1
|
Saad M, Selim N, El-Samad LM. A novel treatment approach using vitamin B12-conjugated sericin for mitigating nanodiamond-induced toxicity in darkling beetles. INSECT SCIENCE 2025; 32:551-584. [PMID: 39014530 DOI: 10.1111/1744-7917.13421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/16/2024] [Accepted: 06/24/2024] [Indexed: 07/18/2024]
Abstract
The escalating use of nanodiamonds (NDs) has raised concerns about their ecotoxicological impact, prompting exploration of therapeutic interventions. This paper pioneers the examination of Vitamin B12-conjugated sericin (VB12-SER) as a potential therapeutic approach against ND-induced toxicity in darkling beetles (Blaps polychresta). The study analyzes mortality rates and organ-specific effects, covering the testis, ovary, and midgut, before and after treatments. Following exposure to 10 mg NDs/g body weight, within a subgroup of individuals termed ND2 with a mortality rate below 50%, two therapeutic treatments were administered, including pure sericin (SER) at 10 mg/mL and VB12-SER at 10.12 mg/mL. Consequently, five experimental groups (control, SER, ND2, ND2+SER, ND2+SER+VB12) were considered. Kaplan-Meier survival analysis was performed to assess the lifespan distribution of the insects in these groups over a 30-d period. Analyses revealed increased mortality and significant abnormalities induced by NDs within the examined organs, including cell death, DNA damage, enzyme dysregulation, antioxidant imbalances, protein depletion, lipid peroxidation, and morphological deformities. In contrast, the proposed treatments, especially (ND2+SER+VB12), demonstrated remarkable recovery, highlighting VB12-conjugated SER's potential in mitigating ND-triggered adverse effects. Molecular docking simulations affirmed binding stability and favorable interactions of the VB12-SER complex with target proteins. This research enhances understanding of NDs' effects on B. polychresta, proposing it as an effective bioindicator, and introduces VB12-conjugated SER as a promising therapeutic strategy in nanotoxicological studies.
Collapse
Affiliation(s)
- Marwa Saad
- Faculty of Science, Department of Zoology, Alexandria University, Baghdad st., Qism Moharram Bek, Alexandria, Egypt
| | - Nabila Selim
- Faculty of Science, Department of Zoology, Alexandria University, Baghdad st., Qism Moharram Bek, Alexandria, Egypt
| | - Lamia M El-Samad
- Faculty of Science, Department of Zoology, Alexandria University, Baghdad st., Qism Moharram Bek, Alexandria, Egypt
| |
Collapse
|
2
|
Rost-Roszkowska M, Urbisz A, Małota K, Wilczek G, Serda M, Skonieczna M. Investigation of potential cytotoxicity of a water-soluble, red-fluorescent [70]fullerene nanomaterial in Drosophila melanogaster. Nanotoxicology 2025; 19:1-16. [PMID: 39736806 DOI: 10.1080/17435390.2024.2445250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/19/2024] [Accepted: 12/03/2024] [Indexed: 01/01/2025]
Abstract
Fullerenes (C60, C70) as carbon nanomaterials can enter the environment through natural processes and anthropogenic activities, while synthetic fullerenes are commonly used in medicine in targeted therapies in association with antibodies, or anticancer and antimicrobial drugs. As the nanoparticles, they can pass through cell membranes and organelles and accumulate in the entire cytoplasm. The red-fluorescent, water-soluble [70]fullerene derivative C70-OMe-ser, which produces reactive oxygen species upon illumination with an appropriate wavelength, passed into the cytoplasm of the middle region in the Drosophila melanogaster digestive system. To determine whether [70]fullerene nanomaterials that produce fluorescence after entering the cell cytoplasm will hurt its homeostasis, it is necessary to investigate the activation of degenerative and possibly regenerative processes. In vivo, studies on the model species D. melanogaster may help to elucidate whether the water-soluble [70]fullerene derivative that produces fluorescence can still be considered among the most promising nanomaterials. The experiment involved feeding insects ad libitum with yeast paste supplemented with 40 µg of fullerenes/mL for 1 week and 1 month. Thus, adult females and males of D. melanogaster were divided into control (CWM, CWF, CMM, and CMF) and experimental groups (FWM, FWF, FMM, and FMF). The quantitative and qualitative analysis enabled the presentation of the effects of the water-soluble [70]fullerene derivatives on cell proliferation and degeneration. Our study presented that [70]fullerene derivative showed a cytoprotective effect and activated cell proliferation. Therefore, we could conclude that analyzed carbon nanomaterials seemed to be safe for the cells into which they have penetrated.
Collapse
Affiliation(s)
- Magdalena Rost-Roszkowska
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Anna Urbisz
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Karol Małota
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Grażyna Wilczek
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Maciej Serda
- Institute of Chemistry, University of Silesia in Katowice, Katowice, Poland
| | - Magdalena Skonieczna
- Department of Systems Engineering and Biology, Silesian University of Technology, Faculty of Automatic Control, Electronics and Computer Science, Gliwice, Poland
- Biotechnology Center, Silesian University of Technology, Gliwice, Poland
| |
Collapse
|
3
|
Saad M, Selim N, El-Samad LM. Comprehensive toxicity assessment of nanodiamond on Blaps polychresta: implications and novel findings. INSECT SCIENCE 2024; 31:1838-1863. [PMID: 38531693 DOI: 10.1111/1744-7917.13357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 03/28/2024]
Abstract
With the increasing development of nanomaterials, the use of nanodiamonds (NDs) has been broadly manifested in many applications. However, their high penetration into the ecosystem indubitably poses remarkable toxicological risks. This paper investigates the toxic effects of NDs on the darkling beetle, Blaps polychresta Forskal, 1775 (Coleoptera: Tenebrionidae). Survival analysis was carried out by monitoring the beetles for 30 d after the injection of four different doses of NDs. A dose of 10.0 mg NDs/g body weight, causing less than 50% mortality effect, was assigned in the analysis of the different organs of studied beetles, including testis, ovary, and midgut. Structural and ultrastructural analyses were followed using light, TEM, and SEM microscopes. In addition, a variety of stress markers and enzyme activities were assessed using spectrophotometric methods. Furthermore, cell viability and DNA damage were evaluated using cytometry and comet assay, respectively. Compared to the control group, the NDs-treated group was exposed to various abnormalities within all the studied organs as follows. Significant disturbances in enzyme activities were accompanied by an apparent dysregulation in the antioxidant system. The flow cytometry results indicated a substantial decrease of viable cells along with a rise of apoptotic and necrotic cells. The comet assay demonstrated a highly increased level of DNA damage. Likewise, histological analyses accentuated the same findings showing remarkable deformities in the studied organs. Prominently, the research findings substantially contribute for the first time to evaluating the critical effects of NDs on B. polychresta, adopted as the bioindicator in this paper.
