1
|
McGrath TJ, Hägele C, Schweizer S, Vetter W, Dodson RE, Le Bizec B, Covaci A, Dervilly G, Cariou R. Application of pattern deconvolution strategies for the estimation of bromochloro alkane concentrations in indoor dust samples. CHEMOSPHERE 2024; 366:143370. [PMID: 39306103 DOI: 10.1016/j.chemosphere.2024.143370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
Bromochloro alkanes (BCAs) are a class of flame retardants similar in structure to polychlorinated alkanes (PCAs), which are the major component of short-chain chlorinated paraffins (SCCPs) listed as Persistent Organic Pollutants under the Stockholm Convention. BCAs have recently been detected for the first time in environmental samples. Due to the complete lack of commercially available analytical standards, no method for quantifying BCAs has been reported to date. In this study, 16 custom-synthesised standards with mixed bromine and chlorine halogenation and carbon chain lengths ranging from C10 to C17 were characterized by liquid chromatography and Orbitrap high-resolution mass spectrometry and used to assess the applicability of pattern deconvolution quantification strategies for BCAs in indoor dust. Br1-9 and Cl1-8 BCAs were detected as [M + Cl]- adduct ions among the C10 to C17 standards, as well as numerous PCA homologues. After applying correction factors to account for the presence of PCAs in the standards, triplicate fortification experiments using varied halogenation composition and concentration determined an average measurement accuracy of 81% over the carbon chain lengths studied and coefficient of variance ≤20% between replicates. Overall, approximately 89% of the ΣBCA concentrations quantified in the fortification trials met the European Union Reference Laboratory's accuracy acceptability criteria recommended for PCAs, between 50 and 150%. Application of the BCA pattern deconvolution quantification procedure to seven representative indoor dust samples from the United States of America revealed a low correlation between the homologue distribution in the samples and the prototype standards (R2 ≤ 0.40), which precluded reliable quantification. This study indicates that pattern deconvolution is an appropriate strategy for quantifying BCAs in environmental samples, but that a large set of appropriate mixture standards will be required before more reliable estimates of BCA concentrations can be achieved in indoor dust.
Collapse
Affiliation(s)
- Thomas J McGrath
- Oniris, INRAE, LABERCA, 44300, Nantes, France; Institute of Health and Environment, Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Clara Hägele
- University of Hohenheim, Institute of Food Chemistry (170b), 70599, Stuttgart, Germany
| | - Sina Schweizer
- University of Hohenheim, Institute of Food Chemistry (170b), 70599, Stuttgart, Germany
| | - Walter Vetter
- University of Hohenheim, Institute of Food Chemistry (170b), 70599, Stuttgart, Germany
| | | | | | - Adrian Covaci
- Toxicological Centre, University of Antwerp, 2610, Wilrijk, Belgium
| | | | | |
Collapse
|
2
|
McGrath TJ, Saint-Vanne J, Hutinet S, Vetter W, Poma G, Fujii Y, Dodson RE, Johnson-Restrepo B, Muenhor D, Le Bizec B, Dervilly G, Covaci A, Cariou R. Detection of Bromochloro Alkanes in Indoor Dust Using a Novel CP-Seeker Data Integration Tool. Anal Chem 2024; 96:4942-4951. [PMID: 38478960 DOI: 10.1021/acs.analchem.3c05800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Bromochloro alkanes (BCAs) have been manufactured for use as flame retardants for decades, and preliminary environmental risk screening suggests they are likely to behave similarly to polychlorinated alkanes (PCAs), subclasses of which are restricted as Stockholm Convention Persistent Organic Pollutants (POPs). BCAs have rarely been studied in the environment, although some evidence suggests they may migrate from treated-consumer materials into indoor dust, resulting in human exposure via inadvertent ingestion. In this study, BCA-C14 mixture standards were synthesized and used to validate an analytical method. This method relies on chloride-enhanced liquid chromatography-electrospray ionization-Orbitrap-high resolution mass spectrometry (LC-ESI-Orbitrap-HRMS) and a novel CP-Seeker integration software package for homologue detection and integration. Dust sample preparation via ultrasonic extraction, acidified silica cleanup, and fractionation on neutral silica cartridges was found to be suitable for BCAs, with absolute recovery of individual homologues averaging 66 to 78% and coefficients of variation ≤10% in replicated spiking experiments (n = 3). In addition, a total of 59 indoor dust samples from six countries, including Australia (n = 10), Belgium (n = 10), Colombia (n = 10), Japan (n = 10), Thailand (n = 10), and the United States of America (n = 9), were analyzed for BCAs. BCAs were detected in seven samples from the U.S.A., with carbon chain lengths of C8, C10, C12, C14, C16, C18, C24 to C28, C30 and C31 observed overall, though not detected in samples from any other countries. Bromine numbers of detected homologues in the indoor dust samples ranged Br1-4 as well as Br7, while chlorine numbers ranged Cl2-11. BCA-C18 was the most frequently detected, observed in each of the U.S.A. samples, while the most prevalent degrees of halogenation were homologues of Br2 and Cl4-5. Broad estimations of BCA concentrations in the dust samples indicated that levels may approach those of other flame retardants in at least some instances. These findings suggest that development of quantification strategies and further investigation of environmental occurrence and health implications are needed.
