1
|
Huang D, Liu C, Zhou H, Wang X, Zhang Q, Liu X, Deng Z, Wang D, Li Y, Yao C, Song W, Rao Q. Simultaneous and High-Throughput Analytical Strategy of 30 Fluorinated Emerging Pollutants Using UHPLC-MS/MS in the Shrimp Aquaculture System. Foods 2024; 13:3286. [PMID: 39456348 PMCID: PMC11507328 DOI: 10.3390/foods13203286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
This study established novel and high-throughput strategies for the simultaneous analysis of 30 fluorinated emerging pollutants in different matrices from the shrimp aquaculture system in eastern China using UHPLC-MS/MS. The parameters of SPE for analysis of water samples and of QuEChERS methods for sediment and shrimp samples were optimized to allow the simultaneous detection and quantitation of 17 per- and polyfluoroalkyl substances (PFASs) and 13 fluoroquinolones (FQs). Under the optimal conditions, the limits of detection of 30 pollutants for water, sediment, and shrimp samples were 0.01-0.30 ng/L, 0.01-0.22 μg/kg, and 0.01-0.23 μg/kg, respectively, while the limits of quantification were 0.04-1.00 ng/L, 0.03-0.73 μg/kg, and 0.03-0.76 μg/kg, with satisfactory recoveries and intra-day precision. The developed methods were successfully applied to the analysis of multiple samples collected from aquaculture ponds in eastern China. PFASs were detected in all samples with concentration ranges of 0.18-0.77 μg/L in water, 0.13-1.41 μg/kg (dry weight) in sediment, and 0.09-0.96 μg/kg (wet weight) in shrimp, respectively. Only two FQs, ciprofloxacin and enrofloxacin, were found in the sediment and shrimp. In general, this study provides valuable insights into the prevalence of fluorinated emerging contaminants, assisting in the monitoring and control of emerging contaminants in aquatic foods.
Collapse
Affiliation(s)
- Di Huang
- The Institute of Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.H.); (C.L.); (H.Z.); (X.W.); (Q.Z.); (X.L.); (Z.D.); (D.W.); (Y.L.); (C.Y.); (Q.R.)
- Key Laboratory of Food Quality Safety and Nutrition (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
| | - Chengbin Liu
- The Institute of Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.H.); (C.L.); (H.Z.); (X.W.); (Q.Z.); (X.L.); (Z.D.); (D.W.); (Y.L.); (C.Y.); (Q.R.)
- Key Laboratory of Food Quality Safety and Nutrition (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
- Shanghai Co-Elite Agri-Food Testing Technical Service Co., Ltd., Shanghai 201403, China
| | - Huatian Zhou
- The Institute of Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.H.); (C.L.); (H.Z.); (X.W.); (Q.Z.); (X.L.); (Z.D.); (D.W.); (Y.L.); (C.Y.); (Q.R.)
- School of Health Science and Engineering, University of Shanghai for Science & Technology, Shanghai 100049, China
| | - Xianli Wang
- The Institute of Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.H.); (C.L.); (H.Z.); (X.W.); (Q.Z.); (X.L.); (Z.D.); (D.W.); (Y.L.); (C.Y.); (Q.R.)
- Key Laboratory of Food Quality Safety and Nutrition (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
| | - Qicai Zhang
- The Institute of Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.H.); (C.L.); (H.Z.); (X.W.); (Q.Z.); (X.L.); (Z.D.); (D.W.); (Y.L.); (C.Y.); (Q.R.)
- Key Laboratory of Food Quality Safety and Nutrition (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
| | - Xiaoyu Liu
- The Institute of Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.H.); (C.L.); (H.Z.); (X.W.); (Q.Z.); (X.L.); (Z.D.); (D.W.); (Y.L.); (C.Y.); (Q.R.)
| | - Zhongsheng Deng
- The Institute of Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.H.); (C.L.); (H.Z.); (X.W.); (Q.Z.); (X.L.); (Z.D.); (D.W.); (Y.L.); (C.Y.); (Q.R.)
| | - Danhe Wang
- The Institute of Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.H.); (C.L.); (H.Z.); (X.W.); (Q.Z.); (X.L.); (Z.D.); (D.W.); (Y.L.); (C.Y.); (Q.R.)
- Key Laboratory of Food Quality Safety and Nutrition (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
| | - Yameng Li
- The Institute of Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.H.); (C.L.); (H.Z.); (X.W.); (Q.Z.); (X.L.); (Z.D.); (D.W.); (Y.L.); (C.Y.); (Q.R.)
- Key Laboratory of Food Quality Safety and Nutrition (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
| | - Chunxia Yao
- The Institute of Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.H.); (C.L.); (H.Z.); (X.W.); (Q.Z.); (X.L.); (Z.D.); (D.W.); (Y.L.); (C.Y.); (Q.R.)
- Key Laboratory of Food Quality Safety and Nutrition (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
| | - Weiguo Song
- The Institute of Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.H.); (C.L.); (H.Z.); (X.W.); (Q.Z.); (X.L.); (Z.D.); (D.W.); (Y.L.); (C.Y.); (Q.R.)
- Key Laboratory of Food Quality Safety and Nutrition (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
- Shanghai Co-Elite Agri-Food Testing Technical Service Co., Ltd., Shanghai 201403, China
- School of Health Science and Engineering, University of Shanghai for Science & Technology, Shanghai 100049, China
| | - Qinxiong Rao
- The Institute of Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.H.); (C.L.); (H.Z.); (X.W.); (Q.Z.); (X.L.); (Z.D.); (D.W.); (Y.L.); (C.Y.); (Q.R.)