Collapse
Affiliation(s)
- Marwa Saad
- Faculty of Science, Department of Zoology, Alexandria University, Alexandria, Egypt
| | - Nabila Selim
- Faculty of Science, Department of Zoology, Alexandria University, Alexandria, Egypt
| | - Lamia M El-Samad
- Faculty of Science, Department of Zoology, Alexandria University, Alexandria, Egypt
| |
Collapse
|
4
|
Augustyniak M, Ajay AK, Kędziorski A, Tarnawska M, Rost-Roszkowska M, Flasz B, Babczyńska A, Mazur B, Rozpędek K, Alian RS, Skowronek M, Świerczek E, Wiśniewska K, Ziętara P. Survival, growth and digestive functions after exposure to nanodiamonds - Transgenerational effects beyond contact time in house cricket strains. CHEMOSPHERE 2024; 349:140809. [PMID: 38036229 DOI: 10.1016/j.chemosphere.2023.140809] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
The long-term exposure effects of nanodiamonds (NDs), spanning an organism's entire lifespan and continuing for subsequent generation, remain understudied. Most research has focused on evaluating their biological impacts on cell lines and selected organisms, typically over short exposure durations lasting hours or days. The study aimed to assess growth, mortality, and digestive functions in wild (H) and long-lived (D) strains of Acheta domesticus (Insecta: Orthoptera) after two-generational exposure to NDs in concentrations of 0.2 or 2 mg kg-1 of food, followed by their elimination in the third generation. NDs induced subtle stimulating effect that depended on the strain and generation. In the first generation, more such responses occurred in the H than in the D strain. In the first generation of H strain insects, contact with NDs increased survival, stimulated the growth of young larvae, and the activity of most digestive enzymes in mature adults. The same doses and exposure time did not cause similar effects in the D strain. In the first generation of D strain insects, survival and growth were unaffected by NDs, whereas, in the second generation, significant stimulation of those parameters was visible. Selection towards longevity appears to support higher resistance of the insects to exposure to additional stressor, at least in the first generation. The cessation of ND exposure in the third generation caused potentially harmful changes, which included, e.g., decreased survival probability in H strain insects, slowed growth of both strains, as well as changes in heterochromatin density and distribution in nuclei of the gut cells in both strains. Such a reaction may suggest the involvement of epigenetic inheritance mechanisms, which may become inadequate after the stress factor is removed.
Collapse
Affiliation(s)
- Maria Augustyniak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland.
| | - Amrendra K Ajay
- Department of Medicine, Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Andrzej Kędziorski
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Monika Tarnawska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Magdalena Rost-Roszkowska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Barbara Flasz
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Agnieszka Babczyńska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Beata Mazur
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Katarzyna Rozpędek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Reyhaneh Seyed Alian
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Magdalena Skowronek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Ewa Świerczek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Klaudia Wiśniewska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Patrycja Ziętara
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| |
Collapse
|
5
|
Ziętara P, Flasz B, Augustyniak M. Does Selection for Longevity in Acheta domesticus Involve Sirtuin Activity Modulation and Differential Response to Activators (Resveratrol and Nanodiamonds)? Int J Mol Sci 2024; 25:1329. [PMID: 38279331 PMCID: PMC10816910 DOI: 10.3390/ijms25021329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/12/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024] Open
Abstract
Sirtuins, often called "longevity enzymes", are pivotal in genome protection and DNA repair processes, offering insights into aging and longevity. This study delves into the potential impact of resveratrol (RV) and nanodiamonds (NDs) on sirtuin activity, focusing on two strains of house crickets (Acheta domesticus): the wild-type and long-lived strains. The general sirtuin activity was measured using colorimetric assays, while fluorescence assays assessed SIRT1 activity. Additionally, a DNA damage test and a Kaplan-Meier survival analysis were carried out. Experimental groups were fed diets containing either NDs or RV. Notably, the long-lived strain exhibited significantly higher sirtuin activity compared to the wild-type strain. Interestingly, this heightened sirtuin activity persisted even after exposure to RVs and NDs. These findings indicate that RV and NDs can potentially enhance sirtuin activity in house crickets, with a notable impact on the long-lived strain. This research sheds light on the intriguing potential of RV and NDs as sirtuin activators in house crickets. It might be a milestone for future investigations into sirtuin activity and its potential implications for longevity within the same species, laying the groundwork for broader applications in aging and lifespan extension research.
Collapse
Affiliation(s)
| | | | - Maria Augustyniak
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, ul. Bankowa 9, 40-007 Katowice, Poland; (P.Z.)
| |
Collapse
|
6
|
Flasz B, Dziewięcka M, Ajay AK, Tarnawska M, Babczyńska A, Kędziorski A, Napora-Rutkowski Ł, Ziętara P, Świerczek E, Augustyniak M. Age- and Lifespan-Dependent Differences in GO Caused DNA Damage in Acheta domesticus. Int J Mol Sci 2022; 24:ijms24010290. [PMID: 36613733 PMCID: PMC9820743 DOI: 10.3390/ijms24010290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
The rising applicability of graphene oxide (GO) should be preceded by detailed tests confirming its safety and lack of toxicity. Sensitivity to GO of immature, or with different survival strategy, individuals has not been studied so far. Therefore, in the present research, we focused on the GO genotoxic effects, examining selected parameters of DNA damage (total DNA damage, double-strand breaks-DSB, 8-hydroxy-2'-deoxyguanosine-8-OHdG, abasic site-AP sites), DNA damage response parameters, and global methylation in the model organism Acheta domesticus. Special attention was paid to various life stages and lifespans, using wild (H), and selected for longevity (D) strains. DNA damage was significantly affected by stage and/or strain and GO exposure. Larvae and young imago were generally more sensitive than adults, revealing more severe DNA damage. Especially in the earlier life stages, the D strain reacted more intensely/inversely than the H strain. In contrast, DNA damage response parameters were not significantly related to stage and/or strain and GO exposure. Stage-dependent DNA damage, especially DSB and 8-OHdG, with the simultaneous lack or subtle activation of DNA damage response parameters, may result from the general life strategy of insects. Predominantly fast-living and fast-breeding organisms can minimize energy-demanding repair mechanisms.
