1
|
Antony AC, Silvester R, Aneesa PA, P V V, Selvam A DG, Salim V, Paul MK, Abdulla MH. Occurrence, virulence, and AMR profile of Vibrio parahaemolyticus isolated from shellfish growing areas located along the south-west coast of India. JOURNAL OF WATER AND HEALTH 2024; 22:1594-1605. [PMID: 39340373 DOI: 10.2166/wh.2024.338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 07/26/2024] [Indexed: 09/30/2024]
Abstract
Vibrio parahaemolyticus is a leading cause of human gastroenteritis associated with seafood consumption. The present study aimed to investigate the occurrence and risk assessment of V. parahaemolyticus isolated from live Indian black clams, sediment, and water samples collected from shellfish harvesting areas located along the south-west coast of India. Out of the total 72 samples collected, 55.6% revealed the presence of V. parahaemolyticus; the highest occurrence was observed in shellfish samples. The presence of tdh and trh virulence genes was screened by multiplex PCR. Virulence genes could be detected in 25.8% of the strains; 19.35% of them were trh positive and 3.2% were tdh positive, while 3.2% of strains exhibited the coexistence of both virulence genes. Antimicrobial resistance (AMR) determined by the disk diffusion method revealed that 87% of the strains were multiple drug resistant and exhibited 21 diverse resistance patterns. The overall multiple antibiotic resistance (MAR) index values ranged from 0 to 0.8. To the best of our knowledge, this is the first report to document the presence of pathogenic and multidrug-resistant V. parahaemolyticus in shellfish harvesting areas of the Indian sub-continent. The study reveals possible health hazards associated with consuming shellfish harvested from the study area.
Collapse
Affiliation(s)
- Ally C Antony
- Department of Biosciences, M.E.S College, Marampally, Aluva, Ernakulam 683105, India
| | - Reshma Silvester
- School of Environmental and Natural Sciences, Bangor University, Bangor LL57 2DG, UK
| | - P A Aneesa
- Department of Biochemistry, Sree Sankara College, Kalady, Ernakulam 683574, India
| | - Vipindas P V
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Headland Sada, Vasco da Gama, Goa 403804, India
| | | | - Vivas Salim
- Department of Biosciences, M.E.S College, Marampally, Aluva, Ernakulam 683105, India
| | - Mini K Paul
- Department of Biosciences, M.E.S College, Marampally, Aluva, Ernakulam 683105, India
| | - Mohamed Hatha Abdulla
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Lakeside Campus, Cochin 682 016, India E-mail:
| |
Collapse
|
2
|
Wu X, Nawaz S, Li Y, Zhang H. Environmental health hazards of untreated livestock wastewater: potential risks and future perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:24745-24767. [PMID: 38499926 DOI: 10.1007/s11356-024-32853-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
Due to technological and economic limitations, waste products such as sewage and manure generated in livestock farming lack comprehensive scientific and centralized treatment. This leads to the exposure of various contaminants in livestock wastewater, posing potential risks to both the ecological environment and human health. This review evaluates the environmental and physical health risks posed by common pollutants in livestock wastewater and outlines future treatment methods to mitigate these risks. Residual wastes in livestock wastewater, including pathogenic bacteria and parasites surviving after epidemics or diseases on various farms, along with antibiotics, organic wastes, and heavy metals from farming activities, contribute to environmental damage and pose risks to human health. As the livestock industry's development increasingly impacts society's future negatively, addressing the issue of residual wastes in livestock wastewater discharge becomes imperative. Ongoing advancements in wastewater treatment systems are consistently updating and refining practices to effectively minimize waste exposure at the discharge source, mitigating risks to environmental ecology and human health. This review not only summarizes the "potential risks of livestock wastewater" but also explores "the prospects for the development of wastewater treatment technologies" based on current reports. It offers valuable insights to support the long-term and healthy development of the livestock industry and contribute to the sustainable development of the ecological environment.
Collapse
Affiliation(s)
- Xiaomei Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Shah Nawaz
- Department of Anatomy, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
3
|
Bhaskaran R, Ramachandra KSS, Peter R, Gopakumar ST, Gopalan MK, Mozhikulangara RR. Antimicrobial resistance and antagonistic features of bivalve-associated Vibrio parahaemolyticus from the south-west coast of India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:107681-107692. [PMID: 37740157 DOI: 10.1007/s11356-023-29924-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/13/2023] [Indexed: 09/24/2023]
Abstract
Vibrio parahaemolyticus, a potent human and aquatic pathogen, is usually found in estuaries and oceans. Human illness is associated with consuming uncooked/partially cooked contaminated seafood. The study on bivalve-associated V. parahaemolyticus revealed that the post-monsoon season had the highest bacterial abundance (9 ± 1.5 log cfu) compared to the monsoon season (8.03 ± 0.56 log cfu). Antimicrobial resistance (AMR) profiling was performed on 114 V. parahaemolyticus isolates obtained from bivalves. The highest AMR was observed against ampicillin (78%). Chloramphenicol was found to be effective against all the isolates. Multiple antibiotic resistance index values of 0.2 or higher were detected in 18% of the isolates. Molecular analysis of antimicrobial resistant genes (ARGs) revealed the high prevalence (100%) of the TEM-1 gene in the aquatic environment. After plasmid profiling and curing, 41.6% and 100% of the resistant isolates were found to be sensitive to ampicillin and cephalosporins, respectively, indicating the prevalence of plasmid-associated ARGs in the aquatic environment. A study to evaluate the antagonistic properties of Bacillus subtilis, Pseudomonas aeruginosa, and Bacillus amyloliquefaciens against V. parahaemolyticus isolates identified the potential of these bacteria to resist the growth of V. parahaemolyticus.
Collapse
Affiliation(s)
- Remya Bhaskaran
- Marine Biotechnology, Fish Nutrition and Health Division (MBFNHD), ICAR-Central Marine Fisheries Research Institute, Post Box No. 1603, Kochi, Ernakulam North (P.O.), 682 018, India
- Department of Biosciences, Mangalore University, Mangalagangotri - 574 199, Karnataka State, India
| | - Krupesha Sharma Sulumane Ramachandra
- Marine Biotechnology, Fish Nutrition and Health Division (MBFNHD), ICAR-Central Marine Fisheries Research Institute, Post Box No. 1603, Kochi, Ernakulam North (P.O.), 682 018, India.
| | - Reynold Peter
- Marine Biotechnology, Fish Nutrition and Health Division (MBFNHD), ICAR-Central Marine Fisheries Research Institute, Post Box No. 1603, Kochi, Ernakulam North (P.O.), 682 018, India
| | - Sumithra Thangalazhy Gopakumar
- Marine Biotechnology, Fish Nutrition and Health Division (MBFNHD), ICAR-Central Marine Fisheries Research Institute, Post Box No. 1603, Kochi, Ernakulam North (P.O.), 682 018, India
| | - Mini Kalappurakkal Gopalan
- Fishery Resources Assessment, Economics and Extension Division (FRAEED), ICAR-Central Marine Fisheries Research Institute, Post Box No. 1603, Kochi, Ernakulam North (P.O.), 682 018, India
| | - Rithin Raj Mozhikulangara
- School of Industrial Fisheries, Cochin University of Science and Technology (CUSAT), Lakeside Campus, Kochi, 682 016, India
| |
Collapse
|
4
|
Megale JD, De Souza D. New approaches in antibiotics detection: The use of square wave voltammetry. J Pharm Biomed Anal 2023; 234:115526. [PMID: 37385092 DOI: 10.1016/j.jpba.2023.115526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/27/2023] [Accepted: 06/10/2023] [Indexed: 07/01/2023]
Abstract
Antibiotics belongs to a class of pharmaceutical compounds widely used due to their effectiveness against bacterial infections. However, if consumed or inappropriately disposed of in the environment can results in environmental and public health problems, because they are considered emerging contaminants and their residues represent damage, whether in the long or short term, to different terrestrial ecosystems, in addition to bringing potential risks to agricultural sectors, such as livestock and fish farming. For this, the development of analytical methods for low-concentration detection and identification of antibiotics in natural waters, wastewaters, soil, foods, and biological fluids is necessary. This review shows the applicability of square wave voltammetry for the analytical determination of antibiotics from different chemical classes and covers a variety of samples and working electrodes that are used as voltammetric sensors. The review involved the analysis of scientific publications from the Science Direct® and Scopus® databases, with scientific manuscripts covering the period between January 2012 and May 2023. Various manuscripts were discussed indicating the applicability of square wave voltammetry in antibiotics detection in urine, blood, natural waters, milk, among other complex samples.
Collapse
Affiliation(s)
- Júlia Duarte Megale
- Laboratory of Electroanalytical Applied to Biotechnology and Food Engineering (LEABE), Chemistry Institute, Uberlândia Federal University, Major Jerônimo street, 566, Patos de Minas, MG 38700-002, Brazil
| | - Djenaine De Souza
- Laboratory of Electroanalytical Applied to Biotechnology and Food Engineering (LEABE), Chemistry Institute, Uberlândia Federal University, Major Jerônimo street, 566, Patos de Minas, MG 38700-002, Brazil.
| |
Collapse
|
5
|
Hirshfeld B, Lavelle K, Lee KY, Atwill ER, Kiang D, Bolkenov B, Gaa M, Li Z, Yu A, Li X, Yang X. Prevalence and antimicrobial resistance profiles of Vibrio spp. and Enterococcus spp. in retail shrimp in Northern California. Front Microbiol 2023; 14:1192769. [PMID: 37455729 PMCID: PMC10338826 DOI: 10.3389/fmicb.2023.1192769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023] Open
Abstract
Shrimp is one of the most consumed seafood products globally. Antimicrobial drugs play an integral role in disease mitigation in aquaculture settings, but their prevalent use raises public health concerns on the emergence and spread of antimicrobial resistant microorganisms. Vibrio spp., as the most common causative agents of seafood-borne infections in humans, and Enterococcus spp., as an indicator organism, are focal bacteria of interest for the monitoring of antimicrobial resistance (AMR) in seafood. In this study, 400 samples of retail shrimp were collected from randomly selected grocery stores in the Greater Sacramento, California, area between September 2019 and June 2020. The prevalence of Vibrio spp. and Enterococcus spp. was 60.25% (241/400) and 89.75% (359/400), respectively. Subsamples of Vibrio (n = 110) and Enterococcus (n = 110) isolates were subjected to antimicrobial susceptibility testing (AST). Vibrio isolates had high phenotypic resistance to ampicillin (52/110, 47.27%) and cefoxitin (39/110, 35.45%). Enterococcus were most frequently resistant to lincomycin (106/110, 96.36%), quinupristin-dalfopristin (96/110, 87.27%), ciprofloxacin (93/110, 84.55%), linezolid (86/110, 78.18%), and erythromycin (58/110, 52.73%). For both Vibrio and Enterococcus, no significant associations were observed between multidrug resistance (MDR, resistance to ≥3 drug classes) in isolates from farm raised and wild caught shrimp (p > 0.05) and in isolates of domestic and imported origin (p > 0.05). Whole genome sequencing (WGS) of a subset of Vibrio isolates (n = 42) speciated isolates as primarily V. metschnikovii (24/42; 57.14%) and V. parahaemolyticus (12/42; 28.57%), and detected 27 unique antimicrobial resistance genes (ARGs) across these isolates, most commonly qnrVC6 (19.05%, 8/42), dfrA31 (11.90%, 5/42), dfrA6 (9.5%, 4/42), qnrVC1 (9.5%, 4/42). Additionally, WGS predicted phenotypic resistance in Vibrio isolates with an overall sensitivity of 11.54% and specificity of 96.05%. This study provides insights on the prevalence and distribution of AMR in Vibrio spp. and Enterococcus spp. from retail shrimp in California which are important for food safety and public health and exemplifies the value of surveillance in monitoring the spread of AMR and its genetic determinants.