- Key Laboratory of Food Quality Safety and Nutrition (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
| |
Collapse
|
2
|
Barber LB, Pickard HM, Alvarez DA, Becanova J, Keefe SH, LeBlanc DR, Lohmann R, Steevens JA, Vajda AM. Uptake of Per- and Polyfluoroalkyl Substances by Fish, Mussel, and Passive Samplers in Mobile-Laboratory Exposures Using Groundwater from a Contamination Plume at a Historical Fire Training Area, Cape Cod, Massachusetts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5544-5557. [PMID: 36972291 PMCID: PMC10116195 DOI: 10.1021/acs.est.2c06500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Aqueous film-forming foams historically were used during fire training activities on Joint Base Cape Cod, Massachusetts, and created an extensive per- and polyfluoroalkyl substances (PFAS) groundwater contamination plume. The potential for PFAS bioconcentration from exposure to the contaminated groundwater, which discharges to surface water bodies, was assessed with mobile-laboratory experiments using groundwater from the contamination plume and a nearby reference location. The on-site continuous-flow 21-day exposures used male and female fathead minnows, freshwater mussels, polar organic chemical integrative samplers (POCIS), and polyethylene tube samplers (PETS) to evaluate biotic and abiotic uptake. The composition of the PFAS-contaminated groundwater was complex and 9 PFAS were detected in the reference groundwater and 17 PFAS were detected in the contaminated groundwater. The summed PFAS concentrations ranged from 120 to 140 ng L-1 in reference groundwater and 6100 to 15,000 ng L-1 in contaminated groundwater. Biotic concentration factors (CFb) for individual PFAS were species, sex, source, and compound-specific and ranged from 2.9 to 1000 L kg-1 in whole-body male fish exposed to contaminated groundwater for 21 days. The fish and mussel CFb generally increased with increasing fluorocarbon chain length and were greater for sulfonates than for carboxylates. The exception was perfluorohexane sulfonate, which deviated from the linear trend and had a 10-fold difference in CFb between sites, possibly because of biotransformation of precursors such as perfluorohexane sulfonamide. Uptake for most PFAS in male fish was linear over time, whereas female fish had bilinear uptake indicated by an initial increase in tissue concentrations followed by a decrease. Uptake of PFAS was less for mussels (maximum CFb = 200) than for fish, and mussel uptake of most PFAS also was bilinear. Although abiotic concentration factors were greater than CFb, and values for POCIS were greater than for PETS, passive samplers were useful for assessing PFAS that potentially bioconcentrate in fish but are present at concentrations below method quantitation limits in water. Passive samplers also accumulate short-chain PFAS that are not bioconcentrated.
Collapse
Affiliation(s)
- Larry B Barber
- U.S. Geological Survey, 3215 Marine Street, Boulder, Colorado 80303, United States
| | - Heidi M Pickard
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - David A Alvarez
- U.S. Geological Survey, 4200 New Haven Road, Columbia, Missouri 65201, United States
| | - Jitka Becanova
- Graduate School of Oceanography, University of Rhode Island, Horn Building 118, 215 South Ferry Road, Narragansett, Rhode Island 02882, United States
| | - Steffanie H Keefe
- U.S. Geological Survey, 3215 Marine Street, Boulder, Colorado 80303, United States
| | - Denis R LeBlanc
- U.S. Geological Survey, 10 Bearfoot Road, Northborough, Massachusetts 01532, United States
| | - Rainer Lohmann
- Graduate School of Oceanography, University of Rhode Island, Horn Building 118, 215 South Ferry Road, Narragansett, Rhode Island 02882, United States
| | - Jeffery A Steevens
- U.S. Geological Survey, 4200 New Haven Road, Columbia, Missouri 65201, United States
| | - Alan M Vajda
- University of Colorado Denver, P.O. Box 173364, Denver, Colorado 80217, United States
| |
Collapse
|
3
|
Macorps N, Le Menach K, Pardon P, Guérin-Rechdaoui S, Rocher V, Budzinski H, Labadie P. Bioaccumulation of per- and polyfluoroalkyl substance in fish from an urban river: Occurrence, patterns and investigation of potential ecological drivers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 303:119165. [PMID: 35306089 DOI: 10.1016/j.envpol.2022.119165] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/24/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are ubiquitous in aquatic environments and a recent shift toward emerging PFAS is calling for new data on their occurrence and fate. In particular, understanding the determinants of their bioaccumulation is fundamental for risk assessment purposes. However, very few studies have addressed the combined influence of potential ecological drivers of PFAS bioaccumulation in fish such as age, sex or trophic ecology. Thus, this work aimed to fill these knowledge gaps by performing a field study in the Seine River basin (France). Composite sediment and fish (European chub, Squalius Cephalus) samples were collected from four sites along a longitudinal transect to investigate the occurrence of 36 PFAS. Sediment molecular patterns were dominated by fluorotelomer sulfonamidoalkyl betaines (i.e. 6:2 and 8:2 FTAB, 46% of ∑PFAS on average), highlighting the non-negligible contribution of PFAS of emerging concern. C9-C14 perfluoroalkyl carboxylic acids, perfluorooctane sulfonic acid (PFOS), perfluorooctane sulfonamide (FOSA) and 10:2 fluorotelomer sulfonate (10:2 FTSA) were detected in all fish samples. Conversely, 8:2 FTAB was detected in a few fish from the furthest downstream station only, suggesting the low bioaccessibility or the biotransformation of FTABs. ∑PFAS in fish was in the range 0.22-3.8 ng g-1 wet weight (ww) and 11-140 ng g-1 ww for muscle and liver, respectively. Fish collected upstream of Paris were significantly less contaminated than those collected downstream, pointing to urban and industrial inputs. The influence of trophic ecology and biometry on the interindividual variability of PFAS burden in fish was examined through analyses of covariance (ANCOVAs), with sampling site considered as a categorical variable. While the latter was highly significant, diet was also influential; carbon sources and trophic level (i.e. estimated using C and N stable isotope ratios, respectively) equally explained the variability of PFAS levels in fish.
Collapse
Affiliation(s)
| | | | - Patrick Pardon
- CNRS/Université de Bordeaux, UMR 5805 EPOC, Talence, France
| | | | | | | | - Pierre Labadie
- CNRS/Université de Bordeaux, UMR 5805 EPOC, Talence, France.
| |
Collapse
|
4
|
Semerád J, Horká P, Filipová A, Kukla J, Holubová K, Musilová Z, Jandová K, Frouz J, Cajthaml T. The driving factors of per- and polyfluorinated alkyl substance (PFAS) accumulation in selected fish species: The influence of position in river continuum, fish feed composition, and pollutant properties. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151662. [PMID: 34780822 DOI: 10.1016/j.scitotenv.2021.151662] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Per- and polyfluorinated alkyl substances (PFASs) represent a group of highly recalcitrant micropollutants, that continuously endanger the environment. The present work describes the geographical trends of fish contamination by individual PFASs (including new compounds, e.g., Gen-X) assessed by analyzing the muscle tissues of 5 separate freshwater fish species from 10 locations on the Czech section of the Elbe River and its largest tributary, the Vltava River. The data of this study also showed that the majority of the detected PFASs consisted of long-chain representatives (perfluorooctane sulfonate (PFOS), perfluorononanoic acid, perfluorodecanoic acid, and perfluoroundecanoic acid), whereas short-chain PFASs as well as other compounds such as Gen-X were detected in relatively small quantities. The maximum concentrations of the targeted 32 PFASs in fish were detected in the lower stretches of the Vltava and Elbe Rivers, reaching 289.9 ng/g dw, 140.5 ng/g dw, and 162.7 ng/g dw for chub, roach, and nase, respectively. Moreover, the relationships between the PFAS (PFOS) concentrations in fish muscle tissue and isotopic ratios (δ15N and δ13C) were studied to understand the effect of feed composition and position in the river continuum as a proxy for anthropogenic activity. Redundancy analysis and variation partitioning showed that the largest part of the data variability was explained by the interaction of position in the river continuum and δ15N (δ13C) of the fish. The PFAS concentrations increased downstream and were positively correlated with δ15N and negatively correlated with δ13C. A detailed study at one location also demonstrated the significant relationship between δ15N (estimated trophic position) and PFASs (PFOS) concentrations. From the tested physicochemical properties, the molecular mass and number of fluorine substituents seem to play crucial roles in PFAS bioaccumulation.