Collapse
Affiliation(s)
- Barbara Flasz
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Marta Dziewięcka
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Amrendra K. Ajay
- Department of Medicine, Division of Renal Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Monika Tarnawska
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Agnieszka Babczyńska
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Andrzej Kędziorski
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Łukasz Napora-Rutkowski
- Polish Academy of Sciences, Institute of Ichthyobiology and Aquaculture in Gołysz, 43-520 Chybie, Poland
| | - Patrycja Ziętara
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Ewa Świerczek
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Maria Augustyniak
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
- Correspondence: ; Tel.: +48-32-359-1235
| |
Collapse
|
7
|
Augustyniak M, Babczyńska A, Dziewięcka M, Flasz B, Karpeta-Kaczmarek J, Kędziorski A, Mazur B, Rozpędek K, Seyed Alian R, Skowronek M, Świerczek E, Świętek A, Tarnawska M, Wiśniewska K, Ziętara P. Does age pay off? Effects of three-generational experiments of nanodiamond exposure and withdrawal in wild and longevity-selected model animals. CHEMOSPHERE 2022; 303:135129. [PMID: 35636606 DOI: 10.1016/j.chemosphere.2022.135129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Nanodiamonds (NDs) are considered a material with low toxicity. However, no studies describe the effects of ND withdrawal after multigenerational exposure. The aim was to evaluate ND exposure (in the 1st and 2nd generations) effects at low concentrations (0.2 or 2 mg kg-1) and withdrawal (in the 3rd generation) in the wild (H) and longevity-selected (D) model insect Acheta domesticus. We measured selected oxidative stress parameters, immunity, types of cell death, and DNA damage. Most of the results obtained in the 1st generation, e.g., catalase (CAT), total antioxidant capacity (TAC), heat shock proteins (HSP70), defensins, or apoptosis level, confirmed no significant toxicity of low doses of NDs. Interestingly, strain-specific differences were observed. D-strain crickets reduced autophagy, the number of ROS+ cells, and DNA damage. The effect can be a symptom of mobilization of the organism and stimulation of physiological defense mechanisms in long-living organisms. The 2nd-generation D-strain insects fed ND-spiked food at higher concentrations manifested a reduction in CAT, TAC, early apoptosis, and DNA damage, together with an increase in HSP70 and defensins. ROS+ cells and cells with reduced membrane potential and autophagy did not differ significantly from the control. H-strain insects revealed a higher number of ROS+ cells and cells with reduced membrane potential, decreased CAT activity, and early apoptosis. Elimination of NDs from the diet in the 3rd generation did not cause full recovery of the measured parameters. We noticed an increase in the concentration of HSP70 and defensins (H-strain) and a decrease in apoptosis (D-strain). However, the most visible increase was a significant increase in DNA damage, especially in H-strain individuals. The results suggest prolonged adverse effects of NDs on cellular functions, reaching beyond "contact time" with these particles. Unintentional and/or uncontrolled ND pollution of the environment poses a new challenge for all organisms inhabiting it, particularly during multigenerational exposure.
Collapse
Affiliation(s)
- Maria Augustyniak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland.
| | - Agnieszka Babczyńska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Marta Dziewięcka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Barbara Flasz
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Julia Karpeta-Kaczmarek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Andrzej Kędziorski
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Beata Mazur
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Katarzyna Rozpędek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Reyhaneh Seyed Alian
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Magdalena Skowronek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Ewa Świerczek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Agata Świętek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Monika Tarnawska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Klaudia Wiśniewska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Patrycja Ziętara
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| |
Collapse
|
8
|
Bhogale D, Mazahir F, Yadav AK. Recent Synergy of Nanodiamonds: Role in Brain-Targeted Drug Delivery for the Management of Neurological Disorders. Mol Neurobiol 2022; 59:4806-4824. [PMID: 35618981 DOI: 10.1007/s12035-022-02882-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 05/17/2022] [Indexed: 11/29/2022]
Abstract
The aim of the present review article is to summarize the role of nanodiamonds in various neurological diseases. We have taken related literature of making this review article from ScienceDirect, springer, Research gate, PubMed, Sci-finder, etc. The current approaches for treating neurological conditions such as glioblastoma includes chemotherapy or combination anti-retro viral therapy for HIV (human immunodeficiency virus) or use of anti-Alzheimer drugs during cognitive impairment. These approaches can provide only symptomatic relief as they do not target the cause of the disease due to their inability to penetrate the blood brain barrier. On long-term use, they may cause CNS toxicity due to accumulation in the brain. So nanodiamonds could prove as a promising approach in the brain targeting of the bioactive and to treat many neurological disorders such as Alzheimer's disease, Parkinson's disease, brain tumor (glioblastoma), HIV, amyotrophic multiple sclerosis, Huntington disease, stroke (cerebrovascular attack), batten disease, schizophrenia, epilepsy, and bacterial infections (encephalitis, sepsis, and meningitis) due to their ability to penetrate the blood-brain barrier and owing to their excellent surface properties, i.e., nano size and high surface area, ease of functionalization, multiple drug binding, and biocompatibility; they can be useful for brain targeted drug delivery with minimal side effects.
Collapse
Affiliation(s)
- Deepali Bhogale
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, Uttar Pradesh, 226002, India
| | - Farhan Mazahir
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, Uttar Pradesh, 226002, India
| | - Awesh K Yadav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, Uttar Pradesh, 226002, India.
| |
Collapse
|
9
|
El-Samad LM, El-Ashram S, Hussein HK, Abdul-Aziz KK, Radwan EH, Bakr NR, El Wakil A, Augustyniak M. Time-delayed effects of a single application of AgNPs on structure of testes and functions in Blaps polychresta Forskal, 1775 (Coleoptera: Tenebrionidae). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150644. [PMID: 34597572 DOI: 10.1016/j.scitotenv.2021.150644] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/15/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Silver nanoparticles (AgNPs) are currently the most frequently used engineered nanoparticles. The penetration of AgNPs into ecosystems is undeniable, and their adverse effects on organism reproduction are of fundamental importance for ecosystem stability. In this study, the survival time of the Egyptian beetle Blaps polychresta Forskal, 1775 (Coleoptera: Tenebrionidae), after a single application of 7 different doses, was calculated for 30 days. Then, for the group for which the effect on mortality was calculated as LOAEL - the Lowest Observed Adverse Effect Level, namely, 0.03 mg AgNPs/g body weight (b.w.t.), the following were assessed: structure and ultrastructure of gonads by TEM and SEM, cell viability by cytometry, DNA damage by the comet assay, and a variety of stress markers by spectrophotometric methods. A dose-dependent reduction in the survival time of the insects was revealed. Detailed analysis of the testes of beetles treated with 0.03 mg AgNPs/g b.w.t. revealed numerous adverse effects of nanoparticles in structure and ultrastructure, accompanied by increased apoptosis (but not necrosis), increased DNA damage, increased lipid peroxidation, and decreased levels of antioxidant enzymes. Most likely, the observed results are connected with the gradual release of Ag+ from the surface of the nanoparticles, which, once applied, are internalized in cells and become a long-lasting, stable source of Ag+ ions. Thus, a single exposure to AgNPs may have the effects of chronic exposure and lead to structural damage and dysfunction of the gonads of B. polychresta.