Collapse
Affiliation(s)
- Brady Hirshfeld
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Kurtis Lavelle
- Western Institute for Food Safety and Security, University of California, Davis, Davis, CA, United States
| | - Katie Yen Lee
- Western Institute for Food Safety and Security, University of California, Davis, Davis, CA, United States
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Edward Robert Atwill
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - David Kiang
- California Department of Public Health, Richmond, CA, United States
| | - Bakytzhan Bolkenov
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Megan Gaa
- Western Institute for Food Safety and Security, University of California, Davis, Davis, CA, United States
| | - Zhirong Li
- California Department of Public Health, Richmond, CA, United States
| | - Alice Yu
- California Department of Public Health, Richmond, CA, United States
| | - Xunde Li
- Western Institute for Food Safety and Security, University of California, Davis, Davis, CA, United States
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Xiang Yang
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| |
Collapse
|
6
|
Luo K, Liu Y, Qin G, Wang S, Wei C, Pan M, Guo Z, Liu Q, Tian X. A comparative study on effects of dietary three strains of lactic acid bacteria on the growth performance, immune responses, disease resistance and intestinal microbiota of Pacific white shrimp, Penaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2023; 136:108707. [PMID: 36966896 DOI: 10.1016/j.fsi.2023.108707] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 06/18/2023]
Abstract
The present study evaluated the growth performance, immune responses, disease resistance and intestinal microbiota in Penaeus vannamei fed diets supplemented with three strains of lactic acid bacteria (LAB). The basal diet (control, CO) supplemented with Lactobacillus plantarum W2 (LA), Pediococcus acidilactici Nj (PE), Enterococcus faecium LYB (EN) and florfenicol (FL), respectively, formed three LAB diets (1 × 1010 cfu kg-1) and a florfenicol diet (15 mg kg-1, positive control), were fed to shrimp for 42 days. Results indicated that specific growth rate, feed efficiency rate, and disease resistance of shrimp against Vibrio parahaemolyticus in the treatment groups were significantly improved versus the control (P < 0.05). Compared with the control, acid phosphatase, alkaline phosphatase, phenonoloxidase, total nitric oxide synthase, peroxidase, superoxide dismutase activities, total antioxidant capacity, and lysozyme content in the serum and the relative expression levels of SOD, LZM, proPO, LGBP, HSP70, Imd, Toll, Relish, TOR, 4E-BP, eIF4E1α and eIF4E2 genes in the hepatopancreas of LAB groups were enhanced to various extents. Intestinal microbiota analysis showed that the LA and EN groups significantly improved microbial diversity and richness, and LAB groups significantly altered intestinal microbial structure of shrimp. At the phylum level, the Verrucomicrobiota in the LA and PE groups, the Firmicutes in the EN group, and the Actinobacteriota in the PE and EN groups were enriched. Moreover, the CO group increased the proportion of potential pathogens (Vibrionaceae and Flavobacteriaceae). The potential pathogen (Vibrio) was reduced, and potential beneficial bacteria (Tenacibaculum, Ruegeria and Bdellovibrio) were enriched in response to dietary three strains of LAB. When the intestinal microbiota homeostasis of shrimp is considered, L. plantarum and E. faecium showed better effects than P. acidilactici. However, due to the concerns on the possible potential risks of E. faecium strains to human health, L. plantarum W2 is more suitable for application in aquaculture than E. faecium LYB. Considering collectively the above, Lactobacillus plantarum W2 could be applied as better probiotic to improve the growth performance, non-specific immunity, disease resistance and promote intestinal health of P. vannamei.
Collapse
Affiliation(s)
- Kai Luo
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China
| | - Yang Liu
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China
| | - Guangcai Qin
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China
| | - Shishuang Wang
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China
| | - Cong Wei
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China
| | - Miaojun Pan
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China
| | - Zeyang Guo
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China
| | | | - Xiangli Tian
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China.
| |
Collapse
|
7
|
Yu Y, Tang M, Wang Y, Liao M, Wang C, Rong X, Li B, Ge J, Gao Y, Dong X, Zhang Z. Virulence and antimicrobial resistance characteristics assessment of Vibrio isolated from shrimp (Penaeus vannamei) breeding system in south China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114615. [PMID: 36773438 DOI: 10.1016/j.ecoenv.2023.114615] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
The diseases caused by Vibrio during shrimp breeding program have the risk of spreading in different aquatic areas through larvae transportation between different regions. Therefore, the population distribution and the virulence and antibiotic resistance risk of 5 pathogenic Vibrio in shrimp (Penaeus vannamei) breeding system in China were evaluated for the first time. A total of 418 isolates were recovered from shrimp, breeding water and biological baits samples, and 312 isolates were identified as Vibrio genus based on 16s rDNA, among which V. alginolyticus, V. harveyi, V. parahaemolyticus, V. cholerae and V. campbellii were the dominant species. And 10/20 kinds of virulence genes (chiA, luxR, vhh, tlh, chxA, sepro, flaA, vch, VAC and rpoS) were detected among the 5 Vibrio species. Multiple antibiotic resistance (MAR) index of the 5 dominant Vibrio isolates were 0.13-0.88 %, and 36.5 % isolates with MAR < 0.2. But the antibiotic resistance pattern abundance (ARPA) index ranged from 0.25 to 0.56, which indicated the antibiotic phenotypes of Vibrio species in the shrimp breeding system in China were homogeneity. Furthermore, resistance quotients (RQs) calculation results displayed that the dominant Vibrio species in the shrimp breeding system in China showed no or low selection pressure for resistance to cefoperazone/sulbactam, enrofloxacin, ciprofloxacin, fluoroquine, florfenicol, tetracycline and doxycycline. But only 5 resistance genes were detected, which were strA (43.8 %), strB (11.7 %), QnrVC (2.9 %), sul2 (8.8 %) and Int4 (8.8 %), respectively, and the antimicrobial resistance genotypes were not previously correlated with their phenotypes. The relevant research results provide theoretical basis for epizootic tracking in aquatic system in China, and targeting its final risk in aquatic ecosystem and public health perspectives.
Collapse
Affiliation(s)
- Yongxiang Yu
- Laboratory for Marine Fisheries Science and Food Production Processes, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Miaomiao Tang
- Laboratory for Marine Fisheries Science and Food Production Processes, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Yingeng Wang
- Laboratory for Marine Fisheries Science and Food Production Processes, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| | - Meijie Liao
- Laboratory for Marine Fisheries Science and Food Production Processes, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Chunyuan Wang
- Laboratory for Marine Fisheries Science and Food Production Processes, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Xiaojun Rong
- Laboratory for Marine Fisheries Science and Food Production Processes, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Bin Li
- Laboratory for Marine Fisheries Science and Food Production Processes, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Jianlong Ge
- Laboratory for Marine Fisheries Science and Food Production Processes, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Yingli Gao
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xuan Dong
- Laboratory for Marine Fisheries Science and Food Production Processes, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Zheng Zhang
- Laboratory for Marine Fisheries Science and Food Production Processes, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| |
Collapse
|
8
|
Bacteriocin Production by Bacillus Species: Isolation, Characterization, and Application. Probiotics Antimicrob Proteins 2022; 14:1151-1169. [PMID: 35881232 DOI: 10.1007/s12602-022-09966-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2022] [Indexed: 12/25/2022]
Abstract
Antibiotic resistance is a problem that has been increasing lately; therefore, it is important to find new alternatives to treat infections induced by pathogens that cannot be eliminated with available products. Small antimicrobial peptides (AMPs) known as bacteriocin could be an alternative to antibiotics because they have shown to be effective against a great number of multidrug-resistant microbes. In addition to its high specificity against microbial pathogens and its low cytotoxicity against human cells, most bacteriocin present tolerance to enzyme degradation and stability to temperature and pH alterations. Bacteriocins are small peptides with a great diversity of structures and functions; however, their mechanisms of action are still not well understood. In this review, bacteriocin produced by Bacillus species will be described, especially its mechanisms of action, culture conditions used to improve its production and state-of-the-art methodologies applied to identify them. Bacteriocin utilization as food preservatives and as new molecules to treat cancer also will be discussed.
Collapse
|
9
|
Kasanah N, Ulfah M, Rowley DC. Natural products as antivibrio agents: insight into the chemistry and biological activity. RSC Adv 2022; 12:34531-34547. [PMID: 36545587 PMCID: PMC9713624 DOI: 10.1039/d2ra05076e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 11/15/2022] [Indexed: 12/05/2022] Open
Abstract
Vibriosis causes serious problems and economic loss in aquaculture and human health. Investigating natural products as antivibrio agents has gained more attention to combat vibriosis. The present review highlights the chemical diversity of antivibrio isolated from bacteria, fungi, plants, and marine organisms. Based on the study covering the literature from 1985-2021, the chemical diversity ranges from alkaloids, terpenoids, polyketides, sterols, and peptides. The mechanisms of action are included inhibiting growth, interfering with biofilm formation, and disrupting of quorum sensing. Relevant summaries focusing on the source organisms and the associated bioactivity of different chemical classes are also provided. Further research on in vivo studies, toxicity, and clinical is required for the application in aquaculture and human health.
Collapse
Affiliation(s)
- Noer Kasanah
- Department of Fisheries, Faculty of Agriculture, Universitas Gadjah MadaIndonesia
| | - Maria Ulfah
- Integrated Lab. Agrocomplex, Faculty of Agriculture, Universitas Gadjah MadaIndonesia
| | - David C. Rowley
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode IslandUSA
| |
Collapse
|
10
|
Marques PH, Prado LCDS, Felice AG, Rodrigues TCV, Pereira UDP, Jaiswal AK, Azevedo V, Oliveira CJF, Soares S. Insights into the Vibrio Genus: A One Health Perspective from Host Adaptability and Antibiotic Resistance to In Silico Identification of Drug Targets. Antibiotics (Basel) 2022; 11:1399. [PMID: 36290057 PMCID: PMC9598498 DOI: 10.3390/antibiotics11101399] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/08/2022] [Accepted: 10/08/2022] [Indexed: 11/23/2022] Open
Abstract
The genus Vibrio comprises an important group of ubiquitous bacteria of marine systems with a high infectious capacity for humans and fish, which can lead to death or cause economic losses in aquaculture. However, little is known about the evolutionary process that led to the adaptation and colonization of humans and also about the consequences of the uncontrollable use of antibiotics in aquaculture. Here, comparative genomics analysis and functional gene annotation showed that the species more related to humans presented a significantly higher amount of proteins associated with colonization processes, such as transcriptional factors, signal transduction mechanisms, and iron uptake. In comparison, those aquaculture-associated species possess a much higher amount of resistance-associated genes, as with those of the tetracycline class. Finally, through subtractive genomics, we propose seven new drug targets such as: UMP Kinase, required to catalyze the phosphorylation of UMP into UDP, essential for the survival of bacteria of this genus; and, new natural molecules, which have demonstrated high affinity for the active sites of these targets. These data also suggest that the species most adaptable to fish and humans have a distinct natural evolution and probably undergo changes due to anthropogenic action in aquaculture or indiscriminate/irregular use of antibiotics.
Collapse
Affiliation(s)
- Pedro Henrique Marques
- Department of Microbiology, Immunology and Parasitology, Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil
| | - Lígia Carolina da Silva Prado
- Interunit Bioinformatics Post-Graduate Program, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Andrei Giacchetto Felice
- Department of Microbiology, Immunology and Parasitology, Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil
| | | | - Ulisses de Padua Pereira
- Department of Preventive Veterinary Medicine, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Arun Kumar Jaiswal
- Interunit Bioinformatics Post-Graduate Program, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Vasco Azevedo
- Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Carlo José Freire Oliveira
- Department of Microbiology, Immunology and Parasitology, Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil
| | - Siomar Soares
- Department of Microbiology, Immunology and Parasitology, Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil
| |
Collapse
|
11
|
Prevalence, Antibiotics Resistance and Plasmid Profiling of Vibrio spp. Isolated from Cultured Shrimp in Peninsular Malaysia. Microorganisms 2022; 10:microorganisms10091851. [PMID: 36144453 PMCID: PMC9505939 DOI: 10.3390/microorganisms10091851] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 11/21/2022] Open
Abstract
Vibrio is the most common bacterium associated with diseases in crustaceans. Outbreaks of vibriosis pose a serious threat to shrimp production. Therefore, antibiotics are commonly used as preventative and therapeutic measures. Unfortunately, improper use of antibiotics leads to antibiotic resistance. Nevertheless, information on the occurrence of Vibrio spp. and antibiotic use in shrimp, particularly in Malaysia, is minimal. This study aimed to provide information on the occurrence of Vibrio spp., its status of antibiotic resistance and the plasmid profiles of Vibrio spp. isolated from cultured shrimp in Peninsular Malaysia. Shrimp were sampled from seven farms that were located in different geographical regions of Peninsular Malaysia. According to the observations, 85% of the shrimp were healthy, whereas 15% were unhealthy. Subsequently, 225 presumptive Vibrio isolates were subjected to biochemical tests and molecular detection using the pyrH gene. The isolates were also tested for antibiotic susceptibility against 16 antibiotics and were subjected to plasmid profiling. Eventually, 13 different Vibrio spp. were successfully isolated and characterized using the pyrH gene. They were the following: V. parahaemolyticus (55%), V. communis (9%), V. campbellii (8%), V. owensii (7%), V. rotiferianus (5%), Vibrio spp. (4%), V. alginolyticus (3%), V. brasiliensis (2%), V. natriegens (2%), V. xuii (1%), V. harveyi (1%), V. hepatarius (0.4%) and P. damselae (3%). Antibiotic susceptibility profiles revealed that all isolates were resistant to penicillin G (100%), but susceptible to norfloxacin (96%). Furthermore, 16% of the isolates revealed MAR of less than 0.2, while 84% were greater than 0.2. A total of 125 isolates harbored plasmids with molecular weights between 1.0 and above 10 kb, detected among the resistant isolates. The resistant isolates were mediated by both chromosomal and plasmid factors. These findings support the use of surveillance data on the emerging patterns of antimicrobial-resistance and plasmid profiles of Vibrio spp. in shrimp farms. The findings from this study can be used to develop a better disease management strategy for shrimp farming.
