereas with 50 mg/kg of SUL, the root and shoot uptake was reduced by 60 and 61%, respectively. The current study suggested CWBC as a possible adsorbent that may be employed to reduce SUL bioavailability in environmental matrices.
Collapse
Affiliation(s)
- S Keerthanan
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Chamila Jayasinghe
- Department of Food Science and Technology, Faculty of Livestock, Fisheries and Nutrition, Wayamba University of Sri Lanka. Makandura, Gonawila, Sri Lanka
| | - Nanthi Bolan
- School of Agriculture and Environment, The UWA Institute of Agriculture, The University of Western Australia, M079, Perth WA, 6009, Australia
| | - Jörg Rinklebe
- Soil- and Groundwater-Management, Institute of Soil Engineering, Waste- and Water Science, Faculty of Architecture und Civil Engineering, University of Wuppertal, Germany
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka.
| |
Collapse
|
15
|
Tao Y, Feng C, Xu J, Shen L, Qu J, Ju H, Yan L, Chen W, Zhang Y. Di(2-ethylhexyl) phthalate and dibutyl phthalate have a negative competitive effect on the nitrification of black soil. CHEMOSPHERE 2022; 293:133554. [PMID: 34999103 DOI: 10.1016/j.chemosphere.2022.133554] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Di (2-ethylhexyl) phthalate (DEHP) and dibutyl phthalate (DBP) are the most widely used plasticizers for agricultural mulching films and one of the most common organic pollutants in black soil. However, little is known about the effect of these two contaminants on nitrification in black soil. This study investigated the changes of 20 mg/kg DEHP and DBP on the diversity of nitrification microbial communities, the abundance of ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) related genes, and the activities of key enzymes involved in nitrification. During ammonia oxidation, DEHP and DBP had uncompetitive inhibition of urease, reducing the copy number of amoA gene, and microorganisms (Azoarcus, Streptomyces and Caulobacter) would use inorganic nitrogen as a nitrogen source for physiological growth. During nitrite oxidation, the copy number of nxrA gene also reduced, and the relative abundance of chemoautotrophic nitrifying bacteria (Nitrosomonas and Nitrobacter) decreased. Moreover, the path analysis results showed that DEHP and DBP mainly directly or indirectly affect AOB and NOB through three ways. These results help better understand the ecotoxicological effects of DEHP and DBP on AOB and NOB in black soil.
Collapse
Affiliation(s)
- Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Chong Feng
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Jiaming Xu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Lu Shen
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Hanxun Ju
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Lilong Yan
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Weichang Chen
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
16
|
Jellali S, El-Bassi L, Charabi Y, Uaman M, Khiari B, Al-Wardy M, Jeguirim M. Recent advancements on biochars enrichment with ammonium and nitrates from wastewaters: A critical review on benefits for environment and agriculture. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 305:114368. [PMID: 34968937 DOI: 10.1016/j.jenvman.2021.114368] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/05/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
During the last decade, biochars have been considered as attractive and eco-friendly materials with various applications including wastewater treatment, energy production and soil amendments. However, the important nitrogen losses during biochars production using the pyrolysis process have limited their potential use in agriculture as biofertilizer. Therefore, it seems necessary to enrich these biochars with nitrogen sources before their use in agricultural soils. This paper is the first comprehensive review on the assessment of biomass type and the biochars' properties effects on N recovery efficiency from aqueous solutions as well as its release and availability for plants when applying the N-enriched chars in soils. In particular, the N recovery efficiency by raw biochars versus the type of the raw feedstock is summarized. Then, correlations between the adsorption performance and the main physico-chemical properties are established. The main mechanisms involved during ammonium (NH4-N) and nitrates (NO3-N) recovery process are thoroughly discussed. A special attention is given to the assessment of the biochars physico-chemical modification impact on their N recovery capacities improvement. After that, the application of these N-enriched biochars in agriculture and their impacts on plants growth as well as methane and nitrous oxide greenhouse gas emissions reduction are also discussed. Finally, the main future development and challenges of biochars enrichment with N from wastewaters and their valorization as biofertilizers for plants growth and greenhouse gas (GHG) emissions reduction are provided. This systematic review is intended to promote the real application of biochars for nutrients recovery from wastewaters and their reuse as eco-friendly fertilizers.