Collapse
Affiliation(s)
- Lamia M El-Samad
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Saeed El-Ashram
- College of Life Science and Engineering, Foshan University, 18 Jiangwan Street, Foshan 528231, Guangdong Province, China; Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt; Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - Hussein K Hussein
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | | | - Eman H Radwan
- Department of Zoology, Faculty of Science, Damanhour University, Egypt
| | - Nahed R Bakr
- Department of Zoology, Faculty of Science, Damanhour University, Egypt
| | - Abeer El Wakil
- Biological and Geological Sciences Department, Faculty of Education, Alexandria University, Egypt
| | - Maria Augustyniak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland.
| |
Collapse
|
10
|
Flasz B, Dziewięcka M, Kędziorski A, Tarnawska M, Augustyniak J, Augustyniak M. Multigenerational selection towards longevity changes the protective role of vitamin C against graphene oxide-induced oxidative stress in house crickets. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:117996. [PMID: 34416498 DOI: 10.1016/j.envpol.2021.117996] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/21/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
This research was designed to investigate changes that can arise in an invertebrate organism due to stress caused by a strong prooxidant, graphene oxide (GO), and a potent antioxidant, vitamin C. The study aimed to investigate if vitamin C may support convalescence after chronic GO intoxication. We investigated the toxicity of chronic dietary graphene oxide administration in house cricket (Acheta domesticus) types: wild and selected for longevity (with a better developed antioxidant system, conducive to long life). Vitamin C was applied immediately after cessation of graphene oxide intoxication to check if it can support the remedial effect. The condition of cells, DNA stability, catalase activity, and the reproduction potential, measured as the Vitellogenin (Vg) protein expression level, were investigated in control and GO treated groups, recovery groups (-GO), and recovery groups with Vit. C (-GO + Vit.C). In this study vitamin C had no evident remedial effect on the house crickets exposed to graphene oxide. Most probably, the mechanism of vitamin C action, in case of intoxication with nanoparticles, is much more complicated. In the context of the results obtained, it is worth considering whether Vit. C, applied after GO intoxication, causes further disturbance of homeostasis in terms of the cells' redox potential.
Collapse
Affiliation(s)
- Barbara Flasz
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Bankowa 9, 40-007, Katowice, Poland.
| | - Marta Dziewięcka
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Bankowa 9, 40-007, Katowice, Poland
| | - Andrzej Kędziorski
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Bankowa 9, 40-007, Katowice, Poland
| | - Monika Tarnawska
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Bankowa 9, 40-007, Katowice, Poland
| | - Jan Augustyniak
- Medical University of Silesia, Faculty of Medical Sciences in Zabrze, Department of Physiology, Jordana 19, 41-808, Zabrze, Poland
| | - Maria Augustyniak
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Bankowa 9, 40-007, Katowice, Poland
| |
Collapse
|
11
|
Seyed Alian R, Dziewięcka M, Kędziorski A, Majchrzycki Ł, Augustyniak M. Do nanoparticles cause hormesis? Early physiological compensatory response in house crickets to a dietary admixture of GO, Ag, and GOAg composite. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147801. [PMID: 34022572 DOI: 10.1016/j.scitotenv.2021.147801] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/01/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
This study aimed to identify the physiological responses of house cricket females following short-term exposure to relatively low dietary doses of graphene oxide (GO, 20 μg · g-1 food), silver (Ag, 400 μg · g-1 food) nanoparticles (NPs), or graphene oxide‑silver nanoparticle composite (GO-AgNPs, 20: 400 μg · g-1 food). Energy intake and distribution were measured on the third, sixth, and tenth day. A semi-quantitative API®ZYM assay of digestive enzyme fingerprints was performed on the third and tenth day of continuous treatment. Physicochemical properties of the NPs were obtained by combining SEM, EDX spectrometry, AFM, and DLS techniques. The obtained results showed decreased energy consumption, particularly assimilation as an early response to dietary NPs followed by compensatory changes in feeding activity leading to the same consumption and assimilation throughout the experimental period (10 days). The increased activities of digestive enzymes in NP-treated females compared to the control on the third day of the experiment suggest the onset of compensatory reactions of the day. Moreover, the insects treated with GO-AgNP composite retained more body water, suggesting increased uptake. The observed changes in the measured physiological parameters after exposure to NPs are discussed in light of hormesis.
Collapse
Affiliation(s)
- Reyhaneh Seyed Alian
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Marta Dziewięcka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Andrzej Kędziorski
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Łukasz Majchrzycki
- Centre of Advanced Technology, Adam Mickiewicz University in Poznan, ul. Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Maria Augustyniak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland.
| |
Collapse
|
12
|
Lisik K, Krokosz A. Application of Carbon Nanoparticles in Oncology and Regenerative Medicine. Int J Mol Sci 2021; 22:8341. [PMID: 34361101 PMCID: PMC8347552 DOI: 10.3390/ijms22158341] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023] Open
Abstract
Currently, carbon nanoparticles play a large role as carriers of various types of drugs, and also have applications in other fields of medicine, e.g., in tissue engineering, where they are used to reconstruct bone tissue. They also contribute to the early detection of cancer cells, and can act as markers in imaging diagnostics. Their antibacterial and anti-inflammatory properties are also known. This feature is particularly important in dental implantology, where various types of bacterial infections and implant rejection often occur. The search for newer and more effective treatments may lead to future use of nanoparticles on a large scale. In this work, the current state of knowledge on the possible use of nanotubes, nanodiamonds, and fullerenes in therapy is reviewed. Both advantages and disadvantages of the use of carbon nanoparticles in therapy and diagnostics have been indicated.
Collapse
Affiliation(s)
- Katarzyna Lisik
- Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Anita Krokosz
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| |
Collapse
|
13
|
Dziewięcka M, Pawlyta M, Majchrzycki Ł, Balin K, Barteczko S, Czerkawska M, Augustyniak M. The Structure-Properties-Cytotoxicity Interplay: A Crucial Pathway to Determining Graphene Oxide Biocompatibility. Int J Mol Sci 2021; 22:5401. [PMID: 34065593 PMCID: PMC8161018 DOI: 10.3390/ijms22105401] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 01/08/2023] Open
Abstract
Interest in graphene oxide nature and potential applications (especially nanocarriers) has resulted in numerous studies, but the results do not lead to clear conclusions. In this paper, graphene oxide is obtained by multiple synthesis methods and generally characterized. The mechanism of GO interaction with the organism is hard to summarize due to its high chemical activity and variability during the synthesis process and in biological buffers' environments. When assessing the biocompatibility of GO, it is necessary to take into account many factors derived from nanoparticles (structure, morphology, chemical composition) and the organism (species, defense mechanisms, adaptation). This research aims to determine and compare the in vivo toxicity potential of GO samples from various manufacturers. Each GO sample is analyzed in two concentrations and applied with food. The physiological reactions of an easy model Acheta domesticus (cell viability, apoptosis, oxidative defense, DNA damage) during ten-day lasting exposure were observed. This study emphasizes the variability of the GO nature and complements the biocompatibility aspect, especially in the context of various GO-based experimental models. Changes in the cell biomarkers are discussed in light of detailed physicochemical analysis.