Collapse
|
12
|
Kumarage PM, De Silva LADS, Heo GJ. Aquatic environments: A Potential Source of Antimicrobial-Resistant Vibrio spp. J Appl Microbiol 2022; 133:2267-2279. [PMID: 35797342 DOI: 10.1111/jam.15702] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/22/2022] [Accepted: 07/01/2022] [Indexed: 11/29/2022]
Abstract
Vibrio spp. are associated with water and seafood-related outbreaks worldwide. They are naturally present in aquatic environments such as seawater, brackish water and freshwater environments. These aquatic environments serve as the main reservoirs of antimicrobial-resistant genes and promote the transfer of antimicrobial-resistant bacterial species to aquatic animals and humans through the aquatic food chain. Vibrio spp. are known as etiological agents of cholera and non-cholera Vibrio infections in humans and animals. Antimicrobial-resistant Vibrio species have become a huge threat in regard to treating Vibrio infections in aquaculture and public health. Most of the Vibrio spp. possess resistance towards the commonly used antimicrobials, including β-lactams, aminoglycosides, tetracyclines, sulfonamides, quinolones and macrolides. The aim of this review is to summarize the antimicrobial resistance properties of Vibrio spp. isolated from aquatic environments to provide awareness about potential health risks related to Vibrio infections in aquaculture and public health.
Collapse
Affiliation(s)
- P M Kumarage
- Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea
| | - L A D S De Silva
- Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea
| | - Gang-Joon Heo
- Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea
| |
Collapse
|
13
|
Halder M, Saha S, Mookerjee S, Palit A. Exploring the dynamics of toxigenic environmental Vibrio mimicus and its comparative analysis with Vibrio cholerae of the southern Gangetic delta. Arch Microbiol 2022; 204:420. [PMID: 35748957 DOI: 10.1007/s00203-022-03028-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 11/02/2022]
Abstract
Vibrio mimicus and Vibrio cholerae are closely related species. Environmental V.mimicus were comparatively analyzed with V.cholerae, for the presence of virulence genes, antibiotic susceptibility, resistance genes, in-vitro hemolysis, and biofilm formation. Phylogenetic analysis was performed depending on toxin-gene disposition and isolation area. One V.mimicus isolate harbored ctxA, tcp El-Tor, toxT and toxS, whereas several strains contained incomplete copies of virulence cassettes and associated toxin genes. V.cholerae isolates harbored ctx, tcp and toxT genes, with a higher preponderance of hlyA, rtxA and toxR genes. V.mimicus were highly sensitive to amino/carboxy-penicillins, furazolidone & gentamycin, with quinolone & tetracycline resistance genes. V.cholerae isolates were sensitive to penicillins and cephalosporins, with 29% of the strains bearing the sxt gene. Phylogenetically, the apomorphic strains of both species were unique to the inland sites. V.cholerae has embodied an enormous public health burden globally but our findings emphasize the role of V.mimicus as an emerging etiological agent with similar epidemic potential.
Collapse
Affiliation(s)
- Madhumanti Halder
- Division of Bacteriology, Indian Council of Medical Research- National Institute of Cholera & Enteric Diseases, P- 33, Scheme-XM, CIT Road, Beliaghata, Kolkata, 700 010, India
| | - Suvajit Saha
- Division of Bacteriology, Indian Council of Medical Research- National Institute of Cholera & Enteric Diseases, P- 33, Scheme-XM, CIT Road, Beliaghata, Kolkata, 700 010, India
| | - Subham Mookerjee
- Division of Bacteriology, Indian Council of Medical Research- National Institute of Cholera & Enteric Diseases, P- 33, Scheme-XM, CIT Road, Beliaghata, Kolkata, 700 010, India
| | - Anup Palit
- Division of Bacteriology, Indian Council of Medical Research- National Institute of Cholera & Enteric Diseases, P- 33, Scheme-XM, CIT Road, Beliaghata, Kolkata, 700 010, India.
| |
Collapse
|
14
|
Yasin A, Begum MK, Eshik MME, Punom NJ, Ahmmed S, Rahman MS. Molecular identification and antibiotic resistance patterns of diverse bacteria associated with shrimp PL nurseries of Bangladesh: suspecting Acinetobacter venetianus as future threat. PeerJ 2022; 10:e12808. [PMID: 35223199 PMCID: PMC8868018 DOI: 10.7717/peerj.12808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/27/2021] [Indexed: 01/11/2023] Open
Abstract
Shrimp aquaculture has been accomplished with breeding and nursing of shrimp in an artificial environment to fulfill the increasing demand of shrimp consumption worldwide. However, the microbial diseases appear as a serious problem in this industry. The study was designed to identify the diverse bacteria from shrimp PL (post-larvae) nurseries and to profile antibiotic resistance patterns. The rearing water (raw seawater, treated and outlet water) and shrimp PL were collected from eight nurseries of south-west Bangladesh. Using selective agar plates, thirty representative isolates were selected for 16S rRNA gene sequencing, antibiotic susceptibility test and MAR index calculation. Representative isolates were identified as Aeromonas caviae, Pseudomonas monteilii, Shewanella algae, Vibrio alginolyticus, V. brasiliensis, V. natriegens, V. parahaemolyticus, V. shilonii, V. xuii, Zobellella denitrificans which are Gram-negative, and Bacillus licheniformis and B. pumilus which are Gram-positive. Notably, six strains identified as Acinetobacter venetianus might be a concern of risk for shrimp industry. The antibiotic resistance pattern reveals that the strain YWO8-97 (identified as P. monteilii) was resistant to all twelve antibiotics. Ceftazidime was the most powerful antibiotic since most of the studied strains were sensitive against it. The six strains of A. venetianus showed multiple antibiotic resistance patterns. MAR index were ranged from 0.08 to 1.0, and values of 26 isolates were more than 0.2 which means prior high exposure to the antibiotics. From the present study, it can be concluded that shrimp PL nurseries in southern part of Bangladesh are getting contaminated with antibiotic resistant pathogenic bacteria.
Collapse
Affiliation(s)
- Abdullah Yasin
- Aquatic Animal Health Group, Department of Fisheries, Faculty of Biological Sciences, University of Dhaka, Dhaka, Bangladesh
| | - Mst. Khadiza Begum
- Aquatic Animal Health Group, Department of Fisheries, Faculty of Biological Sciences, University of Dhaka, Dhaka, Bangladesh
| | - Md. Mostavi Enan Eshik
- Aquatic Animal Health Group, Department of Fisheries, Faculty of Biological Sciences, University of Dhaka, Dhaka, Bangladesh
| | - Nusrat Jahan Punom
- Aquatic Animal Health Group, Department of Fisheries, Faculty of Biological Sciences, University of Dhaka, Dhaka, Bangladesh
| | - Shawon Ahmmed
- Aquatic Animal Health Group, Department of Fisheries, Faculty of Biological Sciences, University of Dhaka, Dhaka, Bangladesh,Brackishwater Station, Bangladesh Fisheries Research Institute (BFRI), Khulna, Bangladesh
| | - Mohammad Shamsur Rahman
- Aquatic Animal Health Group, Department of Fisheries, Faculty of Biological Sciences, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
15
|
Hossain A, Habibullah-Al-Mamun M, Nagano I, Masunaga S, Kitazawa D, Matsuda H. Antibiotics, antibiotic-resistant bacteria, and resistance genes in aquaculture: risks, current concern, and future thinking. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:11054-11075. [PMID: 35028843 DOI: 10.1007/s11356-021-17825-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
Aquaculture is remarkably one of the most promising industries among the food-producing industries in the world. Aquaculture production as well as fish consumption per capita have been dramatically increasing over the past two decades. Shifting of culture method from semi-intensive to intensive technique and applying of antibiotics to control the disease outbreak are the major factors for the increasing trend of aquaculture production. Antibiotics are usually present at subtherapeutic levels in the aquaculture environment, which increases the selective pressure to the resistant bacteria and stimulates resistant gene transfer in the aquatic environment. It is now widely documented that antibiotic resistance genes and resistant bacteria are transported from the aquatic environment to the terrestrial environment and may pose adverse effects on human and animal health. However, data related to antibiotic usage and bacterial resistance in aquaculture is very limited or even absent in major aquaculture-producing countries. In particular, residual levels of antibiotics in fish and shellfish are not well documented. Recently, some of the countries have already decided the maximum residue levels (MRLs) of antibiotics in fish muscle or skin; however, many antibiotics are yet not to be decided. Therefore, an urgent universal effort needs to be taken to monitor antibiotic concentration and resistant bacteria particularly multiple antibiotic-resistant bacteria and to assess the associated risks in aquaculture. Finally, we suggest to take an initiative to make a uniform antibiotic registration process, to establish the MRLs for fish/shrimp and to ensure the use of only aquaculture antibiotics in fish and shellfish farming globally.
Collapse
Affiliation(s)
- Anwar Hossain
- Department of Fisheries, Faculty of Biological Sciences, University of Dhaka, Dhaka, 1000, Bangladesh.
| | - Md Habibullah-Al-Mamun
- Department of Fisheries, Faculty of Biological Sciences, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Ichiro Nagano
- Central Research Laboratory, Tokyo Innovation Center, Nippon Suisan Kaisha Ltd, 32-3 Nanakuni 1-Chome, Hacjioji, Tokyo, 192-0991, Japan
| | - Shigeki Masunaga
- Faculty of Environment and Information Sciences, Yokohama National University, Yokohama, 240-8501, Japan
| | - Daisuke Kitazawa
- Center for Integrated Underwater Observation Technology, Institute of Industrial Science, The University of Tokyo, Chiba, 277-8574, Japan
| | - Hiroyuki Matsuda
- Faculty of Environment and Information Sciences, Yokohama National University, Yokohama, 240-8501, Japan
| |
Collapse
|
16
|
Antimicrobial Drug-resistance Profile of Vibrio Parahaemolyticus isolated from Japanese Horse Mackerel ( Trachurus Japonicus). Food Saf (Tokyo) 2021; 9:75-80. [PMID: 34631335 PMCID: PMC8472095 DOI: 10.14252/foodsafetyfscj.d-21-00001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/17/2021] [Indexed: 01/22/2023] Open
Abstract
This study aimed at investigating antimicrobial resistance (AMR) profile of Vibrio parahaemolyticus (V. parahaemolyticus). The bacteria were isolated from wild-caught and farmed Japanese horse mackerel (Trachurus japonicus), and examined for the antimicrobial drug resistance. Furthermore, the serotype, and the genes of thermostable direct hemolysin (tdh) and cholera toxin transcriptional activator (toxR) of the isolates were investigated by using a serotype testing kit and PCR method. Eighty-eight and 126 V. parahaemolyticus strains were isolated from wild-caught and farmed Japanese horse mackerel, respectively. Ten and 18 distinct serotypes were detected from wild-caught and farmed Japanese horse mackerel. All strains were negative for tdh genes but positive for toxR genes. Resistances to ampicillin (ABP) and to both ABP and fosfomycin (FOM) were observed in 54 and 23 strains from the wild-caught fish, while those resistant strains from farm fish were 112 and 7 strains. Multidrug-resistance to three or four drugs including ABP was observed in one or two strains from the wild-caught fish. These results strongly suggest that the environmental exposure of antimicrobial drugs results in the spread of resistant genes in Japanese horse mackerel. This study highlights the need for monitoring the spread of resistance genes to the human intestinal flora as well as to other bacteria in the environment.
Collapse
|
17
|
Vilela FP, Falcão JP. Analysis of the antimicrobial resistance gene frequency in whole-genome sequenced Vibrio from Latin American countries. J Med Microbiol 2021; 70. [PMID: 34586052 DOI: 10.1099/jmm.0.001428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vibrio species are important environmental-related bacteria responsible for diverse infections in humans due to consumption of contaminated water and seafood in underdeveloped areas of the world. This study aimed to investigate the frequency of antimicrobial resistance genes in 577 sequenced Vibrio cholerae, Vibrio parahaemolyticus and Vibrio vulnificus strains isolated in Latin American countries available at the NCBI Pathogen Detection database and to determine the sequence type (ST) of the strains. Almost all strains studied (99.8%) carried at least one antimicrobial resistance gene, while 54.2 % presented a multidrug-resistance profile. The Vibrio strains exhibited genotypic resistance to 11 antimicrobial classes and almG, varG, and catB9, which confer resistance to antibiotic peptides, β-lactams and amphenicols, respectively, were the most detected genes. Vibrio parahaemolyticus and V. vulnificus showed a broad diversity of STs. Vibrio cholerae strains isolated in Haiti after 2010's earthquake presented the highest diversity and amount of resistance genes in the set of strains analysed and mostly belonged to ST69. In conclusion, the detection of resistance genes from 11 antimicrobial classes and the high number of multidrug-resistant Vibrio species strains emphasize that Latin American public health authorities should employ more efficient control measures and that special attention should be given for the rational use of antimicrobials in human therapy and aquaculture, since the consumption of contaminated water and seafood with resistant Vibrio may result in human infections difficult to be treated.