Collapse
Affiliation(s)
- Jaroslav Semerád
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20, Prague 4, Czech Republic
| | - Petra Horká
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Prague 2, Czech Republic
| | - Alena Filipová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20, Prague 4, Czech Republic
| | - Jaroslav Kukla
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Prague 2, Czech Republic
| | - Kateřina Holubová
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Prague 2, Czech Republic
| | - Zuzana Musilová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, CZ-128 44 Prague 2, Czech Republic
| | - Kateřina Jandová
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Prague 2, Czech Republic
| | - Jan Frouz
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Prague 2, Czech Republic
| | - Tomáš Cajthaml
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20, Prague 4, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Prague 2, Czech Republic.
| |
Collapse
|
5
|
Gallocchio F, Mancin M, Belluco S, Moressa A, Angeletti R, Lorenzetto M, Arcangeli G, Ferrè N, Ricci A, Russo F. Investigation of levels of perfluoroalkyl substances in freshwater fishes collected in a contaminated area of Veneto Region, Italy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:20996-21011. [PMID: 34750761 DOI: 10.1007/s11356-021-17236-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
The bioaccumulation of 12 perfluoroalkyl substances (PFASs) in 107 freshwater fishes collected during 2017 in waterbodies of a contaminated area in Veneto Region (Italy) was evaluated. The contamination had been previously ascribed to a fluorochemical manufacturing plant that discharged mainly perfluorooctanoic acid (PFOA), among other PFASs, into the surrounding environment. Perfluorooctane sulfonate (PFOS) was the most abundant compound, detected in almost 99% of the fish with an average concentration of 9.23 µg/kg wet weight (w/w). Other detected compounds were perfluoroundecanoic acid (PFUnA) (98%, 0.55 µg/kg w/w), perfluorodecanoic acid (PFDA) (98%, 2.87 µg/kg w/w), perfluorododecanoic acid (PFDoA) (93%, 1.51 µg/kg w/w), and PFOA (79%, 0.33 µg/kg w/w). Bioaccumulation of PFASs was species related, with Italian barbel being the most contaminated, followed by chub, wels catfish, and carp, reflecting animals' habitat use and feeding behavior. A significant negative linear relation between PFAS concentration and fish weight was observed no matter the considered species, with smaller fish having proportionally higher bioaccumulation. PFOS concentrations were strongly correlated with the concentrations of other PFASs, suggesting a similar source of contamination or a contamination from ubiquitous sources. Correlation analysis showed PFOA likely originated from a separated source, unlinked to other PFASs. Although the fishes studied are not usually consumed by local people, with the likely exception of freshwater anglers (and relatives), their consumption has been banned by Veneto Authority since the time this study was conducted. In fact, the study suggests that a medium/high consumption frequency (superior to 1 portion per month) of fish from the investigated area might result in a high exposure to PFASs.
Collapse
Affiliation(s)
| | - Marzia Mancin
- Istituto Zooprofilattico Sperimentale Delle Venezie, Legnaro, Padua, Italy
| | - Simone Belluco
- Istituto Zooprofilattico Sperimentale Delle Venezie, Legnaro, Padua, Italy
| | - Alessandra Moressa
- Istituto Zooprofilattico Sperimentale Delle Venezie, Legnaro, Padua, Italy
| | - Roberto Angeletti
- Istituto Zooprofilattico Sperimentale Delle Venezie, Legnaro, Padua, Italy
| | - Monica Lorenzetto
- Istituto Zooprofilattico Sperimentale Delle Venezie, Legnaro, Padua, Italy
| | - Giuseppe Arcangeli
- Istituto Zooprofilattico Sperimentale Delle Venezie, Legnaro, Padua, Italy
| | - Nicola Ferrè
- Istituto Zooprofilattico Sperimentale Delle Venezie, Legnaro, Padua, Italy
| | - Antonia Ricci
- Istituto Zooprofilattico Sperimentale Delle Venezie, Legnaro, Padua, Italy
| | - Francesca Russo
- Direzione Prevenzione, Sicurezza Alimentare, Veterinaria, Regione Veneto, Venice, Italy
| |
Collapse
|
6
|
Birgersson L, Jouve J, Jönsson E, Asker N, Andreasson F, Golovko O, Ahrens L, Sturve J. Thyroid function and immune status in perch (Perca fluviatilis) from lakes contaminated with PFASs or PCBs. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112495. [PMID: 34265536 DOI: 10.1016/j.ecoenv.2021.112495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
The environment contains a multitude of man-made chemicals, some of which can act as endocrine disruptors (EDCs), while others can be immunotoxic. We evaluated thyroid disruption and immunotoxic effects in wild female perch (Perca fluviatilis) collected from two contaminated areas in Sweden; one site contaminated with per- and polyfluoroalkyl substances (PFASs) and two sites contaminated with polychlorinated biphenyls (PCBs), with one reference site included for each area. The hepatic mRNA expression of thyroid receptors α and β, and the thyroid hormone metabolising iodothyronine deiodinases (dio1, dio2 and dio3) were measured using real-time PCR, while the levels of thyroid hormone T3 in plasma was analysed using a radioimmunoassay. In addition, lymphocytes, granulocytes, and thrombocytes were counted microscopically. Our results showed lower levels of T3 as well as lower amounts of lymphocytes and granulocytes in perch collected from the PFAS-contaminated site compared to reference sites. In addition, expressions of mRNA coding for thyroid hormone metabolising enzymes (dio2 and dio3) and thyroid receptor α (thra) were significantly different in these fish compared to their reference site. For perch collected at the two PCB-contaminated sites, there were no significant differences in T3 levels or in expression levels of the thyroid-related genes, compared to the reference fish. Fish from one of the PCB-contaminated sites had higher levels of thrombocytes compared with both the second PCB lake and their reference lake; hence PCBs are unlikely to be the cause of this effect. The current study suggests that lifelong exposure to PFASs could affect both the thyroid hormone status and immune defence of perch in the wild.