Collapse
Affiliation(s)
- Salah Jellali
- Center for Environmental Studies and Research, Sultan Qaboos University, Al-Khoud 123, Muscat, Oman.
| | - Leila El-Bassi
- Wastewaters and Environment Laboratory, Water Research and Technologies Center (CERTE), Technopark Borj Cedria, University of Carthage, P.O.Box 273, Soliman, 8020, Tunisia.
| | - Yassine Charabi
- Center for Environmental Studies and Research, Sultan Qaboos University, Al-Khoud 123, Muscat, Oman.
| | - Muhammad Uaman
- Center for Environmental Studies and Research, Sultan Qaboos University, Al-Khoud 123, Muscat, Oman.
| | - Besma Khiari
- Wastewaters and Environment Laboratory, Water Research and Technologies Center (CERTE), Technopark Borj Cedria, University of Carthage, P.O.Box 273, Soliman, 8020, Tunisia.
| | - Malik Al-Wardy
- Department of Soils, Water and Agricultural Engineering, College of Agriculture and Marine Sciences, Sultan Qaboos University, Muscat, Oman.
| | - Mejdi Jeguirim
- The Institute of Materials Science of Mulhouse (IS2M), University of Haute Alsace, University of Strasbourg, CNRS, UMR 7361, F-68100, Mulhouse, France.
| |
Collapse
|
17
|
Nutrient Remediation Efficiency of the Sedge Plant (Cyperus alopecuroides Rottb.) to Restore Eutrophic Freshwater Ecosystems. SUSTAINABILITY 2022. [DOI: 10.3390/su14052823] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The current study investigated the nutrients removal efficiency of the sedge macrophyte Cyperus alopecuroides to treat water eutrophication, besides evaluating the recycling possibility of the harvested material. Samples of sediment, water, and plant tissues were taken seasonally from six polluted and three unpolluted locations for this investigation. The growth properties of C. alopecuroides showed remarkable seasonal differences in plant density and biomass, with the maximum values (7.1 individual/m2 and 889.6 g/m2, respectively) obtained during summer and the minimum (4.1 individual/m2 and 547.2 g/m2, respectively) in winter. In polluted locations, the above-ground tissues had an efficiency to remove more contents of N and P (11.9 and 3.8 g/m2, respectively) than in unpolluted ones (7.1 and 3.4 g/m2, respectively). The high-nutrient standing stock of C. alopecuroides supports its potential use for nutrient removal from eutrophic wetlands. The tissues of C. alopecuroides had the maximum nutrients removal efficiency to remediate great amounts of Na, K, and N in summer, and Ca, P, and Mg in spring. Above- and below-ground parts of C. alopecuroides from unpolluted locations can be considered as a rough forage for beef cattle, dairy cattle, goats, and sheep. The present study indicated the potential of C. alopecuroides in restoring eutrophic freshwater ecosystems, and, thus, it can be used in similar habitats worldwide.
Collapse
|
18
|
Zhao W, Yang H, He S, Zhao Q, Wei L. A review of biochar in anaerobic digestion to improve biogas production: Performances, mechanisms and economic assessments. BIORESOURCE TECHNOLOGY 2021; 341:125797. [PMID: 34433116 DOI: 10.1016/j.biortech.2021.125797] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 05/22/2023]
Abstract
Anaerobic digestion (AD) technology still faces some challenges including low methane productivity, instable operation efficiency and undesired refractory substances degradation. Biochar has recently been recognized as a promising alternative addition in AD process to enhance methane production. Based on VOSviewer analysis, this review presents a comprehensive summarizing of the applications, performances, and economies of biochar strategies in AD system. Firstly, typical production processes of biochar and its main characteristics including adsorption and immobilization ability, buffering ability and electron transfer ability were evaluated. Then, the applications of biochar in AD and its improving effects on biogas production/purification were summarized. Accordingly, the corresponding mechanisms of biochar addition in AD for digestion efficiency improvement were elucidated. Finally, the economic and environmental feasibilities of application biochar in AD, as well as prospective future studies were summarized. Through an overview of biochar in AD system, this paper aims to promote its widely practical applications.