Collapse
Affiliation(s)
- Felipe Pinheiro Vilela
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto - USP, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Av. do Café, s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Juliana Pfrimer Falcão
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto - USP, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Av. do Café, s/n, 14040-903, Ribeirão Preto, SP, Brazil
| |
Collapse
|
18
|
Zheng Z, Ye L, Li R, Chen S. Whole-genome sequencing of strains of Vibrio spp. from China reveals different genetic contexts of blaCTX-M-14 among diverse lineages. J Antimicrob Chemother 2021; 76:950-956. [PMID: 33394022 DOI: 10.1093/jac/dkaa545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/04/2020] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVES To investigate the prevalence and genetic contexts of the blaCTX-M-14 gene harboured by foodborne isolates of Vibrio spp. in China. METHODS A total of 1856 Vibrio spp. isolates collected from raw meat and shrimp samples in Guangdong Province of China were screened for blaCTX-M-14 by PCR. The blaCTX-M-14-positive isolates were characterized by MIC, PFGE, MLST, conjugation, S1-PFGE and Southern blotting and WGS using Illumina and Nanopore platforms. RESULTS A total of 35 (1.9%) Vibrio isolates were positive for blaCTX-M-14, including 33 Vibrio parahaemolyticus strains and two Vibrio alginolyticus strains. MLST showed that most of the blaCTX-M-14-bearing isolates could be assigned into two major STs, with ST163 being more prevalent (n = 23), followed by ST180 (n = 6). Whole-genome analysis of these 35 isolates revealed that the blaCTX-M-14 gene was associated with ISEcp1 in the upstream region, of which 32 blaCTX-M-14 genes were located in the same loci of chromosome I, 1 blaCTX-M-14 gene was located in a novel chromosomal integrative conjugative element (ICE) belonging to the SXT/R391 family and 2 blaCTX-M-14 genes were located in the same type of plasmid, which belonged to the IncP-1 group. Conjugation experiments showed that only the plasmid-borne blaCTX-M-14 gene could be transferred to the recipient strain Escherichia coli J53. CONCLUSIONS The emergence of the novel ICE and IncP-1 plasmids has contributed to the variable genetic contexts of blaCTX-M-14 among strains of Vibrio spp. and facilitated the horizontal transfer of such genes between Vibrio spp. and other zoonotic pathogens, resulting in a rapid increase in the prevalence of blaCTX-M-14-bearing bacterial pathogens worldwide.
Collapse
Affiliation(s)
- Zhiwei Zheng
- Shenzhen Key Lab for Food Biological Safety Control, Food Safety and Technology Research Center, Hong Kong PolyU Shen Zhen Research Institute, Shenzhen, P. R. China.,Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Lianwei Ye
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Ruichao Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, P. R. China
| | - Sheng Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|
19
|
Nguyen HT, Van TN, Ngoc TT, Boonyawiwat V, Rukkwamsuk T, Yawongsa A. Risk factors associated with acute hepatopancreatic necrosis disease at shrimp farm level in Bac Lieu Province, Vietnam. Vet World 2021; 14:1050-1058. [PMID: 34083959 PMCID: PMC8167526 DOI: 10.14202/vetworld.2021.1050-1058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/17/2021] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Acute hepatopancreatic necrosis disease (AHPND) is a severe disease in shrimp farms and adversely affected the shrimp industry of Vietnam. So far, the study on risk factors associated with AHPND outbreaks is limited. The objective of this study was to determine the potential risk factors of AHPND at the shrimp farm level in Bac Lieu Province, Vietnam. Materials and Methods: Real-time-Polymerase chain reaction was used to analyze data collected from an active surveillance program of shrimp farms in 2017 in the Vinh Tien and Vinh Lac villages, Vinh Thinh commune, Hoa Binh district in Bac Lieu Province, Vietnam. The matched case-control study selected 20 cases and 20 control farms from 134 shrimp farms. In 2018, face-to-face interviews using structured questionnaires were conducted with the farmers of these selected farms. Results: Of the 59 studied variables, seven had p≤0.2 based on bivariate analyses. The results of multivariable analysis showed that the presence of fish-eating birds on shrimp farms was a significant association with AHPND (odds ratio=8, p=0.049). Conclusion: To reduce the effect of AHPND, farmers should apply effective methods to manage wild animals such as using a grid or net to cover the pond, combined with improved biosecurity.
Collapse
Affiliation(s)
- Hien The Nguyen
- Department of Animal Health of Vietnam, No. 15 lane 78, Giai Phong Street, Phuong Mai Ward, Dong Da District, Hanoi, Vietnam.,Faculty of Veterinary Medicine, Kasetsart University, No. 50, Phahonyothin Road, Ladyao, Chatuchak, Bangkok, Thailand
| | - Toan Nguyen Van
- Sub-Department of Livestock Production and Animal Health of Bac Lieu Province, No. 217, 23/8 Road, 8 Ward, Bac Lieu City, Bac Lieu province, Vietnam
| | - Tien Tien Ngoc
- Regional Animal Health Office number VII, No. 88 Cach Mang Thang 8 Street, Cai Khe Ward, Binh Thuy District, Can Tho City, Vietnam
| | - Visanu Boonyawiwat
- Faculty of Veterinary Medicine, Kasetsart University, No. 50, Phahonyothin Road, Ladyao, Chatuchak, Bangkok, Thailand
| | - Theera Rukkwamsuk
- Faculty of Veterinary Medicine, Kasetsart University, No. 50, Phahonyothin Road, Ladyao, Chatuchak, Bangkok, Thailand
| | - Adisorn Yawongsa
- Faculty of Veterinary Medicine, Kasetsart University, No. 50, Phahonyothin Road, Ladyao, Chatuchak, Bangkok, Thailand
| |
Collapse
|
20
|
Curren E, Leaw CP, Lim PT, Leong SCY. Evidence of Marine Microplastics in Commercially Harvested Seafood. Front Bioeng Biotechnol 2020; 8:562760. [PMID: 33344429 PMCID: PMC7746775 DOI: 10.3389/fbioe.2020.562760] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 11/12/2020] [Indexed: 12/25/2022] Open
Abstract
Microplastic pollution is a global issue that has a detrimental impact on food safety. In marine environments, microplastics are a threat to marine organisms, as they are often the same size range as prey and are mistaken as food. Consumption of microplastics has led to the damage of digestive organs and a reduction in growth and reproductive output. In this study, microplastic pollution was assessed across three commercially available shrimp species that were obtained from the supermarkets of Singapore. A total of 93 individuals were studied from the Pacific white leg shrimp, Litopenaeus vannamei, the Argentine red shrimp Pleoticus muelleri and the Indian white shrimp Fenneropenaeus indicus. Microplastic fibers, fragments, film and spheres were identified from the digestive tract of these organisms. Microplastic abundance ranged from 13.4 to 7050 items. F. indicus exhibited the highest number of microplastics. Microplastic film was the most abundant in L. vannamei individuals (93–97%) and spheres were the most abundant in P. muelleri (70%) and F. indicus (61%) individuals. This study demonstrates that microplastic contamination is evident in commonly consumed shrimp and highlights the role of shrimp in the trophic transfer and accumulation of microplastics in seafood. The consumption of microplastic-containing seafood is a route of exposure to humans and has implications on human health and food security. Capsule: Microplastics were examined in three shrimp species from the supermarkets of Singapore. Microplastics ranged from 13.4 to 7050 items of shrimp.
Collapse
Affiliation(s)
- Emily Curren
- St. John's Island National Marine Laboratory, Tropical Marine Science Institute (TMSI), National University of Singapore, Singapore, Singapore
| | - Chui Pin Leaw
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, Bachok, Malaysia
| | - Po Teen Lim
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, Bachok, Malaysia
| | - Sandric Chee Yew Leong
- St. John's Island National Marine Laboratory, Tropical Marine Science Institute (TMSI), National University of Singapore, Singapore, Singapore
| |
Collapse
|
21
|
Su C, Chen L. Virulence, resistance, and genetic diversity of Vibrio parahaemolyticus recovered from commonly consumed aquatic products in Shanghai, China. MARINE POLLUTION BULLETIN 2020; 160:111554. [PMID: 32810672 DOI: 10.1016/j.marpolbul.2020.111554] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 05/27/2023]
Abstract
Vibrio parahaemolyticus can cause severe gastroenteritis, septicaemia and even death in humans. Continuous monitoring of V. parahaemolyticus contamination in aquatic products is imperative for ensuring food safety. In this study, we isolated and characterized 561 V. parahaemolyticus strains recovered from 23 species of commonly consumed shellfish, crustaceans, and fish collected in July and August of 2017 in Shanghai, China. The bacterium was not isolated from two fish species Carassius auratus and Parabramis pekinensis. The results revealed a very low occurrence of pathogenic V. parahaemolyticus carrying the toxin genes trh (0.2%) and tdh (0.0%). However, high percentages of resistance to the antimicrobial agents ampicillin (93.0%), rifampin (82.9%), streptomycin (75.4%) and kanamycin (50.1%) were found. A high incidence of tolerance to the heavy metals Hg2+ (74.7%) and Zn2+ (56.2%) was also observed in the isolates. ERIC-PCR-based fingerprinting of MDR isolates (77.5%) revealed 428 ERIC-genotypes, demonstrating remarkable genetic variation among the isolates. The results of this study support the urgent need for food safety risk assessment of aquatic products.
Collapse
Affiliation(s)
- Chenli Su
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, People's Republic of China
| | - Lanming Chen
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, People's Republic of China.
| |
Collapse
|
22
|
Yang C, Song G, Lim W. A review of the toxicity in fish exposed to antibiotics. Comp Biochem Physiol C Toxicol Pharmacol 2020; 237:108840. [PMID: 32640291 DOI: 10.1016/j.cbpc.2020.108840] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/15/2020] [Accepted: 06/28/2020] [Indexed: 02/08/2023]
Abstract
Antibiotics are widely used in the treatment of human and veterinary diseases and are being used worldwide in the agriculture industry to promote livestock growth. However, a variety of antibiotics that are found in aquatic environments are toxic to aquatic organisms. Antibiotics are not completely removed by wastewater treatment plants and are therefore released into aquatic environments, which raises concern about the destruction of the ecosystem owing to their non-target effects. Since antibiotics are designed to be persistent and work steadily in the body, their chronic toxicity effects have been studied in aquatic microorganisms. However, research on the toxicity of antibiotics in fish at the top of the aquatic food chain is relatively poor. This paper summarizes the current understanding of the reported toxicity studies with antibiotics in fish, including zebrafish, to date. Four antibiotic types; quinolones, sulfonamides, tetracyclines, and macrolides, which are thought to be genetically toxic to fish have been reported to bioaccumulate in fish tissues, as well as in aquatic environments such as rivers and surface water. The adverse effects of these antibiotics are known to cause damage to developmental, cardiovascular, and metabolic systems, as well as in altering anti-oxidant and immune responses, in fish. Therefore, there are serious concerns about the toxicity of antibiotics in fish and further research and strategies are needed to prevent them in different regions of the world.
Collapse
Affiliation(s)
- Changwon Yang
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul 02707, Republic of Korea.
| |
Collapse
|
23
|
Di DYW, Shin H, Han D, Unno T, Hur HG. High genetic diversity of Vibrio parahaemolyticus isolated from tidal water and mud of southern coast of South Korea. FEMS Microbiol Ecol 2020; 95:5308828. [PMID: 30753635 DOI: 10.1093/femsec/fiz022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 02/06/2019] [Indexed: 12/30/2022] Open
Abstract
A horizontal, fluorophore-enhanced, repetitive extragenic palindromic-polymerase chain reaction (rep-PCR) DNA fingerprinting technique was adapted to examine the genotypic richness and source differentiation of Vibrio parahaemolyticus (n = 1749) isolated from tidal water and mud of southern coast of South Korea. The number of unique genotypes observed from June (163, 51.9%), September (307, 63.9%), December (205, 73.8%) and February (136, 74.7%), indicating a high degree of genetic diversity. Contrary, lower genetic diversity was detected in April (99, 46.8%), including predominant genotypes comprised >30 V. parahaemolyticus isolates. Jackknife analysis indicated that 65.1% tidal water isolates and 87.1% mud isolates were correctly assigned to their source groups. Sixty-nine isolates of pathogenic V. parahaemolyticus were clustered into two groups, separated by sampling month, source of isolation and serogroups. Serotypes O1, O4, O5, O10/O12 and O11 were the dominant serovariants, while serotypes O3/O13 were highly detected in April where there were no pathogenic V. parahaemolyticus isolates. Most of the V. parahaemolyticus isolates were resistant to ampicillin, ceftazidime and sulfamethoxazole. Interestingly, four V. parahaemolyticus isolates resistant to carbepenem did not contain the known carbapenemase-encoding gene, but possess an extended-spectrum β-lactamase blaTEM.