Collapse
Affiliation(s)
- Lina Birgersson
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-405 30 Göteborg, Sweden
| | - Justin Jouve
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-405 30 Göteborg, Sweden
| | - Elisabeth Jönsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-405 30 Göteborg, Sweden
| | - Noomi Asker
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-405 30 Göteborg, Sweden
| | - Fredrik Andreasson
- Department for Nature and Climate, County Administrative Board of Blekinge, SE-371 86 Karlskrona, Sweden
| | - Oksana Golovko
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), SE-75 007 Uppsala, Sweden
| | - Lutz Ahrens
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), SE-75 007 Uppsala, Sweden
| | - Joachim Sturve
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-405 30 Göteborg, Sweden.
| |
Collapse
|
7
|
Sivaram AK, Logeshwaran P, Surapaneni A, Shah K, Crosbie N, Rogers Z, Lee E, Venkatraman K, Kannan K, Naidu R, Megharaj M. Evaluation of Cyto-genotoxicity of Perfluorooctane Sulfonate (PFOS) to Allium cepa. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:792-798. [PMID: 33074584 DOI: 10.1002/etc.4905] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/08/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have emerged as contaminants of global concern. Among several PFAS, perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are persistent and bioaccumulative compounds. We investigated the cyto-genotoxic potential of PFOS to Allium cepa root meristem cells. The A. cepa root tips were exposed to 6 different concentrations (1-100 mg L-1 ) of PFOS for 48 h. Reduction in mitotic index and chromosomal aberrations was measured as genotoxic endpoints in meristematic root cells. Exposure to PFOS significantly affected cell division by reducing the miotic index at higher concentrations (>10 mg L-1 ). The median effect concentration of PFOS to elicit cytotoxicity based on the mitotic index was 43.2 mg L-1 . Exposure to PFOS significantly increased chromosomal aberrations at concentrations >25 mg L-1 . The common aberrations were micronuclei, vagrant cells, and multipolar anaphase. The alkaline comet assay revealed a genotoxic potential of PFOS with increased tail DNA percentage at concentrations >25 mg L-1 . To our knowledge, this is the first study to report the cyto-genotoxic potential of PFOS in higher plants. Environ Toxicol Chem 2021;40:792-798. © 2020 SETAC.
Collapse
Affiliation(s)
- Anithadevi Kenday Sivaram
- Global Centre for Environmental Remediation, The University of Newcastle, Callaghan New South Wales, Australia
| | - Panneerselvan Logeshwaran
- Global Centre for Environmental Remediation, The University of Newcastle, Callaghan New South Wales, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environments, The University of Newcastle, Callaghan, New South Wales, Australia
| | | | - Kalpit Shah
- Chemical & Environmental Engineering Department, School of Engineering, RMIT University, Melbourne, Victoria, Australia
| | | | - Zoe Rogers
- Hunter Water, Newcastle, New South Wales, Australia
| | - Elliot Lee
- Water Corporation, Leederville, Western Australia, Australia
| | | | - Kurunthachalam Kannan
- Department of Pediatrics, New York University School of Medicine, New York, New York, USA
| | - Ravi Naidu
- Global Centre for Environmental Remediation, The University of Newcastle, Callaghan New South Wales, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environments, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation, The University of Newcastle, Callaghan New South Wales, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environments, The University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
8
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Vleminckx C, Wallace H, Barregård L, Ceccatelli S, Cravedi J, Halldorsson TI, Haug LS, Johansson N, Knutsen HK, Rose M, Roudot A, Van Loveren H, Vollmer G, Mackay K, Riolo F, Schwerdtle T. Risk to human health related to the presence of perfluoroalkyl substances in food. EFSA J 2020; 18:e06223. [PMID: 32994824 PMCID: PMC7507523 DOI: 10.2903/j.efsa.2020.6223] [Citation(s) in RCA: 241] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The European Commission asked EFSA for a scientific evaluation on the risks to human health related to the presence of perfluoroalkyl substances (PFASs) in food. Based on several similar effects in animals, toxicokinetics and observed concentrations in human blood, the CONTAM Panel decided to perform the assessment for the sum of four PFASs: PFOA, PFNA, PFHxS and PFOS. These made up half of the lower bound (LB) exposure to those PFASs with available occurrence data, the remaining contribution being primarily from PFASs with short half-lives. Equal potencies were assumed for the four PFASs included in the assessment. The mean LB exposure in adolescents and adult age groups ranged from 3 to 22, the 95th percentile from 9 to 70 ng/kg body weight (bw) per week. Toddlers and 'other children' showed a twofold higher exposure. Upper bound exposure was 4- to 49-fold higher than LB levels, but the latter were considered more reliable. 'Fish meat', 'Fruit and fruit products' and 'Eggs and egg products' contributed most to the exposure. Based on available studies in animals and humans, effects on the immune system were considered the most critical for the risk assessment. From a human study, a lowest BMDL 10 of 17.5 ng/mL for the sum of the four PFASs in serum was identified for 1-year-old children. Using PBPK modelling, this serum level of 17.5 ng/mL in children was estimated to correspond to long-term maternal exposure of 0.63 ng/kg bw per day. Since accumulation over time is important, a tolerable weekly intake (TWI) of 4.4 ng/kg bw per week was established. This TWI also protects against other potential adverse effects observed in humans. Based on the estimated LB exposure, but also reported serum levels, the CONTAM Panel concluded that parts of the European population exceed this TWI, which is of concern.