Collapse
Affiliation(s)
- Marta Dziewięcka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland; (S.B.); (M.C.); (M.A.)
| | - Mirosława Pawlyta
- Department of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18A, 44-100 Gliwice, Poland;
| | - Łukasz Majchrzycki
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland;
| | - Katarzyna Balin
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland;
| | - Sylwia Barteczko
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland; (S.B.); (M.C.); (M.A.)
| | - Martyna Czerkawska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland; (S.B.); (M.C.); (M.A.)
| | - Maria Augustyniak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland; (S.B.); (M.C.); (M.A.)
| |
Collapse
|
14
|
Zhang C, Chen X, Chou WC, Ho SH. Phytotoxic effect and molecular mechanism induced by nanodiamonds towards aquatic Chlorella pyrenoidosa by integrating regular and transcriptomic analyses. CHEMOSPHERE 2021; 270:129473. [PMID: 33401071 DOI: 10.1016/j.chemosphere.2020.129473] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/19/2020] [Accepted: 12/26/2020] [Indexed: 06/12/2023]
Abstract
The growing diverse applications of nanodiamonds (NDs), especially as adsorbents and catalysts for wastewater treatment, have significantly increased their discharge and potential risk towards aquatic ecosystems. Although NDs have been certified for superior biocompatibility and lower toxicity towards numerous human cell lines, the characteristic response and underlying mechanism of aquatic microalgal response remains unclear. Here, the response of Chlorella pyrenoidosa to five concentrations of NDs was thoroughly investigated by comprehensive phenotypic and transcriptional examinations. Results indicated that higher concentration of NDs (50 mg/L) induced 75.4% growth inhibition, exacerbated oxidative stress and malformed morphology of microalgae after 48 h exposure. Meanwhile, the aggregated microalgae formed several flocs, apparently under 50 mg/L NDs. Noticeably, photosynthesis was susceptible to the NDs exposure. Although, the chlorophyll content and genes involved in photosynthesis were significantly improved by NDs, the results obtained from the photochemical parameters indicated that the excessive electrons during photosynthesis might be a pivotal reason for oxidative stress generation. Additionally, the genes included in amino acids metabolism and protein synthesis were up-regulated to alleviate the oxidative stress. Collectively, this work discloses the explicit molecular mechanisms of aquatic microalgae and provides comprehensive insights of potential aqueous environmental risk of gradually emergent NDs.
Collapse
Affiliation(s)
- Chaofan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Xudong Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Wei-Chun Chou
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, United States
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| |
Collapse
|
15
|
Flasz B, Dziewięcka M, Kędziorski A, Tarnawska M, Augustyniak M. Vitellogenin expression, DNA damage, health status of cells and catalase activity in Acheta domesticus selected according to their longevity after graphene oxide treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 737:140274. [PMID: 32783857 DOI: 10.1016/j.scitotenv.2020.140274] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/14/2020] [Accepted: 06/14/2020] [Indexed: 06/11/2023]
Abstract
The increased use of graphene oxide (GO) raises worrisome questions regarding its possible threat to various ecosystems. Invertebrates represent valuable organisms for environmental studies. The lifespan can influence the ability to cope with toxins, especially those that act via oxidative stress. Two strains of Acheta domesticus, which are selected for longevity, were tested. The main aim was to investigate how GO, when administrated in food, affects: the condition of cells, DNA stability, ROS generation and the reproduction potential (the Vitellogenin (Vg) protein expression). The "recovery effect" - after removing GO from the diet for 15 days - was also measured. The results revealed different responses to GO in the wild (H) and long-living (D) strains. The D strain had a higher catalase activity compared to the H strain on the 25th day of the imago stage. Removing GO from the food resulted in a decrease in the catalase activity to the level of the control. On the 5th day of the imago stage, the H strain had a higher cell mortality than the D strain in the GO-intoxicated groups. There was more DNA damage in the H strain compared to the long-living strain. A remedial effect was seen after the GO was removed from the diet. The total Vg protein expression was higher in the H strain and lower in the D strain. The results indicated a GO concentration-dependent outcome. In both strains, removing the GO from the food led to a high Vg expression. The Vg expression after GO treatment, particularly translation and post-translational processing, should be studied in detail in the future. The D strain of crickets had more specialized mechanisms for maintaining homeostasis than the H strain. Organisms can fight off negative effects of GO, especially when they have systems that are well developed against oxidative stress.
Collapse
Affiliation(s)
- Barbara Flasz
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Bankowa 9, 40-007 Katowice, Poland.
| | - Marta Dziewięcka
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Bankowa 9, 40-007 Katowice, Poland
| | - Andrzej Kędziorski
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Bankowa 9, 40-007 Katowice, Poland
| | - Monika Tarnawska
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Bankowa 9, 40-007 Katowice, Poland
| | - Maria Augustyniak
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Bankowa 9, 40-007 Katowice, Poland
| |
Collapse
|
16
|
Lee DK, Ha S, Jeon S, Jeong J, Kim DJ, Lee SW, Cho WS. The sp3/sp2 carbon ratio as a modulator of in vivo and in vitro toxicity of the chemically purified detonation-synthesized nanodiamond via the reactive oxygen species generation. Nanotoxicology 2020; 14:1213-1226. [PMID: 32924690 DOI: 10.1080/17435390.2020.1813825] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Nanodiamonds have been suggested as biocompatible materials and are suitable for various biomedical applications, but little is known about how to synthesize safer nanodiamonds. Herein, seven different detonation-synthesized nanodiamonds (DNDs) with sequential sp3/sp2 carbon ratios were assembled by controlling the chemical purification parameters and the role of sp3/sp2 carbon ratio on the toxicity of DNDs was investigated. Carbon black and nickel oxide nanoparticles were used as reference particles. The intrinsic reactive oxygen species (ROS) generation potential of DNDs was estimated by a 2'7'-dichlorofluorescein diacetate (DCFH-DA) assay, and these values showed a good negative correlation with the sp3/sp2 carbon ratios, which implies that ROS generation increased as the sp3/sp2 carbon ratio decreased. As a model to investigate inflammogenic potential of DND samples, a rat intratracheal instillation model was used as the lung is very sensitive to nanoparticle exposures. The sp3/sp2 carbon ratios or the estimated values of ROS generation potential showed excellent linear correlations with the number of neutrophils and pro-inflammatory cytokines in bronchoalveolar lavage fluid at 24 h after instillation. Treatment of DND samples to THP-1 derived macrophages also showed that the sp3/sp2 carbon ratios or the estimated values of ROS generation potential were closely related with the toxicity endpoints such as cell viability and pro-inflammatory cytokines. Taken together, these data demonstrate that the sp3/sp2 carbon ratio is the key determinant for the toxicity of DNDs, which can be a useful tool for the safer-by-design approach of DNDs and the safety assessment of carbon nanoparticles.