Collapse
Affiliation(s)
- Doris Y W Di
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Oryong-dong, Buk-gu, 61005 Gwangju, South Korea
| | - Hansub Shin
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Oryong-dong, Buk-gu, 61005 Gwangju, South Korea
| | - Dukki Han
- Faculty of Biotechnology, College of Applied Life Science, SARI, Jeju National University, 102 Jejudaehakno, Jeju-si, 690-756 Jeju, South Korea
| | - Tatsuya Unno
- Faculty of Biotechnology, College of Applied Life Science, SARI, Jeju National University, 102 Jejudaehakno, Jeju-si, 690-756 Jeju, South Korea
| | - Hor-Gil Hur
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Oryong-dong, Buk-gu, 61005 Gwangju, South Korea
| |
Collapse
|
24
|
Beshiru A, Okareh O, Okoh A, Igbinosa E. Detection of antibiotic resistance and virulence genes of
Vibrio
strains isolated from ready‐to‐eat shrimps in Delta and Edo States, Nigeria. J Appl Microbiol 2020; 129:17-36. [DOI: 10.1111/jam.14590] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/03/2019] [Accepted: 01/14/2020] [Indexed: 12/18/2022]
Affiliation(s)
- A. Beshiru
- Applied Microbial Processes & Environmental Health Research Group Department of Microbiology Faculty of Life Sciences University of Benin Benin City Nigeria
| | - O.T. Okareh
- Department of Environmental Health Sciences Faculty of Public Health College of Medicine University of Ibadan Ibadan Nigeria
| | - A.I. Okoh
- SAMRC Microbial Water Quality Monitoring Centre University of Fort Hare Alice South Africa
| | - E.O. Igbinosa
- Applied Microbial Processes & Environmental Health Research Group Department of Microbiology Faculty of Life Sciences University of Benin Benin City Nigeria
- SAMRC Microbial Water Quality Monitoring Centre University of Fort Hare Alice South Africa
| |
Collapse
|
25
|
Amalina NZ, Santha S, Zulperi D, Amal MNA, Yusof MT, Zamri-Saad M, Ina-Salwany MY. Prevalence, antimicrobial susceptibility and plasmid profiling of Vibrio spp. isolated from cultured groupers in Peninsular Malaysia. BMC Microbiol 2019; 19:251. [PMID: 31711432 PMCID: PMC6849203 DOI: 10.1186/s12866-019-1624-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/24/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Numerous prevalence studies of Vibrio spp. infection in fish have been extensively reported worldwide, including Malaysia. Unfortunately, information on the prevalence of Vibrio spp. in groupers (Epinephelus spp.) is limited. In this study, groupers obtained from nine farms located at different geographical regions in Malaysia were sampled for the presence of pathogenic Vibrio spp. and their susceptibility profiles against seven antibiotics. RESULTS Out of 270 grouper samples, 195 (72%) were detected with the presence of Vibrio spp. Vibrio communis showed highest prevalence in grouper (28%), followed by V. parahaemolyticus (25%), V. alginolyticus (19%), V. vulnificus (14%), V. rotiferianus (3%), Vibrio sp. (3%), V. campbellii (2%), V. mytili (2%), V. furnissii (2%), V. harveyi (1%), V. tubiashii (1%), V. fluvialis (0.3%) and V. diabolicus (0.3%). Assessment on the antibiotic susceptibility profiles of the Vibrio spp. revealed that majority of the isolates were susceptible to tetracycline, streptomycin, erythromycin and bacitracin, but resistance to ampicillin, penicillin G and vancomycin. The mean MAR index of the Vibrio isolates was 0.51, with 85% of the isolates showed MAR index value of higher than 0.2. Results indicate that the Vibrio spp. were continuously exposed to antibiotics. Furthermore, the plasmid profiles of Vibrio spp. showed that 38.7% of the isolates harbored plasmid with molecular weight of more than 10 kb, while 61.3% were without plasmid. During curing process, Vibrio spp. lost their plasmid, but remained resistant to ampicillin, penicillin G, bacitracin and vancomycin while a few isolates remained resistant to erythromycin, streptomycin and tetracycline. The results suggested that the resistance to antibiotics in isolated Vibrio spp. might be due to chromosomal and plasmid borne. CONCLUSIONS This study demonstrates the prevalence of Vibrio spp. in groupers and the distribution of multidrug resistance strains that could be of concern to the farmers in Malaysia. In addition, data from this study can be further used in fish disease management plan.
Collapse
Affiliation(s)
- Nor Zulkiply Amalina
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Silvaraj Santha
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Dzarifah Zulperi
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Mohammad Noor Azmai Amal
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Mohd Termizi Yusof
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Mohd Zamri-Saad
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
- Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Md Yasin Ina-Salwany
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| |
Collapse
|
26
|
Ability of Vibrio vulnificus isolated from fish of the Lagoa dos Patos estuary in south Brazil to form biofilms after sublethal stress and bacterial resistance to antibiotics and sanitizers. Int J Food Microbiol 2019; 303:19-25. [DOI: 10.1016/j.ijfoodmicro.2019.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 04/26/2019] [Accepted: 05/10/2019] [Indexed: 01/22/2023]
|
27
|
Silvester R, Pires J, Van Boeckel TP, Madhavan A, Balakrishnan Meenakshikutti A, Hatha M. Occurrence of β-Lactam Resistance Genes and Plasmid-Mediated Resistance Among Vibrios Isolated from Southwest Coast of India. Microb Drug Resist 2019; 25:1306-1315. [PMID: 31219408 DOI: 10.1089/mdr.2019.0031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Antimicrobial resistance (AMR) is a serious global threat driven by the overuse of drugs in humans, animals, as well as the contamination of natural environments with antimicrobial residues. In recent years, the rise of community-acquired infections resistant to antibiotics has drawn renewed attention to the environmental compartment, in particular for pathogens found in aquaculture systems. We quantified the prevalence of antibiotic resistance in Vibrios isolated from the Cochin Estuary as well as the adjoining shrimp farms, and seafood from markets. A total of 280 Vibrio strains were subjected to antimicrobial susceptibility testing and screened for the presence of blaTEM, blaCTX-M, and blaNDM-1 genes. All strains identified were resistant to at least three antimicrobials, and the percentage of drugs resistant per strain ranged from 16% up to 60%. All the strains from the estuary were resistant to amoxicillin, ampicillin, cephalothin, and colistin. Similarly, strains isolated from seafood were resistant to enrofloxacin, furazolidone, and trimethoprim, and all strains from shrimp farms were resistant to colistin. Plasmid-mediated antibiotic resistance was observed in 21% of the strains. In addition, the presence of blaNDM-1 gene was confirmed in 22.85% of the strains. The presence of multiple resistant phenotypes in vibrios, including resistance to last-resort compounds in domestic food sources, raises serious concerns for public health in the Cochin Estuary. Although localized in nature, our findings also have vital implications for the spread of AMR internationally, given the prominence of South India for seafood exports.
Collapse
Affiliation(s)
- Reshma Silvester
- Department of Marine Biology, Microbiology and Biochemistry, CUSAT, Kochi, India.,Center for Disease Dynamics, Economics and Policy (CDDEP), New Delhi, India
| | - Joao Pires
- Department of Earth Systems Sciences, ETH Zurich, Zurich, Switzerland
| | - Thomas P Van Boeckel
- Center for Disease Dynamics, Economics and Policy (CDDEP), New Delhi, India.,Department of Earth Systems Sciences, ETH Zurich, Zurich, Switzerland
| | - Ajin Madhavan
- Department of Marine Biology, Microbiology and Biochemistry, CUSAT, Kochi, India
| | | | - Mohamed Hatha
- Department of Marine Biology, Microbiology and Biochemistry, CUSAT, Kochi, India
| |
Collapse
|
28
|
Zheng Z, Li R, Ye L, Wai-Chi Chan E, Xia X, Chen S. Genetic Characterization of bla CTX-M-55 -Bearing Plasmids Harbored by Food-Borne Cephalosporin-Resistant Vibrio parahaemolyticus Strains in China. Front Microbiol 2019; 10:1338. [PMID: 31275270 PMCID: PMC6591265 DOI: 10.3389/fmicb.2019.01338] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/29/2019] [Indexed: 11/24/2022] Open
Abstract
This study aims to investigate and compare the complete nucleotide sequences of the multidrug resistance plasmids pVb0267 and pVb0499, which were recovered from foodborne Vibrio parahaemolyticus isolates, and analyze the genetic environment of blaCTX–M–55 to provide insight into the dissemination mechanisms of this resistance element. Analysis of the sequences of plasmids pVb0267 (166,467 bp) and pVb0499 (192,739 bp) revealed that the backbones of these two plasmids exhibited a high degree of similarity with pR148, a recognized type 1a IncC plasmid recovered from Aeromonas hydrophila (99% identity). The resistance genes, found in both plasmids, included qacH, aadB, arr2, blaOXA–10, aadA1, sul1, tet(A), and blaCTX–M–55, which were mostly arranged in a specific region designated ARI-A. Plasmid pVb0499 was found to possess a larger size of ARI-A than pVb0267, which lacked a mer determination region, a qnr A segment, an aacC3 gene and several mobility-encoding genes. Comparative analysis of resistance island (RI) of these plasmids and others revealed the potential evolution route of these RI sequences. In conclusion, plasmids harboring the blaCTX–M–55 gene has been recovered in Vibrio parahaemolyticus strains of food origin. It is alarming to find that IncC plasmids harboring resistance islands are disseminating in aquatic bacterial strains. The continuous evolution of resistance genes in conjugative plasmid in aquatic bacteria could be due to bacterial adaption to aquaculture environment, where antibiotics were increasingly used.
Collapse
Affiliation(s)
- Zhiwei Zheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen, China
| | - Ruichao Li
- Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen, China.,State Key Laboratory of Chirosciences, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong.,College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Lianwei Ye
- Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen, China.,State Key Laboratory of Chirosciences, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Edward Wai-Chi Chan
- State Key Laboratory of Chirosciences, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Xiaodong Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Sheng Chen
- Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen, China.,State Key Laboratory of Chirosciences, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| |
Collapse
|
29
|
Jagadeesan Y, Athinarayanan S, Ayub SBM, Balaiah A. Assessment of Synthesis Machinery of Two Antimicrobial Peptides from Paenibacillus alvei NP75. Probiotics Antimicrob Proteins 2019; 12:39-47. [DOI: 10.1007/s12602-019-09541-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
30
|
Efficacy assessment of commercially available natural products and antibiotics, commonly used for mitigation of pathogenic Vibrio outbreaks in Ecuadorian Penaeus (Litopenaeus) vannamei hatcheries. PLoS One 2019; 14:e0210478. [PMID: 30699138 PMCID: PMC6353134 DOI: 10.1371/journal.pone.0210478] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 12/25/2018] [Indexed: 12/02/2022] Open
Abstract
Bacterial diseases cause high mortality in Penaeus (Litopenaeus) vannamei postlarvae. Therefore, appropriate application of efficient therapeutic products is of vital importance for disease control. This study evaluated through in vitro analyses the antimicrobial effectiveness of commercial therapeutic products used for P. vannamei bacterial diseases and antibiotics against pathogenic Vibrio strains circulating in Ecuadorian hatcheries. Twenty strains were isolated from 31 larvae samples with high bacterial counts from 10 hatcheries collected during mortality events. The strains virulence was verified through challenge tests with Artemia franciscana nauplii and P. vannamei postlarvae. Through 16S rRNA sequence analysis, strains showed a great similarity to the Vibrio sequences reported as pathogens, with 95% belonging to the Harveyi clade. Through antibiograms and minimal inhibitory concentration (MIC) in vitro tests we found that furazolidone, ciprofloxacin, chloramphenicol, norfloxacin, nalidixic acid, florfenicol, fosfomycin and enrofloxacin inhibited the growth of all or most of the strains. Less efficient antibiotics were penicillin, oxytetracycline and tetracycline. A multiple antibiotic resistance (MAR) index of 0.23 showed some level of resistance to antibiotics, with two MAR prevalent patterns (Penicillin-Oxytetracycline and Penicillin-Oxytetracycline-Tetracycline). From a total of 16 natural products (five probiotics, nine organic acids and two essential oils), only three (one probiotic, one organic acid and one essential oil) were effective to control most of the strains. Shrimp producers can apply relatively simple in vitro analyses, such as those employed in this study, to help take adequate management decisions to reduce the impact of bacterial diseases and increase profit.
Collapse
|
31
|
Behavior of Antimicrobial Peptide K4 in a Marine Environment. Probiotics Antimicrob Proteins 2018; 11:676-686. [PMID: 30143998 DOI: 10.1007/s12602-018-9454-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
K4 is a de novo peptide with antibacterial activity on human pathogens. It has a short sequence (14 amino acids), with a cationic N-terminal moiety and an amphipathic ɑ-helix structure. The present paper demonstrates its activity on Vibrio bacteria in a marine environment. It was found non-toxic on marine organisms including Artemia salina, Dicentrarchus labrax, and Magallana gigas at different developmental stages, but influenced the growth of unicellular organisms like microalgae, depending on the algal strain and on K4 concentration. Furthermore, an original approach coupling liquid chromatography (RP-HPLC) and mass spectrometry (MS/MS) allowed us to monitor the degradation time course of the peptide for the first time in conditions close to a hatchery environment, i.e., in the presence of oyster spat. We detected truncated forms over time, and the full K4 was gradually no longer found in these filter-feeder oysters. Finally, using an automated optical density meter, we monitored the growth of several aquatic bacteria identified as pathogenic on animals. K4 had a bactericidal effect on Aeromonas salmonicida and Vibrio splendidus LGP32 at concentrations below 45 μg mL-1. Our results show that K4 could be an environment-friendly alternative to antibiotics, non-toxic to several marine organisms. The use of K4 would be particularly useful to decrease the bacterial load associated with food intake in the early developmental stages of marine animals reared in hatcheries.
Collapse
|
32
|
Pan S, Jiang L, Wu S. Stimulating effects of polysaccharide from Angelica sinensis on the nonspecific immunity of white shrimps (Litopenaeus vannamei). FISH & SHELLFISH IMMUNOLOGY 2018; 74:170-174. [PMID: 29305988 DOI: 10.1016/j.fsi.2017.12.067] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/26/2017] [Accepted: 12/31/2017] [Indexed: 06/07/2023]
Abstract
Angelica sinensis polysaccharide (ASP) was prepared by hot water extraction. Then, high-performance liquid chromatography and ion chromatography analyses were conducted, and the results indicated that ASP is a heteropolysaccharide, has a molecular mass of 82,000 Da and consists of arabinose, galactose and glucose (molar ratio of 6:1:1). The effects of ASP on the nonspecific immunity of white shrimps (Litopenaeus vannamei) were investigated by feeding them with ASP-containing diets (0.5, 1 and 1.5 g/kg) during a 12-week breeding experiment. Oral ASP administration significantly improved the survival rate, phenoloxidase activity, superoxide dismutase activity, glutathione peroxidase level, disease resistance against V. alginolyticus, total haemocyte count and number of hyaline cells, semigranular cells and granular cells (p < .05). ASP exhibits immunostimulatory effects on Pacific white shrimps (L. vannamei) and may thus be used as a diet supplement for them.