Collapse
|
9
|
Meng J, Zhou Y, Liu S, Chen S, Wang T. Increasing perfluoroalkyl substances and ecological process from the Yongding Watershed to the Guanting Reservoir in the Olympic host cities, China. ENVIRONMENT INTERNATIONAL 2019; 133:105224. [PMID: 31665680 DOI: 10.1016/j.envint.2019.105224] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/04/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
Perfluoroalkyl substances (PFASs) have raised great attention, particularly in regions of rapid urbanization. Zhangjiakou and Beijing will jointly host the Winter Olympic Games in 2022, which will likely increase local PFASs pollution and their associated risks over the coming period. In this study, we identified ecological process of PFASs, including sources, environmental fate, and risks, from the Yongding Watershed to the Guanting Reservoir. The concentrations of total 12 PFASs in water of the Guanting Reservoir were higher than that from the Yongding Watershed, with mean of 48.9 and 33.7 ng/L, respectively. The concentrations of PFASs in sediment of the Yongding Watershed and the Guanting Reservoir were similar, with mean of 1.01 and 0.827 ng/g dry weight, respectively. Detected levels of PFASs in the Guanting Reservoir significantly increased during the past eight years, possibly due to an improving economy and a rapidly developed service industry. Moderate PFASs levels in fish of the Guanting Reservoir were detected relative to other lakes and reservoirs. The daily intake of PFASs via fish and water ranged from 4.96 to 15.0 ng/kg bw/day, with higher levels found in children relative to adults. In total, approximately 9.06 kg of PFASs from riverine flow and atmospheric deposition annually entered the Guanting Reservoir. PFASs from the Yongding River significantly contributed to the pollution of Guanting Reservoir, with predominance of perfluorobutanoic acid (PFBA) in water, and long-chain perfluorinated carboxylic acids (PFCAs) and perfluorooctane sulfonate (PFOS) in sediment in both the Yongding Watershed and the Guanting Reservoir. Most of the PFASs (23.5 kg) were stored in water of the Guanting Reservoir, while the annual storage of PFASs in sediment and fish was only 4.68 × 10-2 kg and 4.36 × 10-2 kg via deposition and accumulation, respectively. The results suggest that water quality management of the Yongding Watershed is necessary for effective control on PFASs pollution in the Guanting Reservoir.
Collapse
Affiliation(s)
- Jing Meng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunqiao Zhou
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sifan Liu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shuqin Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Tieyu Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
10
|
A critical review on passive sampling in air and water for per- and polyfluoroalkyl substances (PFASs). Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.11.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
11
|
Janousek RM, Mayer J, Knepper TP. Is the phase-out of long-chain PFASs measurable as fingerprint in a defined area? Comparison of global PFAS concentrations and a monitoring study performed in Hesse, Germany from 2014 to 2018. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.01.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Meng J, Liu S, Zhou Y, Wang T. Are perfluoroalkyl substances in water and fish from drinking water source the major pathways towards human health risk? ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 181:194-201. [PMID: 31195228 DOI: 10.1016/j.ecoenv.2019.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 05/05/2023]
Abstract
Due to potential adverse effects and bioaccumulation in biota and humans, perfluoroalkyl substances (PFASs) have raised wide attention in recent years. Ingestion is a vital pathway for PFASs to transmit to humans especially through water and fish. In present study, PFASs in water and fish from the drinking water source of Beijing in China were investigated. Three layers of water were collected in order to find the connection between concentrations of PFASs and depth of water, which showed no prominent correlation. PFASs in water from Miyun Reservoir with concentrations of 5.30-8.50 ng/L, were relatively lower compared with other reports on raw drinking water. Perfluorobutanoic acid (PFBA) and perfluorooctanoic acid (PFOA) were the dominant PFASs. In addition, six species of fish (including Cyprinus carpio, Carassius auratus, Erythroculter dabryi, Pseudohemiculter dispar, Hypophthalmichthys molitrix and Siniperca chuatsi) were analyzed, with concentrations of PFASs ranging from 1.70 to 14.32 ng/g wet weight (w.w.). Due to relatively stronger bioaccumulation potential, long chain perfluorinated carboxylates (PFCAs) and perfluorinated sulfonates (PFSAs) were detected with higher concentrations, especially perfluoroundecanoic acid (PFUdA) and perfluorodecanoic acid (PFDA). The estimated daily intake (EDI) of PFASs through drinking water and fish consumption were 0.20-0.34 and 3.44-12.61 ng/kg bw/day based on Exposure Factors Handbook of Chinese Population, respectively. In addition, the EDI of high-priority concern PFASs via pork, chicken and dust were also calculated, with value of 0.015-0.043, 0.003-0.013 and 0.074-0.390 ng/kg bw/day, respectively. The total EDI of PFOS and PFOA via diverse pathways were less than suggested tolerable daily intake (PFOS, 150 ng/kg bw/day; PFOA, 1500 ng/kg bw/day), indicating that the detected levels would not cause severe health effects on Beijing residents.
Collapse
Affiliation(s)
- Jing Meng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sifan Liu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yunqiao Zhou
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tieyu Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
13
|
Shao X, Zhao B, Wang B, Zhao B, Zhu Y, Yuan Z, Zhang J. Neuroprotective effects of blueberry anthocyanins against perfluorooctanoic sulfonate on planarian Dugesia japonica. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 175:39-47. [PMID: 30884343 DOI: 10.1016/j.ecoenv.2019.03.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 06/09/2023]
Abstract
In this study, the planarian Dugesia japonica was exposed to perfluorooctane sulfonate (PFOS) and blueberry anthocyanins (ANT) for 1-10 days to investigate the protective effects of ANT on neurotoxicity and DNA damage induced by PFOS. The expression of neural related genes (Djnlg, DjFoxD, DjFoxG, DjotxA, and DjotxB) in D. japonica following exposure was determined using quantitative real-time PCR (qPCR). Immunofluorescence was performed to determine the alterations in neural morphology. In addition, ELISA kits were used to measure level of the neurotransmitters Dopamine (DA), serotonin (5-HT) and γ-aminobutyric acid (GABA). Furthermore, single cell gel electrophoresis was measured to analyze DNA damage. In this study, PFOS treatment induced neural morphology defects, alterations in neural-related gene expression, alterations in neurotransmitter levels, and DNA damage. However, co-exposure to ANT and PFOS mitigated the damage to D. japonica induced by PFOS. Restoration of neurotransmitter contents and neural related genes expression were observed in planarians following co-application of ANT and PFOS, immunofluorescence showed that nerve morphology almost recovered, and DNA damage was decreased. The results of this study showed that ANT may have a protective effect against PFOS induced neurotoxicity and DNA damage.