Collapse
Affiliation(s)
- Dong-Keun Lee
- Lab of Toxicology, Department of Health Sciences, Dong-A University, Busan, Republic of Korea
| | - Sangwook Ha
- Plasma Technology Research Center, National Fusion Research Institute, Gunsan-si, Republic of Korea
| | - Soyeon Jeon
- Lab of Toxicology, Department of Health Sciences, Dong-A University, Busan, Republic of Korea
| | - Jiyoung Jeong
- Lab of Toxicology, Department of Health Sciences, Dong-A University, Busan, Republic of Korea
| | - Dong-Jae Kim
- Laboratory Animal Resource Center, DGIST, Daegu, Republic of Korea
| | - Seung Whan Lee
- Plasma Technology Research Center, National Fusion Research Institute, Gunsan-si, Republic of Korea
| | - Wan-Seob Cho
- Lab of Toxicology, Department of Health Sciences, Dong-A University, Busan, Republic of Korea
| |
Collapse
|
17
|
Dziewięcka M, Flasz B, Rost-Roszkowska M, Kędziorski A, Kochanowicz A, Augustyniak M. Graphene oxide as a new anthropogenic stress factor - multigenerational study at the molecular, cellular, individual and population level of Acheta domesticus. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122775. [PMID: 32361302 DOI: 10.1016/j.jhazmat.2020.122775] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/31/2020] [Accepted: 04/16/2020] [Indexed: 05/14/2023]
Abstract
Although interest in transgenerational phenomena is constantly growing, little is known about the long-term toxicity of nanoparticles. In this study we investigate the multigenerational effects of graphene oxide (GO) which was given to Acheta domesticus in low doses (0.2, 2 and 20 μg·g-1 of food) for three subsequent generations. We assessed the influence of GO nanoparticles in many contexts, basing on parameters which represented different levels of biological organization: activity of antioxidant enzymes, level of apoptosis, DNA damage, histological analysis, hatching abilities, body mass and body length of insects, as well as their survival rate. The results have shown that exposing insects to nanoparticles over an extended period of time causes surprising intergenerational effects, based on significant differences in the life cycle and reproductive processes, which are not always dose-dependent. The second generation of insects appeared as the most unstable among the parameters that were studied, and did not match trends and patterns in the first and third generation categories. An increase of DNA damage was observed, but only in the third generation. This reduction of genome stability can be perceived as an essential element of adaptation, leading to an increase of genotype variants, which then undergo selection.
Collapse
Affiliation(s)
- Marta Dziewięcka
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Bankowa 9, PL, 40-007, Katowice, Poland.
| | - Barbara Flasz
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Bankowa 9, PL, 40-007, Katowice, Poland
| | - Magdalena Rost-Roszkowska
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Bankowa 9, PL, 40-007, Katowice, Poland
| | - Andrzej Kędziorski
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Bankowa 9, PL, 40-007, Katowice, Poland
| | - Anna Kochanowicz
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Bankowa 9, PL, 40-007, Katowice, Poland
| | - Maria Augustyniak
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Bankowa 9, PL, 40-007, Katowice, Poland
| |
Collapse
|
18
|
Samak DH, El-Sayed YS, Shaheen HM, El-Far AH, Abd El-Hack ME, Noreldin AE, El-Naggar K, Abdelnour SA, Saied EM, El-Seedi HR, Aleya L, Abdel-Daim MM. Developmental toxicity of carbon nanoparticles during embryogenesis in chicken. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:19058-19072. [PMID: 30499089 DOI: 10.1007/s11356-018-3675-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
Nanoparticles (NPs) are very small particles present in a wide range of materials. There is a dearth of knowledge regarding their potential secondary effects on the health of living organisms and the environment. Increasing research attention, however, has been directed toward determining the effects on humans exposed to NPs in the environment. Although the majority of studies focus on adult animals or populations, embryos of various species are considered more susceptible to environmental effects and pollutants. Hence, research studies dealing mainly with the impacts of NPs on embryogenesis have emerged recently, as this has become a major concern. Chicken embryos occupy a special place among animal models used in toxicity and developmental investigations and have also contributed significantly to the fields of genetics, virology, immunology, cell biology, and cancer. Their rapid development and easy accessibility for experimental observance and manipulation are just a few of the advantages that have made them the vertebrate model of choice for more than two millennia. The early stages of chicken embryogenesis, which are characterized by rapid embryonic growth, provide a sensitive model for studying the possible toxic effects on organ development, body weight, and oxidative stress. The objective of this review was to evaluate the toxicity of various types of carbon black nanomaterials administered at the beginning of embryogenesis in a chicken embryo model. In addition, the effects of diamond and graphene NPs and carbon nanotubes are reviewed.
Collapse
Affiliation(s)
- Dalia H Samak
- Department of Veterinary Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Yasser S El-Sayed
- Department of Veterinary Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Hazem M Shaheen
- Department of Pharmacology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Ali H El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Karima El-Naggar
- Department of Nutrition and Veterinary Clinical Nutrition, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| | - Sameh A Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Essa M Saied
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Hesham R El-Seedi
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt
- Pharmacognosy Group, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, 25030, Besançon Cedex, France
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
19
|
Samiei F, Shirazi FH, Naserzadeh P, Dousti F, Seydi E, Pourahmad J. Toxicity of multi-wall carbon nanotubes inhalation on the brain of rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:12096-12111. [PMID: 31984464 DOI: 10.1007/s11356-020-07740-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
This study was designed to investigate the brain toxicity following the respiratory contact with multi-wall carbon nanotubes (MWCNTs) in male Wistar rats. Rats were exposed to 5 mg/m3 MWCNT aerosol in different sizes and purities for 5 h/day, 5 days/week for 2 weeks in a whole-body exposure chamber. After 2-week exposure, mitochondrial isolation was performed from different parts of rat brain (hippocampus, frontal cortex, and cerebellum) and parameters of mitochondrial toxicity including mitochondrial succinate dehydrogenase (SDH) activity, generation of reactive oxygen species (ROS), mitochondrial membrane potential (MMP) collapse, mitochondrial swelling, and cytochrome c release, ATP level, mitochondrial GSH, and lipid peroxidation were evaluated. Our results demonstrated that MWCNTs with different characteristics, in size and purity, significantly (P < 0.05) decreased SDH activity, GSH, and ATP level, and increased mitochondrial ROS production, lipid peroxidation, mitochondrial swelling, MMP collapse, and cytochrome c release in the brain mitochondria. In conclusion, we suggested that MWCNTs with different characteristics, in size and purity, induce damage in varying degrees on the mitochondrial respiratory chain and increase mitochondrial ROS formation in different parts of rat brain (hippocampus, frontal cortex, and cerebellum).
Collapse
Affiliation(s)
- Fatemeh Samiei
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, P.O. Box: 14155-6153, Tehran, Iran
| | - Farshad Hosseini Shirazi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, P.O. Box: 14155-6153, Tehran, Iran
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvaneh Naserzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, P.O. Box: 14155-6153, Tehran, Iran
| | - Faezeh Dousti
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, P.O. Box: 14155-6153, Tehran, Iran
| | - Enayatollah Seydi
- Department of Occupational Health and Safety Engineering, School of Health, Alborz University of Medical Sciences, Karaj, Iran.