Collapse
Affiliation(s)
- Thomas J McGrath
- Oniris, INRAE, LABERCA, 44307 Nantes, France
- Toxicological Centre, University of Antwerp, 2610 Wilrijk, Belgium
| | | | | | - Walter Vetter
- University of Hohenheim, Institute of Food Chemistry, 70599, Stuttgart, Germany
| | - Giulia Poma
- Toxicological Centre, University of Antwerp, 2610 Wilrijk, Belgium
| | - Yukiko Fujii
- Toxicological Centre, University of Antwerp, 2610 Wilrijk, Belgium
- Daiichi University of Pharmacy, Fukuoka, 815-8511, Japan
| | - Robin E Dodson
- Silent Spring Institute, Newton, Massachusetts 02460, United States
| | - Boris Johnson-Restrepo
- Environmental Chemistry Research Group, School of Exact and Natural Sciences, Campus of San Pablo, University of Cartagena, Cartagena 130015, Colombia
| | - Dudsadee Muenhor
- Faculty of Environmental Management, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Health Impact Assessment Research Center, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Center of Excellence on Hazardous Substance Management (HSM), Bangkok 10330, Thailand
| | | | | | - Adrian Covaci
- Toxicological Centre, University of Antwerp, 2610 Wilrijk, Belgium
| | | |
Collapse
|
3
|
Li J, Dai L, Feng Y, Cao Z, Ding Y, Xu H, Xu A, Du H. Multigenerational effects and mutagenicity of three flame retardants on germ cells in Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115815. [PMID: 38091675 DOI: 10.1016/j.ecoenv.2023.115815] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/14/2023] [Accepted: 12/09/2023] [Indexed: 01/12/2024]
Abstract
Flame retardants (FRs) have raised public concerns because of their environmental persistence and negative impacts on human health. Recent evidence has revealed that many FRs exhibit reproductive toxicities and transgenerational impacts, whereas the toxic effects of FRs on germ cells remain barely explored. Here we investigated the multigenerational effects of three flame retardants (TBBPA, TCEP and TCPP) on germ cell development in Caenorhabditis elegans, and examined the germ cell mutagenicity of these FRs by using whole genome sequencing. Parental exposure to three FRs markedly increased germ cell apoptosis, and impeded oogenesis in F1-F6 offspring. In addition, the double-increased mutation frequencies observed in progeny genomes uncover the mutagenic actions of FRs on germ cells. Analysis of mutation spectra revealed that these FRs predominantly induced point mutations at A:T base pairs, whereas both small and large indels were almost unaffected. These results revealed the long-term effects of FRs on development and genomic stability of germ cells, which may pose risks to environmental organisms and human reproductive health. Taken together, our findings suggest that germ cell mutagenicity should be carefully examined for the environmental risk assessment of FRs and other emerging pollutants.
Collapse
Affiliation(s)
- Jiali Li
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China
| | - Linglong Dai
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China; Science Island Branch, Graduate School of USTC, Hefei 230026, Anhui, China
| | - Yu Feng
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China; Science Island Branch, Graduate School of USTC, Hefei 230026, Anhui, China
| | - Zhenxiao Cao
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China; School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Yuting Ding
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China; School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Hao Xu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China
| | - An Xu
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China.
| | - Hua Du
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, China.
| |
Collapse
|
4
|
Ji X, Liang J, Wang Y, Liu X, Li Y, Liu Q, Liu R. Synthetic Antioxidants as Contaminants of Emerging Concern in Indoor Environments: Knowns and Unknowns. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21550-21557. [PMID: 38085701 DOI: 10.1021/acs.est.3c06487] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Synthetic antioxidants, including synthetic phenolic antioxidants (SPAs), amine antioxidants (AAs), and organophosphite antioxidants (OPAs), are essential additives for preventing oxidative aging in various industrial and consumer products. Increasing attention has been paid to the environmental contamination caused by these chemicals, but our understanding of synthetic antioxidants is generally limited compared to other emerging contaminants such as plasticizers and flame retardants. Many people spend a significant portion (normally greater than 80%) of their time indoors, meaning that they experience widespread and persistent exposure to indoor contaminants. Thus, this Perspective focuses on the problem of synthetic antioxidants as indoor environmental contaminants. The wide application of antioxidants in commercial products and their demonstrated toxicity make them an important family of indoor contaminants of emerging concern. However, significant knowledge gaps still need to be bridged: novel synthetic antioxidants and their related transformation products need to be identified in indoor environments, different dust sampling strategies should be employed to evaluate human exposure to these contaminants, geographic scope and sampling scope of research on indoor contamination should be broadened, and the partition coefficients of synthetic antioxidants among different media need to be investigated.