Collapse
Affiliation(s)
- Saikun Pan
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, 59 Cangwu Road, Haizhou, 222005, China; College of Food Engineering, Huaihai Institute of Technology, 59 Cangwu Road, Haizhou, 222005, China; Jiangsu Marine Resources Development Research Institute, Huaihai Institute of Technology, 59 Cangwu Road, Haizhou, 222005, China; Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Huaihai Institute of Technology, 59 Cangwu Road, Haizhou, 222005, China
| | - Longfa Jiang
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, 59 Cangwu Road, Haizhou, 222005, China; College of Food Engineering, Huaihai Institute of Technology, 59 Cangwu Road, Haizhou, 222005, China; Jiangsu Marine Resources Development Research Institute, Huaihai Institute of Technology, 59 Cangwu Road, Haizhou, 222005, China; Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Huaihai Institute of Technology, 59 Cangwu Road, Haizhou, 222005, China
| | - Shengjun Wu
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, 59 Cangwu Road, Haizhou, 222005, China; College of Food Engineering, Huaihai Institute of Technology, 59 Cangwu Road, Haizhou, 222005, China; Jiangsu Marine Resources Development Research Institute, Huaihai Institute of Technology, 59 Cangwu Road, Haizhou, 222005, China; Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Huaihai Institute of Technology, 59 Cangwu Road, Haizhou, 222005, China.
| |
Collapse
|
33
|
Xia Z, Wu S. Effects of glutathione on the survival, growth performance and non-specific immunity of white shrimps (Litopenaeus vannamei). FISH & SHELLFISH IMMUNOLOGY 2018; 73:141-144. [PMID: 29246808 DOI: 10.1016/j.fsi.2017.12.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/23/2017] [Accepted: 12/10/2017] [Indexed: 06/07/2023]
Abstract
Reduced glutathione (GSH) is the most abundant non-enzymatic antioxidant present in mammalian cells and the main intracellular defence mechanism against oxidative stress. This study investigated the effects of GSH on survival rate, mean body gain weight, feed efficiency (FE), phenoloxidase (PO) activity, superoxide dismutase (SOD) activity, acid phosphatase (ACP), alkaline phosphatase (AKP) activity, GSH peroxidase (GPx) and susceptibility to Vibrio alginolyticus when Pacific white shrimps (Litopenaeus vannamei) were fed with GSH-containing diets. GSH was added to diets at 0.10, 0.20 and 0.30 g/kg during the eight-week breeding experiment. Oral administration of GSH had significantly increased mean body weight gain, FE, PO activity, SOD activity, ACP activity, AKP activity, GPx activity and susceptibility to V. alginolyticus compared with those of the control group (p < .05). Results indicate that GSH exerts both growth-promoting and immunostimulatory effects on Pacific white shrimps (L. vannamei).
Collapse
Affiliation(s)
- Zhenqiang Xia
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, 59 Cangwu Road, Haizhou 222005, China; College of Food Engineering, Huaihai Institute of Technology, 59 Cangwu Road, Haizhou 222005, China; Jiangsu Marine Resources Development Research Institute, Huaihai Institute of Technology, 59 Cangwu Road, Haizhou 222005, China
| | - Shengjun Wu
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, 59 Cangwu Road, Haizhou 222005, China; College of Food Engineering, Huaihai Institute of Technology, 59 Cangwu Road, Haizhou 222005, China; Jiangsu Marine Resources Development Research Institute, Huaihai Institute of Technology, 59 Cangwu Road, Haizhou 222005, China.
| |
Collapse
|
34
|
Passari AK, Mishra VK, Singh G, Singh P, Kumar B, Gupta VK, Sarma RK, Saikia R, Donovan AO, Singh BP. Insights into the functionality of endophytic actinobacteria with a focus on their biosynthetic potential and secondary metabolites production. Sci Rep 2017; 7:11809. [PMID: 28924162 PMCID: PMC5603540 DOI: 10.1038/s41598-017-12235-4] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/06/2017] [Indexed: 12/20/2022] Open
Abstract
Endophytic actinobacteria play an important role in growth promotion and development of host plant by producing enormous quantities of novel bioactive natural products. In the present investigation, 169 endophytic actinobacteria were isolated from endospheric tissues of Rhynchotoechum ellipticum. Based on their antimicrobial potential, 81 strains were identified by 16rRNA gene analysis, which were taxonomically grouped into 15 genera. All identified strains were screened for their plant growth promoting attributes and, for the presence of modular polyketide synthases (PKSI, PKSII and nonribosomal peptide synthetase (NRPS) gene clusters to correlate the biosynthetic genes with their functional properties. Expression studies and antioxidant potential for four representative strains were evaluated using qRT-PCR and DPPH assay respectively. Additionally, six antibiotics (erythromycin, ketoconazole, fluconazole, chloramphenicol, rifampicin and miconazole) and nine phenolic compounds (catechin, kaempferol, chebulagic acid, chlorogenic acid, Asiatic acid, ferulic acid, arjunic acid, gallic acid and boswellic acid) were detected and quantified using UHPLC-QqQLIT-MS/MS. Furthermore, three strains (BPSAC77, 121 and 101) showed the presence of the anticancerous compound paclitaxel which was reported for the first time from endophytic actinobacteria. This study provides a holistic picture, that endophytic actinobacteria are rich bacterial resource for bioactive natural products, which has a great prospective in agriculture and pharmaceutical industries.
Collapse
Affiliation(s)
- Ajit Kumar Passari
- Molecular Microbiology and Systematics Laboratory, Department of Biotechnology, Aizawl, Mizoram University, Mizoram, 796004, India
| | - Vineet Kumar Mishra
- Molecular Microbiology and Systematics Laboratory, Department of Biotechnology, Aizawl, Mizoram University, Mizoram, 796004, India
| | - Garima Singh
- Molecular Microbiology and Systematics Laboratory, Department of Biotechnology, Aizawl, Mizoram University, Mizoram, 796004, India
| | - Pratibha Singh
- SAIF, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, 226012, India
| | - Brijesh Kumar
- SAIF, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, 226012, India
| | - Vijai Kumar Gupta
- Department of Chemistry and Biotechnology, ERA Chair of Green Chemistry, Tallinn University of Technology, 12618, Tallinn, Estonia
| | | | - Ratul Saikia
- Biotechnology Division, CSIR-NEIST, Jorhat, Assam, 785006, India
| | - Anthonia O' Donovan
- Applied Biology and Biopharmaceutical Science, School of Science & Computing, Galway-Mayo Institute of Technology, Galway, Ireland
| | - Bhim Pratap Singh
- Molecular Microbiology and Systematics Laboratory, Department of Biotechnology, Aizawl, Mizoram University, Mizoram, 796004, India.
| |
Collapse
|
35
|
Heng SP, Letchumanan V, Deng CY, Ab Mutalib NS, Khan TM, Chuah LH, Chan KG, Goh BH, Pusparajah P, Lee LH. Vibrio vulnificus: An Environmental and Clinical Burden. Front Microbiol 2017; 8:997. [PMID: 28620366 PMCID: PMC5449762 DOI: 10.3389/fmicb.2017.00997] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/17/2017] [Indexed: 12/14/2022] Open
Abstract
Vibrio vulnificus is a Gram negative, rod shaped bacterium that belongs to the family Vibrionaceae. It is a deadly, opportunistic human pathogen which is responsible for the majority of seafood-associated deaths worldwide. V. vulnificus infection can be fatal as it may cause severe wound infections potentially requiring amputation or lead to sepsis in susceptible individuals. Treatment is increasingly challenging as V. vulnificus has begun to develop resistance against certain antibiotics due to their indiscriminate use. This article aims to provide insight into the antibiotic resistance of V. vulnificus in different parts of the world as well as an overall review of its clinical manifestations, treatment, and prevention. Understanding the organism's antibiotic resistance profile is vital in order to select appropriate treatment and initiate appropriate prevention measures to treat and control V. vulnificus infections, which should eventually help lower the mortality rate associated with this pathogen worldwide.
Collapse
Affiliation(s)
- Sing-Peng Heng
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University MalaysiaBandar Sunway, Malaysia
| | - Vengadesh Letchumanan
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of MalayaKuala Lumpur, Malaysia
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia
| | - Chuan-Yan Deng
- Zhanjiang Evergreen South Ocean Science and Technology CorporationGuangdong, China
| | - Nurul-Syakima Ab Mutalib
- UKM Medical Centre, UKM Medical Molecular Biology Institute, Universiti Kebangsaan MalaysiaKuala Lumpur, Malaysia
| | - Tahir M. Khan
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia
- Department of Pharmacy, Absyn University PeshawarPeshawar, Pakistan
| | - Lay-Hong Chuah
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of MalayaKuala Lumpur, Malaysia
| | - Bey-Hing Goh
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand
| | - Priyia Pusparajah
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University MalaysiaBandar Sunway, Malaysia
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand
| |
Collapse
|
36
|
Menezes FGRDE, Rodriguez MTT, Carvalho FCTDE, Rebouças RH, Costa RA, Sousa OVDE, Hofer E, Vieira RHSF. Pathogenic Vibrio species isolated from estuarine environments (Ceará, Brazil) - antimicrobial resistance and virulence potential profiles. AN ACAD BRAS CIENC 2017; 89:1175-1188. [PMID: 28489191 DOI: 10.1590/0001-3765201720160191] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 10/15/2016] [Indexed: 11/22/2022] Open
Abstract
Detection of virulent strains associated with aquatic environment is a current concern for the management and control of human and animal health. Thus, Vibrio diversity was investigated in four estuaries from state of Ceará (Pacoti, Choró, Pirangi and Jaguaribe) followed by antimicrobial susceptibility to different antimicrobials used in aquaculture and detection of main virulence factors to human health. Isolation and identification were performed on TCBS agar (selective medium) and dichotomous key based on biochemical characteristics, respectively. Nineteen strains of genus Vibrio were catalogued. Vibrio parahaemolyticus (Choró River) and V. alginolyticus (Pacoti River) were the most abundant species in the four estuaries. All strains were submitted to disk diffusion technique (15 antimicrobials were tested). Resistance was found to: penicillin (82%), ampicillin (54%), cephalotin (7%), aztreonan (1%), gentamicin, cefotaxime and ceftriaxone (0.5%). Five pathogenic strains were chosen to verification of virulence factors. Four estuaries showed a high abundance of species. High number of tested positive strains for virulence is concerning, since some of those strains are associated to human diseases, while others are known pathogens of aquatic organisms.
Collapse
Affiliation(s)
- Francisca G R DE Menezes
- Universidade Federal do Ceará, Departamento de Engenharia de Pesca, Av. Mister Hull, s/n, Campus Universitário do Pici - UFC, Antônio Bezerra, 60455-460 Fortaleza, CE, Brazil
| | - Marina T T Rodriguez
- Universidade Federal do Ceará, Instituto de Ciências do Mar/LABOMAR, Av. da Abolição, 3207, Meireles, 60165-081 Fortaleza, CE, Brazil
| | - Fátima C T DE Carvalho
- Universidade Federal do Ceará, Departamento de Engenharia de Pesca, Av. Mister Hull, s/n, Campus Universitário do Pici - UFC, Antônio Bezerra, 60455-460 Fortaleza, CE, Brazil
| | - Rosa H Rebouças
- Universidade Federal do Ceará, Instituto de Ciências do Mar/LABOMAR, Av. da Abolição, 3207, Meireles, 60165-081 Fortaleza, CE, Brazil
| | - Renata A Costa
- Instituto Superior de Teologia Aplicada/INTA, R. Antônio Rodrigues Magalhães, 359, Dom Expedito, 62050-100 Sobral, CE, Brazil
| | - Oscarina V DE Sousa
- Universidade Federal do Ceará, Instituto de Ciências do Mar/LABOMAR, Av. da Abolição, 3207, Meireles, 60165-081 Fortaleza, CE, Brazil
| | - Ernesto Hofer
- Instituto Oswaldo Cruz/FIOCRUZ, Av. Brasil, 4365, Manguinhos, 21040-360 Rio de Janeiro, RJ, Brazil
| | - Regine H S F Vieira
- Universidade Federal do Ceará, Instituto de Ciências do Mar/LABOMAR, Av. da Abolição, 3207, Meireles, 60165-081 Fortaleza, CE, Brazil
| |
Collapse
|
37
|
Zhao Z, Wang J, Han Y, Chen J, Liu G, Lu H, Yan B, Chen S. Nutrients, heavy metals and microbial communities co-driven distribution of antibiotic resistance genes in adjacent environment of mariculture. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 220:909-918. [PMID: 27814984 DOI: 10.1016/j.envpol.2016.10.075] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 06/06/2023]
Abstract
With the rapid development of aquaculture, the large amounts of pollutants were discharged into the aquatic environment, where the detected antibiotic resistance genes (ARGs) have drawn increasing attention due to their potential threats to ecological environment and human health. Thus, the impact of mariculture on ARGs was assessed and the underlying mechanism of their propagation was explained. Sediments from eight sampling sites were collected along a mariculture drainage ditch, and the sediment in Yellow River Delta National Park was used as a non-mariculture control. Microbial ARGs qPCR array and illumina sequencing of 16S rRNA gene were applied to examine the changing patterns of ARGs and bacterial communities. Results showed that 18 ARGs (3 fluoroquinolone, 1 aminoglycoside, 3 macrolide-lincosamide-streptogramin B, 2 tetracycline, and 9 beta-lactam resistance genes) were influenced by mariculture, and ARGs abundance and diversity were significantly increased in mariculture sediments (p < 0.05). A remarkable shift in bacterial community structure and composition was also observed. The abundance of most of ARGs were significantly decreased in the estuary samples, implying that seawater had a significant dilution effect on the ARGs emission from the mariculture sites. Partial redundancy analysis showed that nutrients, heavy metals, and bacteria communities might directly and indirectly contribute to ARGs propagation, suggesting that the profile and dissemination of ARGs were driven by the combined effects of multiple factors in mariculture-impacted sites.