Collapse
Affiliation(s)
- Xinxin Shao
- School of Life Sciences, Shandong University of Technology, No. 266 Xincun West Road, 255000 Zibo, Shandong, China
| | - Baoying Zhao
- School of Life Sciences, Shandong University of Technology, No. 266 Xincun West Road, 255000 Zibo, Shandong, China
| | - Bin Wang
- School of Life Sciences, Shandong University of Technology, No. 266 Xincun West Road, 255000 Zibo, Shandong, China
| | - Bosheng Zhao
- School of Life Sciences, Shandong University of Technology, No. 266 Xincun West Road, 255000 Zibo, Shandong, China
| | - Yi Zhu
- School of Life Sciences, Shandong University of Technology, No. 266 Xincun West Road, 255000 Zibo, Shandong, China
| | - Zuoqing Yuan
- School of Life Sciences, Shandong University of Technology, No. 266 Xincun West Road, 255000 Zibo, Shandong, China.
| | - Jianyong Zhang
- School of Life Sciences, Shandong University of Technology, No. 266 Xincun West Road, 255000 Zibo, Shandong, China.
| |
Collapse
|
14
|
Godlewska K, Stepnowski P, Paszkiewicz M. Application of the Polar Organic Chemical Integrative Sampler for Isolation of Environmental Micropollutants – A Review. Crit Rev Anal Chem 2019; 50:1-28. [DOI: 10.1080/10408347.2019.1565983] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Klaudia Godlewska
- Department of Environmental Analytics, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Piotr Stepnowski
- Department of Environmental Analytics, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Monika Paszkiewicz
- Department of Environmental Analytics, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| |
Collapse
|
15
|
Ateia M, Maroli A, Tharayil N, Karanfil T. The overlooked short- and ultrashort-chain poly- and perfluorinated substances: A review. CHEMOSPHERE 2019; 220:866-882. [PMID: 33395808 DOI: 10.1016/j.chemosphere.2018.12.186] [Citation(s) in RCA: 210] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/24/2018] [Accepted: 12/26/2018] [Indexed: 05/28/2023]
Abstract
Poly- and perfluorinated substances (PFAS) comprise more than 3000 individual compounds; nevertheless, most studies to date have focused mainly on the fate, transport and remediation of long-chain PFAS (C > 7). The main objective of this article is to provide the first critical review of the peer-reviewed studies on the analytical methods, occurrence, mobility, and treatment for ultra-short-chain PFAS (C = 2-3) and short-chain PFAS (C = 4-7). Previous studies frequently detected ultra-short-chain and short-chain PFAS in various types of aqueous environments including seas, oceans, rivers, surface/urban runoffs, drinking waters, groundwaters, rain/snow, and deep polar seas. Besides, the recent regulations and restrictions on the use of long-chain PFAS has resulted in a significant shift in the industry towards short-chain alternatives. However, our understanding of the environmental fate and remediation of these ultra-short-chain and short-chain PFAS is still fragmentary. We have also covered the handful studies involving the removal of ultra-short and short-chain PFAS and identified the future research needs.
Collapse
Affiliation(s)
- Mohamed Ateia
- Department of Environmental Engineering and Earth Science, Clemson University, SC 29634, USA
| | - Amith Maroli
- Department of Environmental Engineering and Earth Science, Clemson University, SC 29634, USA
| | - Nishanth Tharayil
- Department of Plant & Environmental Sciences, Clemson University, SC 29634, USA
| | - Tanju Karanfil
- Department of Environmental Engineering and Earth Science, Clemson University, SC 29634, USA.
| |
Collapse
|
16
|
Gobelius L, Persson C, Wiberg K, Ahrens L. Calibration and application of passive sampling for per- and polyfluoroalkyl substances in a drinking water treatment plant. JOURNAL OF HAZARDOUS MATERIALS 2019; 362:230-237. [PMID: 30240997 DOI: 10.1016/j.jhazmat.2018.09.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/31/2018] [Accepted: 09/02/2018] [Indexed: 06/08/2023]
Abstract
The aim of this study was to calibrate and apply polar organic chemical integrative samplers (POCIS) to examine 26 per- and polyfluoroalkyl substances (PFASs) in a drinking water treatment plant (DWTP). As a first step, the sampling rates (Rs) of 14 PFASs were determined in a laboratory calibration study for POCIS-WAX (weak-anion exchange) and POCIS-HLB (hydrophilic-lipophilic balance) (each with a surface area per mass of sorbent ratio of 227 cm2 g-1). While most PFASs were still in the linear uptake phase during the 28-day calibration study, Rs ranged from 0.003 to 0.10 L d-1 for POCIS-WAX and 0.00052 to 0.13 for POCIS-HLB. It is important to note that POCIS-WAX had higher Rs for short-chain perfluoroalkyl carboxylates (PFCAs) with a perfluorocarbon chain length of C3-C6 and perfluorobutane sulfonate (PFBS) compared with POCIS-HLB. Furthermore, Rs was significantly positively correlated with the sorbent-water partition coefficient (Kpw) for POCIS-WAX and POCIS-HLB (p < 0.0001). Use of POCIS-WAX and POCIS-HLB in the DWTP showed good agreement with composite water sampling. No removal of PFASs was observed in the full-scale DWTP. Overall, this is the first study of PFAS monitoring in a DWTP using two types of POCIS. The results demonstrate high suitability for future applications.
Collapse
Affiliation(s)
- Laura Gobelius
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, SE-750 07, Uppsala, Sweden
| | - Caroline Persson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, SE-750 07, Uppsala, Sweden
| | - Karin Wiberg
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, SE-750 07, Uppsala, Sweden
| | - Lutz Ahrens
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, SE-750 07, Uppsala, Sweden.
| |
Collapse
|
17
|
Burkina V, Zamaratskaia G, Sakalli S, Giang PT, Kodes V, Grabic R, Velisek J, Turek J, Kolarova J, Zlabek V, Randak T. Complex effects of pollution on fish in major rivers in the Czech Republic. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 164:92-99. [PMID: 30098510 DOI: 10.1016/j.ecoenv.2018.07.109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/23/2018] [Accepted: 07/26/2018] [Indexed: 06/08/2023]
Abstract
Monitoring the contamination level in aquatic environments and assessing the impact on aquatic life occurs throughout the world. In the present study, an approach based on a combination of biomarkers and the distribution of various industrial and municipal pollutants was used to investigate the effect of aquatic environmental contamination on fish. Monitoring was performed in ten rivers in the Czech Republic (Berounka, Dyje, Elbe, Lužnice, Odra, Ohře, Otava, Sázava, Svratka, and Vltava rivers, with one or two locations in each river) at the same sites that were regularly monitored within the Czech National Monitoring Program in 2007-2011. Health status, hepatic ethoxyresorufin-O-deethylase (EROD) activity, total cytochrome P450 content, and the plasma vitellogenin concentration were assessed in wild chub (Squalius cephalus) males caught at the monitored sites. The contamination level was the highest in the Svratka River downstream of Brno. Among all measured persistent organic pollutants (POPs), polychlorinated biphenyls and dichlorodiphenyltrichloroethane and its metabolites were the major contributors of POPs in fish muscle. Elbe, Odra, and Svratka rivers were identified as the most polluted. Fish from these locations showed reduced gonad size, increased vitellogenin concentration in male plasma, EROD, and total cytochrome P450 content. These biomarkers can be used for future environmental monitoring assessments. Overall, this study improves our understanding of the relationship between human activities and pollutant loads and further contributes to the decision to support local watershed managers to protect water quality in this region.