Collapse
Affiliation(s)
- Xiaomeng Ji
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Jiefeng Liang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yingjun Wang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiaoyun Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yiling Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Qifan Liu
- Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, China
| | - Runzeng Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| |
Collapse
|
5
|
McGrath TJ, Poma G, Hutinet S, Fujii Y, Dodson RE, Johnson-Restrepo B, Muenhor D, Dervilly G, Cariou R, Covaci A. An international investigation of chlorinated paraffin concentrations and homologue distributions in indoor dust. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:121994. [PMID: 37302785 DOI: 10.1016/j.envpol.2023.121994] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
In this study, very short-, short-, medium-, and long-chain chlorinated paraffins (vSCCPs, SCCPs, MCCPs and LCCPs, respectively) were measured in 40 indoor dust samples from four countries including Japan (n = 10), Australia (n = 10), Colombia (n = 10) and Thailand (n = 10). Homologues of the chemical formula CxH(2x+2-y)Cly ranging C6-36 and Cl3-30 were analysed using liquid chromatography coupled to Orbitrap high resolution mass spectrometry (LC-Orbitrap-HRMS) and integrated using novel custom-built CP-Seeker software. CPs were detected in all dust samples with MCCPs the dominant homologue group in all countries. Overall median ∑SCCP, ∑MCCP and ∑LCCP (C18-20) concentrations determined in dust samples were 30 μg/g (range; 4.0-290 μg/g), 65 μg/g (range; 6.9-540 μg/g) and 8.6 μg/g (range; <1.0-230 μg/g), respectively. Of the quantified CP classes, overall concentrations were generally highest in the samples from Thailand and Colombia, followed by Australia and Japan. vSCCPs with C≤9 were detected in dust from each country with an overall frequency of 48%, while LCCPs (C21-36) were present in 100% of samples. Estimated daily intakes (EDIs) calculated for SCCPs and MCCPs relating to ingestion of contaminated indoor dust were considered not to represent health risks based on currently available toxicological data using the margin of exposure (MOE) approach. To the authors' knowledge, this study provides the first data on CPs in indoor dust from Japan, Colombia and Thailand, and is among the first reports of vSCCPs in indoor dust, globally. These findings indicate that further toxicological data and the availability of appropriate analytical standards are needed to evaluate the potential for negative health outcomes deriving from exposure to vSCCPs and LCCPs.
Collapse
Affiliation(s)
- Thomas J McGrath
- Toxicological Centre, University of Antwerp, 2610, Wilrijk, Belgium; Oniris, INRAE, LABERCA, 44300, Nantes, France.
| | - Giulia Poma
- Toxicological Centre, University of Antwerp, 2610, Wilrijk, Belgium
| | | | - Yukiko Fujii
- Toxicological Centre, University of Antwerp, 2610, Wilrijk, Belgium; Daiichi University of Pharmacy, Fukuoka, 815-8511, Japan
| | | | - Boris Johnson-Restrepo
- Environmental Chemistry Research Group, University of Cartagena, Cartagena, 130015, Colombia
| | - Dudsadee Muenhor
- Faculty of Environmental Management, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Health Impact Assessment Research Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence on Hazardous Substance Management (HSM), Bangkok, 10330, Thailand
| | | | | | - Adrian Covaci
- Toxicological Centre, University of Antwerp, 2610, Wilrijk, Belgium
| |
Collapse
|
6
|
Xu S, Sun X, Wu J, Li K, Li X, Zhang Y, Gao XJ. TBBPA causes inflammation and cell death via the ROS/NF-κB pathway in the gastric mucosa. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115320. [PMID: 37531928 DOI: 10.1016/j.ecoenv.2023.115320] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/23/2023] [Accepted: 07/31/2023] [Indexed: 08/04/2023]
Abstract
Tetrabromobisphenol A (TBBPA) is a common brominated flame retardant that has a wide range of toxic effects on organisms. However, the mechanism of the toxic effects of TBBPA on the digestive system has rarely been studied. The purpose of this study was to investigate the mechanism of TBBPA toxicity on the gastric mucosa. In this study, TBBPA (mixed with corn oil) was administered by gavage at doses of 0 mg/kg (CG), 10 mg/kg and 20 mg/kg. The results showed that the levels of ROS, MDA and LPO were increased, and the activities of antioxidant enzymes were decreased. Large amounts of ROS activated the NF-κB pathway, leading to the development of an inflammatory response. The expression of BCL family and Caspase (Cas) family genes was increased, inducing apoptosis. The RIP3/MLKL pathway was activated, leading to cell necrosis. In summary, TBBPA can cause damage to the gastric mucosa through oxidative stress, leading to increased ROS activation of the NF-κB pathway. Treatment with the antioxidant NAC alleviated the damage to the gastric mucosa caused by TBBPA.