Collapse
Affiliation(s)
- Zelong Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jing Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Ying Han
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Guangfei Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hong Lu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Bin Yan
- School of Environmental Science and Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Shiaoshing Chen
- Institute of Environmental Engineering and Management, National Taipei University of Technology, Taipei 106, Taiwan, ROC
| |
Collapse
|
38
|
Mechri B, Medhioub A, Medhioub MN, Aouni M. Prevalence of Biofilm Formation and Wide Distribution of Virulence Associated Genes among Vibrio spp. Strains Isolated from the Monastir Lagoon, Tunisia. Pol J Microbiol 2016; 65:307-318. [PMID: 29334058 DOI: 10.5604/17331331.1215610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the current study, 65 Vibrio spp. were isolated from the Monastir lagoon water, were characterized phenotypically and genotypically. In addition, we looked for the presence of three Vibrio parahaemolyticus virulence genes (tlh, trh and tdh) and ten Vibrio cholerae virulence genes (ctxA, vpi, zot, ace, toxR, toxT, tosS, toxRS, tcpA and cpP). We also investigated the antibiotic susceptibilities and the adherence ability of the identified strains to abiotic material and to biotic surfaces. The cytotoxicity activity against HeLa and Vero cell lines were also carried out for all tested strains. All Vibrio isolates were identified to the species level and produced several hydrolytic exoenzymes. The results also revealed that all strains were expressing high rates of resistance to tested antibiotics. The minimum inhibitory concentration (MIC) values showed that tetracycline and chloramphenicol were the most effective antibiotics against the tested bacteria. Vibrio alginolyticus and V. cholerae species were the most adhesive strains to both biotic and abiotic surfaces. Besides, V. alginolyticus isolates has the high levels of recombination of genes encoding V. cholerae and V. parahaemolyticus virulence factors. In vitro cytotoxic activities of several Vibrio extracellular product were also observed among HeLa and Vero cells.
Collapse
Affiliation(s)
- Badreddine Mechri
- Laboratory of Contagious Diseases and Biologically Active Substances, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia; Laboratory of Aquaculture, National Institute of Marine Sciences and Technology, Monastir, Tunisia
| | - Amel Medhioub
- Laboratory of Aquaculture, National Institute of Marine Sciences and Technology, Monastir, Tunisia
| | - Mohamed N Medhioub
- Laboratory of Aquaculture, National Institute of Marine Sciences and Technology, Monastir, Tunisia
| | - Mahjoub Aouni
- Laboratory of Contagious Diseases and Biologically Active Substances, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| |
Collapse
|
39
|
Elmahdi S, DaSilva LV, Parveen S. Antibiotic resistance of Vibrio parahaemolyticus and Vibrio vulnificus in various countries: A review. Food Microbiol 2016; 57:128-34. [DOI: 10.1016/j.fm.2016.02.008] [Citation(s) in RCA: 200] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 02/15/2016] [Accepted: 02/19/2016] [Indexed: 02/06/2023]
|
40
|
Stalin N, Srinivasan P. Molecular characterization of antibiotic resistant Vibrio harveyi isolated from shrimp aquaculture environment in the south east coast of India. Microb Pathog 2016; 97:110-8. [DOI: 10.1016/j.micpath.2016.05.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 05/22/2016] [Accepted: 05/27/2016] [Indexed: 10/21/2022]
|
41
|
Marcelo SDO, Greiciane FCAB, Lidiane DCS, Ingrid AP, Bruno RP, Marco AONSDS, Shana MDOC, Irene DSC, D aacute lia DPR, Miliane MSDS. Detection of virulence and antibiotic resistance genes in environmental strains of Vibrio spp. from mussels along the coast of Rio de Janeiro State, Brazil. ACTA ACUST UNITED AC 2016. [DOI: 10.5897/ajmr2015.7636] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
42
|
Zothanpuia, Passari AK, Gupta VK, Singh BP. Detection of antibiotic-resistant bacteria endowed with antimicrobial activity from a freshwater lake and their phylogenetic affiliation. PeerJ 2016; 4:e2103. [PMID: 27330861 PMCID: PMC4906672 DOI: 10.7717/peerj.2103] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/11/2016] [Indexed: 12/19/2022] Open
Abstract
Antimicrobial resistance poses a serious challenge to global public health. In this study, fifty bacterial strains were isolated from the sediments of a freshwater lake and were screened for antibiotic resistance. Out of fifty isolates, thirty-three isolates showed resistance against at least two of the selected antibiotics. Analysis of 16S rDNA sequencing revealed that the isolates belonged to ten different genera, namely Staphylococcus(n = 8), Bacillus(n = 7), Lysinibacillus(n = 4), Achromobacter(n=3), bacterium(n = 3), Methylobacterium(n = 2), Bosea(n = 2), Aneurinibacillus(n = 2), Azospirillum(n = 1), Novosphingobium(n = 1). Enterobacterial repetitive intergenic consensus (ERIC) and BOX-PCR markers were used to study the genetic relatedness among the antibiotic resistant isolates. Further, the isolates were screened for their antimicrobial activity against bacterial pathogens viz., Staphylococcus aureus(MTCC-96), Pseudomonas aeruginosa(MTCC-2453) and Escherichia coli(MTCC-739), and pathogenic fungi viz., Fusarium proliferatum (MTCC-286), Fusarium oxysporum (CABI-293942) and Fusarium oxy. ciceri (MTCC-2791). In addition, biosynthetic genes (polyketide synthase II (PKS-II) and non-ribosomal peptide synthetase (NRPS)) were detected in six and seven isolates, respectively. This is the first report for the multifunctional analysis of the bacterial isolates from a wetland with biosynthetic potential, which could serve as potential source of useful biologically active metabolites.
Collapse
Affiliation(s)
- Zothanpuia
- Department of Biotechnology, Mizoram University , Aizawl , Mizoram , India
| | - Ajit K Passari
- Department of Biotechnology, Mizoram University , Aizawl , Mizoram , India
| | - Vijai K Gupta
- Molecular Glyco-biotechnology Group, University of Ireland , Galway , Ireland , UK
| | - Bhim P Singh
- Department of Biotechnology, Mizoram University , Aizawl , Mizoram , India
| |
Collapse
|
43
|
Xie CY, Kong JR, Zhao CS, Xiao YC, Peng T, Liu Y, Wang WN. Molecular characterization and function of a PTEN gene from Litopenaeus vannamei after Vibrio alginolyticus challenge. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 59:77-88. [PMID: 26801100 DOI: 10.1016/j.dci.2016.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 01/11/2016] [Accepted: 01/11/2016] [Indexed: 06/05/2023]
Abstract
PTEN, a tumor suppressor gene, suppresses cell survival, growth, apoptosis, cell migration and DNA damage repair by inhibiting the PI3K/AKT signaling pathway. In this study, the full-length Litopenaeus vannamei PTEN (LvPTEN) cDNA was obtained, containing a 5'UTR of 59bp, an ORF of 1269bp and a 3'UTR of 146bp besides the poly (A) tail. The PTEN gene encoded a protein of 422 amino acids with an estimated molecular mass of 48.3 KDa and a predicted isoelectric point (pI) of 7.6. Subcellular localization analysis revealed that LvPTEN was distributed in both cytoplasm and nucleus, and the tissue distribution patterns showed that LvPTEN was ubiquitously expressed in all the examined tissues. Vibrio alginolyticus challenge induced upregulation of LvPTEN expression. Moreover, RNAi knock-down of LvPTEN in vivo significantly increased the expression of LvAKT mRNA, while reducing that of the downstream apoptosis genes LvP53 and LvCaspase3. LvPTEN knock-down also caused a sharp increase in cumulative mortality, bacterial numbers, and DNA damage in the hemolymph of L. vannamei following V. alginolyticus challenge, together with a sharp decrease in the total hemocyte count (THC). These results suggested that LvPTEN may participate in apoptosis via the PI3K/AKT signaling pathway in L. vannamei, and play an important role in shrimp innate immunity.
Collapse
Affiliation(s)
- C-y Xie
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - J-r Kong
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - C-s Zhao
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Y-c Xiao
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - T Peng
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Y Liu
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - W-n Wang
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China.
| |
Collapse
|
44
|
Microbiological Quality Assessment by PCR and Its Antibiotic Susceptibility in Mangrove Crabs (Ucides cordatus) from Guanabara Bay, Rio de Janeiro, Brazil. Int J Microbiol 2016; 2016:7825031. [PMID: 27065187 PMCID: PMC4811098 DOI: 10.1155/2016/7825031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 02/10/2016] [Indexed: 11/26/2022] Open
Abstract
The bacteriological quality of crabs from three different mangroves (Itaóca, Suruí, and Piedade) from Rio de Janeiro state, Brazil, was investigated using conventional and molecular methods. The results revealed high counts for total coliforms in meat and hepatopancreas samples. PCR analyses identified 25 Escherichia coli colonies in the Itaóca, Piedade, and Suruí samples, detecting 13 enterotoxigenic colonies and 9 enteroaggregative colonies. Respectively, 12, 11, and 21 Vibrio parahaemolyticus strains were detected in the Itaóca, Piedade, and Suruí samples. Two V. cholerae strains were detected in the Piedade samples. The E. coli strains isolated in the present study showed resistance to gentamicin. E. coli strains from the Piedade samples showed 33% resistance to chloramphenicol and the strains also showed multiresistance to several antimicrobial agents with a MAR index ranging from 0.12 to 0.31. Vibrio strains from Piedade, Itaóca, and Suruí showed 86%, 78%, and 85% resistance, respectively, to ampicillin. The isolated Vibrio strains showed multiresistance to several antimicrobial agents, with a MAR index ranging from 0.12 to 0.25. The presence of these organisms in crab meat is an indication of microbial contamination, which may pose health risks to consumers when improperly cooked.
Collapse
|
45
|
Manju S, Malaikozhundan B, Withyachumnarnkul B, Vaseeharan B. Essential oils of Nigella sativa protects Artemia from the pathogenic effect of Vibrio parahaemolyticus Dahv2. J Invertebr Pathol 2016; 136:43-9. [PMID: 26945773 DOI: 10.1016/j.jip.2016.03.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 02/24/2016] [Accepted: 03/02/2016] [Indexed: 10/22/2022]
Abstract
The anti-Vibrio activity of essential oils (EOs) of nine medicinal plants was tested against 28 Vibrio spp. isolated from diseased Fenneropenaeus indicus. EO of Nigella sativa exhibited anti-Vibrio activity against all Vibrio spp. and greater inhibition was noted for the isolate V2 which was identified as Vibrio parahaemolyticus Dahv2. Further, EO of N. sativa effectively inhibited V. parahaemolyticus Dahv2 with an inhibition zone of 23.9mm at 101.2μgml(-1). Moreover, EO of N. sativa revealed anti-biofilm activity at 101.2μgml(-1) against V. parahaemolyticus Dahv2 and inhibited the growth of V. parahaemolyticus Dahv2 at 100μgml(-1).In vivo experimental infection studies showed that the survival of Artemia spp. infected with V. parahaemolyticus Dahv2 at 1×10(3)cfuml(-1) was only 40%. However, the survival of Artemia spp. was significantly increased after challenge with 100μgml(-1) of EO of N. sativa. EO of N. sativa showed higher anti-oxidant potential and total phenol content than other EOs tested. The anti-oxidant activity of EO of N. sativa was highly correlated to their total phenolic contents (r=0.836, P<0.05). This observation suggests that EO of N. sativa protected the Artemia spp. after experimental infection of V. parahaemolyticus Dahv2.