Collapse
Affiliation(s)
- Weixin Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE); School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Haizhou Yang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE); School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shufei He
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE); School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE); School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE); School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
19
|
Tayibi S, Monlau F, Marias F, Thevenin N, Jimenez R, Oukarroum A, Alboulkas A, Zeroual Y, Barakat A. Industrial symbiosis of anaerobic digestion and pyrolysis: Performances and agricultural interest of coupling biochar and liquid digestate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148461. [PMID: 34182451 DOI: 10.1016/j.scitotenv.2021.148461] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/11/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
The sustainability of the anaerobic digestion industry is closely related to proper digestate disposal. In this study, an innovative cascading biorefinery concept coupling anaerobic digestion and subsequent pyrolysis of the digestate was investigated with the aim of enhancing the energy recovery and improving the fertilizers from organic wastes. Continuous anaerobic co-digestion of quinoa residues with wastewater sludge (45/55% VS) exhibited good stability and a methane production of 219 NL CH4/kg VS. Subsequent pyrolysis of the solid digestate was carried out (at 500 °C, 1 h, and 10 °C/min), resulting in a products distribution of 40 wt% biochar, 36 wt% bio-oil, and 24 wt% syngas. The organic phase (OP) of bio-oil and syngas exhibited higher and lower heating values of 34 MJ/kg and 11.8 MJ/Nm3, respectively. The potential synergy of coupling biochar with liquid digestate (LD) for agronomic purposes was investigated. Interestingly, coupling LD (at 170 kg N/ha) with biochar (at 25 tons/ha) improved the growth of tomato plants up to 25% compared to LD application alone. In parallel, co-application of biochar with LD significantly increased the ammonia volatilization (by 64%) compared to LD application alone, although their simultaneous use did not impact the C and N mineralization rates.
Collapse
Affiliation(s)
- Saida Tayibi
- IATE, University of Montpellier, INRAE, Agro Institut of Montpelier, Montpellier, France; Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco; APESA, Pôle Valorisation, Cap Ecologia, Lescar, France; LIMAT, Faculté des Sciences Ben M'Sik, Université Hassan II de Casablanca, Morocco
| | | | - Frederic Marias
- Laboratoire de Thermique Energétique et Procédés IPRA, EA1932, Université de Pau et des Pays de l'Adour/E2S, UPPA, 64000 Pau, France
| | - Nicolas Thevenin
- RITTMO Agroenvironnement-ZA Biopôle, 37 rue de Herrlisheim, CS 800 23, 68025 Colmar Cedex, France
| | | | | | - Adil Alboulkas
- IATE, University of Montpellier, INRAE, Agro Institut of Montpelier, Montpellier, France; Laboratoire des procédés chimiques et matériaux appliqués (LPCMA), Faculté polydisciplinaire de Béni-Mellal, Université Sultan Moulay Slimane, BP 592, 23000 Béni-Mellal, Morocco
| | - Youssef Zeroual
- Situation Innovation, OCP Group, Complexe industriel Jorf Lasfar, El Jadida, Morocco
| | - Abdellatif Barakat
- IATE, University of Montpellier, INRAE, Agro Institut of Montpelier, Montpellier, France; Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco.