Collapse
Affiliation(s)
- Shuang Xu
- College of Veterinary Medicine, Northeastern Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Xiaoran Sun
- College of Veterinary Medicine, Northeastern Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Jiawei Wu
- College of Veterinary Medicine, Northeastern Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Kan Li
- College of Veterinary Medicine, Northeastern Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Xueying Li
- College of Veterinary Medicine, Northeastern Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Yanhe Zhang
- College of Veterinary Medicine, Northeastern Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Xue-Jiao Gao
- College of Veterinary Medicine, Northeastern Agricultural University, Harbin, Heilongjiang Province, People's Republic of China.
| |
Collapse
|
7
|
Zhao L, Cheng Z, Zhu H, Chen H, Yao Y, Baqar M, Yu H, Qiao B, Sun H. Electronic-waste-associated pollution of per- and polyfluoroalkyl substances: Environmental occurrence and human exposure. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131204. [PMID: 36931218 DOI: 10.1016/j.jhazmat.2023.131204] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/11/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Occupational exposure to per- and polyfluoroalkyl substances (PFASs) is of serious concern because their adverse health effects. Nevertheless, knowledge regarding contamination in e-waste dismantling regions is rather scarce. We therefore analysed seven neutral PFASs (n-PFASs) and forty ionized PFASs (i-PFASs) in dust and hand wipes collected from an e-waste dismantling plant and homes. Both dust (1370 ng/g) and workers' hand wipe (1100 ng/m2) in e-waste dismantling workshops contained significantly higher median levels of ∑PFASs than those from homes (684 ng/g and 444 ng/m2) (p < 0.01). ∑PFAS concentrations in dust and on workers' hand wipes from workshops were significantly higher than those from storage area. 8:2 fluorotelomer alcohol was the dominant n-PFAS in workshop dust (70.7%) and on worker's hand wipes (46.6%). Perfluoroalkyl carboxylic acids (C2 -C3) were the significant components (based on concentration) of i-PFASs in dust (57.9%) and on hand wipes (89.6%). A significant positive correlation (p < 0.001) of ∑PFAS concentrations between workshop dust and workers' hand wipes was observed, indicating that they come from common sources. Compared to dust ingestion, hand-to-mouth contact was highlighted as a vital exposure route, accounting for 68.8% for workers and 72.2% for residential population, respectively, of the sum of two exposure doses.
Collapse
Affiliation(s)
- Leicheng Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Hongkai Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Mujtaba Baqar
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hao Yu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Biting Qiao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
8
|
Young AS, Herkert N, Stapleton HM, Coull BA, Hauser R, Zoeller T, Behnisch PA, Felzel E, Brouwer A, Allen JG. Hormone receptor activities of complex mixtures of known and suspect chemicals in personal silicone wristband samplers worn in office buildings. CHEMOSPHERE 2023; 315:137705. [PMID: 36592838 PMCID: PMC9937064 DOI: 10.1016/j.chemosphere.2022.137705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/21/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Humans are exposed to increasingly complex mixtures of hormone-disrupting chemicals from a variety of sources, yet, traditional research methods only evaluate a small number of chemicals at a time. We aimed to advance novel methods to investigate exposures to complex chemical mixtures. Silicone wristbands were worn by 243 office workers in the USA, UK, China, and India during four work shifts. We analyzed extracts of the wristbands for: 1) 99 known (targeted) chemicals; 2) 1000+ unknown chemical features, tentatively identified through suspect screening; and 3) total hormonal activities towards estrogen (ER), androgen (AR), and thyroid hormone (TR) receptors in human cell assays. We evaluated associations of chemicals with hormonal activities using Bayesian kernel machine regression models, separately for targeted versus suspect chemicals (with detection ≥50%). Every wristband exhibited hormonal activity towards at least one receptor: 99% antagonized TR, 96% antagonized AR, and 58% agonized ER. Compared to men, women were exposed to mixtures that were more estrogenic (180% higher, adjusted for country, age, and skin oil abundance in wristband), anti-androgenic (110% higher), and complex (median 836 detected chemical features versus 780). Adjusted models showed strong associations of jointly increasing chemical concentrations with higher hormonal activities. Several targeted and suspect chemicals were important co-drivers of overall mixture effects, including chemicals used as plasticizers, fragrance, sunscreen, pesticides, and from other or unknown sources. This study highlights the role of personal care products and building microenvironments in hormone-disrupting exposures, and the substantial contribution of chemicals not often identifiable or well-understood to those exposures.