Collapse
Affiliation(s)
- Sivalingam Manju
- Biomaterials and Biotechnology in Animal Health Lab, Crustacean Molecular Biology and Genomics Division, Department of Animal Health and Management, Alagappa University, Karaikudi 630 004, Tamil Nadu, India
| | - Balasubramanian Malaikozhundan
- Biomaterials and Biotechnology in Animal Health Lab, Crustacean Molecular Biology and Genomics Division, Department of Animal Health and Management, Alagappa University, Karaikudi 630 004, Tamil Nadu, India
| | - Boonsirm Withyachumnarnkul
- Department of Anatomy and Centex Shrimp, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Aquatic Animal Biotechnology Research Center, Faculty of Science and Industrial Technology, Prince of Songkla University, Surat Thani Campus, Surat Thani 84100, Thailand
| | - Baskaralingam Vaseeharan
- Biomaterials and Biotechnology in Animal Health Lab, Crustacean Molecular Biology and Genomics Division, Department of Animal Health and Management, Alagappa University, Karaikudi 630 004, Tamil Nadu, India.
| |
Collapse
|
46
|
Rocha MFG, Alencar LP, Paiva MAN, Melo LM, Bandeira SP, Ponte YB, Sales JA, Guedes GMM, Castelo-Branco DSCM, Bandeira TJ.PG, Cordeiro RA, Pereira-Neto WA, Brandine GS, Moreira JLB, Sidrim JJC, Brilhante RSN. Cross-resistance to fluconazole induced by exposure to the agricultural azole tetraconazole: an environmental resistance school? Mycoses 2016; 59:281-90. [DOI: 10.1111/myc.12457] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 11/20/2015] [Accepted: 12/09/2015] [Indexed: 02/03/2023]
Affiliation(s)
- Marcos Fábio Gadelha Rocha
- Department of Pathology and Legal Medicine; Postgraduate Program in Medical Microbiology; Specialized Medical Mycology Center; Federal University of Ceará; Fortaleza Ceará Brazil
- School of Veterinary Medicine; Postgraduate Program in Veterinary Sciences; State University of Ceará; Fortaleza Ceará Brazil
| | - L. P. Alencar
- School of Veterinary Medicine; Postgraduate Program in Veterinary Sciences; State University of Ceará; Fortaleza Ceará Brazil
| | - M. A. N. Paiva
- School of Veterinary Medicine; Postgraduate Program in Veterinary Sciences; State University of Ceará; Fortaleza Ceará Brazil
| | - Luciana Magalhães Melo
- School of Veterinary Medicine; Postgraduate Program in Veterinary Sciences; State University of Ceará; Fortaleza Ceará Brazil
| | - Silviane Praciano Bandeira
- Department of Pathology and Legal Medicine; Postgraduate Program in Medical Microbiology; Specialized Medical Mycology Center; Federal University of Ceará; Fortaleza Ceará Brazil
| | - Y. B. Ponte
- School of Veterinary Medicine; Postgraduate Program in Veterinary Sciences; State University of Ceará; Fortaleza Ceará Brazil
| | - Jamille Alencar Sales
- School of Veterinary Medicine; Postgraduate Program in Veterinary Sciences; State University of Ceará; Fortaleza Ceará Brazil
| | - G. M. M. Guedes
- Department of Pathology and Legal Medicine; Postgraduate Program in Medical Microbiology; Specialized Medical Mycology Center; Federal University of Ceará; Fortaleza Ceará Brazil
| | - D. S. C. M. Castelo-Branco
- Department of Pathology and Legal Medicine; Postgraduate Program in Medical Microbiology; Specialized Medical Mycology Center; Federal University of Ceará; Fortaleza Ceará Brazil
| | | | - R. A. Cordeiro
- Department of Pathology and Legal Medicine; Postgraduate Program in Medical Microbiology; Specialized Medical Mycology Center; Federal University of Ceará; Fortaleza Ceará Brazil
| | - W. A. Pereira-Neto
- Department of Pathology and Legal Medicine; Postgraduate Program in Medical Microbiology; Specialized Medical Mycology Center; Federal University of Ceará; Fortaleza Ceará Brazil
| | - G. S. Brandine
- Department of Pathology and Legal Medicine; Postgraduate Program in Medical Microbiology; Specialized Medical Mycology Center; Federal University of Ceará; Fortaleza Ceará Brazil
| | - José Luciano Bezerra Moreira
- Department of Pathology and Legal Medicine; Postgraduate Program in Medical Microbiology; Specialized Medical Mycology Center; Federal University of Ceará; Fortaleza Ceará Brazil
| | - José Júlio Costa Sidrim
- Department of Pathology and Legal Medicine; Postgraduate Program in Medical Microbiology; Specialized Medical Mycology Center; Federal University of Ceará; Fortaleza Ceará Brazil
| | - Raimunda Sâmia Nogueira Brilhante
- Department of Pathology and Legal Medicine; Postgraduate Program in Medical Microbiology; Specialized Medical Mycology Center; Federal University of Ceará; Fortaleza Ceará Brazil
| |
Collapse
|
47
|
Castelo-Branco DDSCM, Sales JA, Brilhante RSN, Guedes GMDM, Ponte YBD, Sampaio CMDS, Bandeira TDJPG, Moreira JLB, Alencar LPD, Paiva MDAN, Cordeiro RDA, Monteiro AJ, Pereira-Neto WDA, Sidrim JJC, Rocha MFG. Enterobacteria and Vibrio from Macrobrachium amazonicum prawn farming in Fortaleza, Ceará, Brazil. ASIAN PAC J TROP MED 2016; 9:27-31. [PMID: 26851782 DOI: 10.1016/j.apjtm.2015.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 11/20/2015] [Accepted: 12/03/2015] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE To investigate the isolation of enterobacteria associated with Macrobrachium amazonicum (M. amazonicum) farming and evaluate the in vitro antimicrobial susceptibility of Vibrio strains. METHODS Strains were isolated from female M. amazonicum prawns and environmental and hatchery water. Biochemical assays were used to identify bacterial genera and those belonging to the genus Vibrio were submitted to further analyses for species identification, through Vitek 2 automated system and serotyping. Susceptibility test was performed according to Clinical Laboratory Standards Institute. RESULTS The following genera of enterobacteria were recovered: Enterobacter (n = 11), Citrobacter (n = 10), Proteus (n = 2), Serratia (n = 2), Kluyvera (n = 2), Providencia (n = 2), Cedecea (n = 1), Escherichia (n = 1), Edwardsiella (n = 1) and Buttiauxella (n = 1). As for Vibrio, three species were identified: Vibrio cholerae non-O1/non-O139 (n = 4), Vibrio vulnificus (V. vulnificus) (n = 1) and Vibrio mimicus (n = 1). Vibrio spp. showed minimum inhibitory concentrations values within the susceptibility range established by Clinical Laboratory Standards Institute for almost all antibiotics, except for V. vulnificus, which presented intermediate profile to ampicillin. CONCLUSIONS Enterobacteria do not seem to be the most important pathogens associated with M. amazonicum farming, whereas the recovery of Vibrio spp. from larviculture, with emphasis on Vibrio cholerae and V. vulnificus, deserves special attention due to their role as potentially zoonotic aquaculture-associated pathogens. Furthermore, the intermediate susceptibility of V. vulnificus to ampicillin reflects the importance of monitoring drug use in prawn farming.
Collapse
Affiliation(s)
- Débora de Souza Collares Maia Castelo-Branco
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Jamille Alencar Sales
- School of Veterinary Medicine, Postgraduate Program in Veterinary Sciences, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Raimunda Sâmia Nogueira Brilhante
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| | - Glaucia Morgana de Melo Guedes
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Yago Brito de Ponte
- School of Veterinary Medicine, Postgraduate Program in Veterinary Sciences, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Célia Maria de Souza Sampaio
- School of Veterinary Medicine, Postgraduate Program in Veterinary Sciences, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Tereza de Jesus Pinheiro Gomes Bandeira
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - José Luciano Bezerra Moreira
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Lucas Pereira de Alencar
- School of Veterinary Medicine, Postgraduate Program in Veterinary Sciences, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Manoel de Araújo Neto Paiva
- School of Veterinary Medicine, Postgraduate Program in Veterinary Sciences, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Rossana de Aguiar Cordeiro
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - André Jalles Monteiro
- Department of Statistics and Applied Mathematics, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Waldemiro de Aquino Pereira-Neto
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - José Júlio Costa Sidrim
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Marcos Fábio Gadelha Rocha
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Ceará, Brazil; School of Veterinary Medicine, Postgraduate Program in Veterinary Sciences, State University of Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
48
|
Wang RX, Wang JY, Sun YC. Antibiotic resistance monitoring in Vibrio spp. isolated from rearing environment and intestines of abalone Haliotis diversicolor. MARINE POLLUTION BULLETIN 2015; 101:701-706. [PMID: 26494250 DOI: 10.1016/j.marpolbul.2015.10.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/07/2015] [Accepted: 10/11/2015] [Indexed: 06/05/2023]
Abstract
546 Vibrio isolates from rearing seawater (292 strains) and intestines of abalone (254 strains) were tested to ten antibiotics using Kirby-Bauer diffusion method. Resistant rates of abalone-derived Vibrio isolates to chloramphenicol (C), enrofloxacin (ENX) and norfloxacin (NOR) were <28%, whereas those from seawater showed large fluctuations in resistance to each of the tested antibiotics. Many strains showed higher resistant rates (>40%) to kanamycin (KNA), furazolidone (F), tetracycline (TE), gentamicin (GM) and rifampin (RA). 332 isolates from seawater (n=258) and abalone (n=74) were resistant to more than three antibiotics. Peaked resistant rates of seawater-derived isolates to multiple antibiotics were overlapped in May and August. Statistical analysis showed that pH had an important effect on resistant rates of abalone-derived Vibrio isolates to RA, NOR, and ENX. Salinity and dissolved oxygen were negatively correlated with resistant rates of seawater-derived Vibrio isolates to KNA, RA, and PG.
Collapse
Affiliation(s)
- R X Wang
- College of Life Science, South China Normal University, Guangzhou 510631, China; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong Province, Guangzhou 510300, China; Key Laboratory of Fishery Ecology and Environment, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangdong Province, Guangzhou 510300, China
| | - J Y Wang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong Province, Guangzhou 510300, China; Key Laboratory of Fishery Ecology and Environment, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangdong Province, Guangzhou 510300, China
| | - Y C Sun
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong Province, Guangzhou 510300, China
| |
Collapse
|
49
|
Letchumanan V, Pusparajah P, Tan LTH, Yin WF, Lee LH, Chan KG. Occurrence and Antibiotic Resistance of Vibrio parahaemolyticus from Shellfish in Selangor, Malaysia. Front Microbiol 2015; 6:1417. [PMID: 26697003 PMCID: PMC4678184 DOI: 10.3389/fmicb.2015.01417] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/27/2015] [Indexed: 01/19/2023] Open
Abstract
High consumer demand for shellfish has led to the need for large-scale, reliable shellfish supply through aquaculture or shellfish farming. However, bacterial infections which can spread rapidly among shellfish poses a major threat to this industry. Shellfish farmers therefore often resort to extensive use of antibiotics, both prophylactically and therapeutically, in order to protect their stocks. The extensive use of antibiotics in aquaculture has been postulated to represent a major contributing factor in the rising incidence of antimicrobial resistant pathogenic bacteria in shellfish. This study aimed to investigate the incidence of pathogenic Vibrio parahaemolyticus and determine the antibiotic resistance profile as well as to perform plasmid curing in order to determine the antibiotic resistance mediation. Based on colony morphology, all 450 samples tested were positive for Vibrio sp; however, tox-R assay showed that only 44.4% (200/450) of these were V. parahaemolyticus. Out of these 200 samples, 6.5% (13/200) were trh-positive while none were tdh-positive. Antibiotic resistance was determined for all V. parahaemolyticus identified against 14 commonly used antibiotics and the multiple antibiotic resistance index (MAR) was calculated. The isolates demonstrated high resistance to several antibiotics tested- including second and third-line antibiotics- with 88% resistant to ampicillin, 81% to amikacin,70.5% to kanamycin, 73% to cefotaxime, and 51.5% to ceftazidime. The MAR index ranged from 0.00 to 0.79 with the majority of samples having an index of 0.36 (resistant to five antibiotics). Among the 13 trh-positive strains, almost 70% (9/13) demonstrated resistance to 4 or more antibiotics. Plasmid profiling for all V. parahaemolyticus isolates revealed that 86.5% (173/200) contained plasmids - ranging from 1 to 7 plasmids with DNA band sizes ranging from 1.2 kb to greater than 10 kb. 6/13 of the pathogenic V. pathogenic strains contained plasmid. After plasmid curing, the plasmid containing pathogenic strains isolated in our study have chromosomally mediated ampicillin resistance while the remaining resistance phenotypes are plasmid mediated. Overall, our results indicate that while the incidence of pathogenic V. parahaemolyticus in shellfish in Selangor still appears to be at relatively reassuring levels, antibiotic resistance is a real concern and warrants ongoing surveillance.
Collapse
Affiliation(s)
- Vengadesh Letchumanan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya Kuala Lumpur, Malaysia ; Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia Bandar Sunway, Malaysia
| | - Priyia Pusparajah
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia Bandar Sunway, Malaysia
| | - Loh Teng-Hern Tan
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia Bandar Sunway, Malaysia
| | - Wai-Fong Yin
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya Kuala Lumpur, Malaysia
| | - Learn-Han Lee
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia Bandar Sunway, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya Kuala Lumpur, Malaysia
| |
Collapse
|
50
|
Vibrio spp. from Macrobrachium amazonicum prawn farming are inhibited by Moringa oleifera extracts. ASIAN PAC J TROP MED 2015; 8:919-922. [DOI: 10.1016/j.apjtm.2015.10.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 09/20/2015] [Accepted: 09/30/2015] [Indexed: 11/21/2022] Open
|