Collapse
Affiliation(s)
- Viktoriia Burkina
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25 Vodnany, Czech Republic.
| | - Galia Zamaratskaia
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25 Vodnany, Czech Republic; Swedish University of Agricultural Sciences, Uppsala BioCenter, Department of Molecular Science, P.O. Box 7015, SE-750 07 Uppsala, Sweden.
| | - Sidika Sakalli
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25 Vodnany, Czech Republic.
| | - Pham Thai Giang
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25 Vodnany, Czech Republic.
| | - Vit Kodes
- Czech Hydrometeorological Institute, Section of Water Quality, Na Sabatce 17, CZ-14306 Prague 4, Czech Republic.
| | - Roman Grabic
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25 Vodnany, Czech Republic.
| | - Josef Velisek
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25 Vodnany, Czech Republic.
| | - Jan Turek
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25 Vodnany, Czech Republic.
| | - Jitka Kolarova
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25 Vodnany, Czech Republic.
| | - Vladimir Zlabek
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25 Vodnany, Czech Republic.
| | - Tomas Randak
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25 Vodnany, Czech Republic.
| |
Collapse
|
18
|
Li C, Liu X, Liu Q, Li S, Li Y, Hu H, Shao J. Protection of Taurine Against PFOS-Induced Neurotoxicity in PC12 Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 975 Pt 2:907-916. [PMID: 28849510 DOI: 10.1007/978-94-024-1079-2_72] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
As a new member of persistent organic pollutants, the potent neurotoxicity of perfluorooctane sulfonates (PFOS) found in epidemiological studies and laboratory research has drawn increasing attention around the world. Previous studies showed that apoptosis driven by oxidative stress and autophagy were both observed in PFOS-induced toxicity. Taurine has been demonstrated to exert potent protections against oxidative stress as an efficient antioxidant. Whether taurine could protect against the PFOS neurotoxicity is not known. In the present study, PC12 cells were treated with several concentrations of PFOS (31.25, 250 μM) for 24 h. 3-(4,5-Dimethyl-thiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay was applied to assess the cell viability. DCFH-DA detector was used to explore the production of ROS. Caspase 3 activity was used to reflect the possible apoptosis pathway. The lyso-tracker red dying was invited to evaluate the autophagy. Our data showed that taurine could significantly reverse the decreased viability and the increased ROS production in PC12 cells treated with PFOS. Moreover, the increased autophagy and apoptosis elicited by PFOS in PC12 cells could also be attenuated by taurine. Collectively, our results indicate that taurine may be an effective antioxidant in fighting against PFOS cytotoxicity and therefore could potentially serve as a preventative and therapeutic agent for environmental pollution-related toxicities.
Collapse
Affiliation(s)
- Chunna Li
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian, 116044, China
| | - Xiaohui Liu
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian, 116044, China
| | - Qi Liu
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian, 116044, China
| | - Shuangyue Li
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian, 116044, China
| | - Yachen Li
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian, 116044, China
| | - Hong Hu
- Laboratory of Medicine, The Second Hospital of Dalian Medical University, Dalian, 116027, China.
| | - Jing Shao
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
19
|
Lorenzo M, Campo J, Picó Y. Analytical challenges to determine emerging persistent organic pollutants in aquatic ecosystems. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.04.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Cerveny D, Grabic R, Fedorova G, Grabicova K, Turek J, Zlabek V, Randak T. Fate of perfluoroalkyl substances within a small stream food web affected by sewage effluent. WATER RESEARCH 2018; 134:226-233. [PMID: 29427964 DOI: 10.1016/j.watres.2018.01.066] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/25/2017] [Accepted: 01/27/2018] [Indexed: 05/15/2023]
Abstract
The fate of fourteen target perfluoroalkyl substances (PFASs) are described within a small stream affected by a sewage treatment plant (STP) effluent. Concentrations of target PFASs in samples of water, benthic macroinvertebrates and brown trout (Salmo trutta) are presented. Two hundred brown trout individuals originating from clean sites within the same stream were tagged and stocked into an experimental site affected by the STP's effluent. As a passive sampling approach, polar organic chemical integrative samplers (POCIS) were deployed in the water to reveal the water-macroinvertebrates-fish biotransformation processes of PFASs. Bioconcentration/bioaccumulation of target compounds was monitored one, three, and six months after stocking. Twelve of the fourteen target PFASs were found in concentration above the LOQ in at least one of the studied matrices. The compound pattern varied significantly between both the studied species and water samples. Concerning the accumulation of PFASs in fish, the highest concentrations were found in the liver of individuals sampled after three months of exposure. These concentrations rapidly decreased after six months although the water concentrations were slightly increasing during experiment.
Collapse
Affiliation(s)
- Daniel Cerveny
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25, Vodnany, Czech Republic; Department of Chemistry, Umea University, Umea, Sweden.
| | - Roman Grabic
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Ganna Fedorova
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Katerina Grabicova
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Jan Turek
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Vladimir Zlabek
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Tomas Randak
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| |
Collapse
|
21
|
Grabicova K, Grabic R, Fedorova G, Fick J, Cerveny D, Kolarova J, Turek J, Zlabek V, Randak T. Bioaccumulation of psychoactive pharmaceuticals in fish in an effluent dominated stream. WATER RESEARCH 2017; 124:654-662. [PMID: 28825984 DOI: 10.1016/j.watres.2017.08.018] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 08/04/2017] [Accepted: 08/07/2017] [Indexed: 05/14/2023]
Abstract
The treated effluent from sewage treatment plants (STP) is a major source of active pharmaceutical ingredients (APIs) that enter the aquatic environment. Bioaccumulation of 11 selected psychoactive pharmaceuticals (citalopram, clomipramine, haloperidol, hydroxyzine, levomepromazine, mianserin, mirtazapine, paroxetine, sertraline, tramadol and venlafaxine) was examined in Zivny Stream (tributary of the Blanice River, the Czech Republic), which is a small stream highly affected by effluent from the Prachatice STP. Six of the 11 pharmaceuticals were detected in grab water samples and in passive samplers. All pharmaceuticals were found in fish exposed to the stream for a defined time. The organs with highest presence of the selected pharmaceuticals were the liver and kidney; whereas only one pharmaceutical (sertraline) was detected in the brain of exposed fish. Fish plasma and muscle samples were not adequate in revealing exposure because the number of hits was much lower than that in the liver or kidney. Using the criterion of a bioaccumulation factor (BAF) ≥ 500, citalopram, mianserin, mirtazapine and sertraline could be classified as potential bioaccumulative compounds. In combination, data from integrative passive samplers and fish liver or kidney tissue samples were complimentary in detection of target compounds and simultaneously helped to distinguish between bioconcentration and bioaccumulation.