Collapse
Affiliation(s)
- Anna S Young
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA.
| | - Nicholas Herkert
- Nicholas School of the Environment, Duke University, 9 Circuit Dr, Durham, NC 27710, USA
| | - Heather M Stapleton
- Nicholas School of the Environment, Duke University, 9 Circuit Dr, Durham, NC 27710, USA
| | - Brent A Coull
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA
| | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA
| | - Thomas Zoeller
- Department of Biology, University of Massachusetts Amherst, Morrill Science Center, Amherst 01003, USA
| | - Peter A Behnisch
- BioDetection Systems, Science Park 406, 1098 XH Amsterdam, Netherlands
| | - Emiel Felzel
- BioDetection Systems, Science Park 406, 1098 XH Amsterdam, Netherlands
| | - Abraham Brouwer
- BioDetection Systems, Science Park 406, 1098 XH Amsterdam, Netherlands
| | - Joseph G Allen
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA
| |
Collapse
|
9
|
Zhang Y, Wu M, Xu M, Hu P, Xu X, Liu X, Cai W, Xia J, Wu D, Xu X, Yu G, Cao Z. Distribution of flame retardants among indoor dust, airborne particles and vapour phase from Beijing: spatial-temporal variation and human exposure characteristics. ENVIRONMENT INTERNATIONAL 2022; 170:107557. [PMID: 36209599 DOI: 10.1016/j.envint.2022.107557] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/22/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
The occurrence and distribution of 10 brominated flame retardants (BFRs) and 10 organophosphate flame retardants (OPFRs) were investigated in indoor dust, total suspended particles (TSP), and vapour phase from offices (n = 10), homes (n = 9), and day-care centres (n = 10) in Beijing, China. Three types of samples were collected biweekly from one office and one home over a year to examine temporal trends. BFRs in dust significantly correlated with those in TSP, while OPFRs significantly correlated among all three matrices. In addition, BFRs in dust (ng/g) and TSP (pg/m3) exhibited similar temporal trends with higher levels in the cold season, whereas OPFRs in TSP and vapour phase (pg/m3) showed similar temporal trends with higher levels in the warm season. The geometric mean concentrations of BFRs and OPFRs in the three matrices from the above mentioned three types of indoor microenvironments were used for exposure and health risk estimation, and ∑7OPFRs showed much higher hazard index (HI) values than ∑10BFRs for all subpopulations, and inhalation of OPFRs was a major risk source. With the volatility of flame retardants (FRs) decreasing, the contribution of dust ingestion and dermal absorption showed an increasing trend, and the contribution of inhalation exhibited a gradual decreasing trend, which implied the dominant exposure pathway to FRs is strongly related to the vapour pressure (25 °C, Pa) of these substances. Using a single type of microenvironment or the collection of samples at a single point in time can lead to overestimation or underestimation of overall exposure and risk for people to some extent. The correlations of FRs in dust, TSP, and vapour phase from indoor microenvironments, as well as their temporal trends were first reported in this study, which will provide a basis for more accurate FR exposure assessments in the future.
Collapse
Affiliation(s)
- Yacai Zhang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Min Wu
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Tsinghua University, Beijing 100084, China; State Key Laboratory of Water Resource Protection and Utilization in Coal Mining, Beijing, 100011, China
| | - Menghan Xu
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Pengtuan Hu
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Xin Xu
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Xiaotu Liu
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Tsinghua University, Beijing 100084, China; School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Wenwen Cai
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Jing Xia
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Tsinghua University, Beijing 100084, China
| | - Dongkui Wu
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Xiaopeng Xu
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Gang Yu
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Tsinghua University, Beijing 100084, China.
| | - Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
10
|
Strawn JR, Xu Y, Cecil KM, Khoury J, Altaye M, Braun JM, Lanphear BP, Sjodin A, Chen A, Yolton K. Early exposure to flame retardants is prospectively associated with anxiety symptoms in adolescents: A prospective birth cohort study. Depress Anxiety 2022; 39:780-793. [PMID: 36218051 PMCID: PMC10092502 DOI: 10.1002/da.23284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/05/2022] [Accepted: 09/11/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Anxiety disorders emerge during childhood and adolescence and are frequently preceded by subsyndromal anxiety symptoms. Environmental toxicants, including gestational polybrominated diphenyl ether (PBDE) exposure, are associated with neuropsychiatric sequelae; however, the role of PBDEs as risk factors for anxiety in adolescence is unclear. METHODS Using data from the Health Outcomes and Measures of the Environment (HOME) Study, a prospective pregnancy and birth cohort enrolled from 2003 to 2006, we investigated the relationship between gestational serum PBDE concentrations and anxiety symptoms in adolescents (N = 236). We measured five PBDE congeners (PBDE-28, -47, -99, -100, and -153) at 16 ± 3 weeks of gestation and calculated their sum (∑PBDE). We assessed self-reported anxiety symptoms using the Screen for Child Anxiety Related Emotional Disorders (SCARED) and depressive symptoms using the Children's Depression Inventory (CDI-2) at age 12 years. We estimated the associations of maternal PBDE concentrations with child anxiety and depressive symptoms using multivariable linear regression and modified Poisson regression. Covariates included child sex, maternal race, maternal age at delivery, maternal marital status, maternal education, and household income at the 12-year study visit as well as maternal depressive and anxiety symptoms. Sensitivity analyses were performed to control for maternal lead and mercury at delivery. RESULTS After adjusting for predetermined covariates, each doubling in maternal PBDE concentrations was associated with increased SCARED scores (e.g., for ∑PBDE, SCARED total score, β = 1.6 95% confidence interval [CI]: 0.3-2.9, p = .019) and a nonsignificant increase in depressive symptoms (e.g., for CDI total score, β = .8, 95% CI: -0.2-1.8, p = .11). CONCLUSIONS Gestational serum PBDE concentrations just before mid-pregnancy and during a period of active cortical and limbic neurogenesis, synaptogenesis and myelogenesis may be a risk factor for developing anxiety symptoms in early adolescence.
Collapse
Affiliation(s)
- Jeffrey R. Strawn
- Department of Psychiatry and Behavioral Neuroscience, Anxiety Disorders Research Program, College of MedicineUniversity of CincinnatiCincinnatiOhioUSA
- Department of Pediatrics, Cincinnati Children's Hospital Medical CenterDivision of Clinical PharmacologyCincinnatiOhioUSA
| | - Yingying Xu
- Department of Pediatrics, Cincinnati Children's Hospital Medical CenterDivision of General and Community PediatricsCincinnatiOhioUSA
| | - Kim M. Cecil
- Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of MedicineUniversity of CincinnatiCincinnatiOhioUSA
- Department of Environmental and Public Health Sciences, University of Cincinnati College of MedicineUniversity of CincinnatiCincinnatiOhioUSA
- Department of Radiology, University of Cincinnati College of MedicineUniversity of CincinnatiCincinnatiOhioUSA
| | - Jane Khoury
- Department of Pediatrics, Division of Biostatistics and EpidemiologyCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Mekibib Altaye
- Department of Pediatrics, Division of Biostatistics and EpidemiologyCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Joseph M. Braun
- Department of EpidemiologyBrown University School of Public HealthProvidenceRhode IslandUSA
| | - Bruce P. Lanphear
- BC Children's Hospital Research InstituteSimon Fraser UniversityBurnabyBritish ColumbiaCanada
| | - Andreas Sjodin
- Division of Laboratory SciencesCenters for Disease Control and PreventionAtlantaGeorgiaUSA
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and InformaticsUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Kimberly Yolton
- Department of Pediatrics, Cincinnati Children's Hospital Medical CenterDivision of General and Community PediatricsCincinnatiOhioUSA
| |
Collapse
|
11
|
Rasmussen PE, Kubwabo C, Gardner HD, Levesque C, Beauchemin S. Relationships between House Characteristics and Exposures to Metal(loid)s and Synthetic Organic Contaminants Evaluated Using Settled Indoor Dust. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10329. [PMID: 36011971 PMCID: PMC9408639 DOI: 10.3390/ijerph191610329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
This study investigates associations between house characteristics and chemical contaminants in house dust, collected under the nationally representative Canadian House Dust Study (2007−2010). Vacuum samples (<80 µm fraction) were analysed for over 200 synthetic organic compounds and metal(loid)s. Spearman rank correlations between contaminant concentrations in dust and presence of children and pets, types of flooring, heating styles and other characteristics suggested a number of indoor sources, pointing to future research directions. Numerous synthetic organics were significantly associated with reported use of room deodorizers and with the presence of cats in the home. Hardwood flooring, which is a manufactured wood product, emerged as a source of metal(loid)s, phthalates, organophosphate flame retardants/plasticizers, and obsolete organochlorine pesticides such as ∑DDT (but not halogenated flame retardants). Many metal(loid)s were significantly correlated with flame-retardant compounds used in building materials and heating systems. Components of heating appliances and heat distribution systems appeared to contribute heat-resistant chemicals and alloys to settled dust. Carpets displayed a dual role as both a source and repository of dust-borne contaminants. Contaminant loadings (<80 µm fraction) were significantly elevated in heavily carpeted homes, particularly those located near industry. Depending on the chemical (and its source), the results show that increased dust mass loading may enrich or dilute chemical concentrations in dust. Research is needed to improve the characterisation of hidden indoor sources such as flame retardants used in building materials and heating systems, or undisclosed ingredients used in common household products, such as air fresheners and products used for companion animals.