- Research Center for Health, Safety and Environment, Alborz University of Medical Sciences, Karaj, Iran.
| | - Jalal Pourahmad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, P.O. Box: 14155-6153, Tehran, Iran.
| |
Collapse
|
20
|
Włodarczyk A, Wilczek G, Wilczek P, Student S, Ostróżka A, Tarnawska M, Rost-Roszkowska M. Relationship between ROS production, MnSOD activation and periods of fasting and re-feeding in freshwater shrimp Neocaridina davidi (Crustacea, Malacostraca). PeerJ 2019; 7:e7399. [PMID: 31565545 PMCID: PMC6744934 DOI: 10.7717/peerj.7399] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/02/2019] [Indexed: 12/27/2022] Open
Abstract
The middle region of the digestive system, the midgut of freshwater shrimp Neocaridina davidi is composed of a tube-shaped intestine and the hepatopancreas formed by numerous caeca. Two types of cells have been distinguished in the intestine, the digestive cells (D-cells) and regenerative cells (R-cells). The hepatopancreatic tubules have three distinct zones distinguished along the length of each tubule—the distal zone with R-cells, the medial zone with differentiating cells, and the proximal zone with F-cells (fibrillar cells) and B-cells (storage cells). Fasting causes activation of cell death, a reduction in the amount of reserve material, and changes in the mitochondrial membrane potential. However, here we present how the concentration of ROS changes according to different periods of fasting and whether re-feeding causes their decrease. In addition, the activation/deactivation of mitochondrial superoxide dismutase (MnSOD) was analyzed. The freshwater shrimps Neocaridina davidi (Crustacea, Malacostraca, Decapoda) were divided into experimental groups: animals starved for 14 days, animals re-fed for 4, 7, and 14 days. The material was examined using the confocal microscope and the flow cytometry. Our studies have shown that long-term starvation increases the concentration of free radicals and MnSOD concentration in the intestine and hepatopancreas, while return to feeding causes their decrease in both organs examined. Therefore, we concluded that a distinct relationship between MnSOD concentration, ROS activation, cell death activation and changes in the mitochondrial membrane potential occurred.
Collapse
Affiliation(s)
- Agnieszka Włodarczyk
- Department of Animal Histology and Embryology, University of Silesia in Katowice, Katowice, Poland
| | - Grażyna Wilczek
- Department of Animal Physiology and Ecotoxicology, University of Silesia in Katowice, Katowice, Poland
| | - Piotr Wilczek
- Bioengineering Laboratory, Heart Prosthesis Institute, Zabrze, Poland
| | - Sebastian Student
- Faculty of Automatic Control, Silesian University of Technology, Gliwice, Poland
| | - Anna Ostróżka
- Department of Animal Histology and Embryology, University of Silesia in Katowice, Katowice, Poland
| | - Monika Tarnawska
- Department of Animal Physiology and Ecotoxicology, University of Silesia in Katowice, Katowice, Poland
| | | |
Collapse
|
21
|
Gajski G, Žegura B, Ladeira C, Pourrut B, Del Bo’ C, Novak M, Sramkova M, Milić M, Gutzkow KB, Costa S, Dusinska M, Brunborg G, Collins A. The comet assay in animal models: From bugs to whales – (Part 1 Invertebrates). MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 779:82-113. [DOI: 10.1016/j.mrrev.2019.02.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 02/07/2019] [Accepted: 02/09/2019] [Indexed: 01/09/2023]
|
22
|
Domínguez GA, Torelli MD, Buchman JT, Haynes CL, Hamers RJ, Klaper RD. Size dependent oxidative stress response of the gut of Daphnia magna to functionalized nanodiamond particles. ENVIRONMENTAL RESEARCH 2018; 167:267-275. [PMID: 30077134 DOI: 10.1016/j.envres.2018.07.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/21/2018] [Accepted: 07/14/2018] [Indexed: 06/08/2023]
Abstract
Nanodiamonds are a type of engineered nanomaterial with high surface area that is highly tunable and are being proposed for use as a material for medical imaging or drug delivery to composites. With their potential for widespread use they may potentially be released into the aquatic environment as are many chemicals used for these purposes. It is generally thought that nanodiamonds are innocuous, but toxicity may occur due to surface functionalization. This study investigated the potential oxidative stress and antioxidant response of enterocytes in a freshwater invertebrate, Daphnia magna, a common aquatic invertebrate for ecotoxicological studies, in response to two types of functionalized nanodiamonds (polyallylamine and oxidized). We also examined how the size of the nanomaterial may influence toxicity by testing two different sizes (5 nm and 15 nm) of nanodiamonds with the same functionalization. Adults of Daphnia magna were exposed to three concentrations of each of the nanodiamonds for 24 h. We found that both 5 and 15 nm polyallylamine nanodiamond and oxidized nanodiamond induced the production of reactive oxygen species in tissues. The smaller 5 nm nanodiamond induced a significant change in the expression of heat shock protein 70 and glutathione-S-transferase. This may suggest that daphnids mounted an antioxidant response to the oxidative effects of 5 nm nanodiamonds but not the comparative 15 nm nanodiamonds with either surface chemistry. Outcomes of this study reveal that functionalized nanodiamond may cause oxidative stress and may potentially initiate lipid peroxidation of enterocyte cell membranes in freshwater organisms, but the impact of the exposure depends on the particle size.
Collapse
Affiliation(s)
- Gustavo A Domínguez
- University of Wisconsin-Milwaukee, School of Freshwater Sciences, Milwaukee, WI 53204, United States
| | - Marco D Torelli
- University of Wisconsin-Madison, Department of Chemistry, Madison WI 53706, United States
| | - Joseph T Buchman
- University of Minnesota-Twin Cities, Department of Chemistry, 207 Pleasant Street SE, Minneapolis, MN 55455, United States
| | - Christy L Haynes
- University of Minnesota-Twin Cities, Department of Chemistry, 207 Pleasant Street SE, Minneapolis, MN 55455, United States
| | - Robert J Hamers
- University of Wisconsin-Madison, Department of Chemistry, Madison WI 53706, United States
| | - Rebecca D Klaper
- University of Wisconsin-Milwaukee, School of Freshwater Sciences, Milwaukee, WI 53204, United States.
| |
Collapse
|
23
|
Karpeta-Kaczmarek J, Kędziorski A, Augustyniak-Jabłokow MA, Dziewięcka M, Augustyniak M. Chronic toxicity of nanodiamonds can disturb development and reproduction of Acheta domesticus L. ENVIRONMENTAL RESEARCH 2018; 166:602-609. [PMID: 29982148 DOI: 10.1016/j.envres.2018.05.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/22/2018] [Accepted: 05/25/2018] [Indexed: 06/08/2023]
Abstract
UNLABELLED The use of nanodiamonds in numerous materials designed for industry and medicine is growing rapidly. Consequently health and environmental risks associated with the exposure of humans and other biota to nanodiamonds-based materials are of the utmost importance. Scarcity of toxicological data for these particles led us to examine the potentially deleterious effects of nanodiamonds in model insect species, Acheta domesticus (Orthoptera) chronically exposed to ND in its diet. Organism-level end-point indices (lifespan, body weight, consumption, caloric value of faeces, reproduction) revealed adverse changes in the treated crickets in comparison with the control. Preliminary studies of oxidative stress level in the offspring of ND-treated crickets suggest toxicity of these particles limited to the exposed individuals. EPR analysis showing increase of radical signal in the faeces of ND-fed crickets led us to propose novel mechanism of nanodiamonds toxicity that is discussed in the light of literature data. CAPSULE Development and reproduction of Acheta domesticus can be disturbed by the chronic exposure to nanodiamonds.