| |
Collapse
|
20
|
Sun P, Zhao Z, Fan P, Chen W, Ruan Y, Wang Q. Ammonia- and Nitrite-Oxidizing Bacteria are Dominant in Nitrification of Maize Rhizosphere Soil Following Combined Application of Biochar and Chemical Fertilizer. Front Microbiol 2021; 12:715070. [PMID: 34675894 PMCID: PMC8524134 DOI: 10.3389/fmicb.2021.715070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/09/2021] [Indexed: 11/13/2022] Open
Abstract
Autotrophic nitrification is regulated by canonical ammonia-oxidizing archaea (AOA) and bacteria (AOB) and nitrite-oxidizing bacteria (NOB). To date, most studies have focused on the role of canonical ammonia oxidizers in nitrification while neglecting the NOB. In order to understand the impacts of combined biochar and chemical fertilizer addition on nitrification and associated nitrifiers in plant rhizosphere soil, we collected rhizosphere soil from a maize field under four different treatments: no fertilization (CK), biochar (B), chemical nitrogen (N) + phosphorus (P) + potassium (K) fertilizers (NPK), and biochar + NPK fertilizers (B + NPK). The potential nitrification rate (PNR), community abundances, and structures of AOA, AOB, complete ammonia-oxidizing bacteria (Comammox Nitrospira clade A), and Nitrobacter- and Nitrospira-like NOB were measured. Biochar and/or NPK additions increased soil pH and nutrient contents in rhizosphere soil. B, NPK, and B + NPK treatments significantly stimulated PNR and abundances of AOB, Comammox, and Nitrobacter- and Nitrospira-like NOB, with the highest values observed in the B + NPK treatment. Pearson correlation and random forest analyses predicted more importance of AOB, Comammox Nitrospira clade A, and Nitrobacter- and Nitrospira-like NOB abundances over AOA on PNR. Biochar and/or NPK additions strongly altered whole nitrifying community structures. Redundancy analysis (RDA) showed that nitrifying community structures were significantly affected by pH and nutrient contents. This research shows that combined application of biochar and NPK fertilizer has a positive effect on improving soil nitrification by affecting communities of AOB and NOB in rhizosphere soil. These new revelations, especially as they related to understudied NOB, can be used to increase efficiency of agricultural land and resource management.
Collapse
Affiliation(s)
- Ping Sun
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Ziting Zhao
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Pingshan Fan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Wei Chen
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Yunze Ruan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Qing Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| |
Collapse
|
21
|
Holatko J, Hammerschmiedt T, Kintl A, Danish S, Skarpa P, Latal O, Baltazar T, Fahad S, Akça H, Taban S, Kobzova E, Datta R, Malicek O, Hussain GS, Brtnicky M. Effect of carbon-enriched digestate on the microbial soil activity. PLoS One 2021; 16:e0252262. [PMID: 34214110 PMCID: PMC8253426 DOI: 10.1371/journal.pone.0252262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 05/08/2021] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES As a liquid organic fertilizer used in agriculture, digestate is rich in many nutrients (i.e. nitrogen, phosphorus, sulfur, calcium, potassium); their utilization may be however less efficient in soils poor in organic carbon (due to low carbon:nitrogen ratio). In order to solve the disadvantages, digestate enrichment with carbon-rich amendments biochar or humic acids (Humac) was tested. METHODS Soil variants amended with enriched digestate: digestate + biochar, digestate + Humac, and digestate + combined biochar and humic acids-were compared to control with untreated digestate in their effect on total soil carbon and nitrogen, microbial biomass carbon, soil respiration and soil enzymatic activities in a pot experiment. Yield of the test crop lettuce was also determined for all variants. RESULTS Soil respiration was the most significantly increased property, positively affected by digestate + Humac. Both digestate + biochar and digestate + Humac significantly increased microbial biomass carbon. Significant negative effect of digestate + biochar (compared to the control digestate) on particular enzyme activities was alleviated by the addition of humic acids. No significant differences among the tested variants were found in the above-ground and root plant biomass. CONCLUSIONS The tested organic supplements improved the digestate effect on some determined soil properties. We deduced from the results (carbon:nitrogen ratio, microbial biomass and activity) that the assimilation of nutrients by plants increased; however, the most desired positive effect on the yield of crop biomass was not demonstrated. We assume that the digestate enrichment with organic amendments may be more beneficial in a long time-scaled trial.