Collapse
Affiliation(s)
- Pat E. Rasmussen
- Environmental Health Science and Research Bureau, HECS Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
- Department of Earth and Environmental Sciences, University of Ottawa, Ottawa, ON K1N 9A7, Canada
| | - Cariton Kubwabo
- Environmental Health Science and Research Bureau, HECS Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - H. David Gardner
- Environmental Health Science and Research Bureau, HECS Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
- Department of Earth and Environmental Sciences, University of Ottawa, Ottawa, ON K1N 9A7, Canada
| | - Christine Levesque
- Environmental Health Science and Research Bureau, HECS Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Suzanne Beauchemin
- Environmental Health Science and Research Bureau, HECS Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| |
Collapse
|
12
|
Al-Omran LS, Stubbings WA, Harrad S. Concentrations and isomer profiles of hexabromocyclododecanes (HBCDDs) in floor, elevated surface, and outdoor dust samples from Basrah, Iraq. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:910-920. [PMID: 35662304 DOI: 10.1039/d2em00133k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Concentrations of the α, β, and γ- diastereomers of hexabromocyclododecane (α-, β-, and γ-HBCDD) were measured in 60 dust samples from 20 homes across Basrah, Iraq. From each home, two indoor dust (ID) samples (specifically one collected from elevated surfaces (ESD) and one from the floor (FD)) were collected from the living room, with one outdoor dust (OD) sample collected from the front yard of the house. Concentrations of HBCDDs decreased in the following sequence ESD > FD > OD. For ID, ΣHBCDD concentrations varied from 5.3 ng g-1 in FD to 150 ng g-1 in ESD, with median levels of 60 and 40 ng g-1 in ESD and FD respectively. Concentrations of γ-HBCDD, and consequently of ΣHBCDDs in ESD, significantly (p < 0.05) exceeded those in FD. For adults, this implies that exposure assessments based on FD only may underestimate exposure, as adults are more likely to ingest ESD. Concentrations of ΣHBCDDs in OD ranged between 7.4 and 120 ng g-1 with a median of 35 ng g-1 and were significantly exceeded (p < 0.05) by those in ID samples. Concentrations of ΣHBCDDs in OD from houses with car parking areas exceeded (p < 0.05) those in OD from other homes, implying vehicles as potential emission sources of HBCDDs. Simultaneously, there was moderate correlation (R = 0.510-0.609, p < 0.05) between concentrations in ID and OD, implying that the indoor environment is an important source of OD contamination. The isomer pattern of HBCDDs in dust samples displayed a predominance of α-HBCDD, which represented 56%, 52% and 59% ΣHBCDD in ESD, FD and OD samples respectively. Derived from the concentrations reported in this study, the median and 95th percentile estimated daily intakes (EDI) for Iraqi adults and toddlers through house dust ingestion did not exceed the reference dose (RfD) value for HBCDD.
Collapse
Affiliation(s)
- Layla Salih Al-Omran
- Department of Chemistry, College of Science, University of Basrah, Basrah, Iraq
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| | - William A Stubbings
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Stuart Harrad
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
13
|
Xie J, Pei N, Sun Y, Chen Z, Cheng Y, Chen L, Xie C, Dai S, Zhu C, Luo X, Zhang L, Mai B. Bioaccumulation and translocation of organophosphate esters in a Mangrove Nature Reserve from the Pearl River Estuary, South China. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:127909. [PMID: 34863572 DOI: 10.1016/j.jhazmat.2021.127909] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Little is known about the distribution and bioaccumulation of organophosphate esters (OPEs) in mangrove ecosystems. In this study, water, sediments, plants and animals were collected from Qi'ao Island Mangrove Nature Reserve to investigate the levels, bioaccumulation and biomagnification of OPEs. Concentrations of ΣOPEs in the mangrove plant Sonneratia apetala (an exotic species) were greater than those in Kandelia obovata (a native species). Translocation factors of OPEs in the two mangrove tree species were greater than 1, indicating that OPEs were mainly absorbed in aboveground tissues. Concentrations of OPEs in mangrove trees and animals were negatively correlated with their log Kow, suggesting that accumulation of OPEs in mangrove biota was influenced by hydrophobicity. A significant difference for concentrations of ΣOPEs was found among the eight mangrove animal species. Concentrations of ΣOPEs in mangrove animals were related with lipid contents, feeding habits and Kow of OPEs. Biota-sediment accumulation factor of OPEs was larger than 1, suggesting that bioaccumulation of OPEs occurred in mangrove animals. The targeted OPEs except isodecyl diphenyl phosphate were not biomagnified in mangrove animals. This study highlights bioaccumulation of OPEs in mangrove biota and suggests further concern about the ecological risk of OPEs to mangrove biota.