Collapse
Affiliation(s)
- Katerina Grabicova
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, CZ-389 25 Vodnany, Czech Republic.
| | - Roman Grabic
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, CZ-389 25 Vodnany, Czech Republic
| | - Ganna Fedorova
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, CZ-389 25 Vodnany, Czech Republic
| | - Jerker Fick
- Department of Chemistry, Umea University, SE-901 87 Umea, Sweden
| | - Daniel Cerveny
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, CZ-389 25 Vodnany, Czech Republic
| | - Jitka Kolarova
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, CZ-389 25 Vodnany, Czech Republic
| | - Jan Turek
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, CZ-389 25 Vodnany, Czech Republic
| | - Vladimir Zlabek
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, CZ-389 25 Vodnany, Czech Republic
| | - Tomas Randak
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, CZ-389 25 Vodnany, Czech Republic
| |
Collapse
|
22
|
Wang L, Gong X, Wang R, Gan Z, Lu Y, Sun H. Application of an immobilized ionic liquid for the passive sampling of perfluorinated substances in water. J Chromatogr A 2017; 1515:45-53. [DOI: 10.1016/j.chroma.2017.08.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 07/23/2017] [Accepted: 08/01/2017] [Indexed: 12/29/2022]
|
23
|
Cerveny D, Turek J, Grabic R, Golovko O, Koba O, Fedorova G, Grabicova K, Zlabek V, Randak T. Young-of-the-year fish as a prospective bioindicator for aquatic environmental contamination monitoring. WATER RESEARCH 2016; 103:334-342. [PMID: 27486042 DOI: 10.1016/j.watres.2016.07.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 07/19/2016] [Accepted: 07/20/2016] [Indexed: 06/06/2023]
Abstract
Toxic metals (Hg, Cd, Pb) and fifteen perfluoroalkyl substances (PFASs) were determined in different fish samples at two locations on the Elbe River in the Czech Republic. The muscle tissue of the two adult fish species most commonly used as bioindicators in central Europe and whole body homogenates of various species of young-of-the-year (YOY) fish were used. The purpose of this study was to evaluate the potential to replace adult fish muscle tissue with YOY fish for contamination monitoring. All of the toxic metals and five of the fifteen PFASs were found in the YOY fish samples while only mercury and PFOS were detected in the muscle tissue of adults. The concentration of total mercury (THg) in the YOY fish homogenates ranged between 0.014 and 0.062 μg g(-1). Of the spectrum of analysed pollutants, only the THg concentrations were lower in YOY fish homogenates than in adult muscle tissue. The cadmium concentration varied from 0.004 to 0.024 μg g(-1) and the lead concentration varied from 0.032 to 0.396 μg g(-1) in YOY fish homogenates, while in most of the adult samples, Cd and Pb were below the detection limit of the analytical methods employed. The PFOS concentrations in YOY fish homogenates were comparable to the concentrations frequently found in adult liver tissue. These results show that mixed shoals of YOY fish can be successfully used for aquatic bio-monitoring. Interspecific variability in the concentrations of the target pollutants in YOY fish whole body homogenates is usually lower than the intraspecific variability of the concentrations of the pollutants in adult fish muscle. YOY fish were found to be a suitable bioindicator and have several advantages compared to adult fish.
Collapse
Affiliation(s)
- Daniel Cerveny
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25, Vodnany, Czech Republic.
| | - Jan Turek
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Roman Grabic
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Oksana Golovko
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Olga Koba
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Ganna Fedorova
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Katerina Grabicova
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Vladimir Zlabek
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Tomas Randak
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| |
Collapse
|
24
|
Chropeňová M, Karásková P, Kallenborn R, Gregušková EK, Čupr P. Pine Needles for the Screening of Perfluorinated Alkylated Substances (PFASs) along Ski Tracks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:9487-9496. [PMID: 27457263 DOI: 10.1021/acs.est.6b02264] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Perfluorinated alkylated substances (PFASs) are today considered persistent, toxic, and bioaccumulative contaminants. Perfluorooctansulfonate (PFOS) and perfluorooctanoic acid (PFOA) are currently listed as priority substances under the UNEP global convention for the regulation of POPs. A previous study reported higher levels of PFASs in pine needles near ski areas. Their application as stain repellents in modern outdoor clothes and in ski waxes is assumed to be a potential source. Pine trees (Pinus mugo in Slovakia and Pinus sylvestris in Norway) were chosen for sampling in ski resorts. Relative distributions, overall concentrations, trend estimates, elevation patterns, and distance from primary sources were assessed. PFOA was the predominant PFAS constituent in pine needles from Slovakia (8-93%). In Norway, the most-abundant PFAS was perfluorobutanoic acid (PFBA: 3-66%). A difference in product composition (particularly in ski waxes) and differences in Norwegian and Slovakian regulations are considered to be the primary reason for these differences. Open application of PFOA in industry and products has been banned in Norway since 2011. The replacement of PFOA with short-chain substitutes is thus considered the reason for the observed pattern differences in the analyzed pine needles. Regular monitoring and screening programs are recommended.
Collapse
Affiliation(s)
- Mária Chropeňová
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University , Kamenice 753/5, Pavilion A29, 625 00 Brno, Czech Republic
| | - Pavlína Karásková
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University , Kamenice 753/5, Pavilion A29, 625 00 Brno, Czech Republic
| | - Roland Kallenborn
- Department of Chemistry, Biotechnology and Food Science (IKBM), Norwegian University of Life Sciences (NMBU) , P.O. Box 5003, Christian M. Falsens veg 1, NO-1432 Ås, Norway
| | - Eva Klemmová Gregušková
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University , Kamenice 753/5, Pavilion A29, 625 00 Brno, Czech Republic
| | - Pavel Čupr
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University , Kamenice 753/5, Pavilion A29, 625 00 Brno, Czech Republic
| |
Collapse
|