Collapse
Affiliation(s)
- Julia Karpeta-Kaczmarek
- Department of Animal Physiology and Ecotoxicology, University of Silesia in Katowice, Bankowa 9, PL 40-007 Katowice, Poland.
| | - Andrzej Kędziorski
- Department of Animal Physiology and Ecotoxicology, University of Silesia in Katowice, Bankowa 9, PL 40-007 Katowice, Poland
| | | | - Marta Dziewięcka
- Department of Animal Physiology and Ecotoxicology, University of Silesia in Katowice, Bankowa 9, PL 40-007 Katowice, Poland
| | - Maria Augustyniak
- Department of Animal Physiology and Ecotoxicology, University of Silesia in Katowice, Bankowa 9, PL 40-007 Katowice, Poland
| |
Collapse
|
24
|
Dziewięcka M, Witas P, Karpeta-Kaczmarek J, Kwaśniewska J, Flasz B, Balin K, Augustyniak M. Reduced fecundity and cellular changes in Acheta domesticus after multigenerational exposure to graphene oxide nanoparticles in food. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 635:947-955. [PMID: 29710616 DOI: 10.1016/j.scitotenv.2018.04.207] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/11/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
Despite the fact that the demand for graphene and its derivatives in commercial applications is still growing, many aspects of its toxicity and biocompatibility are still poorly understood. Graphene oxide, which is released into the environment (air, soil and water) as so-called nanowaste or nanopollution, is able to penetrate living organisms. It is highly probable that, due to its specific nature, it can migrate along food chains thereby causing negative consequences. Our previous studies reported that short-term exposure to graphene oxide may increase the antioxidative defense parameters, level of DNA damage, which results in numerous degenerative changes in the gut and gonads. The presented research focuses on reproductive dysfunction and cellular changes in Acheta domesticus after exposure to GO nanoparticles in food (concentrations of 20 and 200 μg·g-1 of food) throughout their entire life cycle. The results showed that long-term exposure to GO caused a significant decrease in the reproductive capabilities of the animals. Moreover, the next generation of A. domesticus had a lower cell vitality compared to their parental generation. It is possible that graphene oxide can cause multigenerational harmful effects.
Collapse
Affiliation(s)
- Marta Dziewięcka
- Department of Animal Physiology and Ecotoxicology, University of Silesia in Katowice, Bankowa 9, PL 40-007 Katowice, Poland.
| | - Piotr Witas
- Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1A, PL 41-500 Chorzów, Poland
| | - Julia Karpeta-Kaczmarek
- Department of Animal Physiology and Ecotoxicology, University of Silesia in Katowice, Bankowa 9, PL 40-007 Katowice, Poland
| | - Jolanta Kwaśniewska
- Department of Plant Anatomy and Cytology, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - Barbara Flasz
- Department of Animal Physiology and Ecotoxicology, University of Silesia in Katowice, Bankowa 9, PL 40-007 Katowice, Poland
| | - Katarzyna Balin
- Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1A, PL 41-500 Chorzów, Poland
| | - Maria Augustyniak
- Department of Animal Physiology and Ecotoxicology, University of Silesia in Katowice, Bankowa 9, PL 40-007 Katowice, Poland
| |
Collapse
|
25
|
Khosravi Y, Salimi A, Pourahmad J, Naserzadeh P, Seydi E. Inhalation exposure of nano diamond induced oxidative stress in lung, heart and brain. Xenobiotica 2017; 48:860-866. [DOI: 10.1080/00498254.2017.1367974] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Yahya Khosravi
- Research Center for Health, Safety and Environment (RCHSE), Alborz University of Medical Sciences, Karaj, Iran,
- Department of Occupational Health Engineering, Alborz University of Medical Sciences, Karaj, Iran,
| | - Ahmad Salimi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran,
| | - Jalal Pourahmad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran, and
| | - Parvaneh Naserzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran, and
- Students Research Committee, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Enayatollah Seydi
- Research Center for Health, Safety and Environment (RCHSE), Alborz University of Medical Sciences, Karaj, Iran,
- Department of Occupational Health Engineering, Alborz University of Medical Sciences, Karaj, Iran,
| |
Collapse
|
26
|
Dziewięcka M, Karpeta-Kaczmarek J, Augustyniak M, Rost-Roszkowska M. Short-term in vivo exposure to graphene oxide can cause damage to the gut and testis. JOURNAL OF HAZARDOUS MATERIALS 2017; 328:80-89. [PMID: 28092742 DOI: 10.1016/j.jhazmat.2017.01.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 01/04/2017] [Accepted: 01/08/2017] [Indexed: 06/06/2023]
Abstract
Graphene oxide (GO) has unique physicochemical properties and also has a potentially widespread use in every field of daily life (industry, science, medicine). Demand for nanotechnology is growing every year, and therefore many aspects of its toxicity and biocompatibility still require further clarification. This research assesses the in vivo toxicity of pure and manganese ion-contaminated GO that were administrated to Acheta domesticus with food (at 200mgkg-1 of food) throughout their ten-day adult life. Our results showed that short-term exposure to graphene oxide in food causes an increase in the parameters of oxidative stress of the tested insects (catalase - CAT, total antioxidant capacity - TAC), induces damage to the DNA at a level of approximately 35% and contributes to a disturbance in the stages of the cell cycle and causes an increase of apoptosis. Moreover, upon analyzing histological specimens, we found numerous degenerative changes in the cells of the gut and testis of Acheta domesticus as early as ten days after applying GO. A more complete picture of the GO risk can help to define its future applications and methods for working with the material, which may help us to avoid any adverse effects and damage to the animal.
Collapse
Affiliation(s)
- Marta Dziewięcka
- Department of Animal Physiology and Ecotoxicology, University of Silesia in Katowice, Bankowa 9, PL 40-007 Katowice, Poland.
| | - Julia Karpeta-Kaczmarek
- Department of Animal Physiology and Ecotoxicology, University of Silesia in Katowice, Bankowa 9, PL 40-007 Katowice, Poland
| | - Maria Augustyniak
- Department of Animal Physiology and Ecotoxicology, University of Silesia in Katowice, Bankowa 9, PL 40-007 Katowice, Poland
| | - Magdalena Rost-Roszkowska
- Department of Animal Histology and Embryology, University of Silesia in Katowice, Bankowa 9, PL 40-007 Katowice, Poland
| |
Collapse
|