Collapse
Affiliation(s)
- Jinli Xie
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nancai Pei
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China
| | - Yuxin Sun
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Zhongyang Chen
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China
| | - Yuanyue Cheng
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Laiguo Chen
- State Environmental Protection Key Laboratory of Urban Ecological Environment Simulation and Protection, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou 510655, China
| | - Chenmin Xie
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shouhui Dai
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Chunyou Zhu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Li Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
14
|
Cai K, Song Q, Yuan W, Yang G, Li J. Composition changes, releases, and potential exposure risk of PBDEs from typical E-waste plastics. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127227. [PMID: 34597928 DOI: 10.1016/j.jhazmat.2021.127227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
Since Stockholm Convention listed polybrominated diphenyl ethers (PBDEs) as persistent organic pollutants and banned their addition, alternative halogen flame retardants (AHFRs) have been substituted for PBDEs. This study systematically investigates the change trends of PBDEs and AHFRs from typical e-waste plastics and dust, as well as clarifying human exposure risks of PBDEs in formal and informal e-waste recycling enterprises, repair store and residential building. The results show that the PBDEs levels in five typical types of e-waste vary in the range of 1.08 × 10-3-30.8 μg/g, meeting the requirements of RoHS regulation. Compared with the residential buildings (1.49-1.68 μg/g), PBDEs in the dust from the formal and informal e-waste recycling enterprises are much higher, ranging from 4.70 to 536 μg/g. BDE-209 is the main congener in most e-waste plastic and dust samples. Meanwhile, AHFRs have become the important composition (3.5-61.5%) in e-waste plastics, while its contribution is lower in dust, implying the higher enrichment efficiency of PBDEs. For PBDEs exposure, the dust intake risk of PBDEs is much higher than skin contact for the workers, and the highest hazard quotient (HQ) value (1.40 × 10-1) and cancer risk (CR) value (1.21 × 10-7) both imply safe exposure levels.
Collapse
Affiliation(s)
- Kaihan Cai
- Macao Environmental Research Institute, Macau University of Science and Technology, Macau 999078, China; Macao Institute of Systems Engineering, Macau University of Science and Technology, Macau 999078, China
| | - Qingbin Song
- Macao Environmental Research Institute, Macau University of Science and Technology, Macau 999078, China.
| | - Wenyi Yuan
- Shanghai Collaborative Innovation Centre for WEEE Recycling, Shanghai Second Polytechnic University, Shanghai 201209, China
| | - Guiming Yang
- Foshan Shunde Xinhuanbao Resource Utilization Co., Ltd, Foshan 528000, China
| | - Jinhui Li
- School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
15
|
Lorigo M, Cairrao E. Fetoplacental vasculature as a model to study human cardiovascular endocrine disruption. Mol Aspects Med 2021; 87:101054. [PMID: 34839931 DOI: 10.1016/j.mam.2021.101054] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 10/15/2021] [Accepted: 11/18/2021] [Indexed: 12/11/2022]
Abstract
Increasing evidence has associated the exposure of endocrine-disrupting chemicals (EDCs) with the cardiovascular (CV) system. This exposure is particularly problematic in a sensitive window of development, pregnancy. Pregnancy exposome can affect the overall health of the pregnancy by dramatic changes in vascular physiology and endocrine activity, increasing maternal susceptibility. Moreover, fetoplacental vascular function is generally altered, increasing the risk of developing pregnancy complications (including cardiovascular diseases, CVD) and predisposing the foetus to adverse health risks later in life. Thus, our review summarizes the existing literature on exposures to EDCs during pregnancy and adverse maternal health outcomes, focusing on the human placenta, vein, and umbilical artery associated with pregnancy complications. The purpose of this review is to highlight the role of fetoplacental vasculature as a model for the study of human cardiovascular endocrine disruption. Therefore, we emphasize that the placenta, together with the umbilical arteries and veins, allows a better characterization of the pregnant woman's exposome. Consequently, it contributes to the protection of the mother and foetus against CV disorders in life.
Collapse
Affiliation(s)
- Margarida Lorigo
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal; FCS - UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Elisa Cairrao
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal; FCS - UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|