Collapse
Affiliation(s)
- Jiri Holatko
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Tereza Hammerschmiedt
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
- Department of Geology and Soil Science, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | - Antonin Kintl
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
- Agricultural Research, Ltd., Troubsko, Czech Republic
| | - Subhan Danish
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
| | - Petr Skarpa
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Oldrich Latal
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Tivadar Baltazar
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Shah Fahad
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
- Department of Agronomy, the University of Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Hanife Akça
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Ankara University, Ankara, Turkey
| | - Suleyman Taban
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Ankara University, Ankara, Turkey
| | - Eliska Kobzova
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Rahul Datta
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
- Department of Geology and Soil Science, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | - Ondrej Malicek
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Ghulam Sabir Hussain
- Department of Agronomy, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University Multan, Punjab, Pakistan
| | - Martin Brtnicky
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
- Department of Geology and Soil Science, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Brno, Czech Republic
| |
Collapse
|
22
|
Sun H, Zhang Y, Yang Y, Chen Y, Jeyakumar P, Shao Q, Zhou Y, Ma M, Zhu R, Qian Q, Fan Y, Xiang S, Zhai N, Li Y, Zhao Q, Wang H. Effect of biofertilizer and wheat straw biochar application on nitrous oxide emission and ammonia volatilization from paddy soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 275:116640. [PMID: 33556733 DOI: 10.1016/j.envpol.2021.116640] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/24/2021] [Accepted: 01/29/2021] [Indexed: 05/20/2023]
Abstract
Biofertilizer can improve soil quality, especially the microbiome composition, which potentially affect soil nitrogen (N) cycling. However, little is known about the responses of nitrous oxide (N2O) emission and ammonia (NH3) volatilization from biochar-amended paddy soil to the biofertilizer application. Therefore, we conducted a soil column experiment using four 240 kg N ha-1 (equivalent to 1.7 g N pot-1) treatments consisting of biofertilizer (3 t ha-1, equivalent to 21.2 g pot-1), biochar (7.5 t ha-1, equivalent to 63.6 g pot-1), and a mixture of biofertilizer and biochar at the same rate and a control (CK). The results showed that the N2O emissions and NH3 volatilizations were equivalent to 0.15-0.28% and 18.0-31.5% of rice seasonal N applied to the four treatments, respectively. Two treatments with biofertilizer and biochar individual amendment significantly increased (P < 0.05) the N2O emissions to same degree by 30.2%, while co-application of biochar and biofertilizer further increased the N2O emission by 74.4% compared to the control. The higher N2O emission was likely attributed to the increased gene copies of AOA, nirK, and nirS. Applying biofertilizer significantly increased (P < 0.05) NH3 volatilization by 24.7% relative to the control, while applying biochar had no influence on NH3 volatilization. Co-application of biofertilizer and biochar significantly decreased (P < 0.05) NH3 volatilization by 12.3% compared to the control. Overall, the net global warming potential based on NH3 and N2O in current study increased by 13.0-26.0% in both the individual- and co-application of biofertilizer and biochar. Interestingly, both individual- and co-applications of biofertilizer and biochar increased the rice grain yield by 16.5-38.3%. Therefore, applications of biofertilizer and biochar did not increase the GHGI. Particularly, the co-applying of them significantly lowered (P < 0.05) the GHGI by 15.2%. In conclusion, biofertilizer and biochar should be co-applied to achieve the goals of environment protection and food security.
Collapse
Affiliation(s)
- Haijun Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China; Key Laboratory of Soil and Water Conservation and Ecological Restoration of Jiangsu Province, Nanjing Forestry University, Nanjing, 210037, China
| | - Yu Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Yiting Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Yudong Chen
- Nanjing Institute of Environmental Sciences, Ministry of Ecological Environment, Nanjing, 210042, China.
| | - Paramsothy Jeyakumar
- Environmental Sciences, School of Agriculture and Environment, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand
| | - Qianlan Shao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Youfeng Zhou
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Meng Ma
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Ruiqi Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Qiawei Qian
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Yuerong Fan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Shujie Xiang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Ningning Zhai
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Yifan Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Qingfeng Zhao
- Shandong Qihong Biological Technology Co., Ltd., Weifang, 262400, Shandong, China
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, China
| |
Collapse
|